

AMERICAN
PSYCHOLOGICAL
ASSOCIATION

Journal of Comparative Psychology

Manuscript version of

Some Phenomena of the Cap-Pushing Response in Honey Bees (*Apis mellifera* spp.)

Sierra Dee Rodriguez, Riley J. Wincheski, Ian T. Jones, Michael G. De Jesus-Soto, Skylar J. Fletcher, Troy Joseph Pretends Eagle, James W. Grice, Charles I. Abramson

Funded by:

- National Science Foundation

© 2023, American Psychological Association. This manuscript is not the copy of record and may not exactly replicate the final, authoritative version of the article. Please do not copy or cite without authors' permission. The final version of record is available via its DOI: <https://dx.doi.org/10.1037/com0000346>

This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

CAP PUSHING RESPONSE IN HONEY BEES

Some Phenomena of the Cap Pushing Response in Honey Bees (*Apis mellifera* spp.)

Sierra Dee Rodriguez ¹, Riley J. Wincheski ^{5,6}, Ian T. Jones⁵, Michael G De Jesus-Soto ², Skylar J. Fletcher ³, Troy Joseph Pretends Eagle ⁴, James W. Grice⁵, & Charles I. Abramson^{5,6}

¹Department of Biology, Texas A & M University – San Antonio

²Department of Biology, University of Puerto Rico – Rio Piedras

³Department of Biology, Southeastern Oklahoma State University

⁴Department of Biology, North Dakota State University

⁵Department of Psychology, Oklahoma State University

⁶Laboratory of Comparative Psychology and Behavioral Biology, Oklahoma State University

Authors Note

This research was primarily performed Malemi Organic Hotel located in Skala Kallonis, Lesvos, Greece 39.208896, 26.204095. We would like to acknowledge George and Effy Kapsalis for their hospitality during our stay. The Observation Oriented Modeling software can be freely downloaded from <http://www.idiogrid.com/OOM>. This research was supported by NSF REU grants 1560389, 1950805, and NSF PIRE grant 1545803. All data for these experiments will be made available at request.

21

22 Please send correspondence to Charles I. Abramson. Email: Charles.abramson@okstate.edu

CAP PUSHING RESPONSE IN HONEY BEES

23

Abstract

24 The cap pushing response (CPR) is a new free flying technique used to study learning
25 and memory in honey bees. Bees fly to a target where they push a cap to reveal a hidden food
26 source. When combined with traditional odor and color targets, the CPR technique opens the
27 door to additional choice preference tests in honey bees. To facilitate the use of the CPR
28 technique, three experiments were conducted. Experiment 1 investigates the impact of extended
29 training on the CPR response and its role in extinction. Experiment 2 explores the role of CPR in
30 overshadowing, and experiment 3 explores the effects of electric shock punishment on the CPR
31 technique.

32 *Keywords:* cap pushing response, conditioning, honey bee, learning

33

CAP PUSHING RESPONSE IN HONEY BEES

34 Some Phenomena of the Cap Pushing Response in Honey Bees (*Apis mellifera* spp.)

Introduction

36 The purpose of the present series of experiments is to provide additional data on the cap
37 pushing response (CPR) of honey bees. The CPR technique is a novel free flying technique
38 where bees are trained to push a cap to reveal a hidden food source (Abramson et al., 2016).

39 With the advent of the CPR technique, a manipulative response can now be added to the stable of
40 free flying techniques. When combined with odor, color, and position, we expect the CPR
41 technique to provide more challenging experiments that test the limits of choice preference in
42 honey bees. These findings will help further our knowledge of honey bee capabilities and
43 behavioral importance in species comparisons at the individual level, which is explored using
44 non-traditional statistics.

45 The experiments reported here provide data on aspects of the CPR not covered in our
46 previous experiments (Abramson et al., 2016; Chicas-Mosier et al., 2019). Through a series of
47 three experiments, we provide researchers with fundamental and practical data on various
48 aspects of the CPR, including punishment, the effect of extended training, and overshadowing.
49 Observation Oriented Modeling (OOM) is a type of non-traditional statistics that was utilized to
50 analyze our data. These experiments outline why OOM is a better method for our research than
51 traditional aggregate statistical.

52 Observation Oriented Modeling departs from traditional analyses based on means,
53 standard deviations, or variances (Grice, 2011; Grice et al., 2020). OOM is a suite of
54 nonparametric methods which permits the researcher to examine patterns within the data at the
55 level of the individual or organism under study. Emphasis is placed on the persons or entities
56 (i.e., organisms) in the experiment in order to answer the question, “how many people [or

CAP PUSHING RESPONSE IN HONEY BEES

57 entities] in the study [or experiment] behaved or responded in a manner consistent with
58 theoretical expectation" (Grice et al., 2020, p. 2; see also Grice, 2011; Grice et al., 2012). To
59 determine how many organisms behaved as expected according to one's hypotheses, OOM
60 computes a person-centered effect size, referred to as the Percent Correct Classification (PCC)
61 index. The PCC index is the computed proportion of individuals/organisms who conformed or
62 behaved as expected within the scope of the experimenter's hypotheses. Moreover, a
63 randomization test on the PCC index can be conducted to determine whether the resulting value
64 should be explained as having arisen by physical chance (see Grice, 2021).

65 The randomization test is conducted by randomly shuffling the observations a set number
66 of times (e.g., 1,000 iterations), similar to bootstrapping, and a PCC is computed for each
67 iteration. The software then tallies each time the randomized PCC is equal to or greater than the
68 observed PCC, thus yielding a total proportion of occurrences (referred to as a *c*-value) that the
69 observed PCC was achieved through randomizing the data. For example, if a PCC of 85% was
70 found and the randomization test revealed that this PCC could only be achieved for 5 out of 1000
71 iterations, then the *c*-value would be 0.005, indicating that the observed PCC is unlikely to be a
72 product of chance (Grice, 2021). Therefore, all OOM software analyses are accompanied by a
73 randomization test using 10,000 iterations unless otherwise indicated.

74 All data were analyzed utilizing the OOM software (Grice, 2011). Traditional statistics
75 were also utilized to compare the two types of statistical methods. The OOM software can be
76 downloaded gratis following the link provided within the acknowledgments of the manuscript.

77

78

79

CAP PUSHING RESPONSE IN HONEY BEES

80 **Standards for Openness and Transparency**

81 We report how we determined our sample size, all data exclusions, all manipulations, and
82 all measures in the study in each of the methods sections for each of the experiments.

83

84 **Experiment 1: The effect of extended training on the cap pushing response and extinction 85 in honey bees**

86 In Experiment 1, we sought to investigate the effects of extended training on the
87 extinction of the CPR. We wanted to know if there was a difference in extinction rates for the
88 responses between honey bees trained using 6 or 12-training trials. In our initial investigations
89 (Abramson et al., 2016) we noticed a peculiar error. Bees that were trained to push the cap would
90 continue to push the cap even though the cap was no longer directly above the feeding hole. If
91 the cap was moved to the side of the feeding hole and was replaced with a cross now directly
92 over the feeding hole, the bee would continue to push the cap several times before it would push
93 the cross. We hypothesize that these errors were the result of a lack of experience with the target
94 and the more experience with the target would result in less of these types of errors (Abramson et
95 al., 2016). Additionally, previous research found that resistance to extinction increased from 1 to
96 6 trials and then decreased as the number of training trials increased to 12 (Couvillon &
97 Bitterman, 1980). We wanted to see if we can replicate this effect with the CPR.

98

99 **Materials and Methods**

100 Twenty-eight bees were trained to land on a target containing a feeding well with a 50%
101 sucrose by volume (Figure 1) to begin the steps to train the cap training process. Hives were
102 managed in Greece and were well maintained and in healthy condition. The experiment was

CAP PUSHING RESPONSE IN HONEY BEES

103 conducted outdoors. The bees were trained to come to a feeder with 8% sucrose by volume. The
104 feeder was located four meters from a hive and was shared by three maintained colonies. An
105 individual bee was picked up in a match box while on the feeder and brought to a gray target
106 containing 50% sucrose. The match box was opened slightly to allow the proboscis to make
107 contact with the sucrose. While the bee was feeding it was allowed to leave the match box where
108 it was marked with nail polish (the brand “LBK™” nail lacquer). When the bee returned twice
109 on its own it was shaped to push the cap (weight = 0.47 g, height = 0.5 cm, length = 1.5 cm).

110 Shaping was accomplished by placing the cap so that it covered about half the feeding
111 hole. On subsequent visits, the cap was gradually moved so that it completely covered the food
112 well. When the bee pushed the cap to uncover the well on two consecutive visits the experiment
113 was begun. Details of the shaping procedure can be found in Abramson et al. (2016).

114 The bees were divided into two groups consisting of 14 bees each. One group received 6
115 training trials and the other 12 training trials. The groups then received a 10 minute extinction
116 session divided into twenty 30 second intervals, where the sucrose was replaced with tap water.
117 We then tracked the number of target landings, cap touches, and cap pushes. We analyzed
118 landings for the 6 and 12 trial bees to evaluate extinction differences. We further include the
119 analysis for the touching and pushing behaviors as additional evidence supporting the hypothesis
120 that the bees that received 12-training trials would extinguish faster than the bees that received 6-
121 training trials. Bees were selected from a common feeder regularly visited by three different
122 hives, and the targets were washed and cleaned based on standard methods (Couvillion &
123 Bitterman, 1980). Our sample size was based on previous research and personal experience with
124 this preparation. Honey bees are not listed under any ethical codes concerning humane treatment

CAP PUSHING RESPONSE IN HONEY BEES

125 of animals in research under USA or Greek law; therefore, no ethical review of the research
 126 protocol was conducted.

127

Figure 1

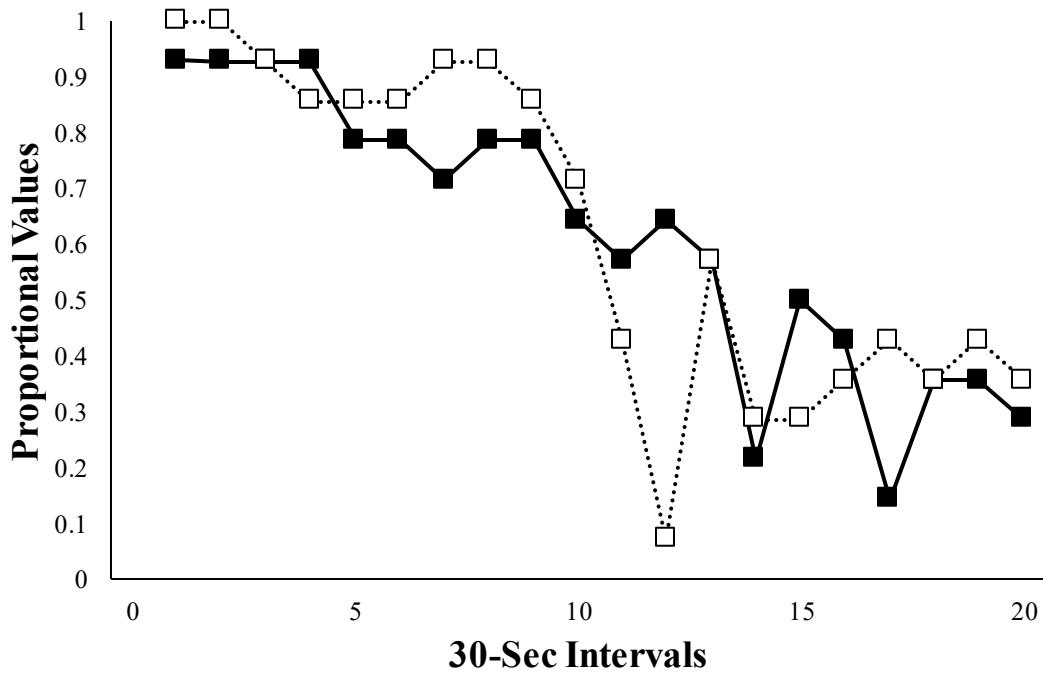
Example of Bees in the Cap Pushing Response

128

129 **Results and Discussion**

130 The individual bee's extinction curves were computed and analyzed in OOM for each
 131 bee's landing, touching, and pushing behaviors across all 20 intervals. The cumulative responses
 132 were then compared with an expected ordinal pattern of monotonic increasing landings, touches,
 133 and pushes (viz., interval 1 < interval 2 < interval 3, etc.). The PCC index was computed at each
 134 interval to determine how many total bees were performing the landing, touching, and pushing
 135 behaviors. It was expected that the bees should demonstrate extinction, therefore at some point

CAP PUSHING RESPONSE IN HONEY BEES


Figure 2*Six and Twelve Trial Bees' PCC Response Curves for the Landing Behavior*

136 the monotonic pattern should stop increasing and the accompanying PCC should subsequently
137 decrease (i.e., indicating a nonmonotonic relationship).

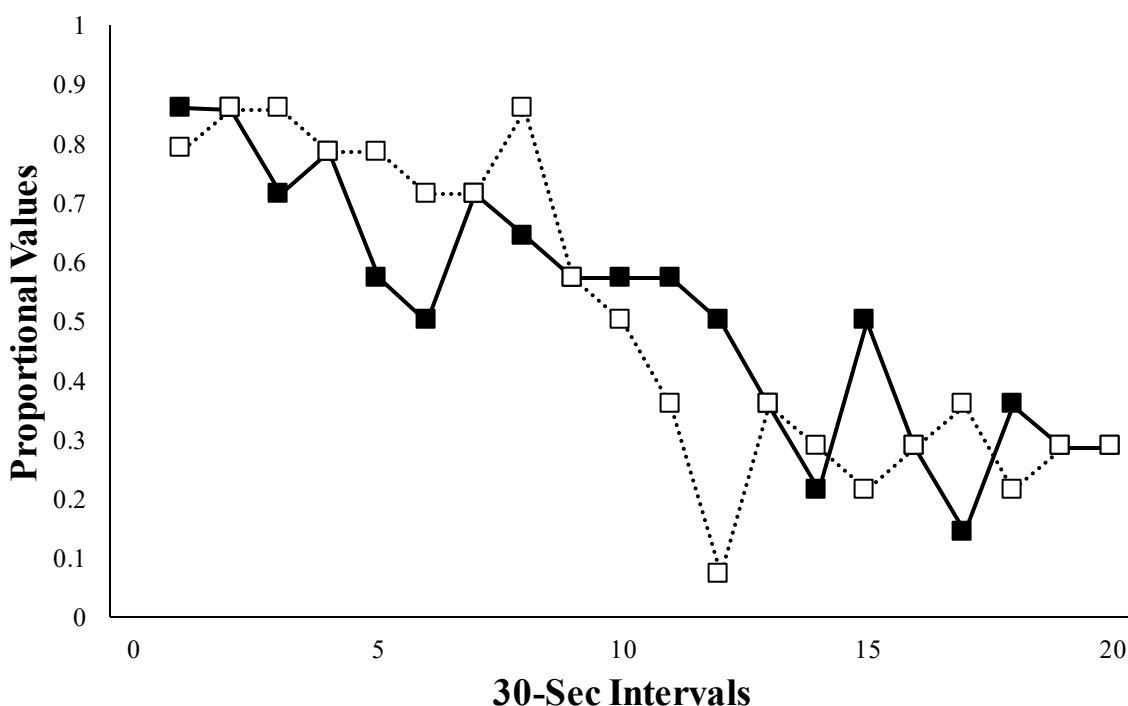
138 Based upon previous findings (Couvillon & Bitterman, 1980), it was also expected that
139 the 12-trial bee's PCC response curve should decrease faster than the 6 trial bees for the landing,
140 touching, and pushing behaviors. Therefore, following „best-practice“ data analysis
141 recommendations put forth by Fidler and Loftus (2009), graphical interpretations are primarily
142 relied upon. The result will outline traditional and non-traditional statistical interpretations.

143 Non-traditional statistics, shown in figures 2, 3, and 4 contain the results for the PCCs for
144 all bees at each interval across the landing, touching, and pushing behaviors, respectively. Across
145 all three figures, a decline in the PCC response curve suggests a nonmonotonic relationship
146 within the data, which revealed extinction occurring for most of the bees. In other words, if a
147 decline is observed in the graph, then a majority of the bees are no longer performing the
148 behavior and extinction was occurring. As expected, the results for the landing, touching, and
149 pushing behaviors showed that the majority of the 12-training trial bees demonstrated an
150 extinction response slightly more quickly than the majority of the 6-training trial bees.

CAP PUSHING RESPONSE IN HONEY BEES

Note. 6-trial (solid black line) and 12-trial (dotted black line) PCC response curves across all bees for the landing behavior. The proportional values were obtained by converting the PCC to proportional frequencies ($\frac{PCC}{100}$). Each interval represents data produced over a 30-second time period.

151
 152 Looking at Figure 3, the PCC response curve for the 6 trial bees gradually declines after
 153 the 2nd interval, then sharply decreases between the 13th and 14th intervals (360 – 390 seconds).
 154 The majority of the 6 trial bees first demonstrated extinction at the 14th interval as only 3 out of
 155 14 bees (PCC = 21.43%) were still performing the landing behavior during this time period. The
 156 PCC response curve for the 12-training trial bees is comparable to the 6-training trial bees
 157 initially until the 10th interval, then sharply declines between the 10th and 12th intervals (300 –
 158 360 seconds). The majority of the 12-training trial bees first demonstrated extinction at the 11th
 159 interval, as 6 out of 14 bees (PCC = 42.86%) perform the landing behavior. By the 12th interval,


CAP PUSHING RESPONSE IN HONEY BEES

160 however, only 1 of the 12-training trial bees (PCC = 7.14%) was still performing the landing
 161 behavior.

162

Figure 3

Six and Twelve Trial Bees' PCC Response Curves for the Touching Behavior

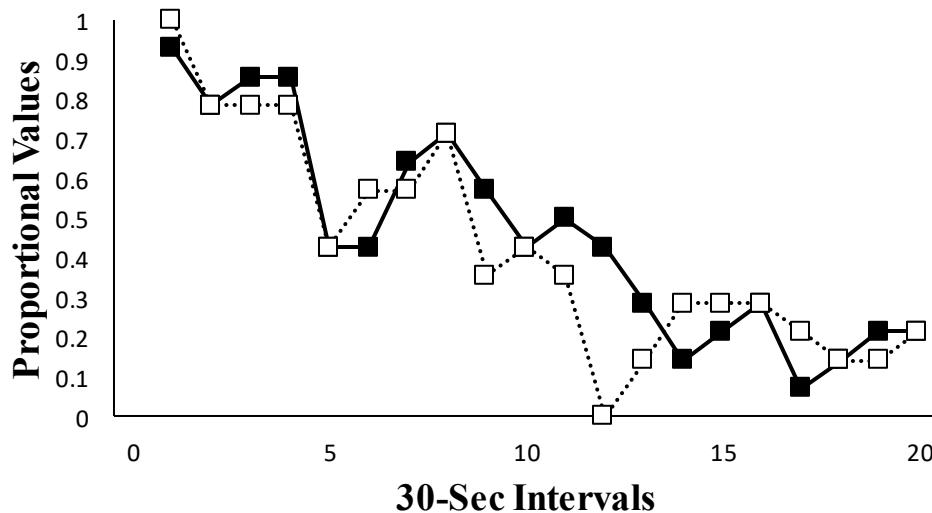
Note. 6 Trial (solid black line) and 12 Trial (dotted black line) PCC curves across all bees for the touching behavior. The proportional values were obtained by converting the PCC to proportional frequencies ($\frac{PCC}{100}$). Each interval represents data produced over a 30-second time period.

163

164 By the 12th interval, 64.5% of the 6-training trial bees were still demonstrating the
 165 landing behavior, whereas only 7% of the 12 trial bees were still demonstrating the landing
 166 behavior. The „eye-test“ from Figure 3, and accompanying PCCs, supported our hypotheses as it
 167 revealed that the majority of the 12-training trial bees demonstrated extinction after 330-360

CAP PUSHING RESPONSE IN HONEY BEES

168 seconds, whereas it took the majority of the 6-training trial bees around 420 seconds to
169 demonstrate extinction of the landing behavior


170 Looking at Figure 4, the PCC curve for the touching behavior shows the same general
171 pattern found in Figure 3. Although at the 6th interval only 50% of the 6-trial bees were
172 performing the touching behavior, we only consider extinction to be first demonstrated at the
173 interval where the majority of bees (i.e., < 50%) are no longer performing the behavior.

174 Therefore, the majority of the 6-training trial bees first demonstrated extinction at the 13th
175 interval as only 5 out of 14 bees (PCC = 35.71%) were still performing the touching behavior.

176 Comparably, the majority of the 12-training trial bees first demonstrated extinction at the 11th
177 interval, as only 5 out of 14 bees (PCC = 35.71%) were performing the landing behavior. As we
178 saw in Figure 2, by the 12th interval only one (PCC = 7.14%) of the 12 trial bees was still
179 performing the touching behavior.

180

CAP PUSHING RESPONSE IN HONEY BEES

Figure 4*Six and Twelve Trial Bees' PCC Curves for the Pushing Behavior*

Note. Six Trial (solid black line) and 12 Trial (dotted black line) PCC curves across all bees for the pushing behavior. The proportional values were obtained by converting the PCC to proportional frequencies ($\frac{PCC}{100}$). Each interval represents data produced over a 30-second time period.

181

182 A similar pattern of results found in the landing behavior was also found in the
 183 touching behavior. By the 12th interval, 50% of the 6-training trial bees were still
 184 demonstrating the touching behavior, whereas only 7% of the 12-training trial bees
 185 demonstrated the touching behavior. The majority of the 12-training trial bees
 186 demonstrated extinction after 330 seconds, whereas it took the majority of the 6-training
 187 trial bees 390 seconds to first demonstrate extinction of the touching behavior.

188 The PCC response curves for the 6-training trial bees and 12-training trial bees
 189 slightly support the expectations. The PCC response curves for both the 6 and 12-training
 190 trial bees are nearly identical from intervals 1 – 6. At the 5th interval, both the 6-training
 191 trial bees and 12-training trial bees revealed that a majority of bees demonstrated extinction

CAP PUSHING RESPONSE IN HONEY BEES

192 of the pushing behavior as only 6 out of 14 (PCC = 42.86%) of both groups of bees were
193 performing the pushing behavior. However, the greatest occurrence of extinction in the 6-
194 training trial bees did not occur until the 17th interval, where one bee (PCC = 7.14%) from
195 the 6-training trial bees was still performing the pushing behavior. Comparably, the
196 greatest occurrence of extinction in the 12-training trial bees occurred by the 12th interval,
197 where none (PCC = 0%) of the 12-training trial bees were still performing the pushing
198 behavior.

199 By the 12th interval, 43% of the 6-training trial bees demonstrated the touching behavior,
200 whereas none (i.e., 0%) of the 12-training trial bees demonstrated the landing behavior. The
201 “eye-test” from Figure 4 revealed nearly identical results initially; however, towards the middle
202 of the experiment the majority of the 12-training trial bees extinguish the pushing behavior prior
203 to the majority of the 6-training trial bees.

204 Across all three behaviors using OOM and SPSS, the majority of the 12-training trial
205 bees extinguished the behavior earlier than the 6-training trial bees, as exhibited by the sharper
206 declining slope and low PCC indices across each interval. The “eye-test,” accompanying PCC
207 indices, and *c*-values are more than sufficient at establishing the differences in the patterns of
208 observations across the three behaviors (landings, touches, pushes) between the 6 and 12-training
209 trial bees.

210 Across all three behaviors, the majority of the 6 trial bees consistently demonstrated
211 extinction after the 13th and 14th intervals (~390-420 seconds), with the most bees no longer
212 performing the behaviors at the 17th interval. By comparison, the majority of the 12-training trial
213 bees consistently demonstrated extinction around the 11th and 12th intervals (~330-360 seconds),
214 with the most bees no longer performing the behaviors at the 12th interval. These results align

CAP PUSHING RESPONSE IN HONEY BEES

215 with the results previously demonstrated by Couvillon and Bitterman (1980). Tables 1, 2, and 3
 216 below summarizes the findings across all 6-training trial and 12-training trial bees across each
 217 interval. These results are further supported when considering the traditional aggregate approach
 218 and descriptive statistics (see Table 1).

219

Table 1

Six and Twelve Trial Bees“Complete Results for the Landing Behavior

Timepoints	6-Trial Bees (N = 14)			12-Trial Bees (N = 14)		
	Total Bees Responding	PCC	C-Value	Total Bees Responding	PCC	C-Value
Interval 1	13	92.86	< 0.001	14	100	< 0.001
Interval 2	13	92.86	< 0.001	14	100	< 0.001
Interval 3	13	92.86	< 0.001	13	92.86	0.001
Interval 4	13	92.86	< 0.001	12	85.71	0.001
Interval 5	11	78.57	0.012	12	85.71	0.002
Interval 6	11	78.57	0.011	12	85.71	0.002
Interval 7	10	71.43	0.039	13	92.86	< 0.001
Interval 8	11	78.57	0.011	13	92.86	< 0.001
Interval 9	11	78.57	0.012	12	85.71	0.001
Interval 10	9	64.29	0.114	10	71.43	0.039
Interval 11	8	57.14	0.258	6	42.86	0.646
Interval 12	9	64.29	0.117	1	7.14	1.000
Interval 13	8	57.14	0.256	8	57.14	0.238
Interval 14	3	21.43	0.985	4	28.57	0.927
Interval 15	7	50.00	0.444	4	28.57	0.935
Interval 16	6	42.86	0.650	5	35.71	0.816
Interval 17	2	14.29	0.997	6	42.86	0.633
Interval 18	5	35.71	0.827	5	35.71	0.821
Interval 19	5	35.71	0.839	6	42.86	0.640
Interval 20	4	28.57	0.936	5	35.71	0.824

Note. These data represent the complete data across all 6-trial and 12-trial bees and across all intervals for the landing behavior. If the PCC is above 50%, then the majority of the bees are still performing the behavior and not demonstrating extinction. If the PCC is below 50%, then the majority of the bees are not performing the behavior and are demonstrating extinction. It is worth noting that the *c*-value is inversely related to the PCC, as one increases the other will decrease and vice versa.

Table 2

Six and Twelve Trial Bees' Complete Results for the Touching Behavior

223

224

Timepoints	6-Trial Bees (N = 14)			12-Trial Bees (N = 14)			225	
	Total Bees Responding	PCC	C-Value	Total Bees Responding	PCC	C-Value		
Interval 1	12	85.71	0.001	11	78.57	0.01	228	
Interval 2	12	85.71	0.001	12	85.71	0.001	229	
Interval 3	10	71.43	0.03	12	85.71	0.002	230	
Interval 4	11	78.57	0.01	11	78.57	0.01	231	
Interval 5	8	57.14	0.21	11	78.57	0.004	232	
Interval 6	7	6-Trial Bees (N = 14)	50.00	0.39	10	12-Trial Bees (N = 14)	71.43	0.02
Timepoints	Total Bees Responding	PCC	C-Value	Total Bees Responding	PCC	C-Value	men	
Interval 7	10	71.43	0.001	10	71.43	0.001	t 1	
Interval 8	9	92.86	0.001	14	80.71	0.001		
Interval 9	8	57.14	0.21	8	57.14	0.19		
Interval 10	8	57.14	0.004	11	50.99	0.002	Agg	
Interval 11	8	57.14	0.2001	11	57.71	0.77	rega	
Interval 12	6	42.86	0.59	6	42.86	0.44		
Interval 13	6	42.86	0.39	8	35.71	0.78	te	
Interval 14	9	64.29	0.08	4	35.71	0.99		
Interval 15	10	50.00	0.39	10	71.43	0.07	Res	
Interval 16	8	39.57	0.93	4	35.71	0.88	ults	
Interval 17	6	42.86	1.00	6	42.86	0.43		
Interval 18	5	30.00	0.38	3	35.71	0.67	A	
Interval 19	6	42.86	0.94	6	60.00	1.00		
Interval 20	4	38.57	0.89	4	28.57	0.91	3	

Note. These data represent the complete data across all 6-trial and 12-trial bees and across all intervals for the touching behavior. If the PCC is above 50%, then the majority of the bees are still performing the behavior and not demonstrating extinction. If the PCC is below 50%, then the majority of the bees are not performing the behavior and are demonstrating extinction. It is worth noting that the *c*-value is inversely related to the PCC, as one increases the other will decrease and vice versa.

Interval 14 2 28.57 0.83 241 beh
 Interval 15 3 21.43 0.96 241 28.57 0.85 241
 Interval 16 4 21.43 0.96 241 28.57 0.84 242 avio
 Interval 17 1 71.43 1.00 241 21.43 0.95 242
 Interval 18 2 14.29 0.99 243 r
 Interval 19 3 21.43 0.96 244 14.29 0.99 243
 Interval 20 3 21.43 0.96 244 (La

Note. These data represent the complete data across all 6-trial and 12-trial bees and across all intervals for the pushing behavior. If the PCC is above 50%, then the majority of the bees are still performing the behavior and not demonstrating extinction. If the PCC is below 50%, then the majority of the bees are not performing the behavior and are demonstrating extinction. It is worth noting that the *c*-value is inversely related to the PCC, as one increases the other will decrease and vice versa.

CAP PUSHING RESPONSE IN HONEY BEES

248 ching, Pushing) by 20 Time (Intervals 1-20) by 2 Group (6-Trial, 12-Trial) mixed model
 249 Analysis of Variance (ANOVA) with repeated measures on the first and second factors was
 250 conducted in the Statistical Package for Social Sciences (SPSS) V25 (IBM Corporation,
 251 Chicago, IL) to compare frequencies in behaviors over time for each training group. It is worth
 252 noting that the full multivariate tests could not be conducted because of insufficient degrees of
 253 freedom, due to the small sample size ($N = 28$) and number of within-subject factors.
 254 Specifically, the behavior by time interaction as well as the behavior by time by group (6 trial vs
 255 12 trial) interaction could not be conducted.

256 Nevertheless, the sphericity assumption was violated for both behavior ($\chi^2(2) = 13.82, p$
 257 $= 0.001$) and time ($\chi^2(189) = 286.95, p < 0.001$). This tells us that an F correction must be used,
 258 therefore, the Greenhouse-Geisser correction was chosen; $\epsilon_{behavior} = 0.70, \epsilon_{time} = 0.44$. The tests
 259 of within-subjects effects revealed that there were large differences in the behaviors performed
 260 according to Cohen's (1988) effect size conventions; $F(1.40, 36.50) = 10.01, p = 0.001, \eta_p^2 =$
 261 0.28. In considering the highest-ordered contrasts, we observed a quadratic contrast for the
 262 frequencies of the performed behaviors (landings, touches, or pushes); $F(1, 26) = 21.13, p <$
 263 0.001.

264 The tests of within-subjects effects further revealed that there were large differences in
 265 the frequencies across time; $F(8.37, 217.69) = 12.96, p < 0.001, \eta_p^2 = 0.33$. Once again
 266 considering the highest-ordered contrasts, we observed a quadratic contrast of behavioral
 267 frequencies across time; $F(1, 26) = 10.43, p = 0.003$. Finally, tests of within-subjects effects
 268 further revealed that there were medium differences in the frequencies of the performed
 269 behaviors (landings, touches, pushes) across time; $F(8.43, 219.17) = 2.43, p = 0.01, \eta_p^2 = 0.09$.
 270 We observed a marginal linear contrast for the frequencies of landings, touches, or pushes across

CAP PUSHING RESPONSE IN HONEY BEES

271 time; $F(1, 26) = 15.02, p = 0.052$. There were no differences observed between the two groups,
272 behaviors, across time, or behaviors performed across time; p 's > 0.05 and are therefore not
273 considered or reported.

274 Interpreting the traditional statistics may lead one to conclude that there were no
275 differences between the two groups of bees and that these bees extinguished the three behaviors
276 at nearly equal rates across time. The overall interaction model was not observed to be
277 „statistically significant,“ thus follow-up pairwise comparisons were not considered. However,
278 when the descriptive statistics are considered, we see the same pattern of observations as found
279 in our OOM analysis.

280 Table 4 summarizes the mean frequencies of the 3 behaviors across time and between the
281 two groups. As observed in the table and found in our OOM analyses, across time all three
282 behaviors gradually declined and there was a difference between the performed behaviors such
283 that the bees preferred to land more than push and push more than touch. However, by only
284 considering the overall model from our traditional analyses, we miss the subtle differences being
285 demonstrated between the two groups. Specifically, looking at interval 12 in table 4 you can see
286 that there is a difference between the two groups of bees. The 12-trial bees had far fewer
287 frequencies of landings, touches, and pushes, compared to the 6-trial bees. In fact, at the 12th
288 interval the cap was not pushed at all. The pattern observed between the two groups of bees
289 aligns with the results of OOM, which would have likely been missed had we only considered
290 the results of the overall model or aggregate findings.

291

292

Table 4*Average Frequencies of Landings, Touches, and Pushes for 6 and 12-Trial Bees*

Timepoints	Landings		Touches		Pushes	
	6-Trial	12-Trial	6-Trial	12-Trial	6-Trial	12-Trial
	<i>M (CI)</i>	<i>M (CI)</i>	<i>M (CI)</i>	<i>M (CI)</i>	<i>M (CI)</i>	<i>M (CI)</i>
Interval 1	4.79 (3.75, 5.83)	4.71 (3.89, 5.53)	2.21 (1.45, 2.97)	2.21 (1.41, 3.01)	4.43 2.63, 6.23)	3.43 2.35, 4.51)
Interval 2	3.43 (2.39, 4.47)	3.86 (3.00, 4.72)	2.07 (1.27, 2.87)	2.21 (1.41, 2.87)	2.43 0.86, 4.00)	2.71 1.57, 3.85)
Interval 3	3.21 (2.13, 4.29)	3.14 (2.22, 4.06)	1.64 (0.78, 2.50)	2.14 (1.36, 2.42)	2.64 1.52, 3.76)	1.86 0.96, 2.76)
Interval 4	2.71 (1.97, 3.45)	2.57 (1.63, 3.51)	1.86 (1.00, 2.72)	1.79 (1.10, 2.55)	2.36 (1.40, 3.32)	1.79 0.91, 2.67)
Interval 5	1.93 (1.20, 2.66)	2.93 (1.85, 4.00)	0.86 (0.37, 1.35)	1.64 (1.01, 1.49)	0.93 0.24, 1.61)	1.50 (0.40, 2.60)
Interval 6	2.57 (1.33, 3.80)	2.86 (1.96, 3.76)	1.57 (0.26, 2.88)	1.50 (0.89, 2.18)	2.71 0.57, 4.85)	2.00 (0.73, 3.27)
Interval 7	1.64 (0.91, 2.37)	2.57 (1.84, 3.30)	1.14 (0.65, 1.63)	1.29 (0.56, 1.87)	1.71 (0.57, 2.85)	2.00 (0.63, 3.37)
Interval 8	2.57 (1.53, 3.61)	2.86 (1.96, 3.76)	0.93 (0.44, 1.42)	1.64 (1.11, 1.46)	2.36 (1.13, 3.59)	1.50 (0.52, 2.48)
Interval 9	1.57 (1.00, 2.14)	2.36 (1.56, 3.16)	1.14 (0.40, 1.88)	0.71 0.34, 1.51)	0.86 (0.37, 1.35)	2.00 (0.26, 3.74)
Interval 10	2.36 (1.20, 3.52)	1.79 (0.88, 2.69)	1.29 (0.51, 2.07)	1.00 (0.39, 1.90)	1.21 (0.27, 2.15)	1.36 (-0.29, 3.00)
Interval 11	1.43 (0.65, 2.21)	1.00 0.16, 1.84)	1.21 (0.52, 1.90)	0.64 (0.11, 1.74)	1.64 (0.41, 2.87)	0.36 0.11, 0.61)
Interval 12	1.86 (0.90, 2.82)	0.07 (-0.07, 0.21)	1.07 (0.38, 1.76)	0.07 (-0.07, 1.21)	1.64 (0.52, 2.76)	0.00 (0,0)
Interval 13	1.00 (0.35, 1.65)	1.07 (0.40, 1.74)	0.71 (-0.11, 1.53)	0.64 (0.15, 1.2)	1.57 (-0.92, 4.06)	0.71 (-0.43, 1.85)
Interval 14	0.71 (-0.03, 1.45)	0.93 (0.09, 1.77)	0.64 (-0.144, 1.42)	0.57 (-0.04, 1.25)	0.64 (-0.22, 1.50)	0.71 -0.15, 1.57)
Interval 15	1.07 (0.38,	0.79 (-0.09,	1.07 (0.19,	0.36 -0.09,	0.79 (-0.17,	1.50 (-0.85,

CAP PUSHING RESPONSE IN HONEY BEES

	1.76)	1.67)	1.95)	1.52)	1.75)	3.85)
Interval 16	1.00 (0.10,1.90)	0.57 (0.08, 1.06)	0.71 (-0.03, 1.45)	0.64 (0.01, 1.34)	0.93 0.05, 1.81)	0.79 (-0.01, 1.59)
Interval 17	0.21 (-0.08, 0.50)	1.43 (0.37, 2.49)	0.29 (-0.14, 0.72)	0.79 (0.16, 0.92)	0.07 (-0.07, 0.21)	0.36 (-0.09, 0.81)
Interval 18	0.86 (0.15, 1.57)	0.93 (0.07, 1.79)	0.79 (0.05, 1.53)	0.36 (-0.03, 1.18)	0.29 (-0.14, 0.72)	0.50 (-0.34, 1.34)
Interval 19	0.71 (0.12, 1.30)	0.50 (0.17, 0.83)	0.57 (0.00, 1.14)	0.36 (0.03, 0.90)	0.64 (-0.12, 1.40)	0.29 (-0.14, 0.72)
Interval 20	0.64 (-0.03, 1.31)	1.43 (0.16 , 2.70)	0.50 (0.05, 0.95)	0.79 (0.05, 1.24)	0.64 (-0.07, 1.35)	0.36 (-0.09, 0.81)

Note. The average frequencies for 6 and 12 trial bees separated out into each individual interval. The confidence intervals for each trial are reported in parentheses.

M = Mean

CI = Confidence Interval

293

294 **Experiment 2: Overshadowing in the Cap Pushing Response**

295 In our second experiment, we explored overshadowing (a decrease in response to one
296 conditioned stimulus because of the presence of another stimulus) using three different stimuli
297 consisting of scent, color, and odor (VandenBos, 2007). These stimuli were used to further our
298 understanding of the CPR by incorporating it into a choice preference paradigm. Previous
299 research had revealed that the scent of jasmine overshadowed the color orange when bees were
300 given a choice between the two stimuli (Couvillon & Bitterman, 1980).

301 The rationale for this experiment is to determine whether including a cap would alter the
302 bee's preference for odor and color in an overshadowing experiment. The cap acts as an obstacle
303 that must be pushed in order for a honey bee to access the food in the well. We performed an
304 acquisition phase which paired the three stimuli (jasmine, orange, and cap) with a target that had
305 a well filled with sugar solution. After acquisition, an extinction phase was initiated where the
306 three stimuli were separated, and each well was filled with tap water. This allowed researchers to
307 analyze the CPR technique in an overshadowing experiment.

CAP PUSHING RESPONSE IN HONEY BEES

308 Initially, we hypothesized that the honey bee's original choice would be the cap and the
309 highest frequency of choice throughout extinction. This is because the cap covered the well and
310 therefore would have to be moved to find the omission of sucrose solution.

311

312 ***Materials and Methods***

313 Foragers from three honey bee colonies were trained to an artificial feeder approximately
314 four meters from the respective colonies. The bees were captured, marked, and shaped to push
315 the cap as in the previous experiment. The target was located on a table approximately two
316 meters from the artificial sucrose syrup feeder and four meters from the hive. A black poster
317 board 27.94 cm x 35.56 cm was placed on top of the table to differentiate the target from the
318 white tabletop on the desired platform. In addition, the brand "LBK™" nail lacquer was used to
319 mark the bees on the abdomen and thorax to differentiate bees during the experiment. Marking
320 took place while the bee was feeding on the desired platform approximately two meters from the
321 artificial sucrose syrup feeder.

322 Honey bees (N = 96) were trained to fly to a target containing a 50% sucrose solution by
323 volume. The resistance method of shaping was used to train the bees to push the cap (see
324 experiment 1). Once the bee completed pushing the cap twice, acquisition trials commenced.
325 Acquisition instruction included training the bees to push a cap on a platform which consisted of
326 the color orange (Orange Ochre, Valspar, 2010-1, Minneapolis, MN), the scent of jasmine
327 measured as 1 drop approximately 0.1 mL (Mary Tylor Naturals, B08JF9WZC1, Fort Myers,
328 FL), and the physical stimulus of cap pushing (weight = 0.47 g, height = 0.5 cm, length = 1.5
329 cm). The platforms each had their own wells filled with a 50% sucrose solution. After 6
330 acquisition trials, a 10-minute extinction phase-separated into twenty 30 second intervals began.

CAP PUSHING RESPONSE IN HONEY BEES

331 The three stimuli were then separated approximately 15cm apart from center to center, and each
332 of the three wells was filled with water. Initial choice preferences and the overall order of choice
333 throughout the 10-minute extinction trials were recorded. All data for this experiment can be
334 accessed by request.

335 As in our previous experiment, bees were selected from a common feeder regularly visited
336 by three different hives, and the targets were washed and cleaned based on standard methods
337 (Couvillon & Bitterman, 1980). Our sample size was based on previous research and personal
338 experience with this preparation. Further, honey bees are not listed under any ethical codes
339 concerning humane treatment of animals in research under USA or Greek law; therefore, no
340 ethical review of the research protocol was conducted.

341

342 ***Results and Discussion***

343 The data for all 96 bees were analyzed to determine whether or not the cap would
344 potentially overshadow the other two stimuli (odor & color). As noted in the procedure, the
345 control bees ($n = 24$) were not presented with all three stimuli. Instead, they were only presented
346 with the color and odor stimuli to assess if the bees had an odor preference as found in previous
347 literature (Couvillon & Bitterman, 1982, 1987, 1989). However, the experimental bees ($n = 72$)
348 were presented with all three stimuli (color, odor, and the cap) to see if the cap stimuli influenced
349 choice preference. The first stimulus touched (cap, jasmine, or orange) by the bee was recorded
350 for both groups. Overall, the honey bees preferred the scent of jasmine over the color orange and
351 the physical act of pushing the cap was their initial choice preference and overall choice
352 preference. This pattern follows previous literature that honey bees rely highly on olfactory cues
353 (Couvillon & Bitterman, 1982, 1987, 1988, 1989; Funayama et al., 1995).

CAP PUSHING RESPONSE IN HONEY BEES

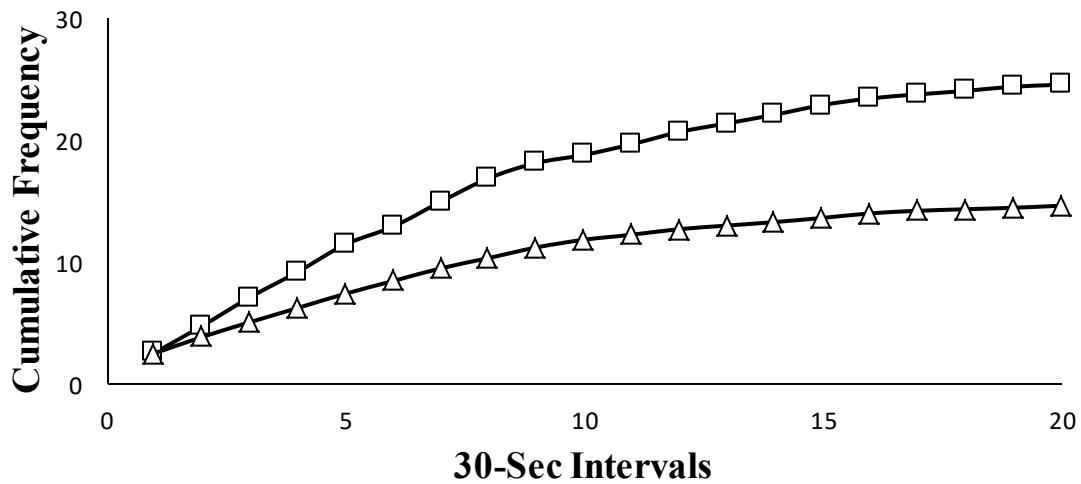
354 In regard to initial first touch, most control bees made contact with the orange platform
355 first (15/24 bees, 62.50 %), followed by jasmine (9/24 bees, 37.50%). A larger minority of
356 experimental bees also made contact with the orange platform first (34/72 bees, 47.22%),
357 followed by jasmine (22/72 bees, 30.56%), and finally the cap (16/72 bees, 22.22%).

358 It was initially expected that the number of behavioral responses within the control bees
359 would match a pattern such that the odor (jasmine, J) would be greater than color (orange, O), $J > O$. This pattern was compared across all control bees, such that bee N 's J touches would be
360 greater than bee N 's O touches. For the experimental bees, it was hypothesized that if the cap (C)
361 overshadows the other two stimuli, then the expected pattern produced should follow such that,
362 $C > J > O$. This pattern was compared across all experimental bees, such that bee N 's C touches
363 should be greater than Bee N 's J touches, which should be greater than bee N 's O touches.

365 Results for the control bees revealed that 20 out of 24 bees were correctly classified,
366 meaning they fit the entire ordinal pattern ($J > O$) as expected, yielding a $PCC = 83.33\%$, $c <$
367 0.001, see Figure 5. These results indicate that the overwhelming majority of control bees
368 preferred the odor (jasmine) stimuli more than the color (orange) stimuli. Out of the four bees
369 that were not correctly classified, two bees went to J and O at equal rates, whereas the other two
370 bees were exactly opposite of the expected pattern (i.e., $J > O$).

371

372

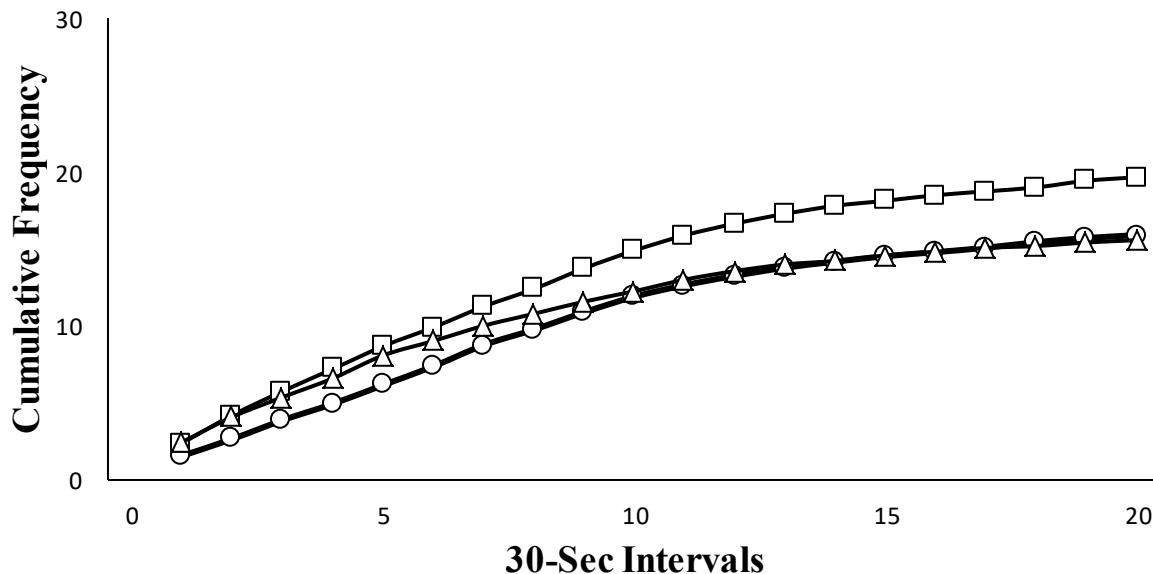

373

374

375

376

377


Figure 5*Cumulative Response Curves for the Control Bees' Choices*

Note. This figure represents the cumulative frequencies of the jasmine (black line with squares) and orange (black line with triangles) choices for the control bees.

378

379 Results for the experimental bees did not support our initial hypothesis that the act of
 380 pushing the cap would alter the odor/color relationship. It was expected that if the cap
 381 overshadowed the odor (jasmine) and the color stimuli, then most cases should result such that C
 382 $> J > O$. The analysis revealed that only 46.76% (101/216) observations matched the pattern, see
 383 Figure 6. Only 10/72 bees were completely correctly classified for the entire pattern ($C > J > O$)
 384 yielding a meager $PCC = 13.89\%$, $c = 0.66$. All possible combinations of pairs were compared
 385 further to break down the 101 correctly classified observations. It is worth noting that only
 386 unique pairwise comparisons are reported here; pairwise comparisons that have already been
 387 reported in our analyses (e.g., $J > O$) are omitted in the additional analyses to follow to avoid
 388 presenting repetitive information.

CAP PUSHING RESPONSE IN HONEY BEES

Figure 6*Cumulative Response Curves for the Experimental Bees' Choices*

389 Note. This figure represents the cumulative frequencies of the jasmine (black line with squares),
 390 orange (black line with triangles), and cap (black line with circles) choices for the experimental
 391 bees.

392

393 The C > J pairwise comparison was unimpressive as only 20/72 cases matched, yielding a
 394 PCC = 27.78%, $c = 1.00$. The C > O pairwise comparison was similarly unimpressive as only
 395 37/72 cases matched, yielding a PCC = 51.39%, $c = .32$. Finally, the J > O pairwise was the best
 396 pairwise comparison as 44/72 cases matched, yielding a PCC = 61.11%, $c = .01$. Due to the
 397 underwhelming results of the C > J > O, we re-conducted the analyses with two new patterns, 1)
 398 J > O > C and 2) J > C > O.

399 We were initially interested in exploring the possibility that the „cap“ was the more
 400 salient stimuli for the bees, given that they must first push the cap in order to get to the food
 401 source. However, previous research has suggested that odors (e.g., jasmine) may be more salient

CAP PUSHING RESPONSE IN HONEY BEES

402 (Couvillon & Bitterman, 1982, 1987, 1989); as such, we re-conducted our analyses to determine
403 if the odor (e.g., jasmine) was overshadowing the other two stimuli.

404 Results for the $J > O > C$ analysis revealed that 56.48% (122/216) of the total
405 observations were correctly classified and 9/72 total bees were completely correctly classified,
406 yielding a $PCC = 12.50\%$, $c = 0.78$. All possible combinations of pairs were compared to break
407 down the 122 correctly classified observations. The $J > C$ pairwise comparison was impressive
408 as 49/72 bees matched expectations, $PCC = 68.06\%$, $c < 0.001$. The $O > C$ pairwise comparison
409 revealed that 29/72 bees matched expectations, $PCC = 40.28\%$, $c = 0.89$. It is worth noting that
410 in the previous analysis, $C > J > O$, the bees preferred C to O at only a slight majority (51.39%),
411 whereas, in the $J > O > C$ analyses, O was selected more than C for the minority of bees
412 (40.28%). This discrepancy is found because ties are treated as incorrect classifications (see
413 Grice, 2011). If the bee preferred cap and orange equally, then that bee would be incorrectly
414 classified, as was the case for eight total bees in this comparison.

415 Finally, the results for the $J > C > O$ analysis were slightly better as 60.19% (130/216) of
416 the observations were correctly classified, and 20/72 total bees were completely correctly
417 classified, yielding a $PCC = 27.78$, $c < 0.001$. The pairwise comparisons are not considered, as
418 the pairwise classifications yielded identical results to the pairwise results from the $J > O > C$
419 analysis. A summary of all results and possible pairwise comparisons can be found in Table 5.
420 For ease of comparison with previous literature (Couvillon & Bitterman, 1982, 1987, 1989), we
421 present the aggregated cumulative response curves for our control bees and experimental bees
422 within Figures 5 and 6, respectively.

423

424

CAP PUSHING RESPONSE IN HONEY BEES

Table 5*Complete Over-Shadowing Analyses*

425

<u>Pairwise Comparison</u>	<u>Correctly Classified Bees</u>	<u>PCC</u>	<u>c-val</u>
Control Bees (N = 24)			
J > O	20	83.33	< 0.001
O > J	2	8.33	1.00
J = O	2	8.33	1.00
Experimental Bees (N = 72)			
C > J > O	10	13.89	0.66
J > O > C	9	12.50	0.78
J > C > O	20	27.78	< 0.001
Possible Pairwise Comparisons			
C > J	20	27.78	1.00
C > O	37	51.39	0.32
J > O	44	61.11	0.01
J > C	49	68.06	< 0.001
O > C	29	40.28	0.89
O > J	23	31.94	0.99
C = J	3	4.17	1.00
C = O	6	8.33	1.00
J = O	5	6.94	1.00

Note. J = jasmine, O = orange, C = cap

This table provides all primary analyses and subsequent pairwise comparisons, including cases in which the stimuli were equivalently preferred by the bees.

427 ***Experiment 2 Aggregate Results***

428 A 3 stimuli (Jasmine, Orange, Cap) by 20 Time (Intervals 1-20) Analysis of Variance
429 (ANOVA) with repeated measures was conducted in SPSS V25 to compare frequencies in
430 stimuli choice over time for the experimental group. The sphericity assumption was violated for
431 both stimuli ($\chi^2(2) = 7.72, p = 0.02$), time ($\chi^2(189) = 522.58, p < 0.001$), and the interaction
432 stimuli by time ($\chi^2(740) = 1478.36, p < 0.001$). This tells us that a *F* correction must be used,
433 therefore, the Greenhouse-Geisser correction was chosen for the main effect of time and the
434 stimuli by time interaction ($\epsilon_{time} = 0.49, \epsilon_{stimuli*time} = 0.49$) and a Huyn-Feldt correction was
435 chosen for the main effect Stimuli since epsilon was greater than 0.75 ($\epsilon_{time} = 0.93$).

436 The tests of within-subjects effects revealed that there was a medium difference in stimuli
437 choice according to Cohen's (1988) effect size conventions; $F(1.86, 131.74) = 6.67, p = 0.002$,
438 $\eta_p^2 = 0.09$. In considering the highest-ordered contrasts, we observed a quadratic contrast for the
439 frequencies of the Stimuli (jasmine, orange, cap); $F(1, 71) = 18.18, p < 0.001$. The tests of
440 within-subjects effects revealed that there were large difference in the frequencies of choices
441 across time, according to Cohen's (1988) effect size conventions; $F(9.22, 654.80) = 51.77, p <$
442 $0.001, \eta_p^2 = 0.42$. In considering the highest-ordered contrasts, we observed a quadratic contrast
443 for the frequencies of choices over time; $F(1, 71) = 8.64, p = 0.004$. The tests of within-subjects
444 effects revealed that there was a small difference in the frequencies of stimuli choice across time
445 according to Cohen's (1988) effect size conventions; $F(18.73, 1330.01) = 2.71, p < 0.001 \eta_p^2 =$
446 0.04 . In considering the highest-ordered contrasts, we observed a linear contrast for the
447 frequencies of the interaction stimuli across time; $F(1, 71) = 7.75, p = 0.007$.

448 Stimuli pairwise comparisons showed that the bees preferred jasmine ($M = 0.98; SE =$
449 0.05) more than the cap ($M = 0.80; SE = 0.05$) and orange; $M = 0.78; SE = 0.06; p < 0.01$.

CAP PUSHING RESPONSE IN HONEY BEES

450 Table 6 presents the descriptive results for the frequencies of stimuli choice across each interval.
451 As seen in the table, in the first interval, the bees chose the orange stimuli more than the jasmine
452 or cap stimuli, but after the first interval the bees typically preferred the jasmine more than either
453 the cap or orange stimuli. Moreover, the frequencies of each stimuli choice generally declined
454 over time. Although, as observed by our quadratic contrast, there was a difference found between
455 some of the isolated intervals (e.g., intervals 6 and 7 for jasmine, see table 6). The mean
456 frequencies for the isolated intervals slightly increased from one interval to the next. The results
457 produced from our aggregate findings align with the results produced from our primary OOM
458 findings; the bees typically preferred jasmine over orange and the cap, and initially preferred the
459 orange over the cap, but over time the bees chose the cap more frequently than the orange
460 stimuli.

461

462

463

464

465

466

467

468

469

470

471

472

CAP PUSHING RESPONSE IN HONEY BEES

Table 6

Average Frequencies of Jasmine, Orange, and Cap Choices Across Time for Experimental Bees

Timepoints	Jasmine		Orange		Cap		stimuli
	Mean	SE	Mean	SE	Mean	SE	
Interval 1	2.36	0.17	2.43	0.19	1.53	0.17	
Interval 2	1.82	0.16	1.64	0.18	1.10	0.19	(Jasm)
Interval 3	1.56	0.15	1.28	0.15	1.22	0.12	ine
Interval 4	1.46	0.14	1.24	0.12	1.07	0.13	
Interval 5	1.47	0.14	1.49	0.16	1.22	0.15	and
Interval 6	1.24	0.13	0.94	0.13	1.22	0.12	
Interval 7	1.35	0.11	0.99	0.12	1.38	0.16	Oran
Interval 8	1.15	0.13	0.78	0.13	1.01	0.15	
Interval 9	1.33	0.13	0.79	0.12	1.13	0.14	ge)
Interval 10	1.17	0.14	0.68	0.13	1.01	0.12	
Interval 11	0.99	0.15	0.75	0.12	0.75	0.14	by 20
Interval 12	0.76	0.13	0.56	0.12	0.61	0.11	
Interval 13	0.64	0.13	0.43	0.12	0.53	0.14	Time
Interval 14	0.51	0.11	0.24	0.08	0.39	0.08	
Interval 15	0.33	0.09	0.36	0.11	0.36	0.14	(Inter
Interval 16	0.36	0.09	0.24	0.07	0.26	0.07	
Interval 17	0.25	0.07	0.25	0.08	0.29	0.08	vals
Interval 18	0.26	0.07	0.13	0.05	0.36	0.11	
Interval 19	0.43	0.11	0.22	0.07	0.26	0.07	1-20)
Interval 20	0.22	0.08	0.15	0.05	0.19	0.07	
Total	0.98	0.05	0.78	0.06	0.80	0.05	Anal

Note. The total mean frequencies of each stimuli have been bolded for emphasis.

SE = Standard Error

of Variance (ANOVA) with repeated measures was conducted in SPSS V25 to compare frequencies in stimuli choice over time for the control. The sphericity assumption was violated for both times ($\chi^2(189) = 287.20, p < 0.001$) and the interaction stimuli by times ($\chi^2(189) = 340.53, p < 0.001$). This tells us that a F correction must be used, therefore, the Greenhouse-Geisser correction was chosen; $\epsilon_{time} = 0.41, \epsilon_{stimuli*time} = 0.36$. The tests of within-subjects effects revealed that there was a large difference in the frequencies of stimuli choice according to

CAP PUSHING RESPONSE IN HONEY BEES

496 Cohen's (1988) effect size conventions; $F(1, 23) = 27.98, p < 0.001, \eta_p^2 = 0.55$. In considering
497 the highest-ordered contrasts, we observed a linear contrast for the frequencies of the preferred
498 stimuli; $F(1, 23) = 27.98, p < 0.001$. The tests of within-subjects effects revealed that there was a
499 large difference in the frequencies of choices across time according to Cohen's (1988) effect size
500 conventions; $F(7.80, 179.30) = 18.57, p < 0.001, \eta_p^2 = 0.45$. In considering the highest-ordered
501 contrasts, we observed a quadratic contrast for the frequencies of choices over time; $F(1, 23) =$
502 $6.06, p = 0.02$. Specifically, the bees' frequencies of stimuli choices declined as time went on
503 (see Table 7).

504 Finally, the tests of within-subjects effects revealed that there was a small to medium
505 difference in the frequencies of stimuli choice across time according to Cohen's (1988) effect
506 size conventions; $F(6.91, 159.00) = 1.62, p = 0.13, \eta_p^2 = 0.07$; although the small to medium
507 differences were not „statistically“ significant according to $p < 0.05$ conventions. In considering
508 the highest-ordered contrasts, we observed a negative linear contrast for the frequencies of
509 stimuli choice over time; $F(1, 23) = 12.85, p = 0.002$. Once again, we observed a similar pattern
510 as found with the experimental bees, and our primary OOM analyses, the control bees typically
511 preferred the jasmine stimuli over the orange stimuli (see Table 7).

512

513

514

515

516

517

518

CAP PUSHING RESPONSE IN HONEY BEES

519 **Table 7**

Timepoints	Jasmine		Orange	
	Mean	SE	Mean	SE
Interval 1	2.63	0.35	2.58	0.36
Interval 2	2.21	0.23	1.33	0.26
Interval 3	2.33	0.34	1.21	0.23
Interval 4	2.08	0.32	1.17	0.20
Interval 5	2.25	0.30	1.17	0.28
Interval 6	1.46	0.25	1.04	0.24
Interval 7	2.04	0.29	1.04	0.24
Interval 8	1.92	0.35	0.83	0.23
Interval 9	1.25	0.27	0.88	0.27
Interval 10	0.67	0.19	0.63	0.17
Interval 11	0.88	0.24	0.42	0.15
Interval 12	1.00	0.28	0.46	0.19
Interval 13	0.71	0.22	0.29	0.13
Interval 14	0.71	0.27	0.29	0.11
Interval 15	0.79	0.26	0.33	0.17
Interval 16	0.54	0.15	0.38	0.15
Interval 17	0.33	0.17	0.21	0.10
Interval 18	0.29	0.15	0.13	0.07
Interval 19	0.33	0.14	0.13	0.09
Interval 20	0.17	0.08	0.17	0.12
Totals	1.23	0.09	0.73	0.07

520 Note. The total mean frequencies of each stimulus have been bolded for emphasis.

521 *SE* = Standard Error

522

523 **Experiment 3: Discriminate punishment of the cap pushing response in honey bees**

524 The purpose of this experiment is to determine whether electric shock can be
 525 incorporated into the CPR paradigm. The rationale behind this experiment is to provide a full
 526 picture of how both positive and negative stimuli can influence learning the CPR. Moreover,
 527 previous free flight and harnessed honey bee proboscis extension response (PER) studies found
 528 that aversive conditioning is effective in modifying the behavior of honey bees (e.g., Abramson,
 529 1986; Giurfa & Sandoz, 2012; Smith et al., 1991).

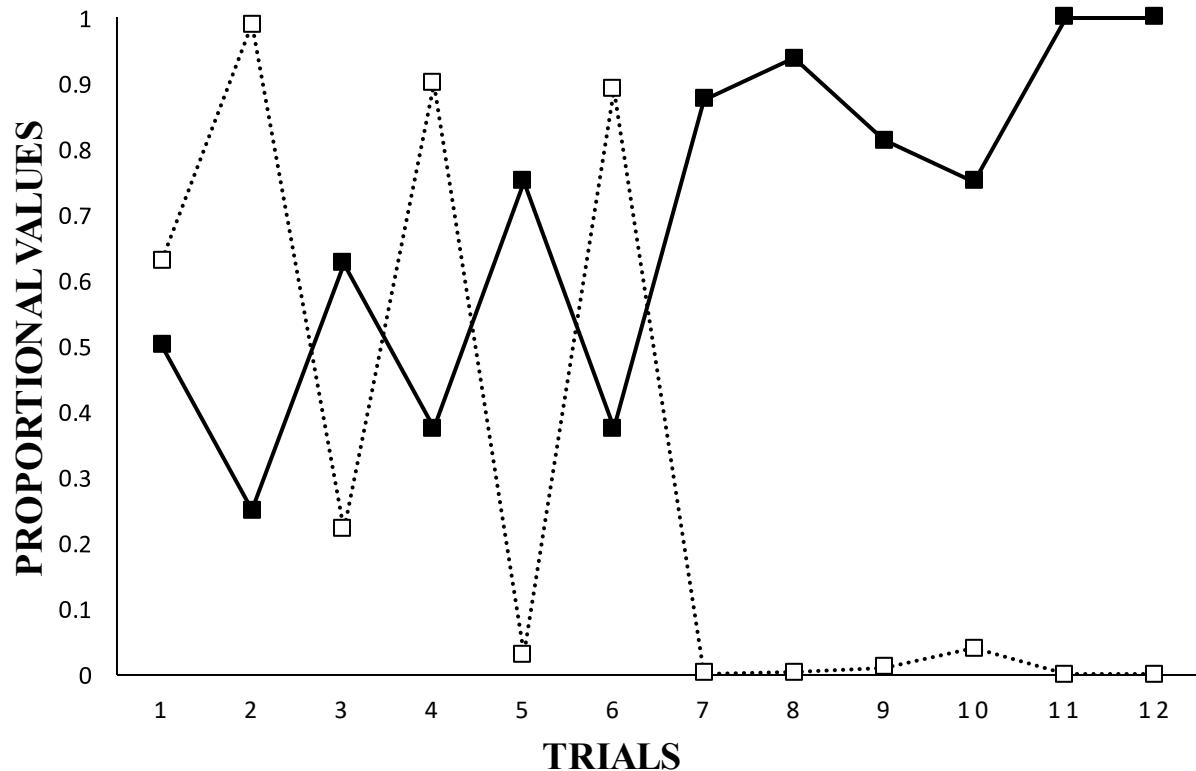
CAP PUSHING RESPONSE IN HONEY BEES

530 ***Materials and Methods***

531 Each of the 16 bees received 12 training trials in a simultaneous punishment situation in
532 which both targets were presented. For half of the bees, the punished target was the cross (weight
533 = 0.31 g, height = 0.5 cm, length = 1.5 cm); for the remaining 8 bees, the punished target was the
534 cap (weight = 0.47 g, height = 0.5 cm, length = 1.5 cm). The bees were shocked with 9 V 1.3
535 mA if they picked the wrong target (cap or cross); there seemed to be no initial bias with the
536 targets. To account for directional biases, the cross and round caps were counterbalanced in each
537 of the conditions. As in our previous experiment bees were chosen from a common feeder
538 regularly visited by three different hives, shaped to push the cap or the cross, and the targets
539 were washed and cleaned based on standard methods. Our sample size was based on previous
540 research and personal experience with this preparation. Further, Honey bees are not listed under
541 any ethical codes concerning humane treatment of animals in research under USA or Greek law;
542 therefore, no ethical review of the research protocol was conducted.

543

544 ***Results and Discussion***


545 The data for all 16 bees were first analyzed utilizing an *a priori* pattern matching
546 procedure within OOM. For this analysis, the pattern was defined such that a bee choosing the
547 non-punished cap was classified as „correct“ and scored as „1.“ The bee that chose the punished
548 cap was classified as „incorrect“ and was scored as „0.“ It was expected that bees could learn to
549 differentiate between the punished and non-punished caps. Consistent with expectation, results
550 revealed that the percentage of correctly classified (PCC) choices increased across the 12 trials.
551 At trial 1, the PCC was only 50%, and the randomization test revealed this result could be
552 interpreted as a product of physical chance, $c = 0.60$. Figure 8 shows the combined PCCs for all

CAP PUSHING RESPONSE IN HONEY BEES

553 bees across the 12 trials, and as can be seen in the figure, by trial 7, the overwhelming majority
554 of bees had learned the correct choice, $PCC = 87.50\%$, $c = 0.001$. Moreover, by trials 11 and 12,
555 all bees had learned the correct choice, $PCC's = 100\%$, $c's < 0.001$.

556 Differences in the learning patterns were further examined by analyzing the cumulative
557 frequencies of each individual bee's correct choices across the 12 trials. Within the OOM
558 software, an analysis titled the *Concatenated Ordinal Analysis*, was relied upon to compare the
559 individual's cumulative frequencies to an expected ordinal pattern of monotonic increasing
560 correct responses (viz., Trial 1 < Trial 2 < Trial 3, etc.), similar to the analysis conducted in
561 Experiment 1. If the bees were continuously choosing the correct target, then a monotonic
562 increasing relationship should be observed for the individual bees and high PCC index should be
563 computed for each bee. The resulting PCC indices for the individual bees varied from 63.64% to

CAP PUSHING RESPONSE IN HONEY BEES

Figure 7*Response PCC Curve for All Individual Bees*

Note. The solid black line represents the proportions for the PCC's computed for the total number of correct choices across all 16 bees and across the 12 trials. The dashed black line indicates the corresponding *c*-values across all trials. The proportional values were obtained by converting the PCC across all bees correct choices to proportional frequencies ($\frac{PCC}{100}$) at each trial.

564 90.91%, with the randomization *c*-values all less than 0.09.

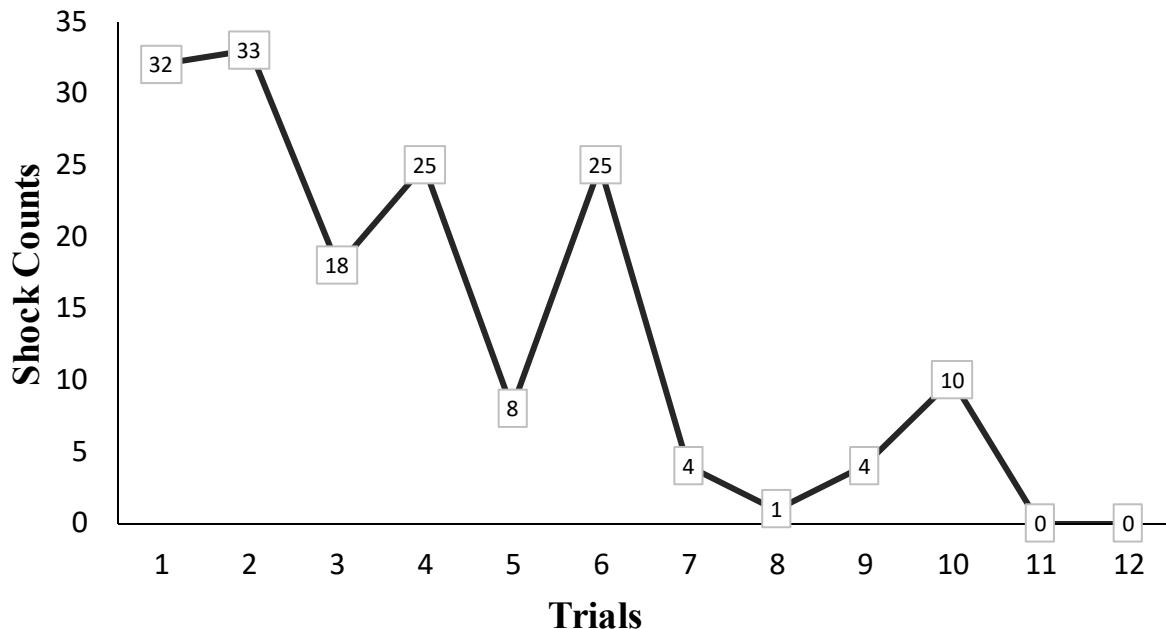
565 Additional ordinal analyses showed that one bee consistently chose the correct cap across
 566 all trials after an incorrect choice in the first and fourth trials. Contrarily, the other fifteen bees
 567 did not consistently choose the correct cap across the first six trials. The cumulative frequencies
 568 for these 15 bees did not show evidence of monotonic increases during the first six trials.
 569 However, analyses for the last six trials showed that the bees chose the correct cap with greater

CAP PUSHING RESPONSE IN HONEY BEES

570 consistency (see Figure 7). Half of the bees from trials 7 through 12 had PCCs of 80%
571 (randomization c 's < 0.05), and the PCCs computed for the other half were all equal to 100%
572 (randomization c 's < 0.01).

573 We found that our bees readily learned to avoid shock by selecting the correct responses
574 (i.e., shock-free target) as shown by a decrease of shock stimuli presented to the bees throughout
575 the proceeding trials. It is important to note that as in the Smith et al (1991) proboscis
576 conditioning study, both targets contained sucrose. The results indicated that across the 12 trials,
577 the proportion of bees selecting the unpunished target typically increased, and the number of
578 shocks received by the bees generally decreased. By trials 11 and 12, no bees received
579 punishment (see Figure 8), indicating they avoided the shock (see also Abramson, 1986).
580 Moreover, on average, the bees received fewer shocks (i.e., made more correct choices) as the
581 trials progressed (see Table 8). Our results are similar to results previously found using a
582 proboscis conditioning situation in harnessed forager bees and free flying situations (Abramson,
583 1986; Smith et al., 1991).

584


585

586

587

588

589

Figure 8*Total Shocks Across Each Trial*

Note. These data represent the total shocks received at each trial for all 16 bees.

590

591 **Experiment 3 Aggregate Results**

592 A 12 Time (Trials 1-12) repeated measures ANOVA was conducted in SPSS V25 to
 593 compare the frequencies of shock over time. The tests of within-subjects effects revealed that
 594 there were large differences in the amount of shocks the bees received over time, according to
 595 Cohen's (1988) conventions; $F(11, 165) = 6.21, p < 0.001, \eta_p^2 = 0.29$. Specifically, we observed
 596 a negative linear contrast over time; $F(1, 11.10) = 107.22, p < 0.001$. These results align with
 597 those found in our primary OOM analyses, on average, the bees received fewer shocks as time
 598 progressed and by the 11th and 12th trials, no bees were shocked. See Table 8 to see shocks
 599 received over the 12-trials.

Table 8*Average Frequencies of Shock Over Each Trial*

Time Point	Mean	SD
Trial 1	2.00	2.37
Trial 2	2.06	1.44
Trial 3	1.13	1.75
Trial 4	1.53	1.50
Trial 5	0.50	0.97
Trial 6	1.56	1.46
Trial 7	0.25	0.77
Trial 8	0.06	0.25
Trial 9	0.25	0.58
Trial 10	0.63	1.20
Trial 11	0	0
Trial 12	0	0

600

601

602

General Discussion

603

604

Summary of Findings

605

The cap pushing response was developed in 2016 (Abramson et al., 2016). In the

606

current series of experiments, we looked at a progression of the cap pushing response

607

(CPR) utilizing advanced discrimination tasks. Throughout our experiments, naïve control

608

bees and trained experimental bees were used to show different frequencies of learning.

609

Experiment 1 looked at the role of extinction within the CPR. We found that the

610

majority of the 12 trial bees stopped responding earlier than the 6 trial bees. Our results

611

were similar to previous research where the 6 trial bees produced a longer extinction

612

duration than the 12 trial bees (Couvillon & Bitterman, 1980). Furthermore, while the

CAP PUSHING RESPONSE IN HONEY BEES

613 aggregate results do not offer support for the hypotheses at $p < 0.05$, the patterns of the
614 descriptive statistics still reveal that on average, the 12-trial bees quit performing the
615 behaviors prior to the 6-trial bees. Specifically, as observed in our OOM findings, the
616 average frequency of behaviors performed by the 12-trial bees was lower than the 6-trial
617 bees during the 12th interval. This experiment revealed that the 6-trial bees extinguished at
618 a lower rate, suggesting that this number of trials is more effective for behavioral retention.

619 Experiment 2 sought to determine if prior learning (cap pushing) could be used to
620 overshadow preferences for the color orange and odor jasmine. During the acquisition
621 phase, all the stimuli were paired together while training the CPR technique. We then used
622 extinction to see the bee's choice preference throughout a 10-minute extinction session
623 split into twenty 30 second intervals. Our findings followed previous research (Couvillon
624 & Bitterman, 1982) and suggests that honey bees rely highly on olfactory cues: the scent of
625 jasmine overshadowed both the cap and color orange.

626 Experiment 3 helped determine whether electric shock can be incorporated into the
627 CPR paradigm. We found that punishment is effective in modifying the choice behavior of
628 honey bees. OOM and traditional statistics found that as bees progressed through the trials,
629 they quickly learned which cap was shock free and which provided the punishment.

630 Combined, these experiments help further our knowledge of honey bees' learning
631 abilities. With these results researchers will now know the ideal number of training trials
632 needed to produce the best results for behavioral retention. They will also be able to
633 consider the roles of stimuli preference and aversive conditioning effects on honey bees'
634 learning.

635

636 **Observational Orientated Modeling (OOM)**

637 Of note, using OOM required no computations of means, standard deviations,
638 variances, or *p*-values. Instead, the utilization of OOM provides the researcher with the
639 exact quantity of bees that responded according to one's hypotheses (see Grice et al.,
640 2020).

641 More importantly, as summarized in Table 9, in addition to providing the same
642 information as the traditional aggregate statistics, the OOM analyses enabled us to observe
643 patterns within our data that may have been missed if the traditional aggregate statistics
644 were employed. Specifically, in Experiment 1, the primary interaction effect was not
645 „statistically significant“ which may lead one to believe that the bees extinguished all the
646 behaviors at near equal rates over time. However, aggregate descriptive statistic show the
647 same general trend as the OOM findings. Around the 12th interval the 12-trial bees are
648 performing far fewer behaviors than the 6-trial bees. OOM, therefore, enabled us to
649 observe potentially important and meaningful relationships, which may have otherwise
650 been overlooked or „washed“ within the average bee.

CAP PUSHING RESPONSE IN HONEY BEES

Table 9*Comparison Between OOM Findings and Supplementary SPSS Findings for the Experiments*

Experiment	Hypotheses	OOM Findings	Aggregate Findings	Compare/Contrast
#1 Extended Training	12-Trial bees would extinguish the landing, touching, and pushing behavior earlier than 6-Trial bees.	Most 12-Trial bees extinguished the behaviors after the 11 th interval. Most 6-Trial bees extinguished after the 13 th interval.	Frequencies of bee's behaviors declined at „equal rates“ as the overall interaction effect was not statistically significant.	OOM found meaningful patterns readily. Aggregate results would not have been considered further due to the non-significant interaction, though the descriptive statistics reveal the same pattern found by OOM.
#2 Overshadowing	Jasmine would overshadow the orange and cap stimuli.	The majority of experimental and control bees preferred the jasmine over both the orange and cap stimuli, but preferred the cap stimuli slightly more than orange stimuli.	On average, experimental bees preferred jasmine more than orange (except for the first interval), and the cap. The cap was preferred on average more than the orange, although only marginally. The Control bees preferred jasmine far more than the orange stimuli.	The OOM and aggregate findings offer similar conclusions. Jasmine was preferred more than the cap/orange stimuli. There is a marginal preference to the cap over orange for experimental bees.
#3 Punishment	Honey bees would be able to discriminate cap types with a shock form of negative reinforcement.	After the 6 th trial, the majority of bees no longer choose the punished cap and have successfully learned which cap is not punished.	On average, the bee's frequencies of shocks (i.e., incorrect choices) decreases over time. By the 8 th trial the bees receive 0.06 shocks.	The OOM and aggregate findings offer similar conclusions. As the bees progressed through the trials, they quickly learned which cap delivered punishment and which cap did not.

651

652 This paper is not the first to demonstrate the effectiveness of organism-centered

653 data analyses. OOM has been used in a number of non-human research publications,

CAP PUSHING RESPONSE IN HONEY BEES

654 including social reinforcement delays in honey bees (Craig et al., 2012), a comparative
655 analysis of drone vs. worker honey bees (Dinges et al., 2013), timing in fixed-interval
656 schedules of reinforcement in honey bees and horses (Craig, et al., 2014, 2015), and taste
657 aversion learning to ethanol in honey bees (Varnon, et al., 2018). OOM has also been used
658 in a number of human research studies, including terror management (Grice et al., 2012),
659 the Stroop effect (Grice et al., 2017), memory (Grice et al., 2017), vengefulness in males
660 (Grice et al., 2017), racial bias (Grice et al., 2017), evolutionary theory (Grice et al., 2012),
661 epidemiology (Grice et al., 2020), and rejection in social situations (Grice, 2015).

662 OOM offers an alternative form of data analysis that readily enables the researcher
663 to determine how many organisms are behaving as expected. In addition, OOM requires
664 the researcher to produce expected patterns that the individual observations should follow.
665 The accompanying analyses then confirm or disconfirm the proposed patterns by
666 producing high (i.e., confirmed) or low (i.e., disconfirmed) PCC indices. Suppose a pattern
667 does not produce a desirable PCC, such as in the case of the first pattern utilized in
668 experiment 2. In that case, the pattern can be modified (when supported by theory or
669 previous research) and tested again to determine if the PCC produced from one pattern is
670 stronger than another (see also Grice, 2011; Grice et al., 2017; 2020).

671 Specifically, in the field of animal research, OOM provides a unique ability to
672 explore patterns at the level of the organism, which could otherwise be missed at the level
673 of the aggregate as shown in our SPSS analysis. Further, because the PCC is an assumption
674 free effect size, we can use smaller sample sizes without risk of biasing our results (Grice,
675 2011; Grice et al., 2020), which is particularly advantageous for a field that relies upon
676 primarily small sample sizes (Craig & Abramson, 2018). In summary, these advantages

CAP PUSHING RESPONSE IN HONEY BEES

677 provide animal researchers more flexibility and a greater tool set to explore potentially
678 meaning paradigms like the CPR.

679

680

References

681 Abramson, C.I. (1986). Aversive conditioning in honeybees (*Apis mellifera*). *Journal of*
682 *Comparative Psychology*, 100(2), 108-116. [10.1037/0735-7036.100.2.108](https://doi.org/10.1037/0735-7036.100.2.108)

683 Abramson, C.I., Dinges, C.W., & Wells, H. (2016) Operant conditioning in honey bees
684 (*Apis mellifera* L.): The cap pushing response. *PLoS ONE* 11(9): e0162347.
685 <https://doi.org/10.1371/journal.pone.0162347>

686 Chicas-Mosier, A. M., Dinges, C.W., Agosto-Rivera, J. L., Giray, T., Oskay, D., & Abramson,
687 C. I. (2019). Honey bees (*Apis mellifera spp.*) respond to increased aluminum exposure in
688 their foraging choice, motility, and circadian rhythmicity. *PLoS ONE* 14(6): e0218365.
689 <https://doi.org/10.1371/journal.pone.0218365>

690 Cohen, J. (1988). Chapter 8. The analysis of variance and covariance. *Statistical Power Analysis*
691 *for the Behavioral Sciences*; Routledge Academic: New York, NY, USA, 273-406.

692 Couvillon, P. A. & Bitterman, M. E. (1980). Some phenomena of associative learning in
693 honeybees. *Journal of Comparative and Physiological Psychology*, 94(5) 878-885. doi:
694 <https://psycnet.apa.org/doi/10.1037/h0077808>

695 Couvillon, P. A., & Bitterman, M. E. (1982). Compound conditioning in honeybees. *Journal of*
696 *Comparative and Physiological Psychology*, 96(2), 192–
697 199. <https://doi.org/10.1037/h0077869>

698 Couvillon, P. A., & Bitterman, M. E. (1987). Discrimination of color-odor compounds by
699 honeybees: Tests of a continuity model. *Animal Learning & Behavior*, 15(2), 218–
700 227. <https://doi.org/10.3758/BF03204965>

CAP PUSHING RESPONSE IN HONEY BEES

701 Couvillon, P. A., & Bitterman, M. E. (1989). Reciprocal overshadowing in the discrimination of
702 color-odor compounds by honeybees: Further tests of a continuity model. *Animal
703 Learning & Behavior*, 17(2), 213–222. <https://doi.org/10.3758/BF03207637>

704 Craig, D. P. A., & Abramson, C. I. (2018). Ordinal pattern analysis in comparative psychology –
705 A flexible alternative to null hypothesis significance testing using an observation oriented
706 modeling paradigm. *International Journal of Comparative Psychology*, 31. Retrieved
707 from <https://escholarship.org/uc/item/08w0c08s>.

708 Craig, D. P. A., Varnon, C. A., Sokolowski, M. B. C., Wells, H. & Abramson, C. I. (2014). An
709 assessment of fixed interval timing in free-flying honey bees (*Apis mellifera ligustica*):
710 An analysis of individual performance. *PLoS One*. 9(7): e101262.
711 <https://doi.org/10.1371/journal.pone.0101262>

712 Craig, D. P. A., & Abramson, C. I. (2015). A need for individual data analysis for assessment of
713 temporal control: Invertebrate fixed-interval performance. *International Journal of
714 Comparative Psychology*, 28, 1-39. <http://escholarship.org/uc/item/847557dt>.

715 Dinges, C. W., Avalos, A., Abramson, C. I., Craig, D. P. A., Austin, Z. M., Varnon, C. A., Dal,
716 F. N., Giray, T., & Wells, H. (2013). Aversive conditioning in honey bees (*Apis mellifera
717 anatolica*): A comparison of drones and workers. *Journal of Experimental Biology*,
718 216(21), 4124-4134. <https://doi.org/10.1242/jeb.090100>

719 Funayama, E. S., Couvillon, P. A., & Bitterman, M. E. (1995). Compound conditioning in
720 honeybees: Blocking tests of the independence assumption. *Animal Learning &
721 Behavior*, 23(4), 429-437. <https://doi.org/10.3758/BF03198942>

CAP PUSHING RESPONSE IN HONEY BEES

722 Giurfa, M., & Sandoz, J. C. (2012). Invertebrate learning and memory: fifty years of olfactory
723 conditioning of the proboscis extension response in honeybees. *Learning &*
724 *memory*, 19(2), 54-66. doi:10.1101/lm.024711.111

725 Grice, J. W. (2011). Observation oriented modeling: Analysis of cause in the behavioral
726 sciences. New York, NY: *Academic Press*.

727 Grice, J. W. (2015). From means and variances to persons and patterns. *Frontiers in*
728 *Psychology*, 6, 1007. <https://doi.org/10.3389/fpsyg.2015.01007>

729 Grice, J. W. (2021). Drawing inferences from randomization tests. *Personality and Individual*
730 *Differences*, 179, 110931. <https://doi.org/10.1016/j.paid.2021.110931>

731 Grice, J.W., Barrett, P., Cota, L., Felix, C., Taylor, Z., Garner, S., Medellin, E., & Vest, A.
732 (2017). Four bad habits of modern psychologists. *Behavioral sciences*, 7(3), 1-21.
733 <https://doi.org/10.3390/bs7030053>

734 Grice, J. W., Barrett, P., Schlimgen, L., & Abramson, C. I. (2012). Toward a brighter future for
735 psychology as an observation oriented science. *Behavioral Sciences*, 2(1), 1-22,
736 <https://doi.org/10.3390/bs2010001>

737 Grice, J. W., Medellin, E., Jones, I., Horvath, S., McDaniel, H., O'Lansen, C., & Baker, M.
738 (2020). Persons as effect sizes. *Advances in Methods and Practices in Psychological*
739 *Science*, 3(4), 443-455. <https://doi.org/10.1177/2515245920922982>

740 Smith, B.H., Abramson, C.I., & Tobin, T.R. (1991). Conditional withholding of proboscis
741 extension in honeybees (*Apis mellifera*) during discriminative punishment. *Journal of*
742 *Comparative Psychology*. 105(4), 345-56. <https://doi.org/10.1037/0735-7036.105.4.345>

743 Staddon, J. E., & Cerutti, D. T. (2003). Operant conditioning. *Annual review of*
744 *psychology*, 54(1), 115-144. <https://doi.org/10.1146/annurev.psych.54.101601.145124>

CAP PUSHING RESPONSE IN HONEY BEES

745 VandenBos, G. R. (2007). *APA dictionary of psychology*. American Psychological Association.

746 Varnon, C., Dinges, C. W., Black, T. E., Wells, H., & Abramson, C. I. (2018). Failure to find
747 ethanol- induced find taste aversion learning in honey bees (*Apis mellifera* L.).
748 *Alcoholism: Clinical and Experimental Research*, 42, 1260-1270.

749 <https://doi.org/10.1111/acer.13761>.