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A B S T R A C T   

Fruits and vegetable powders are gaining attention due to their flavor, color, high nutritional content, and 
consumers’ demand for compact and lightweight foods. This study was undertaken to explore their commercial 
applications as an edible coating onto sliced apples to incorporate various functional and nutritional charac
teristics to apple chips. The subsequent aim of this work was to investigate miniature NIR spectroscopy as a tool 
to rapidly monitor and develop a predictive model for the drying of edible coating on these apple slices. The 
apple slices coated with selected fruit powders were dried and compared with uncoated samples. NIR spectra 
were collected at different drying times, and multivariate calibration models were developed using partial least- 
squares regression (PLSR) with raw and various pre-treated spectra. Instead of selecting different sets of feature 
wavelengths for coated and uncoated apple slices, a set of 7 key wavelengths was selected for convenient 
application to monitor moisture content during drying of apples with or without edible coatings. The results 
showed that the miniature NIR spectroscopy was able to monitor the drying process and discriminate between 
the coated and uncoated apple slices and drying times, primarily by the differences in sugar and water absorption 
bands.   

1. Introduction 

Fruits and vegetables are an essential part of a healthy lifestyle, and 
their regular consumption has been reported to have various health- 
protective effects (Cui et al., 2019; He, Nowson, & MacGregor, 2006; 
Vainio & Weiderpass, 2006). This is attributed to a high content of fi
bers, vitamins, minerals, and phytochemicals, such as polyphenols, 
flavonoids, carotenoids, anthocyanins, etc., for their strong antioxidant 
activity (Cui et al., 2019). However, fresh fruits and vegetables are 
highly perishable commodities, due to their high moisture content, often 
above 85% (w.b.), and metabolic activities, and thus deteriorate over a 
short period if improperly handled (Moβhammer, Stintzing, & Carle, 
2006). Therefore, processing fruits into a value-added product is often 
an effective strategy for increasing the shelf life, enhancing the nutri
tional content, reduce post-harvest loss, and promoting fruit consump
tion. Fruit and vegetable powders are an important product produced by 
drying the fresh produce, which retains the unique sensorial charac
teristics and nutritional value of the starting material. There is a growing 
demand for dried snack foods like apple chips, which provide 

convenience, taste, nutritional, and other health benefits (Zandstra, De 
Graaf, & Van Staveren, 2001). Noticeably, many snack foods are coated 
with powdered seasonings to enhance their flavor and increase product 
variety. Recently, researchers have attempted to use different coatings 
to improve nutritional content, provide anticaking properties, and apply 
as antimicrobial agents to fresh products to enhance their shelf life 
(Amefia, Abu-Ali, & Barringer, 2006; Campos, Gerschenson, & Flores, 
2011; Limjaroen, Ryser, Lockhart, & Harte, 2003). Nevertheless, no 
reports have documented the use of fruit and vegetable powders as a 
coating material for apples before hot air drying to increase the nutri
tional value and color attractiveness of dried apple chips. 

Drying removes the water needed for bacteria, yeasts, and molds to 
multiply. If adequately dried and properly stored, dehydrated foods are 
shelf-stable. Therefore, it is important to accurately monitor the mois
ture content (MC) to ensure a safe product in the drying process. In 
general, the drying kinetics of foods are evaluated by measuring the 
weight loss during drying over a period. However, analyzing MC by 
conventional methods like oven drying and vacuum drying is often time- 
consuming, destructive, and requires a large amount of sample 
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preparation. Recently, some spectroscopic techniques have been gaining 
attention as they are non-destructive, fast, cost-effective, and allow for 
high throughput (Kamruzzaman, Elmasry, Sun, & Allen, 2012). 
Compared with other spectroscopic techniques, NIR (Near-Infrared) 
spectroscopy has emerged as a more feasible option in the food industry, 
incorporating advantages of real-time, high precision, and 
non-destructivity. 

In the spectra, the information about MC and other indicators such as 
sugar, protein, fat, etc., is mainly derived from the absorption bands in 
the NIR region. These absorption bands are generated from fundamental 
vibrations by two processes, i.e., overtones and combinations (Grassi & 
Alamprese, 2018). However, since NIR spectra generally consist of 
overlapping vibrational bands (Hernandez-Cardoso, 2020), chemo
metrics is usually used to extract meaningful information from the NIR 

spectra. Several researchers have utilized NIR Spectroscopy to deter
mine moisture, sugar, protein, and fat in various food products such as 
guava and passionfruit (Alamar, Caramês, Poppi, & Pallone, 2016), pear 
(Mishra, Woltering, Brouwer, & Hogeveen-van Echtelt, 2021), apples 
(Jannok, Kamitani, & Kawano, 2014), bread (Nallan Chakravartula, 
Cevoli, Balestra, Fabbri, & Rosa, 2019), breakfast cereals (Aykas, Ball, 
Menevseoglu, & Rodriguez-Saona, 2020), and meat (Isaksson, Nilsen, 
Tøgersen, Hammond, & Hildrum, 1996; Kamruzzaman, Makino, & 
Oshita, 2016), among others. Furthermore, various researchers have 
extended NIR applications for evaluating and monitoring the drying 
process of different food products (Collell, Gou, Arnau, & Comaposada, 
2011; Sinelli, Casiraghi, Barzaghi, Brambilla, & Giovanelli, 2011). 

In recent developments, due to its considerably lower cost, portable 
and miniature NIR spectrometers are being used commonly to analyze 

Fig. 1. Step by step procedure for developing calibration models and key wavelength selection for monitoring moisture content during drying.  
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the properties of various food products. The performance of these 
miniature instruments sometimes varies due to technical limitations, 
such as type of energy source, detector, resolution, sampling accessories, 
and energy intensity used within the system (Soriano-Disla, Janik, Allen, 
& McLaughlin, 2017). However, researchers have found that miniature 
NIR spectrometers can predict various properties of food with good 
accuracy at a cheaper cost (Bobasa, Netzel, Cozzolino, Phan, & Sultan
bawa, 2021; Lin et al., 2019; Cruz-Tirado, Lucimar da Silva; Medeiros, & 
Barbin, 2021). Therefore, portable, miniature NIR spectrometers appear 
to be a viable solution for providing rapid and cost-effective moisture 
content analysis of apples. 

As mentioned earlier, it is important to carry out moisture content 
analysis using an accurate and robust method as it influences the 
physical appearance, texture, taste, and shelf-life of dried food products. 
To our knowledge, no study is available to monitor the hot air-drying 
process using miniature NIR with multivariate analysis regarding 
edible coating applied onto apple slices. Therefore, the overall objective 
of the present study was to use a miniature NIR spectroscopy as a tool to 
evaluate a hot air drying process and develop a multivariate calibration 
model for real-time monitoring of MC during drying of coated (C-A) and 
uncoated (UC-A) apple slices in a pilot-scale hot air dryer. In this 
context, the specific objectives of the present study were (a) to evaluate 
the accuracy, robustness, and reliability of the spectral response ob
tained from the miniature NIR sensor for monitoring the moisture con
tent during drying of C-A and UC-A slices in a hot air dryer (b) identify 
important feature wavelengths (WL) by multivariate data analysis for 
real-time moisture monitoring of apple drying process, and (c) to 
develop and optimize multivariate calibration models using the selected 
feature WL to apply the model to predict moisture content. 

2. Materials and methods 

The key steps for monitoring MC during drying using NIR spectral 
analysis are outlined in Fig. 1 and explained in detail in the following 
sections. 

2.1. Sample preparation 

Apples (Gala var.) were procured from a local market in Urbana, 
Illinois. Fresh apples were washed and then cut into 3 mm thick slices 
using a laboratory slicer. Fruit powder [cranberry (MC = 3.5% w.b.), 
FutureCeuticals, Inc. Momence, IL.] and acetylated monoglyceride 
(AMG) (DuPont Inc., Wilmington, DE) were used to prepare the coating 
solution. 

2.2. Formulation and application of coating solution 

The coating solutions were prepared by dispersing 1% w/w AMG in 
distilled water. This dispersion was heated up to 30 ◦C for 15 min while 
continuously stirred on a hot plate with a magnetic stirrer. The solution 
was subsequently cooled to room temperature (25 ◦C) followed by the 
addition of 10% w/w cranberry powder. This solution was then ho
mogenized at 7000 rpm for 5 min with a high shear homogenizer. The 
coating solution was then applied by dipping apple slices individually in 
the coating solutions for 5 min at room temperature (25 ± 2 ◦C). 

2.3. Hot air drying 

In this study, a custom-designed single-channel laboratory hot air 
dryer consisting of six sections was used for drying apple slices. These six 
sections included a dehumidifier (Frigidaire, Charlotte, North Carolina, 
USA) to lower the dryer inlet air humidity for low humidity drying; a 
centrifugal air blower (Ebmpapst, Farmington, Connecticut, USA) to 
draw air into the dryer system; an ultrasonic humidifier chamber, which 
included a 20-mm ultrasonic transducer (HM 2412, Honda Inc., Japan) 
installed in a custom-made pan to increase air humidity for high 

humidity drying; two Omegaflux heaters (Omega Engineering, Stam
ford, Connecticut, USA) to provide thermal energy; a drying section 
including a square or round sample holder (36 inch × 5 inch × 5 inch) 
and a temperature-humidity sensor (Omega Engineering, Stamford, 
Connecticut, USA) to monitor the humidity and temperature of intake 
air, and a load cell to monitor sample weight changes. A Fantech IR 
series iris damper (System air, Sweden) was mounted to the fan to 
control the air velocity. This equipment has been fully described pre
viously (Kahraman, Malvandi, Vargas, & Feng, 2021). The dryer was 
operated at an air velocity of 2 m/s, parallel to the drying surface of the 
apple slices (3 mm thick), and 60 ◦C dry bulb temperature. Samples were 
dried until equilibrium (no weight change) was reached. 

2.4. Acquisition of NIR spectra 

NIR Spectra were collected by a miniature NIR Spectrometer (model 
DLP2010NIR, Texas Instruments, Dallas, Texas, United States) with 228 
spectral bands optimized between 900 and 1700 nm. Scans were per
formed 32 times for each sample (total measurement time for each same 
was 7.74s). For this instrument, the signal was captured using a DLP 
NIRscan Nano GUI (v2.1.0) software, and subsequently, the data were 
processed using MATLAB (Version R2020b, The Mathworks, Natick, 
Massachusetts, USA). In total, 102 samples (54 for coated and 48 for 
uncoated) were used for investigation. After associating the spectra with 
the reference moisture content values, data were manually divided into 
calibration (~67%, 68 samples) and validation sets (~33%, 34 
samples). 

2.5. Measurement of moisture content and drying rate 

After the acquisition of spectra, reference moisture content (MC) of 
each sample for coated and uncoated apple slice at different drying 
stages were determined using the vacuum oven method (24 h at 70 ◦C, 
3.33 kPA) (AOAC,1990). Samples before and after vacuum drying were 
weighed. The average moisture content was expressed on a dry basis (d. 
b.) 

2.6. Chemometrics and data analysis 

2.6.1. Outlier detection 
Outliers are known to have a strong influence on the estimation of 

model performance. Therefore, to achieve a greater calibration accu
racy, outliers were identified and removed from the calibration set. The 
American Society of Testing Standards (ASTM) recommended that 
various outlier diagnostic tests can be used for spectral data analysis. In 
this study, outliers were identified by comparing moisture content re
siduals (y residuals) with the root mean square error of cross-validation 
(RMSECV). Using this criterion, a sample is considered an outlier and 
eliminated from the dataset if the difference between its actual and 
predicted values exceeds two times RMSECV (Valderrama, Braga, & 
Poppi, 2007). However, no outliers were detected during the calibration 
process using this criterion. 

2.6.2. Exploratory analysis using principal component analysis (PCA) 
PCA was applied to reduce the high dimensionality of the spectral 

data (Daszykowski & Walczak, 2006), check the pattern of moisture loss 
during drying, and monitor the drying process qualitatively. PCA finds 
fewer factors or components than original variables through orthogonal 
transformation (Cozzolino, Power, & Chapman, 2019). After outlier 
elimination, PCA was applied to the spectral data on both coated (54 ×
228) and uncoated (48 × 228) apple slices to obtain an overview of 
variation among samples with respect to drying time. The data matrix 
was mean-centered before PCA, and cumulative percent explained 
variance was used to choose the optimal number of principal compo
nents (PCs). The explained variance by a PC is the ratio (expressed as a 
percentage) between the variance of that PC and the total variance. 
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2.6.3. Spectra pre-processing 
Some interference factors exist in the collected NIR spectra, such as 

sample morphology, scattered and stray light interference, instrumental 
noise, etc. To reduce the influence of these interference factors, the NIR 
raw spectra of both coated and uncoated apple slices were processed by 
various pre-processing methods, such as standard normal variate 
transformation (SNV), multiplicative scattering correction (MSC), first 
derivative (1stD), and second derivative (2nd D). MSC and SNV effec
tively remove the effects of non-uniform scattering and particle size 
from the spectrum (Maleki, Mouazen, Ramon, & De Baerdemaeker, 
2007). First derivative eliminates the baseline variations, while the 
second derivative separates overlapping peaks and sharpens spectral 
features (Wu, Walczak, Massart, Prebble, & Last, 1995). Savitzky–Golay 
with a gap of 15 points and second-order polynomial filtering was used 

to smooth each spectrum before derivatives transformation. These 
spectral pre-processing methods were investigated and optimized based 
on the coefficient of determination (R2), and the root mean square errors 
estimated by prediction (RMSEP). 

2.6.4. Development of calibration models 
Calibrations and predictions of moisture content in C-A and UC-A 

slices were developed using PLSR. PLSR is a bilinear factor model 
which fits a linear regression by projecting the predictors and responses 
to a new space, called latent variables (LVs), with the best predictive 
power. In PLSR, leave one out cross-validation was to find the optimal 
number of LVs to be used in calibration. It was determined at the min
imum value of the root mean squared error of cross-validation 
(RMSECV). The absorption spectra were mean-centered before 

Fig. 2. Representative NIR spectrum of (a) coated (b) uncoated apple slices, (c) coated and uncoated apple slices at their initial and final moisture content. (d) 
Moisture content (% d.b.) for coated and uncoated apple slices against the drying time for temperature of 60 ◦C and air velocity 2 m/s (Blue asterick marks the 
significant differences between moisture content of coated samples at different time intervals; Red asterick marks the significant differences between moisture 
content of uncoated samples at different time intervals; Pink asterick marks the significant differences between moisture content of coated and uncoated samples at 
the same time, all with a significance level of p < 0.05.). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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developing calibration models. 

2.6.5. Validation and evaluation of developed calibration models 
It is important to carry out model validation after model training. 

Once the calibration models have been developed, it is mandatory to 
evaluate the generalization and reliability of the developed calibration 
models in predicting the parameters of unknown samples to ensure that 
the derived model is representative and will work in the future for new, 
similar data. 

Calibration data were used to develop the calibration model, and the 
validation data were used to assess the model’s performance. The pre
dictive capability of the model was evaluated based on root mean square 
error of calibration (RSMEC), root mean square error of prediction 
(RMSEP), coefficient of determination for calibration (R2

c ) and coeffi
cient of determination for prediction (R2

p). Generally, a good model 
should have high R2 with low RMSE values. For better evaluation, the 
ratio between RMSEP and RMSEC was introduced. This ratio gives in
formation about the tendency of the model to overfit, and the lower 
value indicates a lesser tendency. 

2.6.6. Selection of feature wavelengths 
Variable selection is an essential step in multicollinear spectral data. 

It aims to reduce the spectral data by identifying a few important 
spectral wavelengths (WL) that capture the highest amount of infor
mation from the original spectra. In this study, the variables importance 
in projection (VIP) scores resulting from the PLSR model were used to 
select feature WL for moisture monitoring during drying of apple slices 
(ElMasry, Wang, Vigneault, Qiao, & ElSayed, 2008). Since the mean of 
squared VIP scores is equal to 1 (Chong & Jun 2005), this value was 
taken as a cut-off to define important variables. 

2.7. Statistical analysis 

All the moisture content values were reported as mean ± standard 
deviation. Statistical analysis was performed in R (Version 3.6.3., R 
Foundation for Statistical Computing, Vienna, Austria). Parametric one- 
way ANOVA with Tukey’s honest significance difference test was con
ducted to detect the differences between the means at a 95% confidence 
interval level. PCA, PLS, and spectral data pre-processing were per
formed using MATLAB software, Version R2020b (The Mathworks, 
Natick, USA) and PLS_Toolbox 862 (Eigenvector Research, USA). 

3. Results and discussions 

3.1. Overview of spectral characteristics of coated and uncoated apple 
slices during drying 

The average spectrum of the coated (C-A) and uncoated (UC-A) slices 
at different drying times monitored by miniature NIR spectroscopy are 
shown in Fig. 2a and b, respectively. All the analyzed samples showed a 
similar spectral trend, featured by main absorption bands at 970–1000 
nm, 1200 nm and 1450–1475 nm. The absorption peak at 970–1000 nm 
is associated with the second overtone of O–H stretching band in sugars 
(González-Caballero, Sánchez, López, & Pérez-Marín, 2010; Omar, Atan, 
& Matjafri, 2012). The second overtone of C–H stretching in sugars 
usually causes the absorption peak between 1100 nm and 1200 nm 
(Tang, He, Li, & Li, 2018). The last absorption peak was observed at 
about 1450 nm due to water, related to the first overtone of the O–H 
stretching band and a combination band (Osborne, Fearn, & Hindle, 
1993). According to a study by Beganović et al. (2020), this region of 
water bands also overlaps with the first overtone of O–H group of car
bohydrates (1470 nm). It can also be seen in Fig. 2a and b that the 
spectra of the coated and uncoated samples showed some different 
features with respect to the drying time and each other. In particular, the 
water absorption band at 1450 nm is shifted towards lower absorption as 

the drying time increases for both cases. 
Other researchers observed a similar trend in absorption spectra. For 

example, Pu and Sun (2015) studied the moisture distribution of mango 
slices during microwave-vacuum drying using NIR and reported that 
those with higher moisture content have a relatively higher absorption. 

Similarly, the O–H absorbance band at 975 nm, associated with the 
presence of sugar, can be seen reducing in intensity as the drying pro
gresses. According to Golic, Walsh, and Lawson (2003), sugar O–H ab
sorption frequencies are sensitive to water, sugar, and temperature. The 
removal of water induces the concentration of sugar and other dissolved 
solids. The decrease in water concentration and a subsequent increase in 
sugar concentration leads to a decrease in the total number of H-bonds 
(sugar–water and water–water bonds), which in turn is associated with 
decreased absorption. 

The mean absorption spectral curves of the coated and uncoated 
apple samples at their initial and final moisture content at WL ranging 
from 900 to 1700 nm are shown in Fig. 2c. As can be seen, both C-A and 
UC-A slices at their initial moisture content (IMC) had higher absorption 
intensity and absorbed more energy at any WL compared to samples at 
their final moisture content (FMC). This is because the presence of water 
on the surface affects the absorptive properties, thereby resulting in 
deeper light penetration and subsequently higher absorbance in samples 
with higher moisture content. However, it can be observed that coated 
samples, despite having higher FMC, showed a lower absorbance than 
the uncoated samples. 

This decrease in sample absorbance can be related to the homoge
nous coating formation. The coating formulation consists of several 
additives, including plasticizers and surfactants. Plasticizers are non- 
volatile compounds usually of low molecular weight. The low molecu
lar size of a plasticizer allows occupying of intermolecular spaces be
tween polymeric chains. The addition of AMG as a plasticizer might be 
interrupting H-bonding between water and sugar molecules. Therefore, 
it can be said that these additives alter the absorbance properties, and 
because of this reason, coated samples showed a lower absorption on the 
formation of a uniform coating layer onto the surface of the final 
product. 

Fig. 2d shows the average moisture content (d.b.) for coated and 
uncoated apple slices against the drying time for temperature of 60 ◦C 
and air velocity 2 m/s. It can be seen that the moisture content decreased 
rapidly for about 30 min and after that it slowed down and then tended 
to reach an equilibrium state. Table 1 reports the initial and final 
moisture (dry basis) of the samples and the drying time. Coated apple 
samples needed a longer drying time (115 min) than uncoated apple 
slices, which took 90 min to reach a constant weight. This is because the 
coated apple slices had a higher initial moisture content (9.67% d.b) 
than uncoated apple slices, which had an initial moisture content of 
5.93% d.b.) 

3.2. Spectra investigation using PCA 

PCA was applied to the spectral data to see patterns within 10–15- 
min intervals that reflect moisture loss progression and to monitor the 
drying process qualitatively. 

The underlying reason for choosing this statistical approach was to 
group sample spectra into 10–15-min intervals that reflect the progres
sion of moisture loss and to monitor the drying process qualitatively. 
Fig. 3 (a and b) shows the PCA scores plot developed from this data 
array. The first two principal components (PCs) sufficiently described 

Table 1 
Moisture content (MC) [dry basis (d.b.)] during drying for coated and uncoated 
at 60 ◦C and air velocity 2 m/s.  

Sample Initial MC (d.b.) Final MC (d.b.) Drying Time 

Coated 9.67 ± 0.82 0.11 ± 0.05 115 min 
Uncoated 5.93 ± 0.12 0.9 ± 0.09 90 min  
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the variation in the spectra for both coated (99.86%) and uncoated 
(99.72%) samples (Fig. 3a and b). The first PC (PC1) covered the whole 
spectral data set correlated to moisture content from highest moisture to 
lower moisture (right to left) in the score plots. A clear separation along 
the drying time can be observed for both coated (Fig. 3a) and uncoated 
(Fig. 3b) samples, especially in the first 30 min of drying. The X-loading 
plot (Fig. S1, supplementary information) displayed 3 maximas at 975, 
1200, and 1450 nm, which can be attributed to the difference between 
R–OH bands of sugar, combination peaks of C–H for sugar, and combi
nation peak of O–H vibrations in water, respectively. The loadings of 
PC2 show the same features as for PC1. However, it must be noted that 
the water band at 1450 nm exhibits a stronger influence in PC2 for both 
coated and uncoated apple slices. Based on the loadings and clustering in 
the score plots, it can be concluded that the variation in the sugar and 
moisture content are the main factors represented in the PC1 and PC2. 

3.3. Calibration models at full wavelength 

In this study, a combined PLSR model was developed to predict the 
moisture content of tested coated and uncoated apple slices from the 
spectral data over the full spectral range of 900–1700 nm. The perfor
mance of the PLSR model for determining the moisture content of apple 
slices (both coated and uncoated samples combined) are shown in 
Table 2. Different spectral pre-treatment techniques were also tested to 
evaluate the effect of these treatments on model performance for pre
dicting moisture content. As mentioned previously, these pre-treatments 
have been proposed to eliminate or reduce spectral variations. However, 
the best data pre-treatment method is highly dependent on the specific 
application and spectral data (Faber, Duewer, Choquette, Green, & 
Chesler, 1998). The variable results obtained by spectral pre-treatment 
in coated and uncoated samples can be explained by the fact that 
these different pre-treatment methods rely on different assumptions 

about the structure of the spectral distortion. Furthermore, spectral 
pre-treatment may also change the systematic part of the data, and this 
may happen in an advantageous or disadvantageous manner depending 
on the shape of the spectra. In this study, models derived from raw 
spectra for apple slices tended to show better performance than those 
based on pre-treated spectra. For this reason, only models based on raw 
spectra will be discussed in the following sections. This result is in 
accordance with other researchers (Kamruzzaman et al., 2016), who 
also observed that models having the highest R2 and lowest RMSEP 
corresponded to data from the raw spectra. 

Using the raw spectra of coated and uncoated apple slices, the 
developed combined PLSR model with 10 LVs (R2

c = 0.98 and RMSEC =
0.29%) was applied to independent test set, and good prediction results 
were obtained (R2

p= 0.95, RMSEP = 0.52%). Since the model have good 
prediction correlation coefficient (R2

p) and lower RMSEP values (indi
cating better fitting results and smaller prediction errors), it can be said 
that these developed models were adequately promising. Moreover, the 
R2

p obtained in this study was higher than the same obtained for dry 
matter in apples using a benchtop NIR (Møller, Travers, Bertram, & 
Bertelsen, 2013), thereby indicating the efficiency and accuracy of 
miniature NIR over the benchtop counterpart. Additionally, the PLSR 
model developed from raw spectra showed RMSEP/RMSEC ratio (≤1.8), 
indicating higher robustness. To visualize the performance of the best 
PLSR model, the measured moisture content values obtained from the 
laboratory analysis and its predicted values resulting from the PLSR 
models are shown in Fig. S2 (supplementary information). 

3.4. Selection of feature wavelength 

Often, spectral data consists of a large number of variables that can 
be difficult to manage and process efficiently. Therefore, identifying and 

Fig. 3. PCA score plots of the NIR spectra of the coated (a) and uncoated (b) apple slices at various time intervals.  

Table 2 
PLSR calibration parameters of the NIR spectra for predicting moisture content (%) in apple slices during drying.  

Sample Pre Processing LVs Calibration Cross-Validation Prediction RMSE Ratio 

R2
c  RMSEC (%) R2

cv  RMSECV (%) R2
p  RMSEP (%) 

Apple slices (Coated &uncoated) Raw 10 0.98 0.29 0.94 0.63 0.95 0.52 1.79 
1st D 9 0.97 0.39 0.91 0.75 0.94 0.81 2.07 
2nd D 4 0.96 0.50 0.89 0.86 0.94 0.70 1.40 
SNV 8 0.96 0.52 0.86 0.94 0.91 0.81 1.55 
MSC 8 0.96 0.52 0.89 0.84 0.91 0.81 1.55 

RMSE ratio = RMSEP/RMSEC. 
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selecting a few key variables from the spectral data is critical in spectral 
analysis. In the present study, the variables importance in projection 
(VIP) scores resulting from the PLSR model were used to select feature 
WL for moisture monitoring during drying of apple slices. Fig. 3 shows 
the wavelength importance for bands indicated by the VIP method. The 
black dashed line represents the threshold (one) and the important WL 
are those with scores greater than one. Using this approach, 7 important 
WL (1400, 1424, 1451, 1508, 1511, 1604 and 1646 nm) were selected 
from the full spectral range. Although there were other WL that showed 
a higher value of VIP scores, those did not increase the predictive power 
of the model and therefore, those were not considered. The absorption at 
1400, 1424, 1451, 1508, and 1511 nm was associated mainly with the 
overtones and combinations of the O–H bond stretching vibration in the 
water. Given that water is a major constituent in apples, it was evident 
that the most important WL in the NIR region were associated with 
water absorption bands. 

3.5. Calibration models at feature wavelengths 

Further, these methods can reduce the number of variables and show 
the important variables that have an effect on the viability of soybean 
seeds. From a practical point of view, the selection of variables can make 
the future acquisition of data cheaper and less time-consuming. 

Once the important spectral WL were identified, the PLSR models 
were developed with these 7 WL (denoted as PLSR-SWL), and the results 
are presented in Table 3. The SWL-PLSR model had a good performance 
in predicting moisture in coated slices with R2

p = 0.93, and RMSEP =
0.63%. The SWL-PLSR model performance in coated samples was 
comparable to the PLSR model developed with full spectra, though 
96.92% (7 out of 228) of the variable were eliminated. Overall, only 

seven SWL in the spectral region between 1400 and 1650 nm (Fig. 4), 
which contains the absorption band of water, effectively predicted the 
moisture content of both coated and uncoated apple slices at different 
drying times. These seven SWL is almost equal to full WL as these carry 
the most spectral information. It enables a single simple sensor instead 
of hundreds of variables and more complex and slower sensors. As a 
result, both accuracy and speed can be assured that is important for real- 
time industrial implementation. Overall, the technique of WL selection 
provides a detailed analytical view of moisture content in C-A and UC-A 
slices during drying, which could be used to explore the design of a filter- 
based spectral instrument for non-destructive and rapid estimation of 
moisture content. These results can be useful to develop simple and cost- 
effective miniature NIR sensors for more practical and faster applica
tions in the food industry. 

4. Conclusions 

The present study outlines the evaluation and application of che
mometric models together with miniature NIR spectroscopy to monitor, 
in real-time, the moisture content during drying of apple slices, with and 
without coatings in a hot air-dryer. PCA and PLSR were evaluated for 
their potential in qualitative and quantitative monitoring of residual 
moisture content in coated and uncoated samples. The PCA analysis of 
the spectral data was able to differentiate samples based on a decrease in 
moisture content along the drying time. This is useful to track the var
iances evolving mainly from water evaporation, as the spectral differ
ences reflect the resonance bands of the O–H stretching of water. The 
PLSR provided satisfactory results for the optimal prediction of moisture 
content. The VIP scores provided an accurate and efficient methodology 
for selecting important variables. This is the first reported study to 

Table 3 
Performance of PLSR based on raw spectra using selected key wavelengths over the model developed with full spectral range.  

Sample Model LVs Calibration Cross-Validation Prediction RMSE Ratio 

Rc
2 RMSEC (%) Rcv

2 RMSECV (%) Rp
2 RMSEP (%) 

Apple Slices (Coated and Uncoated) PLSR 10 0.98 0.29 0.94 0.63 0.95 0.52 1.79 
SWL-PLSR 7 0.93 0.64 0.91 0.89 0.92 0.71 1.10 

RMSE ratio = RMSEP/RMSEC. 

Fig. 4. Selection of optimal wavelength using VIP scores.  
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utilize miniature NIR spectroscopy along with chemometrics for accu
rate, rapid, and non-destructive evaluation of drying behavior of apple 
slices with or without coatings. Furthermore, this study addressed 
developing a fast, reliable, and accurate system for real-time monitoring 
of the moisture content of apples by selecting three important wave
lengths. Future research on testing the robustness of various other 
strategies to identify feature wavelengths should also be investigated 
using different commercially available low-cost spectral sensors for 
predicting moisture content in apples during the drying operation. 
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Beganović, A., Beć, K. B., Grabska, J., Stanzl, M. T., Brunner, M. E., & Huck, C. W. (2020). 
Vibrational coupling to hydration shell – mechanism to performance enhancement of 
qualitative analysis in NIR spectroscopy of carbohydrates in aqueous environment. 
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 237, 118359. 
https://doi.org/10.1016/J.SAA.2020.118359 

Bobasa, E. M., Netzel, M. E., Cozzolino, D., Phan, A. D. T., & Sultanbawa, Y. (2021). 
Measurement of total soluble solids and moisture in puree and dry powder of Kakadu plum 
(Terminalia ferdinanadiana) samples using hand-held near infrared spectroscopy. 
https://doi.org/10.1177/0967033520982361. Https://Doi.Org/10.1177/ 
0967033520982361. 

Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films 
and coatings with antimicrobial activity. Food and Bioprocess Technology, 4, 849–875. 
https://doi.org/10.1007/s11947-010-0434-1. August 22. 

Chong, I. G., & Jun, C. H. (2005). Performance of some variable selection methods when 
multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1), 
103–112. https://doi.org/10.1016/j.chemolab.2004.12.011 

Collell, C., Gou, P., Arnau, J., & Comaposada, J. (2011). Non-destructive estimation of 
moisture, water activity and NaCl at ham surface during resting and drying using 
NIR spectroscopy. Food Chemistry, 129(2), 601–607. https://doi.org/10.1016/j. 
foodchem.2011.04.073 

Cozzolino, D., Power, A., & Chapman, J. (2019). Interpreting and reporting principal 
component analysis in food science analysis and beyond. Food Analytical Methods, 12 
(11), 2469–2473. https://doi.org/10.1007/S12161-019-01605-5, 2019 12:11. 

Cruz-Tirado, J. P., Lucimar da Silva Medeiros, M., & Barbin, D. F. (2021). On-line 
monitoring of egg freshness using a portable NIR spectrometer in tandem with 
machine learning. Journal of Food Engineering, 306, 110643. https://doi.org/ 
10.1016/J.JFOODENG.2021.110643 

Cui, J., Lian, Y., Zhao, C., Du, H., Han, Y., Gao, W., et al. (2019). Dietary fibers from 
fruits and vegetables and their health benefits via modulation of gut microbiota. 
Comprehensive Reviews in Food Science and Food Safety, 18, 1514–1532. https://doi. 
org/10.1111/1541-4337.12489. September 1. 

Daszykowski, M., & Walczak, B. (2006). Use and abuse of chemometrics in 
chromatography. TRAC Trends in Analytical Chemistry, 25(11), 1081–1096. https:// 
doi.org/10.1016/j.trac.2006.09.001 

ElMasry, G., Wang, N., Vigneault, C., Qiao, J., & ElSayed, A. (2008). Early detection of 
apple bruises on different background colors using hyperspectral imaging. 
Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology, 41(2), 
337–345. https://doi.org/10.1016/j.lwt.2007.02.022 

Faber, N. M., Duewer, D. L., Choquette, S. J., Green, T. L., & Chesler, S. N. (1998). 
Characterizing the uncertainty in near-infrared spectroscopic prediction of mixed- 
oxygenate concentrations in gasoline: Sample-specific prediction intervals. Analytical 
Chemistry, 70(14), 2972–2982. https://doi.org/10.1021/ac971270b 

Golic, M., Walsh, K., & Lawson, P. (2003). Short-wavelength near-infrared spectra of 
sucrose, glucose, and fructose with respect to sugar concentration and temperature. 
Applied Spectroscopy, 57(2), 139–145. https://doi.org/10.1366/ 
000370203321535033 
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