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Abstract— In this paper, we meticulously examine the 
robustness of computer vision object detection frameworks 
within the intricate realm of real-world traffic scenarios, with a 
particular emphasis on challenging adverse weather conditions. 
Conventional evaluation methods often prove inadequate in 
addressing the complexities inherent in dynamic traffic 
environments—an increasingly vital consideration as global 
advancements in autonomous vehicle technologies persist. Our 
investigation delves specifically into the nuanced performance of 
these algorithms amidst adverse weather conditions like fog, rain, 
snow, sun flare, and more, acknowledging the substantial impact 
of weather dynamics on their precision. Significantly, we seek to 
underscore that an object detection framework excelling in clear 
weather may encounter significant challenges in adverse 
conditions. Our study incorporates in-depth ablation studies on 
dual modality architectures, exploring a range of applications 
including traffic monitoring, vehicle tracking, and object 
tracking. The ultimate goal is to elevate the safety and efficiency 
of transportation systems, recognizing the pivotal role of robust 
computer vision systems in shaping the trajectory of future 
autonomous and intelligent transportation technologies. 

Keywords—Robustness Evaluation, Object Detection, Adverse 
Weather Conditions, Computer Vision, Deep Learning 

I. INTRODUCTION 

In recent years, the evolution of computer vision algorithms 
has significantly transformed the landscape of traffic 
surveillance and control systems. These algorithms, designed 
to automate the detection, tracking, and identification of 
objects in traffic scenarios, hold immense potential for 
revolutionizing transportation systems. The incorporation of 
deep learning methodologies has been particularly instrumental 
in propelling this progress, resulting in substantial 
improvements in accuracy and overall performance. 

Despite these strides, deploying robust and reliable 
computer vision systems in real-world traffic environments 
remains a formidable challenge. The inherent intricacies and 
uncertainties in such settings, marked by dynamic variations in 
lighting, weather conditions, traffic flow, and the presence of 
occlusions and obstacles, pose significant hurdles to the 
accuracy of object detection algorithms. Existing evaluation 
methods, while contributing to algorithmic development, often 
fall short of encapsulating the complexities and uncertainties of 
real-world traffic scenarios. 

This challenge assumes critical significance as the demand 
for autonomous driving technology burgeons, poised to 
reshape contemporary travel and commuting norms. 
Addressing this pivotal issue necessitates the formulation of 
novel evaluation methods capable of accommodating the 
multifaceted challenges associated with real-world traffic 
scenarios. These challenges encompass variations in weather 
and lighting, occlusions, and other obstacles. This research 
project undertakes the imperative task of evaluating the 
robustness of computer vision algorithms in the context of 
traffic videos, aiming to delineate the strengths and weaknesses 
of existing models in confronting intricate real-world 
scenarios. 

In this paper, our primary focus lies in the meticulous 
evaluation of the robustness exhibited by eight distinctive 
YOLO (You Only Look Once) [2] object detection models 
when confronted with adverse weather conditions. These 
challenging scenarios are meticulously crafted through the 
utilization of a carefully curated dataset comprising 9700 
images sourced from three diverse repositories: KITTI [3], 
Udacity [4], and IDD [5]. This amalgamated dataset presents 
an extensive array of real-world scenarios, from which a 
comprehensive test set is randomly assembled. The adverse 
weather effects, ranging from rain, fog, shadow, sun flare, and 
snow to intricate combinations like fog and rain, fog and snow, 
sun flare, and shadow, are systematically applied to this 
dataset, aptly christened as the Urban Weather Diversity 
Dataset (UWDD). Figure 1 shows an exemplary image of the 
YOLOv5n [1] object detection method failing to detect the 
object accurately due to adverse fog conditions, mistakenly 
identifying a building as a bus and some objects as people. The 
nomenclature not only reflects the varied meteorological 
conditions introduced but also emphasizes the dataset's 

Figure 1. YOLOv5n [1] object detector fails to detect 
objects accurately due to foggy weather. 
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intent—to encapsulate the diverse weather challenges prevalent 
in urban environments. 

Our objective is to scrutinize the performance of these 
object detection models under adverse weather conditions, 
comparing their accuracy against normal conditions. This 
evaluation aims to unravel the efficacy of each model in 
adverse scenarios and provide insights into its comparative 
strengths and weaknesses. The findings of this research 
endeavor contribute to the ongoing development of more 
resilient and dependable computer vision systems tailored for 
application in traffic surveillance and control. 

II. RELATED WORKS 

Recently, significant research efforts have been dedicated 

to developing robust computer vision algorithms for traffic 

monitoring and management in images. However, existing 

evaluation methods often fall short of capturing the intricacies 
and uncertainties prevalent in real-world traffic environments. 

This limitation can lead to inaccurate or inconsistent algorithm 

performance, especially in challenging scenarios like low-light 

conditions, adverse weather, and occlusions. 

A. Datasets and Object Detection Techniques 
The landscape of computer vision datasets has played a 

crucial role in supporting the development and evaluation of 

algorithms, particularly in autonomous driving and related 

applications. Datasets such as. BDD100K [6], Waymo Open 

Dataset [7], ApolloScape [8], Udacity Self-Driving Car 

Dataset [4], Cityscapes [9], KITTI [10], COCO [11], and 

PASCAL VOC [12] have become pivotal resources in this 
field. While each dataset brings unique strengths, including 

variations in sensors, data collection locations, and annotation 

approaches, they also have limitations and potential biases. 

Notably, many of these datasets exhibit constraints related to 

limited weather and lighting conditions or focus on specific 

scenarios. Nguyen et al. [13] addressed traffic issues using a 
simulator. To overcome these limitations, our dataset aims to 

provide a comprehensive video dataset, encompassing diverse 

scenarios and weather conditions. This approach addresses the 

need for a more versatile dataset for object detection tasks, a 

domain that gained prominence since the advent of neural 
networks for image classification by Krizhevsky et al. [14]. 

Various object detection methods have been proposed for 

computer vision tasks, including Faster R-CNN [15], 

YOLOv5 [1], and SSD [16]. While two-stage methods like 

Faster R-CNN [15], YOLOv5 [1], and SSD [16]. Faster R-

CNN [17] and Libra R-CNN [18], CARAFE [19], CenterNet 
[19], MTDL [21], and ATSS [22] achieve state-of-the-art 

performance, they are relatively slow due to their two-stage 

pipeline. On the other hand, one-stage methods like YOLOv5 

[6] and SSD [16] are faster but may compromise accuracy for 

speed, especially in small object detection scenarios. 

However, a common challenge among all these methods is 
their susceptibility to adverse weather conditions, which can 

lead to degraded performance and even failure in object 
detection. In our research work, we only focus on Yolo object 

detection models. 

To address this limitation, our research will fine-tune and 

compare the results of image-adaptive object detection 

methods capable of adapting to changes in weather conditions. 
Evaluation metrics such as precision, recall, mean average 

precision (mAP), and IoU (Intersection over Union) thresholds 

will be employed to comprehensively assess the accuracy of 

object detection across various categories. This approach aims 

to provide a more nuanced understanding of algorithm 

performance under diverse and challenging conditions, 
contributing valuable insights to the ongoing enhancement of 

computer vision systems for real-world traffic scenarios. 

B. Evaluation Studies on Deteriorating Weather 
Numerous studies have demonstrated the substantial impact 

of adverse weather conditions, such as rain, fog, and snow, on 
various computer vision algorithms, specifically object 
detection and tracking. For instance, Michaelis et al. [22] 
conducted a robustness assessment of six object detection 
models using a dataset of traffic images captured in diverse 
weather conditions. The findings revealed a significant 
decrease in accuracy for all models under adverse weather 
conditions. Similarly, Mirza et al. [23] investigated the 
robustness of multiple object detectors in varying weather 
conditions, highlighting a notable reduction in performance 
during heavy rain and snow. 

In addressing the impact of adverse weather on object 
detection models, various preprocessing techniques have been 
proposed. Classical dehazing or image enhancement methods, 
as suggested in [24-28], offer a straightforward approach to 
improve the models' robustness to rain. Halder et al. [29] 
introduced a physics-based rendering approach, generating 
synthetic rain images for improved object detection in adverse 
weather conditions. Additionally, benchmark datasets like 
CADP by Shah et al. [30] provide a standardized platform for 
evaluating object detection algorithms under degrading 
weather conditions. 

To enhance the training and evaluation of object detection 
models in adverse weather conditions, Von Bernuth et al. [31] 
and Liu et al. [26] proposed a simulation approach, generating 
synthetic snow and fog images. The use of multi-modal sensors 
and fusion techniques, combining visual and non-visual data 
sources such as thermal and radar imaging, has also been 
explored (Dong et al. [32]) to improve object detection and 
tracking in inclement weather. 

 
Figure 2: Example of snow effect rendering on an input 
frame using our weather synthesizer. 
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Despite these approaches, existing studies often overlook 
the limited variations and dataset sizes [6 – 10] present in most 
datasets. Our benchmark, however, seeks to address this 
limitation by enabling the evaluation of a larger dataset with 
diverse situations and weather conditions. This approach aims 
to thoroughly assess the true robustness and potential of object 
detection techniques in adverse weather scenarios. 

III. PROPOSED WORK 

In this section, we introduce the Urban Weather Diversity 
Dataset (UWDD) and delve into the intricacies of its creation. 
We aim to provide a comprehensive overview of the 
methodology employed in generating this dataset, shedding 
light on the techniques utilized to craft a collection comprising 
9,700 images. 

A. Urban Weather Diversity Dataset (UWDD) Collection  
The cornerstone of our research lies in the creation of the 
Urban Weather Diversity Dataset (UWDD). Building this 
dataset was a significant endeavor, given the challenge of 
assembling a comprehensive collection of dashcam videos 
depicting real traffic scenes in diverse weather conditions. To 
address this, we strategically amalgamated three distinct 
datasets—Kitti, Udacity, and IDD. 

• Kitti Dataset [3]: Originating from the Karlsruhe 
Institute of Technology and Toyota Technological 
Institute in Chicago, USA, the Kitti dataset is a 
reservoir of autonomous driving images. Out of its total 
of 12,919 images, we randomly selected 3,465 for our 
dataset. 

• Udacity Dataset [4]: Comprising a whopping 404,916 
video frames for training, the Udacity dataset offered a 
rich resource. From this extensive pool, we handpicked 
3,353 images to contribute to our dataset. 

• IDD Dataset [5]: Hailing from Hyderabad, India, the 
Indian Driving Dataset (IDD) boasts a substantial 
collection of 10,003,182 images. Our dataset drew from 
this source, selecting 3,182 images to add a global 
diversity dimension. 

 The cornerstone of our research lies in the creation of the 
Urban Weather Diversity Dataset (UWDD). Building this 
dataset was a significant endeavor, given the challenge of 
assembling a comprehensive collection of dashcam videos 
depicting real traffic scenes in diverse weather conditions. To 
address this, we strategically consider three available datasets, 
namely, Kitti, Udacity, and IDD. 

1) Single Effects 
In the exploration of Single Effects, we meticulously 

delved into five distinct weather phenomena: rain, fog, snow, 
sun flare, and shadow. Each of these conditions was crafted 
with precision to simulate the challenges posed by adverse 
weather scenarios. To achieve this, we employed sophisticated 
augmentation techniques, leveraging the imgaug library [33] 
for the introduction of fog, snow, and rain effects. 
Additionally, we utilized albumentations [34] to authentically 
replicate sun flare and shadow effects, ensuring a realistic 
portrayal of each weather type. Figure 2 explains the way we 
rendered image augmentation techniques on the dataset 
images. This comprehensive approach to single effects was 
instrumental in diversifying our dataset, capturing the essence 
of individual weather challenges with accuracy. 

2) Additive Effects 
The Additive Effects category amalgamates various 

weather conditions, offering a holistic perspective on 
challenges encountered in real-world scenarios. These 
combinations, including fog and rain, fog and snow, and sun 
flare and shadow, are strategically derived from the Single 
Effects category. The rationale behind these combinations is to 
present a nuanced spectrum of possible weather conditions 
encountered in diverse traffic scenarios. By seamlessly 
merging these distinct weather types, we aim to create a dataset 
authentically mirroring the complexity of adverse conditions 
faced by object detection models in real-world settings.  

Figure 3 illustrates an exemplary image with eight different 
effects. Through simulated adverse weather scenarios, we seek 
to unravel the intricacies of model robustness under varying 
and challenging conditions, contributing valuable insights to 
the advancement of computer vision systems in real-world 
traffic environments. 

Figure 3: The figure illustrates the UWDD dataset, depicting various weather effects. From (a) to (j): input image with 
no effect, ground-truth, rain, shadow, snow, fog, sun flare, fog and rain, fog and snow, and sun flare and shadow, 
respectively.  
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B. Robustness Evaluation of Deep Learning Models 
In assessing the robustness of computer vision algorithms 

using the Urban Weather Diversity Dataset (UWDD), our 

approach involves a systematic series of steps. Initially, we 

preprocess the images by resizing and normalizing them to the 
input size required by pre-trained models. In particular, we 

consider YOLO (You Only Look Once) [2] family object 

detection methods for benchmarking. The reasons are three-

fold. First, YOLO is known for its real-time object detection 

capabilities, making it suitable for applications such as traffic 

monitoring where quick and efficient analysis is essential. 
Second, YOLO models, especially the later versions like 

YOLOv4 [35] and YOLOv5 [1], have demonstrated 

competitive accuracy and precision in object detection tasks. 

These models are trained on large datasets and have advanced 

architectures to handle various object classes. Last but not 
least, YOLO models often come with pre-trained weights on 

large datasets. This can be advantageous as pre-training helps 

the model to learn general features and patterns, potentially 

improving its performance on specific tasks like traffic object 

detection. 

Utilizing the YOLO pre-trained models, we focus on seven 
specific classes—bicycle, bus, car, motorcycle, person, train, 

and truck—common throughout the dataset. Testing the 

dataset with the pre-trained model of YOLOv5s [1] without 

augmented images establishes a ground truth for subsequent 

comparisons. Having established the ground truth, we proceed 

to evaluate the dataset's performance with augmentation using 
various deep learning object detection models, including 

YOLOv5n [1], YOLOv5x [1], YOLOv6I6 [36], YOLOv6n6 

[36], YOLOv7 [37], YOLOv7-e6e [37], YOLOv8n [38], and 

YOLOv8x [38]. Our comparison methodology centers on 

assessing the accuracy of model predictions against ground 
truth labels, employing the Intersection over Union (IoU) 

metric to measure bounding box overlap. This involves 

calculating IoU while reading the object-detected file from the 

model and ground truth data from generated text files, as 

shown in Figure 4. 

The comparison extends to evaluating the correspondence 
of classes between ground truth and model output data. 

Additionally, we scrutinize the alignment of output data and 

ground truth bounding boxes, leading to the computation of 

true positive (TP), false positive (FP), and false negative (FN) 

counts for each of the seven specified classes. Iterating 

through testing files, we accumulate class-wise statistics and 

overall accuracy. Concluding this evaluation, we present 

detailed results encompassing class accuracy, precision, recall, 
and F1 score. The average accuracy is calculated to provide an 

overarching view of model performance. The results are then 

meticulously saved to a file, facilitating a comprehensive 

comparison across all eight deep-learning object detection 

models.  

IV. DISCUSSION 

This section conducts an in-depth analysis of model 

performance based on the Intersection over Union (IoU) 

scores detailed in Table 1. The IoU metric serves as a pivotal 

indicator, gauging the accuracy of object detection, with 

higher values indicating superior performance. The YOLO-
based models under examination encompass Yolov5n [1], 

Yolov5x [1], Yolov7 [37], Yolov7-e6e [37], Yolov8n [38], 

Yolov8x [38], Yolov6l6 [36], and Yolov6n6 [36]. 

Notably, Yolov5x emerges as the top performer, 

consistently achieving competitive IoU scores across diverse 

weather conditions. Conversely, Yolov6n6 demonstrates less 
robust performance, establishing itself as the least effective 

method with comparatively lower scores. Although all models 

excel in Shadow conditions, challenges surface in additive 

scenarios involving Fog and Snow. 

As shown in Figure 4, when scrutinizing single weather 

effects, the worst-performing method varies by condition. 
Yolov5n exhibits the lowest effectiveness in fog, while 

Yolov6n6 struggles the most in rainy conditions. Yolov6n6 

faces challenges in sun flare scenarios, emerging as the least 

accurate, and records the least effective performance in snowy 

conditions. 
Contrastingly, under Shadow and Sun Flare conditions, all 

models perform similarly to normal conditions, with Yolov5n 

and Yolov5x excelling and Yolov6n6 lagging. In conclusion, 

this assessment underscores the diverse capabilities of YOLO-

based models across various weather conditions. Yolov5x 

consistently emerges as a top performer, showcasing notable 
excellence, while Yolov6n6 encounters hurdles, particularly in 

challenging conditions like fog, snow, and their combinations. 

Table 1. Results of object detection models on weather effects.  
  Yolov5n Yolov5x Yolov6l6 Yolov6n6 Yolov7 Yolov7-e6e Yolov8n Yolov8x 

Fog 0.380 0.611 0.612 0.384 0.596 0.630 0.418 0.601 

Rain 0.6118 0.600 0.598 0.416 0.587 0.611 0.425 0.649 

Shadow 0.897 0.897 0.640 0.520 0.610 0.643 0.594 0.598 

Sun flare 0.682 0.682 0.557 0.402 0.530 0.561 0.453 0.534 

Snow 0.650 0.591 0.592 0.418 0.581 0.601 0.472 0.591 

Fog and Rain 0.258 0.560 0.548 0.293 0.548 0.577 0.291 0.577 

Fog and Snow 0.230 0.512 0.510 0.251 0.509 0.531 0.266 0.520 

Shadow and Sun flare 0.640 0.640 0.547 0.383 0.525 0.558 0.434 0.516 

 

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on July 09,2024 at 01:40:13 UTC from IEEE Xplore.  Restrictions apply. 



Despite commendable proficiency in Shadow conditions, 

challenges arise in adverse scenarios like Fog and Snow or 

Fog and Rain, where heightened occlusion impedes accurate 
object detection. These insights are pivotal for refining object 

detection algorithms, emphasizing the need for weather-aware 

models to enhance the resilience of autonomous systems in 

diverse and challenging environmental conditions. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we extensively investigate the performance 
dynamics of YOLO-based object detection models in a diverse 

array of challenging weather conditions, offering crucial 

insights for advancing computer vision algorithms in real-

world traffic scenarios. The core of our investigation revolves 

around the thorough evaluation of Yolov5n, Yolov5x, Yolov7, 

Yolov7-e6e, Yolov8n, Yolov8x, Yolov6l6, and Yolov6n6, 
with the robust Urban Weather Diversity Dataset (UWDD) as 

the cornerstone of our analysis. 

Yolov5x consistently stands out as the top performer, 

showcasing resilience and accuracy across various weather 

scenarios. On the contrary, Yolov6n6 encounters challenges, 

particularly in adverse conditions like fog, snow, and their 
combinations. A notable observation is the commendable 

proficiency displayed by all models in Shadow conditions, 

where minimal occlusion preserves the majority of the original 

image. However, these models face difficulties in scenarios of 

Fog and Snow or Fog and Rain, where heightened occlusion 

poses significant obstacles to precise object detection. 
These findings underscore the crucial role of weather-

aware models in fortifying the resilience of autonomous 

systems, especially given their operation in diverse and 

challenging environmental conditions. The necessity for 

adaptive algorithms capable of navigating the intricacies of 

real-world traffic scenarios becomes evident. By illuminating 
the performance variations under different weather conditions, 

this research significantly contributes to the ongoing 

refinement of object detection algorithms, laying the 

foundation for the development of more dependable and 

robust computer vision systems tailored for traffic surveillance 

and control. 
In a future dominated by autonomous technologies, the 

insights derived from this research serve as a foundational 

cornerstone for advancements in the safety and efficiency of 

transportation systems. By bridging the gap between 

algorithmic capabilities and real-world challenges, this study 

represents a pivotal step in the continuous evolution of 
computer vision technologies. It propels us closer to the 

realization of intelligent, adaptive, and seamlessly integrated 

autonomous transportation systems capable of navigating the 

complexities of our ever-changing urban landscapes. 

 

 
Figure 4. Visualization of the object detection results in different weather conditions. For optimal viewing, please zoom 
to 400%.  
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