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Abstract— In this paper, we meticulously examine the
robustness of computer vision object detection frameworks
within the intricate realm of real-world traffic scenarios, with a
particular emphasis on challenging adverse weather conditions.
Conventional evaluation methods often prove inadequate in
addressing the complexities inherent in dynamic traffic
environments—an increasingly vital consideration as global
advancements in autonomous vehicle technologies persist. Our
investigation delves specifically into the nuanced performance of
these algorithms amidst adverse weather conditions like fog, rain,
snow, sun flare, and more, acknowledging the substantial impact
of weather dynamics on their precision. Significantly, we seek to
underscore that an object detection framework excelling in clear
weather may encounter significant challenges in adverse
conditions. Our study incorporates in-depth ablation studies on
dual modality architectures, exploring a range of applications
including traffic monitoring, vehicle tracking, and object
tracking. The ultimate goal is to elevate the safety and efficiency
of transportation systems, recognizing the pivotal role of robust
computer vision systems in shaping the trajectory of future
autonomous and intelligent transportation technologies.

Keywords—Robustness Evaluation, Object Detection, Adverse
Weather Conditions, Computer Vision, Deep Learning

I. INTRODUCTION

In recent years, the evolution of computer vision algorithms
has significantly transformed the landscape of traffic
surveillance and control systems. These algorithms, designed
to automate the detection, tracking, and identification of
objects in traffic scenarios, hold immense potential for
revolutionizing transportation systems. The incorporation of
deep learning methodologies has been particularly instrumental
in propelling this progress, resulting in substantial
improvements in accuracy and overall performance.

Despite these strides, deploying robust and reliable
computer vision systems in real-world traffic environments
remains a formidable challenge. The inherent intricacies and
uncertainties in such settings, marked by dynamic variations in
lighting, weather conditions, traffic flow, and the presence of
occlusions and obstacles, pose significant hurdles to the
accuracy of object detection algorithms. Existing evaluation
methods, while contributing to algorithmic development, often
fall short of encapsulating the complexities and uncertainties of
real-world traffic scenarios.
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Figure 1. YOLOVSn [1] object detector fails to detect
objects accurately due to foggy weather.

This challenge assumes critical significance as the demand
for autonomous driving technology burgeons, poised to
reshape contemporary travel and commuting norms.
Addressing this pivotal issue necessitates the formulation of
novel evaluation methods capable of accommodating the
multifaceted challenges associated with real-world traffic
scenarios. These challenges encompass variations in weather
and lighting, occlusions, and other obstacles. This research
project undertakes the imperative task of evaluating the
robustness of computer vision algorithms in the context of
traffic videos, aiming to delineate the strengths and weaknesses
of existing models in confronting intricate real-world
scenarios.

In this paper, our primary focus lies in the meticulous
evaluation of the robustness exhibited by eight distinctive
YOLO (You Only Look Once) [2] object detection models
when confronted with adverse weather conditions. These
challenging scenarios are meticulously crafted through the
utilization of a carefully curated dataset comprising 9700
images sourced from three diverse repositories: KITTI [3],
Udacity [4], and IDD [5]. This amalgamated dataset presents
an extensive array of real-world scenarios, from which a
comprehensive test set is randomly assembled. The adverse
weather effects, ranging from rain, fog, shadow, sun flare, and
snow to intricate combinations like fog and rain, fog and snow,
sun flare, and shadow, are systematically applied to this
dataset, aptly christened as the Urban Weather Diversity
Dataset (UWDD). Figure 1 shows an exemplary image of the
YOLOv5n [1] object detection method failing to detect the
object accurately due to adverse fog conditions, mistakenly
identifying a building as a bus and some objects as people. The
nomenclature not only reflects the varied meteorological
conditions introduced but also emphasizes the dataset's
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intent—to encapsulate the diverse weather challenges prevalent
in urban environments.

Our objective is to scrutinize the performance of these
object detection models under adverse weather conditions,
comparing their accuracy against normal conditions. This
evaluation aims to unravel the efficacy of each model in
adverse scenarios and provide insights into its comparative
strengths and weaknesses. The findings of this research
endeavor contribute to the ongoing development of more
resilient and dependable computer vision systems tailored for
application in traffic surveillance and control.

II. RELATED WORKS

Recently, significant research efforts have been dedicated
to developing robust computer vision algorithms for traffic
monitoring and management in images. However, existing
evaluation methods often fall short of capturing the intricacies
and uncertainties prevalent in real-world traffic environments.
This limitation can lead to inaccurate or inconsistent algorithm
performance, especially in challenging scenarios like low-light
conditions, adverse weather, and occlusions.

A. Datasets and Object Detection Techniques

The landscape of computer vision datasets has played a
crucial role in supporting the development and evaluation of
algorithms, particularly in autonomous driving and related
applications. Datasets such as. BDD100K [6], Waymo Open
Dataset [7], ApolloScape [8], Udacity Self-Driving Car
Dataset [4], Cityscapes [9], KITTI [10], COCO [11], and
PASCAL VOC [12] have become pivotal resources in this
field. While each dataset brings unique strengths, including
variations in sensors, data collection locations, and annotation
approaches, they also have limitations and potential biases.
Notably, many of these datasets exhibit constraints related to
limited weather and lighting conditions or focus on specific
scenarios. Nguyen et al. [13] addressed traffic issues using a
simulator. To overcome these limitations, our dataset aims to
provide a comprehensive video dataset, encompassing diverse
scenarios and weather conditions. This approach addresses the
need for a more versatile dataset for object detection tasks, a
domain that gained prominence since the advent of neural
networks for image classification by Krizhevsky et al. [14].

Various object detection methods have been proposed for
computer vision tasks, including Faster R-CNN [15],
YOLOVS [1], and SSD [16]. While two-stage methods like
Faster R-CNN [15], YOLOvVS [1], and SSD [16]. Faster R-
CNN [17] and Libra R-CNN [18], CARAFE [19], CenterNet
[19], MTDL [21], and ATSS [22] achieve state-of-the-art
performance, they are relatively slow due to their two-stage
pipeline. On the other hand, one-stage methods like YOLOVS
[6] and SSD [16] are faster but may compromise accuracy for
speed, especially in small object detection scenarios.
However, a common challenge among all these methods is
their susceptibility to adverse weather conditions, which can

Weather
Synthesizer

Output Frame with Snow Effect

Input Frame
Figure 2: Example of snow effect rendering on an input
frame using our weather synthesizer.

lead to degraded performance and even failure in object
detection. In our research work, we only focus on Yolo object
detection models.

To address this limitation, our research will fine-tune and
compare the results of image-adaptive object detection
methods capable of adapting to changes in weather conditions.
Evaluation metrics such as precision, recall, mean average
precision (mAP), and IoU (Intersection over Union) thresholds
will be employed to comprehensively assess the accuracy of
object detection across various categories. This approach aims
to provide a more nuanced understanding of algorithm
performance under diverse and challenging conditions,
contributing valuable insights to the ongoing enhancement of
computer vision systems for real-world traffic scenarios.

B. Evaluation Studies on Deteriorating Weather

Numerous studies have demonstrated the substantial impact
of adverse weather conditions, such as rain, fog, and snow, on
various computer vision algorithms, specifically object
detection and tracking. For instance, Michaelis et al. [22]
conducted a robustness assessment of six object detection
models using a dataset of traffic images captured in diverse
weather conditions. The findings revealed a significant
decrease in accuracy for all models under adverse weather
conditions. Similarly, Mirza et al. [23] investigated the
robustness of multiple object detectors in varying weather
conditions, highlighting a notable reduction in performance
during heavy rain and snow.

In addressing the impact of adverse weather on object
detection models, various preprocessing techniques have been
proposed. Classical dehazing or image enhancement methods,
as suggested in [24-28], offer a straightforward approach to
improve the models' robustness to rain. Halder er al. [29]
introduced a physics-based rendering approach, generating
synthetic rain images for improved object detection in adverse
weather conditions. Additionally, benchmark datasets like
CADP by Shah et al. [30] provide a standardized platform for
evaluating object detection algorithms under degrading
weather conditions.

To enhance the training and evaluation of object detection
models in adverse weather conditions, Von Bernuth et al. [31]
and Liu et al. [26] proposed a simulation approach, generating
synthetic snow and fog images. The use of multi-modal sensors
and fusion techniques, combining visual and non-visual data
sources such as thermal and radar imaging, has also been
explored (Dong et al. [32]) to improve object detection and
tracking in inclement weather.
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Figure 3: The figure illustrates the UWDD dataset, depicting various weather effects. From (a) to (j): input image with
no effect, ground-truth, rain, shadow, snow, fog, sun flare, fog and rain, fog and snow, and sun flare and shadow,

respectively.

Despite these approaches, existing studies often overlook
the limited variations and dataset sizes [6 — 10] present in most
datasets. Our benchmark, however, seeks to address this
limitation by enabling the evaluation of a larger dataset with
diverse situations and weather conditions. This approach aims
to thoroughly assess the true robustness and potential of object
detection techniques in adverse weather scenarios.

III. PROPOSED WORK

In this section, we introduce the Urban Weather Diversity
Dataset (UWDD) and delve into the intricacies of its creation.
We aim to provide a comprehensive overview of the
methodology employed in generating this dataset, shedding
light on the techniques utilized to craft a collection comprising
9,700 images.

A. Urban Weather Diversity Dataset (UWDD) Collection

The cornerstone of our research lies in the creation of the
Urban Weather Diversity Dataset (UWDD). Building this
dataset was a significant endeavor, given the challenge of
assembling a comprehensive collection of dashcam videos
depicting real traffic scenes in diverse weather conditions. To
address this, we strategically amalgamated three distinct
datasets—Kitti, Udacity, and IDD.

e Kitti Dataset [3]: Originating from the Karlsruhe
Institute of Technology and Toyota Technological
Institute in Chicago, USA, the Kitti dataset is a
reservoir of autonomous driving images. Out of its total
of 12,919 images, we randomly selected 3,465 for our
dataset.

e Udacity Dataset [4]: Comprising a whopping 404,916
video frames for training, the Udacity dataset offered a
rich resource. From this extensive pool, we handpicked
3,353 images to contribute to our dataset.

e DD Dataset [5]: Hailing from Hyderabad, India, the
Indian Driving Dataset (IDD) boasts a substantial
collection of 10,003,182 images. Our dataset drew from
this source, selecting 3,182 images to add a global
diversity dimension.

The cornerstone of our research lies in the creation of the
Urban Weather Diversity Dataset (UWDD). Building this
dataset was a significant endeavor, given the challenge of
assembling a comprehensive collection of dashcam videos
depicting real traffic scenes in diverse weather conditions. To
address this, we strategically consider three available datasets,
namely, Kitti, Udacity, and IDD.

1) Single Effects

In the exploration of Single Effects, we meticulously
delved into five distinct weather phenomena: rain, fog, snow,
sun flare, and shadow. Each of these conditions was crafted
with precision to simulate the challenges posed by adverse
weather scenarios. To achieve this, we employed sophisticated
augmentation techniques, leveraging the imgaug library [33]
for the introduction of fog, snow, and rain effects.
Additionally, we utilized albumentations [34] to authentically
replicate sun flare and shadow effects, ensuring a realistic
portrayal of each weather type. Figure 2 explains the way we
rendered image augmentation techniques on the dataset
images. This comprehensive approach to single effects was
instrumental in diversifying our dataset, capturing the essence
of individual weather challenges with accuracy.

2) Additive Effects

The Additive Effects category amalgamates various
weather conditions, offering a holistic perspective on
challenges encountered in real-world scenarios. These
combinations, including fog and rain, fog and snow, and sun
flare and shadow, are strategically derived from the Single
Effects category. The rationale behind these combinations is to
present a nuanced spectrum of possible weather conditions
encountered in diverse traffic scenarios. By seamlessly
merging these distinct weather types, we aim to create a dataset
authentically mirroring the complexity of adverse conditions
faced by object detection models in real-world settings.

Figure 3 illustrates an exemplary image with eight different
effects. Through simulated adverse weather scenarios, we seek
to unravel the intricacies of model robustness under varying
and challenging conditions, contributing valuable insights to
the advancement of computer vision systems in real-world
traffic environments.
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Table 1. Results of object detection models on weather effects.

YolovSn | Yolov5x | Yolov6l6 Yolov6n6 Yolov7 Yolov7-e6e | Yolov8n Yolov8x
Fog 0.380 0.611 0.612 0.384 0.596 0.630 0.418 0.601
Rain 0.6118 0.600 0.598 0.416 0.587 0.611 0.425 0.649
Shadow 0.897 0.897 0.640 0.520 0.610 0.643 0.594 0.598
Sun flare 0.682 0.682 0.557 0.402 0.530 0.561 0.453 0.534
Snow 0.650 0.591 0.592 0.418 0.581 0.601 0.472 0.591
Fog and Rain 0.258 0.560 0.548 0.293 0.548 0.577 0.291 0.577
Fog and Snow 0.230 0.512 0.510 0.251 0.509 0.531 0.266 0.520
Shadow and Sun flare 0.640 0.640 0.547 0.383 0.525 0.558 0.434 0.516

B. Robustness Evaluation of Deep Learning Models

In assessing the robustness of computer vision algorithms
using the Urban Weather Diversity Dataset (UWDD), our
approach involves a systematic series of steps. Initially, we
preprocess the images by resizing and normalizing them to the
input size required by pre-trained models. In particular, we
consider YOLO (You Only Look Once) [2] family object
detection methods for benchmarking. The reasons are three-
fold. First, YOLO is known for its real-time object detection
capabilities, making it suitable for applications such as traffic
monitoring where quick and efficient analysis is essential.
Second, YOLO models, especially the later versions like
YOLOv4 [35] and YOLOvS [1], have demonstrated
competitive accuracy and precision in object detection tasks.
These models are trained on large datasets and have advanced
architectures to handle various object classes. Last but not
least, YOLO models often come with pre-trained weights on
large datasets. This can be advantageous as pre-training helps
the model to learn general features and patterns, potentially
improving its performance on specific tasks like traffic object
detection.

Utilizing the YOLO pre-trained models, we focus on seven
specific classes—bicycle, bus, car, motorcycle, person, train,
and truck—common throughout the dataset. Testing the
dataset with the pre-trained model of YOLOvSs [1] without
augmented images establishes a ground truth for subsequent
comparisons. Having established the ground truth, we proceed
to evaluate the dataset's performance with augmentation using
various deep learning object detection models, including
YOLOV5n [1], YOLOvSx [1], YOLOvV6I6 [36], YOLOvV6n6
[36], YOLOV7 [37], YOLOv7-e6e [37], YOLOvVS8n [38], and
YOLOvS8x [38]. Our comparison methodology centers on
assessing the accuracy of model predictions against ground
truth labels, employing the Intersection over Union (IoU)
metric to measure bounding box overlap. This involves
calculating IoU while reading the object-detected file from the
model and ground truth data from generated text files, as
shown in Figure 4.

The comparison extends to evaluating the correspondence
of classes between ground truth and model output data.
Additionally, we scrutinize the alignment of output data and
ground truth bounding boxes, leading to the computation of

true positive (TP), false positive (FP), and false negative (FN)
counts for each of the seven specified classes. Iterating
through testing files, we accumulate class-wise statistics and
overall accuracy. Concluding this evaluation, we present
detailed results encompassing class accuracy, precision, recall,
and F1 score. The average accuracy is calculated to provide an
overarching view of model performance. The results are then
meticulously saved to a file, facilitating a comprehensive
comparison across all eight deep-learning object detection
models.

IV. DISCUSSION

This section conducts an in-depth analysis of model
performance based on the Intersection over Union (IoU)
scores detailed in Table 1. The IoU metric serves as a pivotal
indicator, gauging the accuracy of object detection, with
higher values indicating superior performance. The YOLO-
based models under examination encompass YolovSn [1],
Yolov5x [1], Yolov7 [37], Yolov7-e6e [37], Yolov8n [38],
Yolov8x [38], Yolov6l6 [36], and Yolov6on6 [36].

Notably, Yolov5x emerges as the top performer,
consistently achieving competitive IoU scores across diverse
weather conditions. Conversely, Yolovon6 demonstrates less
robust performance, establishing itself as the least effective
method with comparatively lower scores. Although all models
excel in Shadow conditions, challenges surface in additive
scenarios involving Fog and Snow.

As shown in Figure 4, when scrutinizing single weather
effects, the worst-performing method varies by condition.
YolovSn exhibits the lowest effectiveness in fog, while
Yolov6n6 struggles the most in rainy conditions. Yolov6n6
faces challenges in sun flare scenarios, emerging as the least
accurate, and records the least effective performance in snowy
conditions.

Contrastingly, under Shadow and Sun Flare conditions, all
models perform similarly to normal conditions, with Yolov5n
and Yolov5x excelling and Yolov6on6 lagging. In conclusion,
this assessment underscores the diverse capabilities of YOLO-
based models across various weather conditions. Yolov5x
consistently emerges as a top performer, showcasing notable
excellence, while Yolov6on6 encounters hurdles, particularly in
challenging conditions like fog, snow, and their combinations.
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Figure 4. Visualization of the object detection results in different weather conditions. For optimal viewing, please zoom

to 400%.

Despite commendable proficiency in Shadow conditions,
challenges arise in adverse scenarios like Fog and Snow or
Fog and Rain, where heightened occlusion impedes accurate
object detection. These insights are pivotal for refining object
detection algorithms, emphasizing the need for weather-aware
models to enhance the resilience of autonomous systems in
diverse and challenging environmental conditions.

V. CONCLUSION AND FUTURE WORK

In this paper, we extensively investigate the performance
dynamics of YOLO-based object detection models in a diverse
array of challenging weather conditions, offering crucial
insights for advancing computer vision algorithms in real-
world traffic scenarios. The core of our investigation revolves
around the thorough evaluation of YolovSn, Yolov5x, Yolov7,
Yolov7-e6e, Yolov8n, Yolov8x, Yolov6l6, and Yolov6n6,
with the robust Urban Weather Diversity Dataset (UWDD) as
the cornerstone of our analysis.

Yolov5x consistently stands out as the top performer,
showcasing resilience and accuracy across various weather
scenarios. On the contrary, Yolov6n6 encounters challenges,
particularly in adverse conditions like fog, snow, and their
combinations. A notable observation is the commendable
proficiency displayed by all models in Shadow conditions,
where minimal occlusion preserves the majority of the original

image. However, these models face difficulties in scenarios of
Fog and Snow or Fog and Rain, where heightened occlusion
poses significant obstacles to precise object detection.

These findings underscore the crucial role of weather-
aware models in fortifying the resilience of autonomous
systems, especially given their operation in diverse and
challenging environmental conditions. The necessity for
adaptive algorithms capable of navigating the intricacies of
real-world traffic scenarios becomes evident. By illuminating
the performance variations under different weather conditions,
this research significantly contributes to the ongoing
refinement of object detection algorithms, laying the
foundation for the development of more dependable and
robust computer vision systems tailored for traffic surveillance
and control.

In a future dominated by autonomous technologies, the
insights derived from this research serve as a foundational
cornerstone for advancements in the safety and efficiency of
transportation systems. By bridging the gap between
algorithmic capabilities and real-world challenges, this study
represents a pivotal step in the continuous evolution of
computer vision technologies. It propels us closer to the
realization of intelligent, adaptive, and seamlessly integrated
autonomous transportation systems capable of navigating the
complexities of our ever-changing urban landscapes.
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