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Abstract

Few-shot instance segmentation extends the few-shot learn-
ing paradigm to the instance segmentation task, which tries
to segment instance objects from a query image with a few
annotated examples of novel categories. Conventional ap-
proaches have attempted to address the task via prototype
learning, known as point estimation. However, this mech-
anism depends on prototypes (e.g. mean of K —shot) for
prediction, leading to performance instability. To overcome
the disadvantage of the point estimation mechanism, we
propose a novel approach, dubbed MaskDiff, which mod-
els the underlying conditional distribution of a binary mask,
which is conditioned on an object region and K —shot in-
formation. Inspired by augmentation approaches that per-
turb data with Gaussian noise for populating low data den-
sity regions, we model the mask distribution with a diffu-
sion probabilistic model. We also propose to utilize classifier-
free guided mask sampling to integrate category informa-
tion into the binary mask generation process. Without bells
and whistles, our proposed method consistently outperforms
state-of-the-art methods on both base and novel classes of
the COCO dataset while simultaneously being more sta-
ble than existing methods. The source code is available at:
https://github.com/minhquanlecs/MaskDiff.

Introduction

To achieve outstanding performances, instance segmenta-
tion models (He et al. 2017; Le et al. 2022) require to be
trained on substantial pixel-level annotated images, which is
labor-intensive and costly. Moreover, their ability to gener-
alize from a few examples is still far from acceptable com-
pared to the human visual system, which constrains their
feasibility in practical applications. Inspired by the mirac-
ulous ability of the human visual system to recognize novel
objects with limited data, few-shot learning (FSL) aims to
learn new concepts on a handful of training data (KX exam-
ples) by generalizing models trained on base classes to adapt
novel classes.
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Figure 1: (a) Prior work estimates a specific point as repre-
sentative of each class (Fan et al. 2020). (b) Our MaskDiff
method models the conditional distribution of masks given
object regions and K —shot samples.

Conventional few-shot instance segmentation (FSIS)
methods tried to address learning on a few examples via pro-
totype learning (Fan et al. 2020; Ganea et al. 2021). This
matching mechanism searches the nearest prototype and its
corresponding support class from support images as guid-
ance for segmenting the query image (Fig.1a). Unlike exist-
ing FSIS methods, we introduce a novel probabilistic model
to estimate the distribution of a binary mask given a detected
object region and K samples (Fig.1b). Concretely, object
region, object category, and K —shot are treated as condi-
tional information for generating the binary mask represen-
tation of each object. Mathematically, we model the con-
ditional distribution of a binary mask of an object instance
conditioned on an object region and K —shot of a specific
i-th class pg (ylmsk|xregion7 K —shotl). To the best of our
knowledge, our work is the first method to model mask dis-
tribution for FSIS.
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Derived from the insight that perturbs data with Gaussian
noise for populating low data density regions (Song and Er-
mon 2019) and motivated by diffusion-based models (Sohl-
Dickstein et al. 2015), we define a Markov chain of diffusion
steps to slowly add Gaussian noise to an object mask and
then learn to reverse the diffusion process conditioned on an
object region and K —shot samples to reconstruct the desired
mask representation corresponding to the objects from the
noise. We also design a method using classifier-free guid-
ance to guide the diffusion model during sampling. Hence,
the diffusion model is aware of categories of binary masks
in the sampling procedure.

Our proposed approach includes several advantages. First,
our method is more stable and robust to different K —shot
samples than point estimation methods since we capture the
underlying conditional distribution of mask representation
rather than depending on prototypes for prediction (see sub-
section stability analysis). We hypothesize that the binary
mask representation of each object is sampled from a high-
dimensional conditional distribution conditioned on RGB
image and K —shot. Thus, a single prototypical vector is in-
sufficient to comprehensively capture diverse levels of se-
mantic information, including object boundaries, poses, or
categories. In addition, we argue that the mask representa-
tion relies on not only the instance object region but also its
category. Therefore, we follow class-specific mask predictor
and integrate category knowledge into the mask generation
process. Last but not least, our class-specific mask predictor
alleviates spatial information losses from pooling operators
of existing FSIS methods (Ganea et al. 2021; Nguyen et al.
2022). When exploiting detected bounding box locations as
input for diffusion models, we do not leverage any pooled
features such as Mask-RCNN (He et al. 2017) to generate
masks but directly use image channels, thus preserving de-
tailed spatial information. Our contributions lie in four-fold:

* We introduce a novel mask distribution modeling ap-
proach, dubbed MaskDiff, for FSIS. Conceptually, un-
like point estimation, MaskDiff tries to model the con-
ditional distribution of a binary mask conditioned on the
detected object region and K —shot samples.

* Our work is the first to adapt conditional diffusion prob-
abilistic models for modeling instance binary mask dis-
tribution in FSIS.

* We propose to utilize guidance from the available clas-
sification head of the object detector to integrate cat-
egory information into the mask sampling procedure.
Consequently, in the reverse process, the diffusion model
is aware of the categories of mask representation. Our
class-specific mask predictor outperforms class-agnostic
ones (Ganea et al. 2021; Nguyen et al. 2022). More-
over, when we integrate category information into the
mask-generation process, the sampling procedure be-
comes more stable and produces more organized content
(see Supplementary Materials for qualitative results).

» Extensive experimental results on the standard COCO
dataset show that our MaskDiff not only outperforms
state-of-the-art FSIS methods on both base and novel
classes but also is more stable than existing methods.
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Related Work

Few-shot instance segmentation (FSIS). The majority of
prior works for FSIS try to provide guidance to specific com-
ponents of Mask-RCNN (He et al. 2017) to guarantee that
the networks better understand novel classes or both base
and novel classes as well. Most early approaches adapted
meta-learning to episodic training (Yan et al. 2019; Fan et al.
2020). On the other hand, Wang et al. (2020) proposed
a two-stage fine-tuning approach (TFA) which first trains
Faster-RCNN (Ren et al. 2015) on the base classes and then
fine-tunes the box predictor on a balanced subset of base
and novel classes. Modern FSIS methods (Wang et al. 2020;
Ganea et al. 2021; Nguyen et al. 2022) were then developed
in this fine-tuning direction by fine-tuning the last layers of
certain heads on novel classes. Our proposed MaskDiff also
follows the latter training strategy. In addition, current tech-
niques (Ganea et al. 2021; Nguyen et al. 2022) mainly con-
centrate on class-agnostic mask prediction heads, meaning
each object’s mask representation does not depend on its cat-
egory. On the contrary, we propose to leverage object classes
to generate semantic and stable masks.

Diffusion probabilistic model (DPM). Diffusion mod-
els (Sohl-Dickstein et al. 2015; Ho, Jain, and Abbeel 2020)
belong to a class of likelihood-based generative models that
comprise the forward process and the reverse process. Later
on, Nichol and Dhariwal (2021) design an additional classi-
fier which is trained on noisy images and utilizes gradients
to guide the sampling process based on the conditioning in-
formation. In contrast, Ho and Salimans (2021) argued that a
pure generative model could provide guidance without need-
ing a classifier. Inspired by their work, we employ classifier-
free guided mask sampling, using the off-the-shelf cosine
classifier from the box-classification head instead of training
additional classifiers. Recent works have studied the adap-
tation of conditional DPMs to downstream tasks including
super-resolution (Rombach et al. 2022), text-to-image syn-
thesis (Gu et al. 2022), and image segmentation (Baranchuk
et al. 2022). To our best knowledge, our proposed MaskDiff
is the first work adapting conditional DPM to FSIS.

Methodology
Problem Formulation

In few-shot learning, we have a disjoint set of base classes
Chpase Which contains a large quantity of training data and
a set of novel classes Cpover With a limited number of an-
notated data Cpase N Crover = (. The main objective is
to train a model that performs well on the novel classes
Ciest = Crovel Or on both base and novel classes together
Ciest = Cpase U Chovel. Following the steps of few-shot
classification, prior works (Kang et al. 2019; Yan et al.

2019) simulate the episodic-training methodology which
randomly samples a series of episodes £ = {(I1,S;) }‘]i .
where the j-th episode is formulated by sampling a support
set §; including IV classes from Cypain = Chase U Crovel
in tandem with K samples per class (/N —way, K —shot) and
a query image I?. The goal of FSIS is not only to local-
ize all the object instances from any query image and clas-

sify those objects but also to determine their segmentation
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Figure 2: Our MaskDiff is built upon TFA (Wang et al. 2020)

by integrating a mask distribution modeling head and adapt-

ing guided sampling to integrate category information into
mask generation procedure.

TFA
Mask Distribution Modeling
Po (ymasklxregion' K _Sho"l)

masks. For all objects in a query image I9 that belong to
Ciest, FSIS generates the corresponding labels, bounding
boxes, and segmentation masks.

Proposed MaskDiff Method

Overview. Figure 2 illustrates the architecture of our
MaskDiff, adapted from TFA (Wang et al. 2020), which is
a two-stage object detection architecture. We build a mask
distribution modeling head on top of TFA. Unlike class-
agnostic mask predictor (Ganea et al. 2021) or prototype-
based mask head (Fan et al. 2020), we propose to model
the conditional distribution of a binary mask conditioned
on an instance region and K —shot samples via condi-
tional DPMs. With regard to denoising architecture of the
mask distribution modeling branch, we adapt UNet (Ron-
neberger, Fischer, and Brox 2015) architecture with at-
tention heads (Vaswani et al. 2017) from Guided Diffu-
sion (Dhariwal and Nichol 2021). In particular, the condi-
tioning module consists of concatenating a detected object
region and K —shot. We empirically found that the permu-
tation of K —shot does not affect the model’s performance
since the encoder-decoder architecture leverages informa-
tion of each shot independently. The detailed denoising ar-
chitecture is illustrated in Supplementary Material (Supp.).

Diffusion-based two-stage training. Figure 3 visual-
izes our diffusion-based two-stage training for FSIS. In
the first stage, i.e., the base training stage, the network
is trained only on the base classes Cp.se. We separately
train few-shot object detector heads and estimate the mask
distribution. Specifically, the Rol cosine-similarity classi-
fier C and the box regressor R follow the standard train-
ing process while the mask distribution modeling head
Do (ymask|xregion, K fshot’) is proposed to train based on
conditional DPM. The reason is that in this early stage, the
box regressor R is not stable enough, and it is complicated
for probabilistic models to estimate the mask distribution ef-
ficiently. Obviously, incorrectly localizing objects leads to
extremely unsatisfactory segmentation results.

The second stage, i.e., the few-shot fine-tuning stage, in-
volves freezing the entire feature extractor F and jointly
fine-tuning prediction heads on a balanced dataset of K
shots for both Cy,s. and C,e classes. Likewise, all the
prediction heads C, R, and py are fine-tuned.

Instance Mask Modeling with Conditional DPM
Given an FSIS dataset, we extract a dataset of input-output

{ (X(riegiorﬂ K—Sh0t7 ygﬂask) }llljl

pairs denoted D for
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Figure 3: Pipeline of diffusion-based two-stage training. In
the first stage, the entire object detector (feature extrac-
tor, classifier, and box regressor) and the mask distribution
modeling head are trained separately on the base classes.
In the second stage, the feature extractor is frozen while
the cosine classifier, the box regressor, and the mask dis-
tribution modeling head are jointly fine-tuned on both base
and novel classes. Our mask distribution modeling head is
trained based on diffusion (yellow), while the remaining two
heads follow the standard object detection training (blue).
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Figure 4: Conditional diffusion model for few-shot binary
mask segmentation. The directed graphical model trans-
forms the noise from standard Gaussian distribution to the
mask representation of objects through an iterative denois-
ing process. Solid arrows indicate the reverse process, while
the dashed arrow implies the forward step. y, x, k denote bi-
nary masks, object regions and removed background version
of K —shot samples, respectively.

modeling the binary mask distribution given object regions
and K —shot information. x‘fegion’s are collected by crop-
ping object regions from the RGB images by bounding box
locations in the annotations. y<_ ’s are converted from
polygons to binary mask representations at the same location
as xfegion’s. Finally, K —shot samples of each class are the
background removed version of the object region. For sim-
plicity, we denote y, x, k to represent binary masks, object
regions, and K —shot guidance, respectively. In this work,
we aim to learn the underlying conditional distribution from
which a data point representing a binary mask is sampled
vo ~ q(y|x,k). However, we are unable to determine ex-
actly the true distribution. Via diffusion models, we maxi-
mize the likelihood py (yo|x,k) = [ po (yo.r|x, k) dy1.1
to approximate the true distribution. Two processes are de-
fined in the conditional diffusion probabilistic models, in-
cluding the forward and reverse processes (see Fig. 4).
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Algorithm 1: Training Procedure

Algorithm 2: Inference Procedure with Guided Sampling

repeat
x ~ ¢(x), x belongs to class 7, k = K shots of class i
yo ~ q(yolx, k)
t ~ Uniform(1,...
e ~N(0,1)

Take gradient descent step on

Vo He — €9 (@yo + V1 — az€,x, k, t)H2

until converged

7T)

Forward diffusion process. The forward diffusion pro-
cess is defined in which we gradually add a small amount
of Gaussian noise to the sample in 7" steps, producing a se-
quence of noisy samples y1, . .., yr, formulated as follows:

T
q(virlyo) = [ [ a (velye-1) 0]
t=1

Reverse diffusion process. The reverse diffusion process
po (Yo.r|x, k) is defined as a Markov chain with learned
Gaussian transitions beginning with p(yr) ~ N(0,T),
which is formulated as follows:

T

yo) [T

po (yor|x, k) (ye-1lys, x, k). (2

Diffusion loss. The conditional diffusion probabilistic
model is trained to minimize the cross entropy as the learn-
ing objective, which is equivalent to minimizing variational
upper bound Ly yp (see Supp. for detailed derivation of loss
functions). The loss Ly yg can be rewritten to be a combi-
nation of several KL-divergence and entropy terms:

Lvus = Eq | Dxi(q(yrlyo) || pe(yr)) —logpe(yoly1,x, k)
Lt Lo
T—1
+ > Dralq(yelyes1,yo) | po(yelyer,x, k))} )
t=1

Ly

Following the standard training process of DPM (Ho,
Jain, and Abbeel 2020), the loss term L; is parameterized
to achieve better training, resulting in a simplified loss:

Li=Eyy.c [He — es(v/aryo + VI are, x, k, t)||2], @
where € ~ N (0,T). Training procedure is shown in Alg. 1.

Classifier-free guided mask sampling. In contrast to
class-agnostic mask segmentation (Ganea et al. 2021), we
integrate category knowledge into binary mask generation.
It is known that mask representation of each object depends
upon not only its boundary but also its category. The mask
distribution modeling head can be aware of the discrimi-
native properties of objects. In other words, our diffusion
model explicitly controls binary masks via object labels.

Inspired by the derivation of score-based models (Song
and Ermon 2019), the distribution p(y|x, k, ¢), where c is
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yr NN(OvI)
fort=T,...,1do
€ ~N(0,I)if ¢ > 1, otherwise € < 0
€o < weg(yt7x7 k: c, t) + (1 - UJ)Eg(yt,x, k7 t)

Yi-1 \/%(Yt - 7%25% €y ) +ore
end for
return yo

a one-hot vector indicating the object category, has the score:

p(yelx,. k) p (clyt, x, k) )
p(clx, k)

= Vlogp (yt|x,k) + Vlogp (cly:, x, k) .

Vlogp (yt|x, k,c) = Vlog (
(5)

guidance-agnostic score adversarial gradient

Classifier guidance (Dhariwal and Nichol 2021) adjusts
the adversarial gradient of the noisy classifier by a w hyper-
parameter term to introduce fine-grained control to either
encourage or dissuade the model from accepting the con-
ditioning information:

(6)

Inspired by classifier-free guidance (Ho and Salimans
2021), we substitute the adversarial gradient term in Eq. 5
into Eq. 6, resulting:

Viogp (yilx, k,c) = Viog p (yi|x, k) + wVlogp (cly:, x, k) .

(1 —-w)Viogp (yilx k).

guidance-agnostic score

Vlogp (yilx, k,c) = wVlogp (yi|x, k, c) +

guidance-specific score

(N
As Vlogp (yi|x,k,c) = —ﬁeg(yhx k,c,t) (see
Supp. for more details), we have the equivalent form:

é(ye,x, k,c,t) = wep(ye, x, k, ¢, t) + (1 —w)ea(ye, x, k, 1) .

guidance-specific score guidance-agnostic score

®)
The inference procedure with guided sampling is shown
in Alg. 2. When w > 1, the diffusion model not only fa-
vors the guidance-specific score function over the guidance-
agnostic one but also moves away from it. Along with pro-
ducing samples that accurately match the conditioning in-
formation, this also reduces sample variety and makes gen-
erated masks more stable. Following Ho ef al. (2021), we set
w = b to obtain the most individual sample fidelity.

Experiments
Implementation Details

Our MaskDiff was implemented using the Detectron2 li-
brary. The used backbone architecture was a ResNet50 (He
et al. 2016), and we utilized FPN (Lin et al. 2017) for
the path aggregation block. The mask distribution model-
ing head was implemented using Guided Diffusion (Dhari-
wal and Nichol 2021) with 1, 000 reverse steps. In the base
training stage, similar to TFA (Wang et al. 2020), object de-
tector heads were trained using SGD with a learning rate
of 0.02, momentum of 0.9, and weight decay of 10~*. The
mask distribution modeling head was trained using AdamW
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Object Detection Instance Segmentation

Shots | Method Published All Classes Base Classes | Novel Classes | All Classes Base Classes | Novel Classes
AP APy, | AP AP5, | AP  AP5, | AP APy, | AP AP5, | AP AP;,

MRCN+t-full (2017) | ICCV 2017 | 10.21 21.58 | 17.63 26.32 | 0.74 2.33 9.88 19.25 | 15.57 24.18 | 0.64 2.14

MTFA (2021) CVPR 2021 | 2432 39.64 | 31.73 5149 | 2.10 4.07 | 2298 37.48 | 29.85 48.64 | 2.34 3.99

1 iMTFA (2021) CVPR 2021 | 21.67 31.55 | 27.81 40.11 | 323 589 | 20.13 30.64 | 259 39.28 | 2.81 4.72
iFS-RCNN (2022) CVPR 2022 | 31.19 52.83 | 40.08 71.14 | 454 10.29 | 28.45 46.72 | 36.35 63.11 | 3.95 7.89
MaskDiff (Ours) - 32,59 54.61 | 41.23 7285 | 526 11.35 | 2942 4837 | 37.59 64.26 | 485 8.73
MRCN+t-full (2017) | ICCV 2017 | 12.31 23.69 | 19.43 28.12 | 1.15 2.09 | 11.28 2236 | 17.89 26.78 | 1.17 2.58
MTFA (2021) CVPR 2021 | 26.39 4152 | 33.11 5149 | 622 11.63 | 25.07 3995 | 31.29 49.55 | 638 11.14

5 iMTFA (2021) CVPR 2021 | 19.62 28.06 | 24.13 33.69 | 6.07 11.15 | 1822 27.10 | 22.56 33.25 | 5.19 8.65
iFS-RCNN (2022) CVPR 2022 | 3252 5430 | 40.06 71.19 | 991 19.24 | 29.89 4822 | 36.33 62.81 | 8.80 15.73
MaskDiff (Ours) - 3345 56.19 | 41.51 72.28 | 1049 21.07 | 3048 50.35 | 38.12 64.36 | 943 17.12
MRCN+t-full (2017) | ICCV 2017 | 12.44 2439 | 20.57 29.72 | 2.33 5.64 | 12.15 2329 | 18.08 27.53 | 1.86  4.25
MTFA (2021) CVPR 2021 | 27.44 42.84 | 33.83 52.04 | 828 1525 | 2597 41.28 | 31.84 50.17 | 836  14.58
10 iMTFA (2021) CVPR 2021 | 19.26 27.49 | 23.36 3241 | 697 12.72 | 17.87 2646 | 21.87 32.01 | 5.88 9.81
iFS-RCNN (2022) CVPR 2022 | 33.02 56.15 | 40.05 69.84 | 12.55 2597 | 30.41 49.54 | 36.32 63.29 | 10.06 19.72
MaskDiff (Ours) - 3521 59.80 | 42.17 72.36 | 14.04 28.33 | 31.89 52.15 | 38.55 66.48 | 11.84 21.27
Table 1: FSOD and FSIS performance on COCO dataset for both base and novel classes (COCO-All). MaskDiff outperforms

state-of-the-art methods. The best performance is marked in boldface.

Detection Segmentation

Shots | Method AP AP AgP AP
MRCN-+ft-full (2017) | 2.52 5.78 1.93 4.68
Meta-RCNN (2019) 5.60 14.20 4.40 10.60

10 MTFA (2021) 852 1553 | 8.40 14.62
iMTFA (2021) 7.14 12.91 5.94 9.96
iFS-RCNN (2022) 11.27 22.15 | 10.22 20.61
MaskDiff (Ours) 12.18 23.61 | 11.01 21.58

Table 2: FSOD and FSIS performance on only COCO novel
classes (COCO-Novel). MaskDiff outperforms state-of-the-
art methods. Results on other K —shot are shown in Supp.

with a learning rate of 1074, ; = 0.9, and B2 = 0.999.
Object regions, binary masks, and K —shot guidance were
all resized to 128 x 128 for training the mask distribution
modeling head. In the few-shot fine-tuning stage, the entire
network, including object detector heads and the mask distri-
bution modeling head, was jointly trained with the same con-
figuration as training the mask distribution modeling head in
the first stage. In the final step of the denoising process, we
set the threshold of noisy binary masks to 0.5 to separate 0
and 1 values. All variants of MaskDiff were trained with a
batch size of 8 on a single NVIDIA RTX 3090 GPU.

Experimental Settings

Following the standard FSIS evaluation (Wang et al. 2020;
Ganea et al. 2021), we evaluated MaskDiff on COCO (Lin
et al. 2014), VOC2007 and VOC2012 (Everingham et al.
2010) datasets. 80 classes of COCO were split as suggested
by Kang et al. (2019). 20 classes that intersect with VOC
were used as novel classes, whereas the remaining 60 classes
were used as base classes. The union of COCO training
set (80k images) and COCO validation set (35k images)
was utilized for training, while the remaining 5k images
served as the test set. We also combined validation sets of
VOC2007 and VOC2012 only for testing.

We compared the performance of K = 1,5, 10 shots per
novel class. We repeated all tests 10 times with K random
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Detection Segmentation

Shots | Method AP APs, AP APs,
FGN (2020) - 30.80 - 16.20

1 MTFA (2021) 9.99 21.68 | 9.51 19.28
iMTFA (2021) 11.47 2241 857 1632
MaskDiff (Ours) | 24.15 38.57 | 22.73 37.59

Table 3: FSIS performance on COCO2VOC. MaskDiff out-
performs state-of-the-art methods. The authors of FGN (Fan
et al. 2020) reported only AP50 results of one-shot.

samples per class to limit the influence of outliers caused
by the random selection of K shots and report the mean re-
sult. Our FSIS assessment approach is identical to that of
few-shot object detection (FSOD) (Wang et al. 2020). Cru-
cially, segmentation results of different runs are not unique
since the masks sampled in the inference depend on random
factors (yr ~ N(0,I), € ~ N(0,I)). To provide a stable
and reliable evaluation procedure of generative-based mod-
els, we propose a simple yet effective evaluation inspired by
TFA (Wang et al. 2020). With a model trained on specific K
shots, we performed inference for multiple runs on different
random seeds to obtain averages and confidence intervals.
We observed that 10 runs are comparatively reliable and sta-
ble for evaluation reports. To sum up, we trained models for
10 runs on different samples of training shots, and with each
trained model, we tested on 10 different random seeds.

Comparison with State-of-the-art Methods

Results on both COCO base and novel classes (COCO-
All). In this experiment, we aim to predict all 80 COCO
classes and report the standard evaluation metrics, including
mAP and AP50. Following the newly introduced evaluation
process of Ganea et al. (2021), we report the performance
of the base and novel classes independently as well as all
classes. We compared our MaskDiff against state-of-the-art
methods, such as MTFA, iMTFA (Ganea et al. 2021), iFS-
RCNN (Nguyen et al. 2022), and a fully-converged Mask
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Figure 5: Inference example of our MaskDiff when training and inference on one-shot setting for the COCO novel classes.

Method BTrammg (Hour‘s) Inference (FPS)
ase Fine-tuning

MRCN+t-full | 24.6 12.8 10.38

MTFA 24.8 12.7 10.32

iMTFA 24.2 124 11.75

iFS-RCNN 28.5 15.6 10.28

MaskDiff 323 16.1 8.27

Table 4: Runtime of FSIS (1—shot) on COCO dataset.

R-CNN model fine-tuned on the novel classes (MRCN+ft-
full (He et al. 2017)). Results in Tab. 1 show MaskDiff
consistently outperforms state-of-the-art methods on both
FSOD and FSIS tasks for all numbers of provided shots
on both base and novel classes. This implies MaskDiff
can adapt to novel classes while embracing performance
in base classes. Especially, MaskDiff outperforms MTFA
and iMTFA with significant margins on the COCO dataset.
Compared with MTFA on 10 shots, our performance of
FSIS gains is about +3.5 on new classes and +7 on base
classes. Likewise, our MaskDiff also dramatically outper-
forms iMTFA with gains of 4-6 on novel classes and +17 on
base classes. Modeling mask distribution via DPM is more
effective than conventional methods and gains large perfor-
mance in learning existing and new categories on limited
data. Regarding FSOD, our MaskDiff is built upon TFA, a
multi-task learning design, i.e., detection and segmentation.
The improvement in one task can benefit another one. As our
segmentation head generates a better binary mask for each
region. This information can be used to improve the accu-
racy of object detection by providing a more precise location
and shape of the object.

Results on only COCO novel classes (COCO-Novel).
Table 2 reports our results on only COCO novel classes, in
which we compared MaskDiff against SOTA FSIS methods,
e.g., Meta-RCNN (Yan et al. 2019), MTFA (Ganea et al.
2021), iMTFA (Ganea et al. 2021), iFS-RCNN (Nguyen
et al. 2022), and MRCN+ft-full (He et al. 2017). Experi-
mental results demonstrate the superiority of MaskDiff on
both detection and segmentation tasks consistently on all
K —shots. MaskDiff surpasses the recent iFS-RCNN and
drastically outperforms other methods by a large margin
in terms of AP. This indicates that our proposal is better
than previous strategies including episodic-training (Meta-
RCNN), class-specific mask predictor (MTFA), and class-
agnostic one (iMTFA, iFS-RCNN).

2879

Shots MaskDiff Detection Segmentation
Guided Two-Stage | AP APj5 AP AP5

X X 10.59 2096 | 9.68 18.83

10 v X 10.86 21.55 | 10.02 19.48
X v 12.05 23.32 | 10.76  20.63

v v 12.18 23.61 | 11.01 21.58

Table 5: Our ablation study on COCO-Novel dataset.
MaskDiff with classifier-free guided mask sampling and
diffusion-based two-stage training strategy performs best.
Results on other K —shot are shown in Supp.

Cross-dataset COCO2VOC evaluation. To investigate
the ability to learn new categories, we compared MaskD-
iff with some SOTA FSIS methods (e.g., FGN (Fan et al.
2020), MTFA (Ganea et al. 2021), and iMTFA (Ganea et al.
2021)) on cross-dataset COCO2VOC setting. Methods were
trained on COCO dataset and evaluated on VOC dataset. We
reported public results provided by authors, which are only
in one-shot setting (K = 1). Table 3 shows that our MaskD-
iff transcends cutting-edge methods on cross-dataset evalua-
tion. More importantly, our mask distribution modeling ap-
proach outperforms point estimation one (Fan et al. 2020).

Qualitative evaluation. Figure 5 demonstrates an infer-
ence example of our MaskDiff when training and inference
on the one-shot setting for the COCO novel classes. More
successful and failed cases can be found in Supp.

Runtime evaluation. Regarding the training and infer-
ence time, Table 4 shows that other methods can be trained
and can infer faster than ours. However, we remark that for
few-shot learning tasks, effectiveness (AP) should be priori-
tized rather than efficiency (processing time).

Ablation Study

Effectiveness of two-stage training strategy. We aim to
evaluate the effectiveness of the proposed two-stage training
strategy consisting of base training and few-shot fine-tuning.
In base training, we first train the object detector and then
K —shot mask modeling on base images. In the fine-tuning
stage, we jointly train both object detector heads and our
mask distribution modeling head on balanced base and novel
classes. We compared our approach with the common ap-
proach using only a few-shot fine-tuning stage. Particularly,
we exclude the first stage training on base images (i.e., base
training) and utilize only the second stage. In early steps,
the object detector cannot precisely localize and classify the
objects. Given unsatisfactory localized object regions, the
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. Segmentation
Shots MaskDiff AP APs,
w/o guided sampling | 6.04 £0.09 12.29 +0.12
w/ guided sampling | 6.23 +0.07 12.47 + 0.08

Table 6: We train our MaskDiff on a specific set of train-
ing samples and perform inference on 10 different random
seeds. Then, we compute the mean and standard deviation
(std) AP of those runs. MaskDiff with guided sampling not
only outperforms the one without guidance but also is more
stable (less std). Qualitative results of classifier-free guided
mask sampling and other K —shot can be seen in Supp.

MaskDiff All Classes Base Classes Novel Classes
w/ basic UNet | 24.16 0.22 | 31.49 £ 0.33 3.324+0.35
w/ diffusion 29.42 + 0.09 | 37.59 +0.0093 | 4.85 + 0.24

Table 7: Stability and effectiveness of our MaskDiff with and with-
out diffusion on COCO-AII dataset (1—shot).

mask distribution modeling head is much more difficult to
train, leading to generating not good segmentation masks.
Table 5 shows a considerable collapse in results.

Significance of classifier-free guided mask sampling.
We studied the effectiveness as well as stability of classifier-
free guided mask sampling by comparing the performance
MaskDiff with and without classifier-free guided mask sam-
pling. From Table 5, we conclude that classifier-free guided
mask sampling boosts the performance of FSIS. Further-
more, we evaluated the standard deviation of testing results
on 10 different random seeds when running on a specific
sample of training shots. In Table 6, we can see that the stan-
dard deviation of MaskDiff with guidance over 10 different
random seeds is less than that of without guidance. In other
words, the classifier-free guided mask sampling makes the
mask distribution modeling head more stable.

Effectiveness of diffusion probabilistic model. We re-
place our diffusion with the same UNet (without noise) to
verify the effectiveness of our diffusion head. Table 7 shows
that replacing our diffusion with the basic UNet downgrades
the effectiveness as well as stability of our method signifi-
cantly, consolidating the contribution of our mask distribu-
tion modeling approach via DPM.

Stability analysis. The performance of various methods
has been generally evaluated based on the evaluation proto-
col proposed by Wang et al. (2020). In particular, a model is
trained on a different set of training samples and is eval-
uated on the same test set to report the mean result. We
further computed the standard deviation of different runs
and compared the stability with state-of-the-art methods. Ta-
ble 8 shows that MaskDiff achieves the highest performance
and the lowest standard deviation in terms of AP, indicating
MaskDiff is the most stable and robust to different K —shot.

Spatial information preservation. Most conventional
FSIS methods leverage pooled object features and feed them
into FCN (Long, Shelhamer, and Darrell 2015) to gener-
ate binary masks. However, passing through several pooling
layers leads to a severe collapse in spatial information, es-
pecially the detailed one. By directly utilizing object regions
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Figure 6: MaskDiff preserves spatial information, especially
at detailed levels. We compare the performance of MaskDiff
with state-of-the-art methods in one-shot instance segmenta-
tion at different IoU thresholds. MaskDiff outperforms other
methods with large margins at high IoU thresholds, which
indicates its ability to segment objects more precisely.

1—Shot | All Classes | Base Classes | Novel Classes
MRCN+ft-full | 9.88 4+ 0.31 15.57 £0.30 0.64 +0.26
MTFA 22.98 +£0.24 29.85 £ 0.35 2.34 +0.31
iMTFA 20.13 £0.28 2590 £ 0.32 2.81 +0.37
iFS-RCNN 28.45 +£0.12 36.35 £ 0.01 3.95 +£0.48
MaskDiff 29.42 +£0.09 | 37.59 + 0.0093 4.85+0.24

Table 8: Stability of FSIS on COCO-All dataset. MaskDiff is
the most stable method with the smallest standard deviation
of AP. The best performance is marked in boldface. Results
on other K —shot are described in Supp.

from input images to generate binary masks, our MaskDiff
can embrace comprehensive spatial details and induce pre-
cise delineation. In Fig. 6, we visualize the line graph repre-
senting AP from 0.50 to 0.95 with step size 0.05 to illustrate
the changes in the performance of FSIS methods when the
IoU requirement rises. Our MaskDiff surpasses cutting-edge
methods, especially at high IoU thresholds.

Conclusion

We presented the first mask distribution modeling approach
for FSIS and designed a novel method dubbed MaskDiff. We
adapted conditional DPM to model binary mask distribution
conditioned on RGB object regions and K —shot samples.
Furthermore, we leveraged the off-the-shelf classifier branch
to guide the mask sampling procedure with the category in-
formation. Experimental results demonstrated that our pro-
posed method achieves state-of-the-art results while being
more stable than existing methods.
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