
Preference-Aware Constrained Multi-Objective Bayesian
Optimization

Alaleh Ahmadianshalchi
Washington State University

Pullman, WA, USA
a.ahmadianshalchi@wsu.edu

Syrine Belakaria
Stanford University
Stanford, CA, USA

syrineb@cs.stanford.edu

Janrdhan Rao Doppa
Washington State University

Pullman, WA, USA
jana.doppa@wsu.edu

ABSTRACT
This paper addresses the problem of constrained multi-objective
optimization over black-box objective functions with practitioner-
specified preferences over the objectives when a large fraction of
the input space is infeasible (i.e., violates constraints). This problem
arises in many engineering design problems, including analog cir-
cuits and electric power system design. We aim to approximate the
optimal Pareto set over the small fraction of feasible input designs.
The key challenges include the massive size of the design space,
multiple objectives, a large number of constraints, and the small
fraction of feasible input designs, which can be identified only af-
ter performing expensive experiments/simulations. We propose a
novel and efficient preference-aware constrained multi-objective
Bayesian optimization approach referred to as PAC-MOO to address
these challenges. The key idea is to learn surrogate models for both
output objectives and constraints, and select the candidate input for
evaluation in each iteration that maximizes the information gained
about the optimal constrained Pareto front while factoring in the
preferences over objectives. Our experiments on synthetic and chal-
lenging real-world analog circuit design optimization problems
demonstrate the efficacy of PAC-MOO over baseline methods.

CCS CONCEPTS
•Mathematics of computing→ Stochastic processes;Bayesian
computation; • Computing methodologies→ Supervised learn-
ing by regression; • Applied computing→ Computer-aided design.
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1 INTRODUCTION
A large number of engineering design problems involve making
design choices to optimize multiple objectives. Some examples in-
clude electric power systems design [10, 74], design of aircrafts [76],
design of analog circuits and hardware accelerators [13, 16, 23, 43,
44, 50, 78, 79, 82], dynamic resource management in computing sys-
tems [22, 49, 56, 57, 60], and nanoporous materials discovery [24].

The common challenges in constrained multi-objective optimiza-
tion (MOO) problems include the following. 1) The objective func-
tions are unknown and we need to perform expensive experiments
to evaluate each candidate design choice. 2) The objectives are
conflicting in nature and all of them cannot be optimized simultane-
ously. 3) The constraints need to be satisfied, but we cannot evaluate
them for a given input design without performing expensive exper-
iments. 4) Only a small fraction of the input design space is feasible
(i.e., satisfies all constraints). Therefore, we need to find the Pareto
optimal set of solutions from this small subset of (unknown) feasible
inputs, which is akin to finding needles in a haystack. Additionally,
in several real-world applications, the practitioners have specific
preferences over the objectives. For example, the designer prefers
efficiency over settling time when optimizing analog circuits.

Bayesian optimization (BO) is an efficient framework to solve
black-box optimization problems with expensive objective function
evaluations [45, 65]. The key idea behind BO is to learn surrogate
models (e.g., Gaussian processes [77]) of the expensive objective
function and intelligently select the sequence of inputs for evalua-
tion using an acquisition function (e.g., expected improvement [59]).

As we discuss in the related work, there are some BO algorithms
for handling multiple expensive objective functions. However, there
are no BO algorithms designed specifically for simultaneously han-
dling the challenges of black-box constraints, a large fraction of
invalid input space (where a considerable fraction of the input de-
signs do not satisfy all constraints), and preferences over objectives.

To fill this important gap, we propose a novel and efficient
information-theoretic approach referred to as Preference-Aware
ConstrainedMulti-Objective Bayesian Optimization (PAC-MOO)1.
PAC-MOO builds surrogate models for both output objectives and
constraints based on the training data from past function evalua-
tions. PAC-MOO employs an acquisition function in each iteration
to select a candidate input design for performing expensive function
evaluations. The selected input design maximizes the information
gain about the constrained optimal Pareto front while factoring in
the designer preferences over objectives. The experimental results
on two challenging real-world analog circuit design benchmarks
demonstrate that PAC-MOO was able to find circuit configurations

1A preliminary version of this paper [2] was presented at NeurIPS-2022 workshop on
Machine Learning for Systems
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with higher preferred objective values (efficiency) as intended by
sacrificing the overall Pareto hypervolume indicator.

Contributions. Our key contribution is the development and eval-
uation of the PAC-MOO algorithm to solve a constrained multi-
objective optimization problem. Specific contributions include:

• A tractable acquisition function based on information gain to
select candidate inputs for expensive function evaluations.
• Approaches to increase the chances of finding feasible candi-
date designs and to incorporate preferences over objectives.
• Evaluation of PAC-MOO on real-world problems and com-
parison with prior methods.
• Our implementation for PAC-MOO is publicly available at
https://github.com/Alaleh/PAC-MOO.

2 RELATED WORK
There are three families of approaches for solving constrainedmulti-
objective optimization problems with expensive black-box func-
tions. First, we can employ heuristic search algorithms such as
multi-objective variants of simulated annealing [35, 38, 72], genetic
algorithms [36, 37], and particle swarm optimization [29, 46, 68, 73]
to solve them. The main drawback of this family of methods is
that they require a large number of expensive function evalua-
tions. Second, methods that build analytical models using a given
functional form to model the black-box function behavior. Typical
examples include approaches based on geometric programming
[11, 21, 26, 47] and general polynomials [62, 75]. The key limita-
tion of these methods is that the accuracy of solutions critically
depends on the accuracy of analytical models over the entire input
space, and the construction of accurate models requires a consid-
erable number of expensive function evaluations. Third, Bayesian
optimization (BO) methods employ surrogate statistical models to
overcome the drawbacks of the previous families of approaches.
The surrogate models are initialized using a small set of randomly
sampled training data, i.e., input-output pairs of design parameters
and objective evaluations. They are iteratively refined during the
optimization process to actively collect a new training example in
each iteration through an acquisition function (e.g., expected im-
provement). There is a large body of work on BO for single-objective
optimization [25, 28]. Standard BO methods have been applied to a
variety of problems including solving simple analog circuit design
optimization and synthesis problems [41, 42, 52–55, 70, 71, 81].

Multi-objective BO (MOBO) is a relatively less-studied prob-
lem setting compared to the single-objective problem. Some of the
recent work on MOBO include Predictive Entropy Search for Multi-
objective Bayesian Optimization (PESMO) [39], Max-value Entropy
Search for Multi-Objective Bayesian optimization (MESMO) [4, 6],
Uncertainty-aware Search framework for Multi-Objective Bayesian
Optimization (USEMO)[9], Pareto-Frontier Entropy Search (PFES)
[66], Expected Hypervolume Improvement [17, 27], Multi-Objective
Bayesian Optimization over High-Dimensional Search Spaces [19],
and MVAR Approximation via Random Scalarizations [18]. Each of
these methods has been shown to performwell on a variety of MOO
problems. MESMO [4] is one of the state-of-the-art algorithms that
is based on the principle of entropy search in the output space,
which is low-dimensional compared to the input space.

Recent work extended existing approaches to the multi-objective
constrained setting to account for black box constraints, notably
Predictive Entropy Search for Multi-objective Bayesian Optimiza-
tion with Constraints (PESMOC) [33], Parallel Predictive Entropy
Search for Multi-objective Bayesian Optimization with Constraints
(PPESMOC) [32], Max-value Entropy Search for Multi-Objective
Bayesian Optimization with Constraints (MESMOC) [5, 8], and Un-
certainty aware Search Framework for Multi-Objective Bayesian
Optimization with Constraints (USEMOC) [7]. Existing algorithms
can handle constraints that are evaluated using expensive function
evaluations. However, they might not perform well when the frac-
tion of feasible designs in the input space is small because they
are hard to locate. Additionally, none of them supports preference
specifications over the output objectives.

There has been a large body of work on incorporating prefer-
ences inmulti-objective optimization using evolutionary techniques
[12, 48, 69]. A parallel line of work includes several proposed opti-
mization approaches to incorporate preferences between different
objectives [1, 14, 34, 51, 63]. However, simultaneously handling
constraints and preferences is not well-studied. The goal of this
paper is to fill this gap motivated by real-world problems in analog
circuit design and electric power systems design.

3 BACKGROUND AND PROBLEM SETUP
In this section, we provide background on the general BO frame-
work and formally define the constrained MOO problem with pref-
erences we are trying to solve.

3.1 Background on Bayesian Optimization
Bayesian Optimization (BO) is a general framework for solving
expensive black-box optimization problems in a sample-efficient
manner, i.e., minimizing the number of calls for expensive function
evaluations. BO iterates within a feedback loop between (i) conduct-
ing expensive experiment with a candidate design parameters; (ii)
updating our beliefs in the form of surrogate models about the rela-
tionship between design parameters and output objective(s); and
(iii) selecting candidate design parameters for the next experiment.

The two key components of BO are surrogate model(s) and an
acquisition function. The term “surrogate” in the surrogate model
refers to “substitute for the expensive experiment”. It is a proba-
blistic model (e.g., Gaussian process) to capture the relationship
between the design parameters and output objectives, and is trained
on all the training data from past expensive experiments. The sur-
rogate model cheaply predicts the output objective(s) of the uneval-
uated design parameters and critically, quantifies the uncertainty
in its predictions. The acquisition function (e.g., expected improve-
ment [59]) is used to make the decision of which design parameters
to select for the next simulation. It uses the surrogate model to score
the utility of selecting design parameters for the next experiment by
trading-off exploitation (select design parameters with high predic-
tions from the model) and exploration (select design parameters for
which the model is highly uncertain). The overall goal is to quickly
direct the search towards high-quality design configurations.
Gaussian process for surrogate modeling. Gaussian processes
(GPs) [77] are the most commonly used surrogate models in BO ow-
ing to their flexibility to approximate complex objectives, principled
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Figure 1: A high-level overview of the PAC-MOO algorithm. It takes as input the input space 𝔛 and preferences over objectives
𝑝, and produces a Pareto set of candidate points as per the preferences after 𝑇 iterations of PAC-MOO. In each iteration 𝑡 ,
PAC-MOO selects a candidate point x𝑡 ∈ 𝔛 to perform expensive function evaluations and the surrogate models for both
objective functions and constraints are updated based on training data from the evaluated point.

uncertainty quantification, and incorporating domain knowledge
in the form of kernels to measure similarity between any two given
inputs. A GP is a random process over domain space 𝔛 → R such
that every finite collection of those random variables has a multi-
variate normal distribution; It can be characterized using its mean
𝜇 : 𝔛 → R and its covariance or kernel function 𝜅 : 𝔛 × 𝔛 → R.
The posterior mean and standard deviation of a GP provide the
prediction and uncertainty, respectively. Intuitively, uncertainty
will be low for input design parameters x ∈ 𝔛 that are close to the
ones in our training data and will increase as the distance grows.

GPs provide a probabilistic framework for modeling the objec-
tive function. This probabilistic nature allows BO to measure uncer-
tainty about the true function, which is crucial in making informed
decisions about where to evaluate the function next. GPs are highly
flexible models; They can adapt to a wide range of objective func-
tions, including non-linear, non-convex, and multimodal functions.
While they can be computationally demanding for large datasets,
their expressiveness makes them valuable for tackling complex opti-
mization problems. The point estimate and uncertainty provided by
GPs, are crucial in real-world applications where making decisions
under uncertainty is essential.
3.2 Problem Setup
Constrained multi-objective optimization w/ preferences.
Constrained MOO is the problem of optimizing K ≥ 2 real-valued
objective functions {𝑓1 (𝑥), · · · , 𝑓K (𝑥)}, while satisfying L black-box
constraints of the form 𝑐1 ≥ 0, · · · , 𝑐L (𝑥) ≥ 0 over the given design
space𝔛 ⊂ R𝑑 . A function evaluation with the candidate parameters
x ∈ 𝔛 generates two vectors, one consisting of objective values and
one consisting of constraint values y = (𝑦𝑓1 , · · · , 𝑦𝑓K , 𝑦𝑐1 , · · · , 𝑦𝑐L )
where 𝑦𝑓𝑗 = 𝑓𝑗 (𝑥) for all 𝑗 ∈ {1, · · · , 𝐾} and 𝑦𝑐𝑖 = 𝐶𝑖 (𝑥) for all
𝑖 ∈ {1, · · · , 𝐿}. We define an input vector x as feasible if and only
if it satisfies all constraints. The input vector x Pareto-dominates
another input vector x′ if 𝑓𝑗 (x) ≤ 𝑓𝑗 (x′) ∀𝑗 and there exists some
𝑗 ∈ {1, · · · , 𝐾} such that 𝑓𝑗 (x) < 𝑓𝑗 (x′).

The optimal solution of the MOO problem with constraints is a
set of input vectors X∗ ⊂ 𝔛 such that no configuration x′ ∈ 𝔛 \X∗
Pareto-dominates another input x ∈ X∗ and all configurations in
X∗ are feasible. The solution setX∗ is called the optimal constrained
Pareto set and the corresponding set of function values Y∗ is called
the optimal constrained Pareto front. The most commonly used
measure to evaluate the quality of a given Pareto set is by calculating
the Pareto hypervolume (PHV) indicator [3] of the corresponding
Pareto front of (yf1 , yf2 , · · · , yfK ) with respect to a reference point
r. Our overall goal is to approximate the constrained Pareto set X∗
by minimizing the total number of expensive function evaluations.
When a preference specification 𝑝 over the objectives is provided,
the MOO algorithm should prioritize producing a Pareto set of
inputs that optimize the preferred objective functions.
Preferences over black-box functions.The designer/practitioner
can define input preferences over multiple black-box functions
through the notion of preference specification, which is defined as
a vector of scalars p = {𝑝 𝑓1 , · · · , 𝑝 𝑓𝐾 , 𝑝𝑐1 , · · · , 𝑝𝑐𝐿 } with 0 ≤ 𝑝𝑖 ≤ 1
and

∑
𝑖∈I 𝑝𝑖 = 1 such that I = {𝑓1, · · · , 𝑓𝐾 , 𝑐1, · · · , 𝑐𝐿}. Higher

values of 𝑝𝑖 mean that the corresponding objective function 𝑓𝑖 is
highly preferred. In such cases, the solution to the MOO problem
should prioritize producing design parameters that optimize the
preferred objective functions.

4 PREFERENCE-AWARE CONSTRAINED
MULTI-OBJECTIVE BO

The general strategy behind the BO process is to employ an acqui-
sition function to iteratively select a candidate input (i.e., design
parameters) to evaluate using the information provided by the sur-
rogate models. The surrogate models are updated based on new
training examples (design parameters as input, and evaluations of
objectives and constraints from function evaluations as output).
Overview of PAC-MOO. PAC-MOO algorithm is an instance of the
BO framework, which takes as input the input space 𝔛, preferences
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over objectives 𝑝 , expensive objective functions and constraints
evaluator, and produces a Pareto set of candidate inputs as per the
preferences after𝑇 iterations of PAC-MOO as shown in Algorithm 1.
In each iteration 𝑡 , PAC-MOO selects a candidate input design x𝑡 ∈
𝔛 to perform a function evaluation. Consequently, the surrogate
models for both objective functions and constraints are updated
based on training data from the function evaluations.

4.1 Surrogate Modeling
Gaussian Processes (GPs) [77] are suitable for solving black-box
optimization problems with expensive function evaluations since
they are rich and flexible models which can mimic any objective
function. Intuitively, two candidate design parameters that are close
to each other will potentially exhibit approximately similar per-
formance in terms of output objectives. We model the objective
functions and black-box constraints by independent GP models
GP 𝑓1 , · · · ,GP 𝑓𝐾 ,GP𝑐1 , · · · ,GP𝑐𝐾 with zero mean and i.i.d. ob-
servation noise. Let D = {(x𝑖 , y𝑖 )}𝑡−1𝑖=1 be the training data from
past 𝑡−1 function evaluations, where x𝑖 ∈ 𝔛 is a candidate design
and y𝑖 = {𝑦𝑖𝑓1 , · · · , 𝑦

𝑖
𝑓𝐾
, 𝑦𝑖𝑐1 , · · · , 𝑦

𝑖
𝑐𝐿
} is the output vector resulting

from evaluating the objective functions and constraints at x𝑖 .

4.2 Acquisition Function
The state-of-the-art multi-objective optimization method MESMO
approach for solving MOO problems [4] proposed to select the in-
put that maximizes the information gain about the optimal Pareto
front for evaluation. However, this approach did not address the
challenge of handling black-box constraints which can be eval-
uated only through expensive function evaluators. To overcome
this challenge, the MESMOC [5] algorithm was introduced which
utilizes MESMO’s powerful acquisition function while being able
to incorporate constraint functions into the optimization by maxi-
mizing the information gain between the next candidate input for
evaluation x and the optimal constrained Pareto front Y∗:

𝛼 (x) = 𝐼 ({x, y},Y∗ | 𝐷) = 𝐻 (y | 𝐷, x) − EY∗ [𝐻 (y | 𝐷, x,Y∗)]
(1)

In this case, the output vector y is 𝐾 + 𝐿 dimensional: y = (𝑦𝑓1 , 𝑦𝑓2 ,
· · · , 𝑦𝑓𝐾 , 𝑦𝑐1 , · · · , 𝑦𝑐𝐿 ) where 𝑦𝑓𝑗 = 𝑓𝑗 (𝑥)∀𝑗 ∈ {1, 2, · · · , 𝐾} and 𝑦𝑐𝑖
= 𝐶𝑖 (𝑥)∀𝑖 ∈ {1, 2, · · · , 𝐿}. Consequently, the first term in Equation
(1), entropy of a factorizable (𝐾 + 𝐿)-dimensional Gaussian dis-
tribution 𝑃 (y | 𝐷, x), can be computed in closed form as shown
below:

𝐻 (y | 𝐷, x) = (𝐾 +𝐶) (1 + ln(2𝜋))
2

+
𝐾∑︁
𝑗=1

ln(𝜎𝑓𝑗 (x)) +
𝐿∑︁
𝑖=1

ln(𝜎𝑐𝑖 (x))

(2)

where 𝜎2
𝑓𝑗
(x) and 𝜎2𝑐𝑖 (x) are the predictive variances of 𝑗

𝑡ℎ function

and 𝑖𝑡ℎ constraint GPs respectively at input x. The second term in
Equation (1) is an expectation over the Pareto front Y∗. We can
approximately compute this term via Monte-Carlo sampling as
shown below:

EY∗ [𝐻 (y | 𝐷, x,Y∗)] ≃
1
𝑆

𝑆∑︁
𝑠=1
[𝐻 (y | 𝐷, x,Y∗𝑠 )] (3)

where 𝑆 is the number of samples and Y∗𝑠 denote a sample Pareto
front. There are two key algorithmic steps to compute this part of
the equation: 1) How to compute constrained Pareto front samples
Y∗𝑠 ?; and 2) How to compute the entropy with respect to a given
constrained Pareto front sampleY∗𝑠 ?We provide solutions for these
two questions below.

1) Computing constrained Pareto front samples via
cheap multi-objective optimization. To compute a constrained
Pareto front sample Y∗𝑠 , we first sample functions and constraints
from the posterior GP models via random Fourier features [40, 64]
and then solve a cheap constrained multi-objective optimization
over the 𝐾 sampled functions and 𝐿 sampled constraints.

Cheap MO solver.We sample 𝑓𝑖 from GP model GP 𝑓𝑗 for each
of the 𝐾 functions and 𝐶 𝑗 from GP model GP𝑐 𝑗 for each of the 𝐿
constraints. A cheap constrained multi-objective optimization prob-
lem over the 𝐾 sampled functions 𝑓1, 𝑓2, · · · , 𝑓𝑘 and the 𝐿 sampled
constraints 𝐶1,𝐶2, · · · ,𝐶𝐿 is solved to compute the sample Pareto
front Y∗𝑠 . Note that we refer to this optimization problem as cheap
because it is performed over sampled functions and constraints,
which are cheaper to evaluate than performing expensive function
evaluations. We employ the popular constrained NSGA-II algorithm
[20, 30] to solve the constrained MO problem with cheap sampled
objective functions and constraints.

2) Entropy computationwith a sample constrainedPareto
front. Let Y∗𝑠 = {v1, · · · , v𝑙 } be the sample constrained Pareto
front, where 𝑙 is the size of the Pareto front and each v𝑖 is a
(𝐾 + 𝐿)-vector evaluated at the 𝐾 sampled functions and 𝐿 sam-
pled constraints v𝑖 = {𝑣𝑖

𝑓1
, · · · , 𝑣𝑖

𝑓𝐾
, 𝑣𝑖𝑐1 , · · · , 𝑣

𝑖
𝑐𝐿
}. The following

inequality holds for each component 𝑦 𝑗 of the (𝐾 + 𝐿)-vector
y = {𝑦𝑓1 , · · · , 𝑦𝑓𝐾 , 𝑦𝑐1 , · · ·𝑦𝑐𝐿 } in the entropy term 𝐻 (y | 𝐷, x,Y∗𝑠 ):

𝑦 𝑗 ≤ max{𝑣1𝑗 , · · · 𝑣
𝑙
𝑗 } ∀𝑗 ∈ {𝑓1, · · · , 𝑓𝐾 , 𝑐1, · · · , 𝑐𝐿} (4)

The inequality essentially says that the 𝑗𝑡ℎ component of y (i.e., 𝑦 𝑗 )
is upper-bounded by a value obtained by taking the maximum of
𝑗𝑡ℎ components of all 𝑙 (𝐾 +𝐿)-vectors in the Pareto frontY∗𝑠 . This
inequality had been proven by a contradiction for MESMO [4] for
all objective functions 𝑗 ∈ {𝑓1, · · · , 𝑓𝐾 }. We assume the same for
all constraints 𝑗 ∈ {𝑐1, · · · , 𝑐𝐿}.

By combining the inequality (4) and the fact that each function
is modeled as an independent GP, we can approximate each compo-
nent𝑦 𝑗 as a truncated Gaussian distribution since the distribution of
𝑦 𝑗 needs to satisfy𝑦 𝑗 ≤ max{𝑣1

𝑗
, · · · 𝑣𝑙

𝑗
}. Let𝑦𝑐𝑖∗𝑠 = max{𝑣1𝑐𝑖 , · · · 𝑣

𝑙
𝑐𝑖
}

and 𝑦 𝑓𝑗 ∗𝑠 = max{𝑣1
𝑓𝑗
, · · · 𝑣𝑙

𝑓𝑗
}. Furthermore, a common property of

entropy measure allows us to decompose the entropy of a set of
independent variables into a sum over entropies of individual vari-
ables [15]:

𝐻 (y | 𝐷, x,Y∗𝑠 ) =
𝐾∑︁
𝑗=1

𝐻 (𝑦𝑓𝑗 |𝐷, x, 𝑦
𝑓𝑗 ∗
𝑠 ) +

𝐿∑︁
𝑖=1

𝐻 (𝑦𝑐𝑖 |𝐷, x, 𝑦
𝑐𝑖∗
𝑠 ) (5)

The r.h.s is a summation over entropies of (𝐾 + 𝐿)-variables y =

{𝑦𝑓1 , · · · , 𝑦𝑓𝐾 , 𝑦𝑐1 , · · ·𝑦𝑐𝐿 }. The differential entropy for each 𝑦 𝑗 is
the entropy of a truncated Gaussian distribution [58] and is given
by the following equations:
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𝐻 (𝑦𝑓𝑗 |𝐷, x, 𝑦
𝑓𝑗 ∗
𝑠 ) ≃[

(1 + ln(2𝜋))
2

+ ln(𝜎𝑓𝑗 (x)) + lnΦ(𝛾
𝑓𝑗
𝑠 (x)) −

𝛾
𝑓𝑗
𝑠 (x)𝜙 (𝛾

𝑓𝑗
𝑠 (x))

2Φ(𝛾 𝑓𝑗𝑠 (x))

]
(6)

𝐻 (𝑦𝑐𝑖 |𝐷, x, 𝑦
𝑐𝑖∗
𝑠 ) ≃[

(1 + ln(2𝜋))
2

+ ln(𝜎𝑐𝑖 (x)) + lnΦ(𝛾
𝑐𝑖
𝑠 (x)) −

𝛾
𝑐𝑖
𝑠 (x)𝜙 (𝛾𝑐𝑖𝑠 (x))
2Φ(𝛾𝑐𝑖𝑠 (x))

]
(7)

Consequently, we have:

𝐻 (y | 𝐷, x,Y∗𝑠 ) ≃
𝐾∑︁
𝑗=1

[
(1 + ln(2𝜋))

2
+ ln(𝜎𝑓𝑗 (x)) + lnΦ(𝛾

𝑓𝑗
𝑠 (x)) −

𝛾
𝑓𝑗
𝑠 (x)𝜙 (𝛾

𝑓𝑗
𝑠 (x))

2Φ(𝛾 𝑓𝑗𝑠 (x))

]
+

𝐿∑︁
𝑖=1

[
(1 + ln(2𝜋))

2
+ ln(𝜎𝑐𝑖 (x)) + lnΦ(𝛾

𝑐𝑖
𝑠 (x)) −

𝛾
𝑐𝑖
𝑠 (x)𝜙 (𝛾𝑐𝑖𝑠 (x))
2Φ(𝛾𝑐𝑖𝑠 (x))

]
(8)

where 𝛾𝑐𝑖𝑠 (𝑥) =
𝑦
𝑐𝑖 ∗
𝑠 −𝜇𝑐𝑖 (x)
𝜎𝑐𝑖 (x)

, 𝛾 𝑓𝑗𝑠 (𝑥) =
𝑦
𝑓𝑗 ∗
𝑠 −𝜇𝑓𝑗 (x)
𝜎𝑓𝑗 (x)

, and 𝜙 and Φ

are the p.d.f and c.d.f of a standard normal distribution respectively.
By combining equations (2) and (8) with equation (1), we get the
final form of our acquisition function as shown below:

𝛼 (x) ≃
∑︁
𝑖∈I

𝐴𝐹 (𝑖, 𝑥) with 𝑖 ∈ I and I = {𝑐1 · · · 𝑐𝐿, 𝑓1 · · · 𝑓𝐾 } (9)

𝐴𝐹 (𝑖, 𝑥) =
𝑆∑︁
𝑠=1

𝛾𝑖𝑠 (x)𝜙 (𝛾𝑖𝑠 (x))
2Φ(𝛾𝑖𝑠 (x))

− lnΦ(𝛾𝑖𝑠 (x)) (10)

4.3 Convex Combination for Preferences
We now describe how to incorporate preference specification (when
available) into the acquisition function. The derivation of the acqui-
sition function proposed in Equation 9 resulted in a function in the
form of a summation of an entropy term defined for each of the ob-
jective functions and constraints as 𝐴𝐹 (𝑖, 𝑥). Given this expression,
the algorithm will select an input while giving the same importance
to each of the functions and constraints. However, as an example, in
problems such as circuit design optimization, efficiency is typically
the most important objective function. The designer would like
to find a trade-off between the objectives. Nevertheless, candidate
circuits with high voltage and very low efficiency might be use-
less in practice. Therefore, we propose to inject preferences from
the designer into our algorithm by associating different weights to
each of the objectives. A principled approach would be to assign
appropriate preference weights resulting in a convex combination
of the individual components of the summation 𝐴𝐹 (𝑖, 𝑥). Let 𝑝𝑖 be
the preference weight associated with each individual component.
The preference-based acquisition function is defined as follows (see
Algorithm 2):

𝛼𝑝𝑟𝑒 𝑓 (x) ≃
∑︁
𝑖∈I

𝑝𝑖 ×𝐴𝐹 (𝑖, 𝑥) with 𝑖 ∈ I 𝑠 .𝑡
∑︁
𝑖∈I

𝑝𝑖 = 1 (11)

It is important to note that in practice if a candidate design does
not satisfy the constraints, the optimization will fail regardless of
the preferences over objectives. Therefore, the cumulative weights
assigned to the constraints have to be at least equal to the total
weight assigned to the objective functions:∑︁

𝑖∈{𝑐1 · · ·𝑐𝐿 }
𝑝𝑖 =

∑︁
𝑖∈{ 𝑓1,· · · ,𝑓𝐾 }

𝑝𝑖 =
1
2

(12)

Given that satisfying all the constraints is equally important, the
weights over the constraints would be equal. Finally, only the
weights over the functions will need to be explicitly specified.

Algorithm 1 PAC-MOO Algorithm
Inputs: Input space X, black-box functions {𝑓1, ..., 𝑓K}, constraint
functions {𝑐1, ..., 𝑐𝐿}, preferences p = {𝑝 𝑓1 , · · · , 𝑝 𝑓𝐾 , 𝑝𝑐1 , · · · , 𝑝𝑐𝐿 },

number of initial points N0, number of iterations 𝑇
1: Initialize Gaussian processes for functionsM𝑓1 , · · · ,M𝑓K and

constraintsM𝑐1 , · · · ,M𝑐L by evaluating them on N0 initial
design parameters

2: for each iteration t = N0 to T+N0 do
3: if feasible design parameters x𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ∉ D then
4: Select design parameters x𝑡 ← arg𝑚𝑎𝑥x∈X 𝛼𝑝𝑟𝑜𝑏 (x) #

eq. 13
5: else
6: Select design parameters x𝑡 ← arg𝑚𝑎𝑥x∈X 𝛼𝑝𝑟𝑒 𝑓 (x, p)

in Algorithm 2 s.t (𝜇𝑐1 ≥ 0, · · · , 𝜇𝑐𝐿 ≥ 0)
7: end if
8: Perform function evaluations using the selected design pa-

rameters
x𝑡 : y𝑡 ← (𝑓1 (x𝑡 ), · · · , 𝑓𝐾 (x𝑡 ),𝐶1 (x𝑡 ), · · · ,𝐶𝐿 (x𝑡 ))

9: Aggregate data: D ← D ∪ {(x𝑡 , y𝑡 )}
10: Update modelsM𝑓1 , · · · ,M𝑓𝐾 andM𝑐1 , · · · ,M𝑐𝐿 using D
11: end for
12: return the Pareto set of feasible design parameters from D

Algorithm 2 Preference based Acquisition function (𝛼𝑝𝑟𝑒 𝑓 )

𝛼𝑝𝑟𝑒 𝑓 (x, p)
1: for Each sample 𝑠 ∈ {1, · · · , 𝑆} do
2: Sample functions 𝑓𝑗 ∼ M𝑓𝑗 , ∀𝑗 ∈ {1, · · · , 𝐾}
3: Sample constraints 𝐶𝑖 ∼ M𝑐𝑖 , ∀𝑖 ∈ {1, · · · , 𝐿}
4: Solve cheap MOO over (𝑓1, · · · , 𝑓𝐾 ) constrained by

(𝐶1, · · · ,𝐶𝐿)
Y∗𝑠 ← arg𝑚𝑎𝑥𝑥∈X (𝑓1, · · · , 𝑓𝐾 ) s.t (𝐶1 ≥ 0, · · · ,𝐶𝐿 ≥ 0)

5: end for
6: for 𝑖 ∈ I and I = {𝑐1 · · · 𝑐𝐿, 𝑓1 · · · 𝑓𝐾 } do
7: Compute 𝐴𝐹 (𝑖, 𝑥) based on 𝑆 samples of Y∗𝑠 via Equation 10
8: end for
9: Return

∑
𝑖∈I 𝑝𝑖 ×𝐴𝐹 (𝑖, 𝑥)

4.4 Finding Feasible Regions of Design Space
The acquisition function defined in equation 11 will build con-
strained Pareto front samples Y∗𝑠 by sampling functions and con-
straints from the Gaussian process posterior. The posterior of the
GP is built based on the current training data D. The truncated
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Gaussian approximation defined in Equations 6 and 7 requires the
upper bound 𝑦 𝑓𝑗 ∗𝑠 and 𝑦𝑐𝑖∗𝑠 to be defined. However, in the early
Bayesian optimization iterations of the algorithm, the configura-
tions evaluated may not include any feasible design parameters.
This is especially true for scenarios where the fraction of feasible
design configurations in the entire design space is very small. In
such cases, the sampling process of the constrained Pareto fronts
Y∗𝑠 is susceptible to failure because the surrogate models did not
gather any knowledge about feasible regions of the design space yet.
Consequently, the upper bounds 𝑦 𝑓𝑗 ∗𝑠 and 𝑦𝑐𝑖∗𝑠 are not well-defined
and the acquisition function in 11 is not well-defined. Intuitively, the
algorithm should first aim at identifying feasible design configura-
tions by maximizing the probability of satisfying all the constraints.
We define a special case of our acquisition function for such chal-
lenging scenarios as shown below:

𝛼𝑝𝑟𝑜𝑏 (𝑥) =
𝐿∏
𝑖=1

𝑃𝑟 (𝑐𝑖 (𝑥) ≥ 0) (13)

This acquisition function enables an efficient feasibility search
due to its exploitation characteristics [31]. Given that the probability
of constraint satisfaction is binary (0 or 1), the algorithmwill be able
to quickly prune unfeasible regions of the design space and move to
other promising regions until it identifies feasible design configura-
tions. This approach will enable a more efficient search over feasible
regions later and accurate computation of the acquisition function.
The complete pseudo-code of PAC-MOO is given in Algorithm 1.

4.5 Regret Bound Analysis
The state-of-the-art MESMO approach [4] for multi-objective BO,
possesses a regret analysis for multi-objective cumulative regret.
Given well-fitted Gaussian processes for the objective functions
and constraints, the cheap multi-objective algorithm will be able
to generate designs that are Pareto optimal and satisfy the con-
straints with high probability. Under these conditions, the regret
bound developed in MESMO also extends to MESMOC [5, 8]. Given
the incorporation of the preference vector within the PAC-MOO
framework, the theoretical regret bound takes on a distinct form.
Specifically, the regret analysis for PAC-MOO yields a weighted
summation of the regret for each individual objective, reflecting the
preferences encoded by the user. This extension of regret formula-
tion allows PAC-MOO to hold its regret bound in a diverse range
of multi-objective optimization scenarios, where objectives may
not possess uniform importance. Therefore, the regret analysis of
PAC-MOO degenerates to MESMO’s regret analysis in the absence
of preferences and constraints. This theoretical insight underscores
the versatility and practicality of PAC-MOO, as it extends the utility
of prior regret analysis to settings where user preferences play a
pivotal role in guiding the optimization process.

5 EXPERIMENTAL RESULTS
In this section, we present experimental evaluation of PAC-MOO
and baseline methods on a synthetic constrained multi-objective
optimization problem as well as two challenging real-world analog
circuit design problems.

5.1 Experimental Setup
Baselines.We compare PAC-MOOwith state-of-the-art constrained
MOO evolutionary algorithms, namely, NSGA-II [20] and MOEAD
[80]. We also compare to the constrained multi-objective optimiza-
tion method, the Uncertainty aware search framework for multi-
objective Bayesian optimization with constraints (USEMOC) al-
gorithm [7]. We evaluated two variants of the USEMOC wrapper
framework: USEMOC-EI and USEMOC-TS, using expected improve-
ment (EI) and Thompson sampling (TS) acquisition functions. We
also compare our method to the Max-value Entropy Search for
Multi-Objective Bayesian Optimization with Constraints (MES-
MOC) [5] which is a special case of the PAC-MOO problem: equal
preferences over all the black-box functions and without the ap-
proach to find feasible regions of input space (Section 4.4). Note
that the acquisition function behind MESMOC is not well-defined
when there are no training examples for feasible inputs. Hence, our
PAC-MOO-0 (PAC-MOO with no preferences) mitigates the feasi-
bility issue of MESMOC, by incorporating our proposed approach
to handle lack of feasible training examples.
PAC-MOO: We employ a Gaussian process (GP) with squared ex-
ponential kernel for all our surrogate models. We evaluated several
preference values for the efficiency objective function. PAC-MOO-0
refers to the preference being equal over all objectives and con-
straints. PAC-MOO-1 refers to assigning 80% preference to one
preferred objective (e.g. efficiency in the HCR and SCVR problems)
and equal importance to other functions and constraints, result-
ing in a preference value 𝑝𝑖 = 0.5 × 0.8 = 0.4 for the preferred
objective. With PAC-MOO-2, we assign a total preference of 85%
to the objective functions with 92% importance to one preferred
objective resulting in a preference value of 𝑝𝑖 = 0.85 × 0.92 = 0.782.
We assign equal preference to all other functions. With PAC-MOO-
3, we assign a total of 0.65 preference to the objective functions
and 0.35 to the constraints. Additionally, we provide 88% impor-
tance to the preferred objective resulting in a preference value of
𝑝𝑖 = 0.65 × 0.88 = 0.572. The implementation of our algorithm is
included in the link below2.
Evaluation Metrics: The Pareto Hypervolume (PHV) indicator is a
commonly used metric to measure the quality of the Pareto front
[84]. PHV is defined as the volume between a reference point and
the Pareto front. After each expensive experiment (iteration), we
measure the PHV for all algorithms and compare them. To demon-
strate the efficacy of the preference-based PAC-MOO for real-world
analog circuit design problems, we compare different algorithms
using the maximum discovered efficiency of the optimized circuit
configurations as a function of the number of circuit simulations.
Benchmarks: We employ one synthetic and two challenging
real-word engineering design problems to show the efficacy of the
proposed PAC-MOO method.

1.The OSY problem. We solve the constrained multi-objective
optimization OSY test problem [61] as a synthetic benchmark with
a minor modification. To increase the complexity of the problem,
each dimension in the input space is expanded to 1.5 times its
original size, resulting in a search space approximately 11 times
larger than the original problem. Additionally, we introduce a new

2https://github.com/Alaleh/PAC-MOO

187



Preference-Aware Constrained Multi-Objective Bayesian Optimization CODS-COMAD 2024, January 04–07, 2024, Bangalore, India

(a) Hypervolume - OSY

(b) Maximum discovered feasible value of 𝐹1 - OSY

Figure 2: Hypervolume and preferred objective of the OSY
benchmark with preferences defined to prioritize objective
function 𝐹1 vs. number of BO iterations.

constraint that renders any input outside the original input space
as infeasible. Consequently, the modified OSY problem exhibits a
significantly reduced rate of feasible points. This variant of the OSY
problem is initialized with 12 random initial points and comprises 6
input dimensions, 2 objective functions which we are maximizing,
and 7 constraints.

2. Switched-Capacitor Voltage Regulator (SCVR) design optimiza-
tion setup. A flying-capacitor crossing technique (FCCT) is used in
the multi-output SCVR to achieve dynamic capacitor optimization,
as discussed in [83]. The constrainedMOOproblem for SCVR circuit
design consists of 33 input design variables, 9 objective functions,
and 14 constraints. Every baseline is initialized with 24 randomly
sampled circuit configurations.

3. High Conversion Ratio (HCR) design optimization setup. For
the HCR converter experiments, we use an inductor-first hybrid
power stage, which has been previously introduced in [67]. The
constrained MOO problem for HCR circuit design consists of 32
design variables, 5 objective functions, and 6 constraints. Consider-
ing that the fraction of feasible circuit configurations in the design
space is extremely low (around 4%), every baseline is initialized
with 32 initial feasible designs provided by a domain expert.

Table 1 consists of the details of each benchmark including the
number of input dimensions, objective functions, and constraints.

In all our preference-based experiments, we assign a preference
value to one high-priority objective and assign all other black-
box functions (the rest of the objectives and the constraints) equal
preference. The preferred objective is set to efficiency in the case

(a) Hypervolume - SCVR

(b) Maximum discovered feasible efficiency - SCVR

Figure 3: Hypervolume and maximum discovered efficiency
of a feasible design in the SCVR circuit with preferences vs.
Number of circuit simulations.
of the two real-world analog circuit design problems and it is set to
𝐹1 in the synthetic benchmark.

It is noteworthy that neither evolutionary algorithms nor the
baseline BO method USEMOC are capable of handling preferences
over objectives. This is an important advantage of our PAC-MOO al-
gorithm, whose benefits we demonstrate through our experiments.

Table 1: Benchmark details

Problem Name input dimensions K L
OSY 6 2 7
SCVR 33 9 14
HCR 32 5 6

5.2 Results and Discussion
Hypervolume of Pareto set vs. the number of BO iterations.
Figures 2a, 3a, and 4a show the results for pareto hypervolume of
Pareto set as a function of the number of BO iterations for SCVR,
HCR, and OSY problems, respectively. An algorithm is considered
relatively better if it achieves higher hypervolume with a lower
number of BO iterations. We make the following observations.

1) PAC-MOO with no preferences (i.e., PAC-MOO-0) outper-
forms all the baseline methods. This is attributed to the efficient
information-theoretic acquisition function and the exploitation
approach to finding feasible regions in the circuit design space.

2) At least one version of USEMOC performs better than all
evolutionary baselines: USEMOC-EI for both SCVR and HCR de-
signs, and the OSY problem. These results demonstrate that BO
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(a) Hypervolume - HCR

(b) Maximum discovered feasible efficiency - HCR

Figure 4: Hypervolume and maximum discovered efficiency
of a feasible design in the HCR circuit with preferences vs.
Number of simulations

methods have the potential for accelerating analog circuit design
optimization over evolutionary algorithms.

3) The performance of PAC-MOO with preference (i.e., PAC-
MOO-1, 2, 3) may slightly decline in some cases in terms of the
hypervolume. This is because the hypervolumemetric evaluates the
quality of the general Pareto front, while our algorithm focuses on
specific regions of the Pareto front through preference specification.
Although this behavior is expected, we have observed that the PHV
of PAC-MOO-1 and PAC-MOO-2 remains competitive and even
outperforms PAC-MOO-0, especially in the case of the OSY problem.
The performance of PAC-MOO degrades only when a significantly
high preference is given to one objective function and when there
is a large number of objective functions available (e.g., PAC-MOO-3
in the HCR problem).
Value of the preferred objective vs. the number of BO iter-
ations. Since efficiency is the most important objective for both
SCVR and HCR circuits, we evaluate PAC-MOO by giving higher
preference to efficiency over other objectives. In the case of the
synthetic OSY constrained MOO problem, we assign a higher pref-
erence to the first objective function, 𝐹1. Figures 2b, 3b, and 4b show
the results for maximum discovered feasible value of the preferred
objective as a function of the number of BO iterations.

1) As intended by design, PAC-MOO with preferences outper-
forms all baseline methods, including PAC-MOO without prefer-
ences, by finding feasible input designs with higher values of the
preferred objective function,.

2) In the real-world analog circuit design problems, the improve-
ment in maximum efficiency of uncovered circuit configurations

for PAC-MOO with preferences comes at the expense of loss in
hypervolume metric as shown in Figure 3a and Figure 4a.

3) In problems involving a small number of objective functions
(e.g., 2 objective functions in the case of the OSY problem), the
increase in the value of the preferred objective can outweigh the
negative effects of emphasizing specific regions of the Pareto front
through objective preferences. This effect is particularly noticeable
when considering the hypervolume. As a result, PAC-MOO with
preferences (PAC-MOO-2) can achieve a higher hypervolume value
compared to PAC-MOO without preferences (PAC-MOO-0). This
trend is evident in Figure 2a and Figure 2b.

Complexity Analysis. When comparing PAC-MOO to conven-
tional methods, such as evolutionary baselines, it is evident that
PAC-MOO introduces slightly more computational complexity. This
increased complexity arises from the utilization of the sophisti-
cated information-theoretic approach, which can result in slightly
slower computational performance. Nonetheless, it’s imperative to
contextualize this additional computational time within practical
applications such as circuit design optimization. In such practical
scenarios, the additional computational overhead becomes almost
negligible. For instance, in the context of the HCR problem, a single
simulation takes approximately 20 minutes, whereas one iteration
of PAC-MOO consumes around 30 seconds of time. This relatively
minor increase in computational time becomes inconsequential,
especially when considering the substantial benefits PAC-MOO
offers. It consistently outperforms its counterparts, even with a
slight increase in time, establishing itself as a compelling choice for
real-world expensive multi-objective optimization tasks.

6 SUMMARY
Motivated by challenges in hard engineering design optimization
problems (e.g., large design spaces, expensive simulations, a small
fraction of configurations are feasible, and the existence of pref-
erences over objectives), this paper proposed a principled and ef-
ficient Bayesian optimization algorithm referred to as PAC-MOO.
The algorithm builds Gaussian process based surrogate models
for both objective functions and constraints and employs them to
intelligently select the sequence of input designs for performing
experiments. The key innovations behind PAC-MOO include a scal-
able and efficient acquisition function based on the principle of
information gain about the optimal constrained Pareto front; an
effective exploitation approach to find feasible regions of the design
space; and incorporating preferences over multiple objectives using
a convex combination of the corresponding acquisition functions.
Experimental results on one synthetic constrained multi-objective
optimization problem with a small region of feasible points and two
challenging real-world analog circuit design optimization problems
demonstrated that PAC-MOO outperforms baseline methods in
finding a Pareto set of feasible points with high hyper-volume us-
ing a small number of BO iterations. With preference specification,
PAC-MOO was able to find design parameters that optimize the
preferred objective functions better.
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