
AdaptNet: Policy Adaptation for Physics-Based Character Control
PEI XU, Clemson University, USA and Roblox, USA
KAIXIANG XIE,McGill University, Canada
SHELDON ANDREWS, École de Technologie Supérieure, Canada and Roblox, USA
PAUL G. KRY,McGill University, Canada
MICHAEL NEFF, University of California, Davis, USA
MORGAN MCGUIRE, Roblox, USA and University of Waterloo, Canada
IOANNIS KARAMOUZAS, University of California, Riverside, USA
VICTOR ZORDAN, Roblox, USA and Clemson University, USA

Fig. 1. Examples policy adaptation for locomotion. From left to right and top to bottom: motion interpolation, local collision avoidance, body-length changes,
style transfer, morphology changes, rough terrain adaptation.

Motivated by humans’ ability to adapt skills in the learning of new ones,

this paper presents AdaptNet, an approach for modifying the latent space of

existing policies to allow new behaviors to be quickly learned from like tasks

in comparison to learning from scratch. Building on top of a given reinforce-

ment learning controller, AdaptNet uses a two-tier hierarchy that augments

the original state embedding to support modest changes in a behavior and

further modifies the policy network layers to makemore substantive changes.

The technique is shown to be effective for adapting existing physics-based

controllers to a wide range of new styles for locomotion, new task targets,

changes in character morphology and extensive changes in environment.

Furthermore, it exhibits significant increase in learning efficiency, as indi-

cated by greatly reduced training times when compared to training from

Authors’ addresses: Pei Xu, Clemson University, USA and Roblox, USA, peix@clemson.

edu; Kaixiang Xie, McGill University, Canada, kaixiang.xie@mail.mcgill.ca; Sheldon An-

drews, École de Technologie Supérieure, Canada and Roblox, USA, sheldon.andrews@

gmail.com; Paul G. Kry, McGill University, Canada, kry@cs.mcgill.ca; Michael Neff,

University of California, Davis, USA, mpneff@ucdavis.edu; Morgan McGuire, Roblox,

USA and University of Waterloo, Canada, morgan@roblox.com; Ioannis Karamouzas,

University of California, Riverside, USA, ioannis@cs.ucr.edu; Victor Zordan, Roblox,

USA and Clemson University, USA, vbzordan@roblox.com.

© 2023 Association for Computing Machinery.

0730-0301/2023/12-ART177 $15.00

https://doi.org/10.1145/3618375

scratch or using other approaches that modify existing policies. Code is

available at https://motion-lab.github.io/AdaptNet.

CCS Concepts: • Computing methodologies → Animation; Physical
simulation; Reinforcement learning.

Additional Key Words and Phrases: character animation, physics-based

control, motion synthesis, reinforcement learning, motion style transfer,

domain adaptation, GAN

ACM Reference Format:
Pei Xu, Kaixiang Xie, Sheldon Andrews, Paul G. Kry, Michael Neff, Morgan

McGuire, Ioannis Karamouzas, and Victor Zordan. 2023. AdaptNet: Policy

Adaptation for Physics-Based Character Control. ACM Trans. Graph. 42, 6,
Article 177 (December 2023), 16 pages. https://doi.org/10.1145/3618375

1 INTRODUCTION
Research on physically-based character animation has received a

great deal of attention recently, especially using reinforcement learn-

ing (RL) to develop control policies that produce a wide spectrum

of motion behaviors and styles with few or no manual inputs. Most

techniques rely on reference human motion to either provide di-

rect tracking or indirect comparison to constrain movement, along

with additional targets and rewards to shape task success (e.g., [Liu

and Hodgins 2018; Peng et al. 2018a; Xu and Karamouzas 2021]).

However, methods to date largely develop policies or controllers

for a known behavior, and must be relearned (usually from scratch)

to produce a new behavior. While curriculum-style learning and

warm-start approaches may be used to migrate policies to targeted

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

This work is licensed under a Creative Commons Attribution International 4.0 License.

HTTPS://ORCID.ORG/0000-0001-7851-3971
HTTPS://ORCID.ORG/0000-0002-5877-9374
HTTPS://ORCID.ORG/0000-0001-9776-117X
HTTPS://ORCID.ORG/0000-0003-4176-6857
HTTPS://ORCID.ORG/0000-0003-0226-2808
HTTPS://ORCID.ORG/0000-0003-1074-0953
HTTPS://ORCID.ORG/0009-0000-4315-6556
HTTPS://ORCID.ORG/0000-0002-7309-7013
https://orcid.org/0000-0001-7851-3971
https://orcid.org/0000-0002-5877-9374
https://orcid.org/0000-0001-9776-117X
https://orcid.org/0000-0001-9776-117X
https://orcid.org/0000-0003-4176-6857
https://orcid.org/0000-0003-0226-2808
https://orcid.org/0000-0003-1074-0953
https://orcid.org/0009-0000-4315-6556
https://orcid.org/0000-0002-7309-7013
https://doi.org/10.1145/3618375
https://motion-lab.github.io/AdaptNet
https://doi.org/10.1145/3618375
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618375&domain=pdf&date_stamp=2023-12-05

177:2 • P. Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, I. Karamouzas, and V. Zordan

goal tasks [Tao et al. 2022; Yin et al. 2021], we instead aim to broadly

adapt previously trained policies to make them usable in a wide

spectrum of new scenarios without the need for full retraining.

Inspired by recent work in conditioning existing models in image-

based stable diffusion and large language models [Hu et al. 2021;

Zhang and Agrawala 2023], we introduce AdaptNet as an approach

for controlling physically based characters that modifies an existing

policy to produce behavior in a variety of new settings. The main

novelty of our work is the ability to control the motion generation

process through editing the latent space. In physics-based character

control tasks, there is an opportunity to better understand and

exploit the latent space representation of control policies obtained

using reinforcement learning frameworks. AdaptNet provides an

initial step in this direction.

Specifically, our approach relies on the training of weights for

new network components that are injected into a previously trained

policy network. Building on top of a pre-existing multi-objective

reinforcement learning controller, we propose a two-tier architec-

ture for AdaptNet that augments the latent state embedding while

adding modifications to the remaining layers for control refinement.

The first layer modifies the latent space projected from the associ-

ation of the task and character state. It supports adding elements

to the control state, as well as changing the imitation and task re-

wards. Meanwhile, the deeper, control-level refinement augments

the policy’s action derived from the latent state, supporting more

substantive changes to the task control. Together, AdaptNet per-

forms fast training from a previously trained policy and is capable

of making a wide spectrum of adaptations from a single behavior.

As in Figure 1, we showcase our learning framework with numer-

ous controller adaptation examples, including changes in the style

of locomotion derived from very short reference motions. AdaptNet

can perform this “few-shot style transfer” using only the embed-

ding layer augmentation in a fraction of the time it takes to learn

the original locomotion policy. Furthermore, through interpolating

in the latent space, it is possible to control the generated control

dynamically and smoothly transition from the original behavior to

the new style. We further experiment with changes to the character

morphology by “locking” joints and changing limb lengths. While

these changes lead to failure in the original policy, AdaptNet aug-

ments the policy easily to account for the various changes. We also

investigate changes in the environment, exploring adaptation for

locomotion on rough and slick (low-friction) terrains, as well as

on obstacle-filled environments. In each case, AdaptNet provides

significant improvement leading to characters that robustly traverse

a range of new settings (see Figure 1 and accompanying video).

We evaluate the effectiveness of AdaptNet on various tasks, in-

cluding its ability for adaptation of imitation learning, different

goal rewards, and environmental states. We compare our approach

against training from scratch, as well as training-continuation (fine-

tuning). Training with AdaptNet can typically be carried out within

10-30 minutes for simple adaptation tasks, and up to 4 hours for

complex locomotion tasks and environment changes. Within such

modest training time budgets, in most cases it is impossible to ob-

tain a working controller that can adhere to imitation and goal-task

objectives when training from scratch or finetuning a pre-existing

policy. Additional ablation studies support the specific architecture

we propose over several alternatives along with highlighting Adapt-

Net’s ability to successfully control and modify the latent space.

The contributions of our work are summarized as follows:

• We show how the latent space representation of an RL policy

can be modified for motion synthesis in physics-based motor

control tasks.

• Based on this, we introduce AdaptNet as a framework to

efficiently modify a pre-trained physics-based character con-

troller to new tasks.

• We showcase the applicability of AdaptNet on a variety of

multi-objective adaptation tasks, including few-shot motion

style transfer, motion interpolation, character morphology

adaptation, and terrain adaptation.

2 RELATED WORK
Our approach follows a wide set of previous related work stemming

from general disciplines in computer animation, robotics, machine

learning and image generation. We focus on the background that is

most relevant, categorized in physically based character skill control,

transfer learning, and latent space adaptation.

2.1 Deep Reinforcement Learning for Skilled Motion
Deep learning neural network control policies have become the

staple for physics-based character animation research due to their

ability to synthesize a range of skilled motions. In recent years, tech-

niques have trained control policies to animate physics-based hu-

manoid characters for agilemotions [Yin et al. 2021], team sports [Liu

and Hodgins 2018; Xie et al. 2022], martial arts [Won et al. 2021],

juggling [Chemin and Lee 2018; Luo et al. 2021; Xu et al. 2023],

performing complex environment interactions [Merel et al. 2020],

as well as general locomotion tasks [Bergamin et al. 2019; Peng et al.

2018a]. The recent survey by Kwiatkowski et al. [2022] provides a

comprehensive overview of approaches that have been developed

for motion synthesis and control of animated characters.

Training skill-specific policies often requires extended training

time, necessitating years of simulated learning [Peng et al. 2022].

Skill re-use and combining pre-trained policies to perform more

complex tasks offer an alternative that can create needed savings

from this extensive training. To this end, a number of papers have

proposed ways to reuse and/or combine policies. For example, Deep-

Mimic [Peng et al. 2018a] trains a composite policy that transitions

between a collection of different skills. Liu and Hodgins [2017]

experiment with hierarchical models that sequence a set of pre-

trained control fragments. Hejna et al. [2020] explore a hierarchi-

cal approach to decouple low and high-level policies to transfer

skills from agents with simple morphologies to more complex ones,

and found that it helps to reduce overall sampling. Likewise, we

demonstrate that the proposed AdaptNet approach is effective when

adapting pre-trained policies to new character morphologies and

motion styles with relatively little additional training time.

Curriculum learning is also related to skill adaptation since the

agent is trained on tasks with increasing difficulty [Karpathy and

van de Panne 2012; Yu et al. 2018]. The approach is demonstrated

to be effective for training controllers that allow agents to traverse

environments of increasing complexity [Heess et al. 2017; Xie et al.

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

AdaptNet: Policy Adaptation for Physics-Based Character Control • 177:3

2020] and recover to standing [Frezzato et al. 2022] under increas-

ingly challenging conditions. In comparison, we demonstrate that

our approach efficiently allows a physically simulated humanoid to

adapt pre-trained walking and running skills to new terrains as well.

However, the aim for curriculum learning is somewhat different

than our own in that it is usually used as a means to develop a single

advanced skill while we focus on the ability to generalize from one

behavior to many.

2.2 Transfer Learning
In machine learning, a common approach for model adaptation is to

start with a pre-trained model and fine tune it on a new task. Over

the years a number of architectures have been proposed to overcome

the overfitting and expressivity issues of finetuning, including GAN-

inspired approaches for domain adaptation [Ganin et al. 2016; Tzeng

et al. 2017] and adding newmodels to previously learnt ones through

lateral connections [Rusu et al. 2016b, 2017]. To facilitate better

model transfer, algorithms have been explored that account for

entropy optimization [Haarnoja et al. 2017; Wang et al. 2021]. As

well, others directly manipulate the source task domain through

randomizing physical parameters of the agent and/or environment

while adapting the source domain to the target one [Ganin et al. 2016;

Peng et al. 2018b; Rajeswaran et al. 2017]. To encourage diversity

during early training, recent work on transfer learning has also

explored a multi-task paradigm where a model is pre-trained on

many tasks before being transferred to a new target domain [Alet

et al. 2018; Devin et al. 2017]. Some multi-task transfer learning

solutions include policy distillation that seeks to “distill” knowledge

from expert policies to a target policy [Parisotto et al. 2016; Rusu

et al. 2016a]. Another approach with a similar goal is policy learning

which learns a residual around given expert policies [Silver et al.

2019].

Meta learning has also gained popularity recently in computer

vision and robotics, seeking to leverage past experiences obtained

from many tasks to acquire a more generalizable and faster model

that can be quickly adapted to new tasks [Andrychowicz et al. 2016;

Ravi and Larochelle 2017]. The related formulations can be broadly

classified into models that ingest a history of past experiences

through recurrent architectures [Duan et al. 2016; Heess et al. 2015],

model-agnostic meta-learning methods [Finn et al. 2017; Nichol

et al. 2018], and approaches for meta-learning hyperparameters,

loss functions, and task-dependent exploration strategies [Gupta

et al. 2018; Houthooft et al. 2018; Xu et al. 2018].

While some of the aforementioned approaches have shown great

promise for agent control problems, in this paper, we propose an

approach that can quickly adapt RL policies for physically simulated

humanoids through fine control tuning as well as augmentation

injected in the latent space, loosely inspired by recent findings in

image diffusion [Hu et al. 2021; Mou et al. 2023; Zhang and Agrawala

2023]. In character animation, related work has focused on motion

style transfer tasks for kinematic characters [Aberman et al. 2020;

Mason et al. 2018] and the recent work of Starke et al. [2022] shows

exciting results about how awell-learned latent space can aidmotion

synthesis. However, in physics-based character control tasks, there

is still little investigation about the latent space representation of the

control policy obtained using reinforcement learning frameworks.

We believe that AdaptNet provides a promising step in bridging that

gap.

2.3 Latent Space Adaptation
We are inspired by research in image and 3D model generation that

shows it is possible to control the synthesis process to generate

targeted artifacts through purposeful modification of the latent

space [Abdal et al. 2019; Berthelot et al. 2017; Bojanowski et al.

2018; Epstein et al. 2022; Karras et al. 2020; Radford et al. 2016;

Shen et al. 2020; Wu et al. 2016; Zhuang et al. 2021]. While we

have seen related work in RL for character control, AdaptNet offers

a unique approach to latent space adaptation, drawn from these

adjacent works’ successes. Related works in physics-based character

control, such as [Juravsky et al. 2022; Ling et al. 2020; Peng et al.

2019, 2022; Tessler et al. 2023; Won et al. 2021], explore using pre-

trained latent space models to facilitate the training of a control

policy. These methods intend to adapt the pre-trained multi-skill

model for downstream tasks by controlling skill latent embeddings,

focusing on reusing skills for motion generation. In contrast, our

approach does not break down the latent space by task and character

state and instead allows the policy to be adapted to heterogeneous

tasks that require learning new (out-of-distribution) motions/skills.

Further, previous methods discard the pre-trained latent encoder

during adaptation and rely on re-training to obtain a new encoder. In

contrast, our approach directly edits the latent space projected from

the association of the task and character state via the pre-trained

policy. To do this, we use a gated recurrent unit (GRU) [Chung

et al. 2014] layer as the encoder and initialize it by duplicating

the original encoder parameters. Next, a fully connected layer is

applied after the GRU to ensure zero initialization and convert the

encoded state to a latent modification. In sum, the training for our

adaptation starts from modifying the pre-trained policy rather than

from scratch, which benefits adaptation in comparison to previous

work in sample efficiency and, at times, overall effectiveness.

3 ADAPTNET FRAMEWORK
An overview of the AdaptNet framework is shown in Figure 2. The

GAN-style control framework (top), described below, produces an

original (pre-trained) policy (bottom, left) while AdaptNet is used to

adapt that pre-trained control policy to a new task controller (bot-

tom, right). Notably, the adaptation process could involve changes

to the reward function (e.g., motion stylization) or the state and

dynamics model (e.g., character morphology and terrain adaptation).

Components of the AdaptNet for policy adaptation are shown: a

latent space injection component and an internal adaptation compo-

nent. The latent space injection performs policy adaption by editing

the latent space, which is conditioned on the pre-trained policy’s

state as well as any additional state information, for example, for new

tasks. This component is trained to cooperate with the pre-trained

policy by generating offsets to the original latent space instead of

trying to learn how to generate latent variables for new tasks from

scratch during adaptation This leads to an efficient state-action ex-

ploration that starts from the pre-trained policy, instead of complete

random exploration. Internal adaptation further tunes the policy by

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

177:4 • P. Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, I. Karamouzas, and V. Zordan

Reference

Motions

Control 
Policy

Critic

ot
Goal-Directed

Task Reward

rt

Simulated Character

st
at

Physics 
Simulator

120Hz30Hz

Critic

PD Controller

Imitation

Reward

task

õt

 zt

 ot

 μt log σt

Eξ

 gt

ℱ1
θ

 st

π

Eϕ

ℱϕ

 ct

ℱ2
θ

Latent Space Injection

ℱi
θ ℱi

η

ℱ1
η

 zi−1t

 zit

 ot gt
 ot

 μt

Eξ

F 1
θ

 st

π

F 2
θ

 gt

ℱ2
η

Internal 
Adaptation

Iϕ

Gϕ

ℱ Zero InitializationParameter Lock EϕEξ Trainable Copy

 log σt

rtimit

Discriminator

1

-1

π

rtimit

5 × 5 × 3 3 × 3 × 3 3 × 3 × 1
Conv. Conv. Conv.

32 × 11 × 11 64 × 3 × 3 128 × 1 × 11 × 35 × 35

ct

ϕ, ηθ, ξ

Fig. 2. Overview of our approach for adapting motor control policies for
physics-based characters. Top: We model both pretraining and adapted
tasks using a multi-critic reinforcement learning framework that balances
the training of imitation and goal-directed control objectives. After a policy
is trained, we can quickly adapt it to a new task using AdaptNet. Bottom:
AdaptNet starts with a copy of the pre-trained policy network and modifies
it through editing the latent space conditioned on the character’s state and
introducing optional adaptation modules for further finetuning.

adding a branch to each internal fully-connected layer in the policy

network. This allows for more flexibility, enabling AdaptNet to shift

away from the pre-trained policy and generate refinement through

control actions that the pre-trained policy may not reach easily.

In our implementation, both the pre-trained policy and the adap-

tation are produced using a multi-objective learning framework [Xu

et al. 2023] combining reinforcement learning with a GAN-like

structure for effective policy learning that accounts for both mo-

tion imitation and goal-directed control (see Figure 2, top). During

runtime, AdaptNet can be activated flexibly and dynamically al-

lowing us to control the level of adaptation of the original control

policy. The control policy 𝜋 (a|s𝑡) is a neural network taking the

agent state s𝑡 as input and outputting a probability distribution

from which a control a𝑡 can be drawn from the action space A.

For physics-based character control tasks with dynamic goals, we

consider s𝑡 := {o𝑡 , g𝑡 }, where o𝑡 denotes the current state of the
character, e.g., joint or body link positions and velocities, and g𝑡
is an optional task-related goal state or an encoding variable that

indicates desired motion parameters, such as target speed and direc-

tion, end-effector positions, motion style, etc. The action vector a𝑡
is the target posture fed to a PD servo through which the simulated

character is controlled at a higher frequency. As shown in Figure 2,

a𝑡 is expressed as a multivariate Gaussian distribution.

Under the framework of reinforcement learning, our goal is to

find the policy 𝜋 that maximizes the discounted cumulative reward:

𝐽 = E𝜏∼𝑝 (𝜏 |𝜋)

[∑︁
𝑡=0

𝛾𝑡𝑟 (s𝑡 , a𝑡)
]
, (1)

where 𝑝 (𝜏 |𝜋) = 𝑝 (s0)
∏𝐻−1

𝑡=0 𝑝 (s𝑡+1 |s𝑡 , a𝑡)𝜋 (a𝑡 |s𝑡) is the state-action
visitation distribution for the trajectory 𝜏 = {𝑠𝑡 , 𝑎𝑡 } over a horizon
of𝐻 time steps, 𝛾 ∈ [0, 1] denotes the discount factor, and 𝑟 (·) is the
reward received at a given time step and 𝑝 (·) is the state-transition
probability of the underlying Markov decision process. In our do-

main, when the character faces a new task, 𝑝 (·) and/or 𝑟 (·) may

change. AdaptNet seeks to efficiently modify 𝜋 and adapt it to the

new task by editing the latent space and finetuning the policy.

4 POLICY ADAPTATION USING LATENT SPACE
INJECTION

If we consider the first layer, or first several layers, in the policy

network 𝜋 as an encoder to embed the state s𝑡 into a latent space
Z, the control policy can be rewritten as

𝜋𝜃 (a𝑡 |E𝜉 (s𝑡)), (2)

where E𝜉 is the encoding layers with parameters 𝜉 , 𝜃 are the param-

eters for the layers in the policy network that follow the encoder,

and (𝜃, 𝜉) denote the weights of 𝜋 . In this formulation, the policy

network 𝜋𝜃 decides the projection from the latent z𝑡 = E𝜉 (s𝑡) into
the action space A. Assuming that 𝜋𝜃 is optimized by a typical

on-policy policy gradient algorithm, the optimization objective with

the introduction of the latent becomes

max

𝜃,𝜉
E𝑡 [𝐴(s𝑡 , a𝑡) log𝜋𝜃 (a𝑡 |𝑧𝑡 ; 𝜉)] , (3)

where 𝐴(·) provides an advantage function estimation based on the

received rewards {𝑟𝑘 }𝑘≥𝑡 during the interaction with the environ-

ment and represents how good an action sample a𝑡 is given the

conditional state s𝑡 .
Given the generalization of neural networks, the latent space

Z can be considered as a superset covering all the possible latent

states, which could lie outside of the domain that 𝜋𝜃 can reach

during its training. Based on this observation, when 𝜋𝜃 needs to

be adapted to a new task, we propose to edit z𝑡 = E𝜉 (s𝑡) ⊂ Z
instead of discarding the original encoder E𝜉 and training a new

one from scratch. The intuition is that for similar tasks, adjusting

the current encoder provides better efficiency, allowing the desired

control policy to be learned by a modified projection function from

s𝑡 to z𝑡 .
Our approach manipulates the full latent space projected from

both the character state o𝑡 and the goal state g𝑡 . Specifically, as

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

AdaptNet: Policy Adaptation for Physics-Based Character Control • 177:5

shown in Figure 2, we perform latent space injection by introducing

a new conditional encoder I𝜙 with parameters 𝜙 after the first

encoding layer, where the character state o𝑡 and the goal state g𝑡
are concatenated to generate E𝜉 . This latent space is modified via

z𝑡 = E𝜉 (s𝑡) + I𝜙 (s𝑡 , c𝑡), (4)

where 𝑐𝑡 is an additional control input for the new task which could

be optional. The injector module I𝜙 is

I𝜙 (s𝑡 , c𝑡) = F𝜙 (Concat(E𝜙 (s𝑡),G𝜙 (ct))), (5)

where G𝜙 is an optional module to process the additional control

input c𝑡 , E𝜙 is a state encoder that has exactly the same structure as

the original encoder E𝜉 , and F𝜙 is a final embedding module, which

can be a fully-connected layer or a stack of multiple fully-connected

layers.

During retraining for adaptation, we perform policy optimization

as in Eq. 3, but only optimize the new parameters 𝜙 while keeping

the parameters 𝜃 and 𝜉 fixed:

max

𝜙
E𝑡

[
𝐴(s𝑡 , a𝑡) log𝜋𝜃 (a𝑡 |E𝜉 (s𝑡) + I𝜙 (s𝑡 , c𝑡))

]
. (6)

We begin with copying the original encoder parameters 𝜉 into the

new encoder E𝜙 and initializing the last fully-connected layer inside

F𝜙 with zero weight and bias. In this way, the new encoder E𝜙
is optimized by finetuning a set of parameters that are already

optimized for state feature extraction during pre-training. The zero

initialization of F𝜙 lets the control policy give exactly the same

action output as the original pre-trained one, i.e., 𝜋𝜃 (a𝑡 |E𝜉 (s𝑡)), at
the beginning of re-training. It guides the adaptation to start from

the state-action trajectory generated by the original policy rather

than from a completely random exploration.

We refer to Figure 2 for the default implementation of AdaptNet,

where the latent space injection is performed right after the con-

catenation of o𝑡 and g𝑡 . We denote this latent space as Z0
, and the

following ones after each fully-connected layer but before the final

action layer as Z𝑖
where 𝑖 = 1, 2, · · · . Empirically, we note that it

is more challenging to perform optimization when the injection

occurs at a deeper layer in the policy network, leading typically to

unstable training and low-fidelity controllers. An extreme case is

to perform injection directly at the action space, which makes the

whole system similar to directly finetuning the pre-trained policy

network. We refer to Section 9 for related sensitivity analysis on

introducing latent space injection at different network layers and for

comparisons with directly finetuning a pre-trained policy network

for new tasks.

During runtime, we can further introduce an extra scaling coef-

ficient to the injection term in Eq. 4. Since our approach does not

change the original encoder E𝜉 as well as the policy 𝜋𝜃 , the scale

coefficient allows us to turn the injection on and off, or control the

transition from the original policy to the fully adapted one. In such

a way, we can perform motion style or behavior transitions (e.g.,

walk to skip) by interpolation in the latent space, as we will show

in Section 8.1.

5 INTERNAL ADAPTATION FOR CONTROL LAYERS
The latent space injection component of AdaptNet edits the latent

space based on the input state and further allows us to introduce

additional control input for new tasks. However, the expressive

ability of the action policy is still constrained by the pre-trained

layers after the state encoder in the policy network, i.e., 𝜋𝜃 . While

utilizing the pre-trained 𝜋𝜃 for fast adaptation to new tasks, we

introduce an internal adaptation component through which we can

finetune 𝜋𝜃 , overcoming the bias it introduces and allowing for

more flexibility in the types of generated controls compared to the

ones obtained from the original training domain. The goal of the

finetuning is to find a small increment Δz𝑖𝑡 to the original latent z
𝑖
𝑡 in

each latent space Z𝑖 , 𝑖 > 1, to help optimize the objective function

in Eq. 6 during adaptation training, but without changing the 𝜋𝜃
too much to avoid drifting too far away from the pre-trained policy

and being stuck at overfitting during adaptation. To do so, we add

a branch to each fully-connected layer between two latent spaces.

As shown in the red block of Figure 2, the corresponding latent is

generated as:

z𝑖𝑡 = F 𝑖
𝜃
(z𝑖−1𝑡) + F 𝑖

𝜂 (z𝑖−1𝑡). (7)

Here, F 𝑖
𝜃
denotes the fully-connected layer between the latent space

Z𝑖−1
and Z𝑖

in the policy network 𝜋𝜃 , and F 𝑖
𝜂 is the newly in-

troduced adaptor that generates Δz𝑖𝑡 and is modeled as a fully-

connected layer in the added branch. The parameter 𝜂 is defined

as

𝜂 := {ΔW𝑖 ,Δb𝑖 }, (8)

with ΔW𝑖 and Δb𝑖 being the weight and bias parameters in F 𝑖
𝜂

respectively. Similarly to the embedding module F𝜙 in the latent

space injection component, F 𝑖
𝜂 is initialized as zero and will not

influence the output of the policy network at the beginning of

policy adaptation. We lock 𝜃 in F 𝑖
𝜃
during adaptation training and

introduce the parameter 𝜂 into the optimization function in Eq. 6.

Our approach is different from directly finetuning 𝜋𝜃 . When di-

rectly finetuning 𝜋𝜃 , the gradient from z𝑖𝑡 with respect to z𝑖−1𝑡 is

decided by the weight W𝑖 in the layer F 𝑖
𝜃
, which may be highly bi-

ased and have relatively large or very small values given it was fully

trained. Therefore, finetuning 𝜋𝜃 directly for new tasks may lead to

unstable training compared to only finetuning the newly introduced

parameter set 𝜂 which is initialized with zero. Furthermore, we can

easily apply regularization on ΔW𝑖 and Δb𝑖 to prevent aggressive

finetuning regardless of the value of the parametersW𝑖 and b𝑖 in
the pre-trained layer F 𝑖

𝜃
. This will limit the possible change that

the internal adaptation can bring about in order to prevent overfit-

ting. We can also introduce an extra scaling weight to control the

adaptation level during runtime, as discussed in Section 4.

Our proposed internal adaptation component is similar to the ap-

proach of low-rank adaptation (LoRA) proposed by Hu et al. [2021].

The major difference is that instead of directly employing a fully-

connected layer, LoRA decomposes the weight matrix ΔW𝑖 into

two low-rank matrices, i.e., ΔW𝑖 = B𝑖A𝑖 , where, B𝑖 is a |Z𝑖−1 |-by-𝑟
matrix, A𝑖 is a 𝑟 -by-|Z𝑖 | matrix, and 𝑟 ≪ min(|Z𝑖−1 |, |Z𝑖 |). In
contrast, our approach can be considered a full-rank adaptation.

LoRA has been demonstrated as an effective way to fine tune large

language and image generation models, reducing the number of

parameters that need to be optimized during model adaptation.

However, as shown in Section 9.3, we found that LoRA does not

work well for physics-based character control tasks. A possible

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

177:6 • P. Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, I. Karamouzas, and V. Zordan

ALGORITHM 1: Policy Adaptation using AdaptNet

Obtain the policy 𝜋𝜃 and the state encoder E𝜉 by performing training
to optimize Eq. 9 in a general or default environment setting.

1 Build up the latent space injection component I𝜙 based on Eq. 5 and

the internal adaptation component {F𝑖
𝜂 } based on the Eq. 7.

2 Lock the parameters 𝜃 and 𝜉 .

3 Initialize E𝜙 using the pre-trained parameter 𝜉 .

4 Initialize the last layer inside F𝜙 and each F𝑖
𝜂 using zero weight and

bias.

5 Adapt the policy for a new task by only optimizing the parameters 𝜙

and 𝜂 using Eq. 12.

reason is that the related policy networks are markedly smaller

compared to large language and image generation models that may

have more than 12K dimensions. The latent spaces of our policy

network have a typical size of 512 or 1024 dimensions and may not

exhibit the lower intrinsic ranks that larger models do [Aghajanyan

et al. 2021; Li et al. 2018; Pope et al. 2021].

6 POLICY TRAINING
We use the multi-objective learning framework for physics-based

character control proposed by Xu et al. [2023] to perform both

the original (pre-)training and adaptation training. The framework

leverages a multi-critic structure where the objectives of motion

imitation and goal-directed control are considered independent

tasks during policy updating. In Figure 2, for example, the imitation

objective is associated with a critic network labeled in blue, and the

goal-directed objective is associated with a critic in magenta. The

advantage (cf. Eqs. 3, 6) with respect to each objective is estimated

only by its associated reward and critic network. To ensure that

the policy can be updated in a balanced way taking into account

both the imitation and goal-directed control objectives, all estimated

advantages are standardized independently before policy updating.

During pre-training, we seek to find a basic motor control policy

𝜋𝜃 (a𝑡 |E𝜉 (s𝑡)), which we can later adapt to new tasks. In this work,

we focus on locomotion tasks, and thus 𝜋𝜃 involves two objectives:

a motion imitation objective given a batch of reference motions

of walking and running, and a goal-directed objective involving a

given target direction and speed. Using the multi-objective learning

framework, the optimization objective function during pretraining

shown in Eq. 3 can be written as

max

𝜃,𝜉
E𝑡

[(∑︁
𝑘

𝜔𝑘𝐴
𝑘
𝑡

)
log𝜋𝜃

(
a𝑡 |E𝜉 (s𝑡)

)]
,

(9)

where 𝐴𝑘
𝑡 is the standardization of the estimated advantage asso-

ciated with the objective 𝑘 and 𝜔𝑘 satisfies

∑
𝑘 𝜔𝑘 = 1 providing

additional control to adjust the policy updating in a preferred man-

ner when conflicts between multiple objectives occur.

We employ a GAN-like structure [Ho and Ermon 2016; Merel

et al. 2017] that relies on an ensemble of discriminators [Xu and

Karamouzas 2021] to evaluate the imitation performance and gen-

erate the corresponding reward signals for advantage estimation

and policy updating. In particular, we take an ensemble of 𝑁 dis-

criminators and use a hinge loss [Lim and Ye 2017] with policy

gradient [Gulrajani et al. 2017] for discriminator training, resulting

in the following loss function:

min

1

𝑁

𝑁∑︁
𝑛=1

(
E𝑡 [max(0, 1 + 𝐷𝑛 (o𝑡))] + E𝑡 [max(0, 1 − 𝐷𝑛 (õ𝑡))]

+𝜆GPE𝑡
[
(∥∇ô𝑡𝐷𝑛 (ô𝑡)∥2 − 1)2

])
.

(10)

Here, 𝐷𝑛 denotes a discriminator network, ô𝑡 = 𝛼o𝑡 + (1 − 𝛼)õ𝑡
with 𝛼 ∼ Uniform(0, 1) and 𝜆GP is gradient penalty coefficient. The

reward function to evaluate the imitation performance is defined as

𝑟 imit (s𝑡 , a𝑡 , s𝑡+1) =
1

𝑁

𝑁∑︁
𝑛=1

Clip (𝐷𝑛 (o𝑡),−1, 1) . (11)

The reward for the goal-related task is computed heuristically. We

refer to the appendix for the representation of the goal state g𝑡 and
the definition of the goal-related task reward.

After obtaining 𝜋𝜃 and E𝜉 in pre-training, we introduce the pro-

posed AdaptNet to perform policy adaptation for new tasks that

are relative to but have different reward definitions and/or envi-

ronment settings from the one in the pre-training phase. Before

the adaptation training starts, we lock the parameters 𝜃 and 𝜉 . We

then initialize E𝜙 inside the latent space injection component I𝜙
using the weights 𝜉 , and initialize with zero weight and bias the last

layer of F𝜙 inside I𝜙 along with each fully-rank adaptor F 𝑖
𝜂 , 𝑖 > 0.

To stabilize the training, besides applying a common weight decay

to the parameter set 𝜂 (Eq. 7) via L2 regularization, we introduce

an additional regularization on the latent injection generated by

I𝜙 . The adaptation training is still performed under the aforemen-

tioned multi-objective learning framework in the same way as the

pre-training phase. The optimization objective for policy adaptation

is

max

𝜙,𝜂
E𝑡

[(∑︁
𝑘

𝜔𝑘𝐴
𝑘
𝑡

)
log𝜋𝜃

(
a𝑡 |E𝜉 (s𝑡) + I𝜙 (s𝑡 , c𝑡);𝜂

)
−𝛽 ∥I𝜙 (s𝑡 , c𝑡)∥2 − 𝜅∥𝜂∥2

]
,

(12)

where 𝛽 and 𝜅 are regularization coefficients. In Section 10, we give

a detailed analysis of the regularization on the latent space injection.

We refer to Algorithm 1 for the outline of the whole training

process. Adaptation with the proposed AdaptNet can be done very

quickly within 10-30 minutes for simple control tasks and up to

4 hours for challenging terrain adaptation tasks with new control

input processed by an additional convolutional neural network G𝜙 ,

as defined in Eq. 5.

7 EXPERIMENTAL SETUP
Our experiments were run using IsaacGym [Makoviychuk et al.

2021] with 512 environments running in parallel during training.

The simulated character has 15 body links and 28 degrees of freedom,

where the elbow and knee joints are implemented as 1-dimensional

revolute joints, and the hands are fused with the forearms and

uncontrollable. All simulations run at 120Hz with a normal PD

controller employed as the low-level actuator to directly manipulate

the simulated character, while the control policy runs at 30 Hz, as

shown in Figure 2.

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

AdaptNet: Policy Adaptation for Physics-Based Character Control • 177:7

FC

(1024)

FC 
(512)

ℱ2
θ

 z2t

GRU

 st

 gt

 μt log σt

 ℱ1
θ

 ℱ2
θ

 z0t

 z1t

 z2t

 ot

 μt log σt

FC
(1024)

FC
(512)

GRU

 gt

ℱ1
θ

 st

 ot

 μt log σt

GRU

 gt

 st

FC
(1024)

FC
(512)

 ℱ1
θ

 ℱ2
θ

 ξE ξE

(a) Policy Network

FC

(1024)

FC 
(512)

ℱ2
θ

 z2t

GRU

 st

 gt

 μt log σt

 ℱ1
θ

 ℱ2
θ

 z0t

 z1t

 z2t

 ot

 μt log σt

FC
(1024)

FC
(512)

GRU

 gt

ℱ1
θ

 st

 ξ

 vt

FC
(1024)

FC
(512)

 vt
imit task

 ot

GRU

 gt

 st

E

G

 ct

(b) 2-Head Value Network

…

FC

(1024)

FC 
(512)

ℱ2
θ

 z2t

GRU

 st

 gt

 μt log σt

 ℱ1
θ

 ℱ2
θ

 z0t

 z1t

 z2t

 ot

 μt log σt

FC
(1024)

FC
(512)

GRU

 gt

ℱ1
θ

 st
 ot

FC
(256)

FC
(128)

GRU

imit rt

FC
(32)

 ξE

 ot+1

(c) Discriminator

Fig. 3. Network structures. Here, ⊙ denotes the concatenation operator
and ⊖ denotes the average operator. The state encoder E𝜉 is shown in the
dashed block. An optional control input encoding module G is included if
the additional control input c𝑡 is provided during adaptation training.

We run policy optimization using PPO [Schulman et al. 2017]

and update policy parameters using the Adam optimizer [Kingma

and Ba 2017]. To encode the character’s state, we take the position,

orientation, and velocities of all the body links related to the pelvis

(root link) in the last four frames as the state representation o𝑡 and
employ a gated recurrent unit (GRU) [Chung et al. 2014] with a

256-dimension hidden state to process this temporal state. For dis-

criminator training, we take the character’s pose at five consecutive

frames as the representation of {o𝑡 , o𝑡+1} to evaluate the policy’s

imitation performance during the transition from timestep 𝑡 to 𝑡 + 1.

We employ an ensemble of 32 discriminators and model it by a

multi-head network, as shown in Figure 3. The critic network has a

similar structure to the policy network, but with a 2-dimensional

output for the value estimations to the imitation objective and goal-

directed objective respectively. We refer to the appendix for the

hyperparameters used for policy training and the representation of

the goal state g𝑡 in the locomotion task.

Rewards for both task and imitation are employed during policy

adaptation. To avoid bias from the pre-trained policy, we discard

the discriminators for imitation from the original policy and new

discriminators are trained from scratch. Intuitively, in tasks such as

motion style transfer the original discriminator will not work well

for the new given reference style and thus a new one is needed. Even

for other adaptation tasks, we found utilizing old discriminators to

be problematic, as the optimal action in the new task can dramati-

cally change from the original in the context of how it employs the

reference motion. Empirically, when we experimented with reusing

the old discriminators, we found they introduce too much bias to-

wards the old task. Finally, with training new discriminators for a

new task, we also perform value estimation by re-training a new

critic from scratch.

All our tests were run on machines with a V100 or A100 GPU.

To achieve a good locomotion policy based on which we perform

further adaptation, the pre-training took around 26 hours and con-

sumed 4 × 10
8
training samples. The reference motions are around

Table 1. Reference motions for policy pre-training (top) and stylized motion
learning (bottom).

Motion Length Description

Walk 334.07 s normal walking motions for pre-training

Run 282.87 s normal running motions for pre-training

Swaggering Walk 1.07 s exaggerated walking with one arm akimbo

Goose Step 2.20 s goose step with arms akimbo

Stomp Walk 1.23 s walking while stomping on the ground

Kicking Walk 2.03 s walking with leg kicking

Stoop 0.93 s slow walking with body bent over

Jaunty Skip 1.60 s skipping in a spirited manner

Sashay Walk 1.07 s walking in a slightly exaggerated manner

Limp 1.90 s slow walking with right leg hurt

Pace 1.70 s slow walking with arms akimbo

Penguin Walk 0.77 s moving with very small and steps

Strutting Walk 1.40 s walking with shoulder moving aggressively

Joyful Walk 1.20 s strut walking rhythmically

300 seconds long including normal walking and running motions

with turning poses and various speeds (cf. Table 1, top). All the refer-

ence motions used during pre-training and adaptation training are

recorded at 30 Hz and extracted from the publicly available dataset

LAFAN1 [Harvey et al. 2020].

8 APPLICATIONS OF ADAPTNET
In this section, we apply the AdaptNet technique to demonstrate

the success and efficiency of learning new physics-based controllers

through adaptation. Our experiments use two pre-trained locomo-

tion policies (walking and running) that account for two objectives:

motion imitation based on a batch of walking or running reference

motions, respectively, and a goal objective as defined by a target

direction of motion and speed. We adapt the pre-trained policies to

a range of new tasks, highlighting applications of AdaptNet to style

transfer, character morphology changes and adaptation to different

terrains. Figure 1 shows snapshots from different outcomes. Please

refer to the supplementary video for related animation results.

8.1 Motion Style Transfer and Interpolation
We consider a variety of motion style transfer tasks where a pre-

trained walking locomotion policy is adapted to a particular style.

Note, this is not a simple motion imitation task, since all the style

reference motions are very short (see Table 1, bottom), containing

only one or two gait cycles. It is therefore impossible to train an

equivalent locomotion policy that supports goal-directed steering

using the target reference motion. Instead, the nature of this test

is few-shot learning, where AdaptNet is expected to effectively

learn how to perform locomotion in the style provided by the small

duration of the style example in the new reference, while relying on

the pre-trained policy to perform turning and goal-directed steering.

Figure 5 depicts related qualitative results. AdaptNet can effectively

learn how to do goal-directed turning in the provided style. Further,

adaptation training can be done very quickly, within 10-30 minutes,

in contrast to the original that we obtained during pre-training took

about one day for training. We refer to the supplementary video for

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

177:8 • P. Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, I. Karamouzas, and V. Zordan

0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00

Fig. 4. Motion interpolation between walking (pre-trained policy) shown at the top-left corner and different stylized motions by controlling the adaptation
level of the associated AdaptNet model (cf. Eq. 13). Snapshots on the left show the learned stylized motions of Stoop walking and Jaunty Skip. When 𝛼 = 0, the
character is controlled only by the original walking policy. When 𝛼 = 1, the character is controlled with a full injection of AdaptNet.

Fig. 5. Example of motion style transfer learning with goal-steering navi-
gation using AdaptNet. Green arrow indicates the dynamically generated
target directions for locomotion control.

animation results, and Section 9 for comparing AdaptNet to learning

stylized locomotion from scratch.

As discussed in Sections 4 and 5, we can perform motion interpo-

lation in the latent space by introducing a scale variable to control

the adaptation level. This process can be described by modifying

Eqs. 4 and 7 as

z0𝑡 = E𝜉 (s𝑡) + 𝛼I𝜙 (s𝑡 , c𝑡),
z𝑖𝑡 = F 𝑖

𝜃
(z𝑖−1𝑡) + 𝛼F 𝑖

𝜂 (z𝑖−1𝑡),
(13)

where 𝛼 ∈ [0, 1] is the introduced scale variable. In Figure 4, we

show interpolation results. As shown in the figure, we can achieve

motions with different style intensity, which can transition between

the base walking motion and the stylized ones in a smooth manner.

We can further extend Eq. 13 to perform interpolation between

any two AdaptNet models via

z0𝑡 = E𝜉 (s𝑡) + 𝛼I𝜙 ′ (s𝑡 , c𝑡) + (1 − 𝛼)I𝜙 ′′ (s𝑡 , c𝑡),
z𝑖𝑡 = F 𝑖

𝜃
(z𝑖−1𝑡) + 𝛼F 𝑖

𝜂′ (z𝑖−1𝑡) + (1 − 𝛼)F 𝑖
𝜂′′ (z𝑖−1𝑡),

(14)

where the parameters 𝜙 ′ and 𝜂′ are from one AdaptNet model and

𝜙 ′′ and 𝜂′′ are from the other one. Such an interpolation scheme

can be regarded as applying two independently trained AdaptNet

models simultaneously on the same, pre-trained policy, with an

example shown in Figure 6.

The above interpolation results demonstrate that during adapta-

tion training, AdaptNet can effectively learn structured information

about the latent space with respect to the desired motion styles. We

refer to Section 10 for more details on controlling the latent space

and related visualizations, along with an analysis of the training

difficulty (time consumption) when learning different styles.

8.2 Morphological Adaptation
We consider two kinds of morphological changes: body shape and

joint lock. Due to physical constraints, morphological changes in

the character model will cause the same action a𝑡 to lead to different
resulting states compared to the ones observed in the pre-training

phase. Without adaptation, the pre-trained policy does not perform

well if it’s even able to keep the character balanced, especially when

the lower body is modified.

We tested eight body-shape variants of the original character

model, as shown in Figure 7. In the LongBody variant, we extend the

abdomen length by 50%, while the BigBody variant increased the

torso size by 50%. The latter leads to an increase in the torso mass

of over 300%. In LongUpperArms and LongLowerArms variants, the
length of the upper and lower arms are extended by 25% respectively,

while in AsymmetricUpperArms, we increase the length of the right

upper arm but decrease the length of the left upper arm. In the

LongThighs and LongShins variants, the length of the upper and

lower legs are extended by 50% respectively, the latter akin to a

human walking on stilts. In the model of SuperLongLegs, both the

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

AdaptNet: Policy Adaptation for Physics-Based Character Control • 177:9

Fig. 6. Motion interpolation in the latent space by activating and switching between multiple AdaptNet models to let the character perform style transition
interactively during goal-steering navigation.

Fig. 7. Character models with body shape variants. From left to right: Long-
Body, BigBody, LongUpperArms, LongLowerArms, AsymmetricUpperArms,
LongThighs, LongShins, and SuperLongLegs.

Fig. 8. Character models with joints being locked. From left to right, the
locked joints are abdomen, elbows, ankles, and right knee respectively
(shown in red). Corresponding body parts between a locked joint are high-
lighted in orange.

thighs and shins are extended resulting in a character that is over

2 m tall.

We also experimented with different configurations, as shown

in Figure 8, where some of the joints (in orange) are ‘locked’. The

locked joints are removed from the character model such that the

linked body parts are fused together. This reduces the number of

dimensions of the action space. To make the pre-trained policy

compatible with the new action space, we simply prune the weight

and bias matrices of the last layers in the policy network and remove

the output neurons corresponding to the locked joints.

Even though the pre-trained policy would not completely lose

control of the character when the torso or arms are modified, the

character still loses balance quite often. As more challenging ex-

amples, the morphological changes in the lower body parts and

joints leave the pre-trained policy unable to control the character

without falling. For example, when the knee joint is locked, the

policy needs to adjust the output of the hip and ankle in order to

compensate for the ‘disability’ of the knee. This requirement leaves

the pre-trained policy incapable of suitably controlling the modified

character model.

During adaptation, we did not do any retargeting to generate

new reference motions for AdaptNet to learn. Instead, we simply

modify the character’s model while relying on the reference motions

used to pre-train the original policy, retargeted to the character

model without any morphological changes. We found it takes 15-30

minutes to finish the adaptation training depending on the difficulty

of the morphology change task. The character controlled by the

AdaptNet policy can maintain its balance and walk or run without

falling down. An interesting observation is that in order to match

the provided height of the root link (pelvis) in the reference motions,

the AdaptNet policy will control the character to walk or run in a

crouch with the body at a relatively low position compared to the

leg length. We show some representative results in Figure 9, and

refer to the supplementary video for animations.

8.3 Terrain Adaptation
Next we discuss policy adaptation for character locomotion on low

friction and rough terrains as well as obstacle-filled scenes that

require extra control input.

8.3.1 Friction Adaptation. To simulate an icy surface, we signif-

icantly reduce the ground friction. In particular, we decrease the

friction coefficient from 1 to 0.15 for walking and to 0.35 for running.

Figure 10 compares results obtained for the running policy with and

without using AdaptNet. Note, AdaptNet can effectively control the

character to change its moving direction by sliding on its feet, as

shown in the left example of the figure. In addition, using AdaptNet,

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

177:10 • P. Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, I. Karamouzas, and V. Zordan

Fig. 9. Adapting the locomotion policy of running to characters with different body shapes and locked joints.

Fig. 10. Comparison of characters controlled with and without AdaptNet running on an ice floor with very low friction. Left: character controlled with
AdaptNet slides and skids on the ice ground while running. Right: character without AdaptNet slips down.

the character lowers its center of mass and takes quick steps to main-

tain its balance. In contrast, with the original policy, the character

cannot run on the icy ground without falling down. For walking, the

AdaptNet controller is more cautious with the character preferring

to stop and change its direction in place. Without using AdaptNet,

the character tends to turn around with a bigger radius, but not

slow down. This demonstrates the ability of AdaptNet to change

the behavior provided by the original policy to make it better suited

to new environmental settings.

8.3.2 Terrain Adaptation with Additional Control Input. To test

AdaptNet with extra control input, we designed several experi-

ments where the character is asked to do goal-steering navigation

in challenging environments with procedurally generated terrains.

A local heightmap is provided as the additional control input c𝑡
through which the character is expected to adjust its motions to

prevent falling down during walking. The heightmap is extracted

locally based on the character’s root position and aligned with the

orientation of the root, with a left and right horizon of 1.7 m, back-

ward horizon of 1 m and forward horizon of 2.4 m. To process the

heightmap c𝑡 , we introduce a convolutional neural network (CNN)

as the encoding module G𝜙 (see Eq. 5) for AdaptNet. We refer to

the appendix for the network structure of the CNN. An extra map

encoding module having the same structure with G𝜙 is added to

the critic network for value estimation during adaptation. We show

representative examples of our tested terrains in Figure 11 and note

the appendix also gives more detail on terrain.

We refer to the companion video for the navigation performance

of the character when walking on the designed terrains after adap-

tation training. Even in terrains where the height changes smoothly,

the character teeters under the control of the pre-trained policy

and a minor change in the terrain slope is enough to make the

character stumble. After adaptation training, AdaptNet can enable

the character to smoothly walk and turn on the uneven terrains

Fig. 11. Character controlled with AdaptNet navigates in the environment
with procedurally generated terrains.

without falling. Besides being able to step over low-height obstacles,

the AdaptNet character exhibits intelligent local decision making,

trying not not to step on the edge of the rocks on the rough terrain

and avoids overly rugged paths by altering its moving trajectory to

an easy-to-follow one.

To further demonstrate the ability of AdaptNet to perform local

path planning, we designed a more challenging environment with

uncrossable obstacles randomly placed on the ground. We quali-

tatively show the results in Figure 12. As seen in the figure, the

character controlled with AdaptNet (blue) can successfully walk

around the obstacles. Without accounting for collisions, the charac-

ter controlled solely by the initially trained policy (green) crosses

through the regions where obstacles are placed.

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

AdaptNet: Policy Adaptation for Physics-Based Character Control • 177:11

Fig. 12. Local collision avoidance in an obstacle-filled environment using
AdaptNet. Green characters show the movement trajectory generated by
the original walking policy without AdaptNet.

Unsurprisingly, the introduction of the CNN (detailed in Appen-

dix B) increases the time needed to perform policy optimization

iterations in the training for rough terrains. Still, for the easier

terrains, training can be done within 1.5 hours. The more rugged

terrain took around 4 hours for training. Finally, it took around 22

hours to train adaptation for the local obstacle avoidance test case.

We note that this is still less time than is needed for training the

original flat-ground locomotion policy from scratch (26 hours).

8.4 Perturbation Adaptation
In a final experimental foray, we investigate AdaptNet’s ability

to improve the handling of perturbations. Although the original

policy can handle small perturbations, the character will still fall

under larger impulses. In order to achieve more robust control,

we adapt the control policy’s ability to maintain balance in the

presence of large disturbances. We begin with pre-trained policies

for target-directed locomotion for walking and running. During the

training process, we randomly apply perturbations (1000 N, lasting

for 0.2 seconds) in different directions on the character’s torso. With

adaptation training of around 5 hours, the character is able to stay

balanced against comparable impulses following training for both

running and walking tasks. In contrast, the original controls are not

able to handle such perturbations repeatably and they often lead

to the characters falling over. Furthermore, we also observe that

AdaptNet control adjusts the character’s footsteps to recover balance

when the character is highly out of balance due to perturbations. A

comparison of the original policy and our results can be seen in the

supplementary video.

9 ABLATION STUDIES
In this Section, we compare the performance of AdaptNet to different

baselines along with performing sensitivity analysis on the two

components of the proposed AdaptNet technique.

0 1 2 3 4 5 6 7 8
×106

0.0

0.2

0.4

0.6

0.8

1.0

T
a
sk

R
ew

ar
d

Limp

0 1 2 3 4 5 6 7 8
×106

0.0

0.2

0.4

0.6

0.8

1.0

Pace

0 1 2 3 4 5 6 7 8
×106

0.0

0.2

0.4

0.6

0.8

1.0

PenguinWalk

0 1 2 3 4 5 6 7 8

Samples
×106

0.0

0.2

0.4

0.6

0.8

1.0

T
a
sk

R
ew

ar
d

SuperLongLegs

0 1 2 3 4 5 6 7 8

Samples
×106

0.0

0.2

0.4

0.6

0.8

1.0

RightKneeLock

0 1 2 3 4 5 6 7 8

Samples
×106

0.0

0.2

0.4

0.6

0.8

1.0

LowFriction

AdaptNet (Ours) Scratch FT FT + Reg PNet

Fig. 13. Learning performance of our adaptation scheme using AdaptNet,
training from scratch for each task (Scratch), using a progressive network
(PNet), and adaptation via directly finetuning the pre-trained policy (FT)
and finetuning with regularization (FT + Reg). Colored regions denote mean
values ± a standard deviation based on 5 trials. The top row consists of
motion style transfer tasks, while the bottom row focuses on morphological
and terrain adaptation tasks.

9.1 Baseline Comparisons
We consider the following baselines: Scratch where a new policy is

trained from scratch on a given task; FT where we directly finetune

the pre-trained policy network to the newly given task; FT + Reg
where we apply regularization on the weights of the policy network

during finetuning; and PNet where policy adaptation is performed

using a progressive neural network approach [Rusu et al. 2016b].

Figure 13 compares the learning curves for the goal-task perfor-

mance between the baselines and AdaptNet on three style-transfer

tasks (top row) and three adaptation tasks (bottom row), two in-

volving changes in the character’s morphology and one for lowered

ground friction. For fair comparison, we employ the same training

setup for all baselines, where the reward function of the new policy

accounts for both a task objective and an imitation objective using

an automatic weighting scheme [Xu et al. 2023]. In the motion style

transfer experiments, the imitation term is computed using a new

discriminator that takes only the stylized motions as the reference

similar to Section 8.1.

As can be seen from the learning curves in Figure 13, Scratch fails

to attain the desired goals in the considered benchmarks, achieving

a very low goal task reward within the given budget of 8M training

samples. FT can effectively modify the locomotion policy in the

bottom three tasks where the character’s morphology or environ-

mental friction changes. However, in the motion style transfer tasks,

the reward curve of FT noticeably drops after the training begins as

FT overfits the imitation of the newly provided stylized reference

motion and ignores the goal direction signal. In contrast, AdaptNet

provides a stable task reward curve during the adaptation training

with the character being able to imitate the newly provided style

without forgetting the previously learned locomotion behaviors

as seen in Figure 14. The above findings are in line with previous

works [Peng et al. 2019; Rusu et al. 2016b] that have shown finetun-

ing to be efficient when the parameters of a pre-trained model need

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

177:12 • P. Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, I. Karamouzas, and V. Zordan

Fig. 14. Top: AdaptNet successfully controls the character to turn during
walking in Pace style. Bottom: The character controlled by FT policy keeps
imitating the reference motion to pace straightly, and fails to turn due
to overfitting. Green arrows indicate the dynamically generated target
directions for locomotion control.

to be slightly adjusted to a new target domain. However, FT can be

susceptible to catastrophic forgetting when the imitation objective

is significantly changed, as in the motion style transfer tasks. FT +
Reg leads to poor training and low-fidelity controllers in all tasks.

While, in theory, adding regularization can improve the navigation

performance, in practice, it is hard to regulate the weights during

finetuning due to the presence of both significant large and small

weights in the pre-trained policy.

PNet shares similarities with AdaptNet as both approaches add

new weights to the original policy network and freeze the old

weights during transfer learning. However, despite these similarities,

the architectures of the two approaches are significantly different.

AdaptNet uses a residual structure that supports merging, resulting

in a single policy network which allows forward propagation in one

pass during inference. In contrast, PNet does not support merging

and requires the original network to be present and run first to

compute the values of the hidden neurons in the added network.

This adds significant complexity and memory overhead, with the

network structure becoming larger and slower. Importantly, dur-

ing training, the added network in PNet cannot start from zero as

compared to AdaptNet. In essence, the zero initialization in Adapt-

Net allows us to guide the adaptation starting from the original

policy. This is clear in the style-transfer tasks, where AdaptNet

begins training with a much higher reward than PPNet due to the

locomotion ability provided by the original policy. Despite its com-

petitive final performance in several of the adaptation tasks, PNet is
sample inefficient. Finally, we note that it can lead to forgetting the

prior knowledge provided by the pre-trained policy as the added

network can significantly change the output of the whole model in

some cases. This can be seen in the Penguin Walk task where the

navigation performance drops after 5M samples.

FC

(1024)

FC 
(512)

GRU

 st

 gt

 μt log σt

 ℱ1
θ

 ℱ2
θ

 z0t

 z1t

 z2t

 st

 z0t

 μt log σt

FC

(1024)

FC 
(512)

GRU

 st

 gt

 μt log σt

 ℱ1
θ

 ℱ2
θ

 z0t

 z1t

 z2t

 z1t

 st

 μt log σt

FC

(1024)

FC 
(512)

GRU

 st

 gt

 μt log σt

 ℱ1
θ

 ℱ2
θ

 z0t

 z1t

 z2t z2t

 st

 μt log σt

FC

(1024)

FC 
(512)

GRU

 st

 gt

 μt log σt

 ℱ1
θ

 ℱ2
θ

 z0t

 z1t

 z2t

 st

 μt log σt

Fig. 15. Injection at different latent spaces. Gray blocks represent the orig-
inal policy network locked during adaptation. Green blocks are the state
encoder E𝜙 , and blue ones are F𝜙 . For left tor right, the manipulated latent
spaces are Z0 (the default implementation of AdaptNet), Z1, Z2 and Z0:2

respectively. We ignore G𝜙 , given that there is no extra control input in the
tested examples here.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.80

-0.75

L
ef

t
F

o
o

t

Strutting Walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.80

-0.70

-0.60

Stomp Walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

-0.80

-0.75

-0.70

-0.65

R
ig

h
t

F
o

o
t

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

-0.80

-0.60

-0.40

Z0 Z1 Z2 Z0:2

Fig. 16. Foot height (in meters) relative to the root when performing adap-
tation for motion style transfer tasks with different latent spaces being
injected. Injection at Z0 (blue) leads to the smoothest and most repeatable
stepping motions.

Overall, AdaptNet consistently outperforms all four baselines in

terms of final performance and sample efficiency. In terms of mem-

ory efficiency, Scratch and FT do not add any overhead. AdaptNet

introduces additional parameters, but since the original network

is frozen, the number of trainable parameters is still at the same

scale with the original neural network when no conditional input,

i.e., 𝑐𝑡 and G𝜙 , is needed. While the the total number of parameters

increases, the effective number of parameters is the same as the

original policy because AdaptNet can be merged into the original

network. In contrast, PNet requires both networks to be present and

effectively doubles the number of parameters.

9.2 Latent Space Injection
Our default implementation performs injection on the latent space

Z0
right after the goal state g𝑡 and character state o𝑡 are encoded

and concatenated together. Here, we test the application of the

injection module to other latent spaces afterZ0
but before reaching

the action space, along with applying injection on all possible latent

spaces simultaneously. To solely study the performance of latent

space injection, we also remove the full-rank adaptation modules for

these tests. The tested network structures are shown in Figure 15.

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

AdaptNet: Policy Adaptation for Physics-Based Character Control • 177:13

To explore how the injection schemes perform differently in gen-

erating new policies, we run tests on several motion style transfer

tasks. During our experiments, we observe qualitatively that injec-

tion at the lower space Z2
or at all the latent spaces Z0:2

, which

also includes the lower one, can easily produce jerky motions with

stiff movements of the torso and legs. It can also lead to failures in

training where the character falls repeatedly after a few training

iterations. In Figure 16, we plot the trajectory of the foot height

in two of our tested cases. While injection at Z0
(blue) leads to a

smooth repeatable trajectory, the curves become more irregular as

the injected latent space changes fromZ1
(green) toZ2

(orange)

and then to Z0:2
(red). We also see some sharp jumps in the curves

of Z2
and Z0:2

, which represent fast motion transitions. We re-

fer to the supplementary video for the animation results including

examples where injection at Z2
and Z0:2

fails.

Overall, our tests show that as the chosen target latent space is

closer to the action space, it becomes more difficult for AdaptNet to

generate desired motions, with 𝑍 0
both intuitively and empirically

giving the best results. This observation is in agreement with recent

work in image synthesis where the target space for manipulation is

usually chosen nearer to the input of the generator rather than near

the final output [Abdal et al. 2019; Karras et al. 2020; Zhuang et al.

2021]. In terms of the network structure in our implementation,

the input state s𝑡 ∈ R784 is encoded into the first latent space

Z0 ∈ R260 and then projected toZ1 ∈ R1024. The whole network,
therefore, can be regarded as an encoder-decoder structure where

the bottleneck is at Z0
. As we will show in Section 10, Z0

is well-

structured which makes it amenable to manipulation for motion

generation.

9.3 Comparison of Adaptation Methods
We quantitatively evaluate the imitation performance of AdaptNet

with other adaptation approaches, including alternate methods with

and without using its internal adaptation component. As in prior

work [Harada et al. 2004; Peng et al. 2021; Tang et al. 2008; Xu and

Karamouzas 2021], we measure the imitation error via:

𝑒𝑡 =
1

𝑁
link

𝑁link∑︁
𝑙=1

∥𝑝𝑙 − 𝑝𝑙 ∥, (15)

where 𝑁
link

is the total number of body links, 𝑝𝑙 ∈ R3 is the position
of the body link 𝑙 in the world space at the time step 𝑡 , and 𝑝𝑙 is the

body link’s position in the reference motion. The evaluation results

are shown in Table 2.

We find our proposed approach to combine latent space adapta-

tion (LSA) and internal adaptation (IA) results in the best perfor-

mance. While the results in Table 2 imply LSA alone is sufficient in

many cases, IA appears to help most in the difficult motion style

transfer tasks, e.g., Goose Step, Jaunty Skip and Joyful Walk, where
the stylized motions are relatively far away from the pre-trained

walking motions. In these tasks, adding IA improves the visual qual-

ity as well as motion smoothness, foot height, and gait frequency as

shown in the supplementary video. It is important to note, however,

that IA alone produces subpar performance. In addition, it cannot

account for the additional control input needed in other adaptation

tasks such as terrain adaptation. Further, even when no additional

Table 2. Imitation error during motion style transfer with different adapta-
tion components. Values are reported in meters in the format of mean±std.

Motion AdaptNet LSA LSA LSA IA(LSA+IA) +LoRA-64 w/o E𝜙

Swaggering 0.05 ± 0.02 0.05 ± 0.02 0.06 ± 0.02 0.11 ± 0.03 0.11 ± 0.03

Goose Step 0.11 ± 0.08 0.18 ± 0.08 0.21 ± 0.12 0.35 ± 0.11 0.36 ± 0.11

Stomp 0.08 ± 0.04 0.10 ± 0.05 0.11 ± 0.06 0.26 ± 0.07 0.27 ± 0.08

Kicking 0.08 ± 0.03 0.08 ± 0.03 0.09 ± 0.05 0.20 ± 0.07 0.21 ± 0.07

Stoop 0.07 ± 0.02 0.07 ± 0.02 0.07 ± 0.02 0.14 ± 0.03 0.13 ± 0.03

Jaunty Skip 0.16 ± 0.09 0.22 ± 0.10 0.25 ± 0.12 0.56 ± 0.18 0.61 ± 0.21

Sashay 0.06 ± 0.03 0.06 ± 0.03 0.06 ± 0.03 0.09 ± 0.03 0.09 ± 0.04

Limp 0.10 ± 0.07 0.10 ± 0.07 0.12 ± 0.07 0.22 ± 0.09 0.29 ± 0.11

Pace 0.09 ± 0.03 0.10 ± 0.03 0.10 ± 0.03 0.14 ± 0.03 0.13 ± 0.03

Penguin 0.11 ± 0.04 0.13 ± 0.05 0.15 ± 0.05 0.31 ± 0.09 0.38 ± 0.13

Strutting 0.09 ± 0.03 0.10 ± 0.05 0.12 ± 0.06 0.23 ± 0.06 0.27 ± 0.06

Joyful 0.17 ± 0.07 0.22 ± 0.09 0.28 ± 0.12 0.54 ± 0.22 0.59 ± 0.24

input is needed, IA components cannot be applied for modification

of the state encoder as we cannot initialize the GRU layer of the

encoder to zero. Latent modification is a distinctive feature of LSA,

rendering Eqs. 4 and 7 unsuitable to be merged into the same for-

mulation. To highlight the importance of the state encoder module

E𝜙 in LSA, we consider an additional ablation where we remove

E𝜙 and connect the output of E𝜉 directly to F𝜙 (see Figure 2). As

shown in Table 2, utilizing just the old latent space embedding is

useful but no more valuable than using internal adaptation.

In addition to ablations to our own architecture, we also compare

our IA component, which can be regarded as a full-rank adaptation

scheme, to the low-rank adaptation (LoRA) scheme [Hu et al. 2021].

LoRA typically works well for adapting large language models with

a low rank ≤ 8. However, we did not find any evident improvement

over just using LSA when an intrinsic rank of 8 was employed.

Even after increasing the rank to 64, the performance gap between

the full-rank adaptation scheme and LoRA still remains as listed in

Table 2. Though using a low-rank decomposition can reduce the

total number of parameters, it increases the computation cost since

one more matrix multiplication is needed for each adaptor. Given

the small size of our policy network, from our findings we conclude

that the full-rank adaptation offers desirable benefits over LoRA.

10 LATENT SPACE ANALYSIS
In this section, we provide more insights on the ability of AdaptNet

to successfully control and modify the latent space.

10.1 Latent Space Visualization
Figure 17 visualizes the latent space for different motion style trans-

fer tasks. For each task, a controller was trained using AdaptNet

starting from the same pre-trained locomotion policy of walking.

During adaptation training here, we use only the latent space in-

jection component as in Z0
for all models. We also remove the

regularization term I𝜙 in Eq. 12 and prolong the training time to let

AdaptNet fit the style motions as much as possible. After training,

we collect samples for each stylized motion from the simulated char-

acter following a straight path without any goal-direction changes.

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

177:14 • P. Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, I. Karamouzas, and V. Zordan

Fig. 17. Latent space visualization with respect to different styles of walk-related motions. The latent representations of the stylized motions are obtained by
AdaptNet without using the internal adaptation component. The walk motion (dark purple) near the center is provided by the pre-trained policy based on
which AdaptNet performs adaptation to learn the stylized motions. The visualization is achieved using multidimensional scaling technique to project the
latent representations from 260 dimensions to 2 dimensions.

We use a multidimensional scaling technique to reduce the dimen-

sion of the collected latent samples.

As seen in the figure, the 2D projection of the latent space exhibits

a circular shape with the pre-trained walking policy (dark purple)

located near the center. There is a clear and roughly continuous

transition when the motion style changes from one to the other,

which demonstrates the well structured nature of the latent space

with the different motion styles. The distribution of the stylized

motion in the visualized space is roughly consistent with the imi-

tation error distribution listed in Table 2 when no internal adaptor

is employed. Motions with smaller imitation errors are distributed

generally closer to the pre-trained policy while Joyful Walk (light

green) has the largest error and is located the farthest away from

the center of the circle. We also note the Penguin Walk (red) and

Pace (light purple) show greater differences in frequency and speed

and appear farther away from the center of the figure. This indicates

that the distribution in the latent space not only reflects the pose

similarity between motions but also some semantic information, like

motion rhythm and gait frequency. Similar conclusions have been

drawn by recent work in the field of image generation, where the

latent space for image generation is considered to capture semantic

information more than just simple color transformations [Epstein

et al. 2022; Jahanian et al. 2020; Shen et al. 2020].

10.2 Latent Injection Regularization
In Figure 18, we show the latent visualizations of several motions

generated by AdaptNet when L2 regularization is applied on the

injected latent. For comparison, we highlight in white each motion’s

distributions in the full latent space shown in Figure 17. In the lower

figures, the dark purple points represent the latent embedding of the

pre-trained walking, while the gray points are generated by the pre-

trained encoder E𝜉 when the simulated character performs stylized

motions. Other colors represent varying levels of regularization, as

shown. The goal of regularization is to ensure that the generated

latent can fall into the manifold composed of the gray dots. This

represents a relatively safe region where the latent space is expected

to be handled properly by the pre-trained policy.

In the Stoop task, there is almost no difference with and without

using the L2 regularization. All visualized samples are overlapped

together and covered by the gray region. This is expected given that

the style motion of Stoop is close to the walking motion in the latent

space. However, in the example of Pace, there is a clear separation
when different regularization coefficients are employed. Note when

a coefficient of 0.1 is taken, the generated stylized motion (orange)

is overlapped with the walking motion (dark purple). AdaptNet, in

this case, is over-regularized. It yields to the pre-trained policy and

fails to adapt the pre-trained policy to perform the desired stylized

motion. In contrast, without regularization (𝛽 = 0), the latent is

already outside of the safe, gray region. AdaptNet, in this case,

simply overfits to imitating the style motion and loses the ability

to perform goal-steering navigation. While in Jaunty Skip, any 𝛽-

value can be employed, in Limp a 𝛽-value of 0.01 best ensures that

the latent space stays into the grey manifold while attaining high

imitation performance. In all adaptation tasks detailed in the paper,

we found 𝛽 = 0.01 to be sufficient. We note that such regularization

is not necessary in other tested adaptation tasks without motion

style transfer. In such cases, the new expected motions are close to

the original policy and already lie in the safe region. We refer to

the supplementary video for a visual comparison of the generated

motions when different regularization coefficients are employed.

11 CONCLUSIONS
This paper presents AdaptNet, an approach for adapting existing

character RL-based control policies to new motion tasks. Our ap-

proach applies two strategies. The first adapts the latent space by

conditioning on the character’s state and allowing the addition of

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

AdaptNet: Policy Adaptation for Physics-Based Character Control • 177:15

β = 0 β = 0.01 β = 0.05 β = 0.1 Walk (Pre-trained)

Fig. 18. Latent space distributions of Stoop, Pace, Jaunty Walk, Limp (left to right). The top figures show the distribution of the stylized motions in the full latent
space without regularization, and the bottom figures show the distribution with regularization applied during adaptation training. Gray points shown in the
bottom figures are the latent embeddings generated by the pre-trained encoder E𝜉 while the character performs the stylized motions. 𝛽 is the regularization
coefficient from Eq. 12.

new control inputs that will allow the control policy to perform new

tasks. The second aims at control refinement which allows policy

adaptation by shifting the original policy and generating new con-

trol actions based on new training. Importantly, AdaptNet training

always begins with having no (zero) influence, starting from the

existing policy and increasing its influence as training proceeds.

We demonstrate that a previously trained control policy for loco-

motion can be adapted to support diverse style transfer, morpholog-

ical changes including limb length variation and locked joints, and

terrain adaptation including varied friction and geometry. These

adaptations are also very efficient to learn. While the original loco-

motion policy requires 26 hours of training, our style adaptations

take less than thirty minutes to produce a full controller that is capa-

ble of goal-directed steering while adhering to a specified walking

style. More extreme adaptations require more time, but training is

still far more efficient than the cost of learning the initial policy.

A core limitation of this work is that policy adaptation requires

an existing pre-trained policy, and thus it cannot act to produce

new motions on its own. While it is capable of migrating the policy

to many new behaviors and conditions, extreme adaptions (e.g.,

training a jumping action with long flight phase from a walking

controller) do not produce the expected results. We believe this is

due to the distinct characteristics of the two behaviors and we see

such ‘deep’ adaptation as a direction for future work. Also, while we

demonstrate smooth interpolation between latent space embeddings

when we employ control-layer refinement, interpolation does not

always produce coherent in-between behaviors. As we show in

Section 9.2, an improper choice of the target latent space could lead

to undesired control results. As such, we found startingwith a proper

latent space is important for obtaining high-quality controllers.

In the current work, we use the recent approach of Xu et al. [2023]

for pre-training an initial policy that is then modified by AdaptNet.

In the future, we would like to see how well other recent approaches

for training physics-based controllers [Peng et al. 2022, 2021; Yao

et al. 2022] can work with our proposed approach. We would also

like to investigate how our approach can be extended to generate

a well-represented latent space that can be further exploited for

motion synthesis. This opens up many avenues for further research,

including latent space disentanglement, inversion, and shaping.

ACKNOWLEDGMENTS
We acknowledge the support of the Natural Sciences and Engineer-

ing Research Council of Canada (NSERC) and the National Science

Foundation under Grants No. IIS-2047632 and IIS-2232066. Support

for the first author was made through a generous gift from Roblox.

The Bellairs Workshop on Computer Animation was instrumental

in the conception of the research presented in this paper.

REFERENCES
R. Abdal, Y. Qin, and P. Wonka. 2019. Image2StyleGAN: How to Embed Images Into

the StyleGAN Latent Space?. In Proc. of the IEEE/CVF Int. Conf. on Computer Vision.
4432–4441.

K. Aberman, Y. Weng, D. Lischinski, D. Cohen-Or, and B. Chen. 2020. Unpaired Motion

Style Transfer from Video to Animation. ACM Trans. Graph. 39, 4 (2020).
A. Aghajanyan, S. Gupta, and L. Zettlemoyer. 2021. Intrinsic Dimensionality Explains

the Effectiveness of Language Model Fine-Tuning. In 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). 7319–7328.

F. Alet, T. Lozano-Perez, and L. P. Kaelbling. 2018. Modular meta-learning. In Conf. on
Robot Learning (Proc. of Machine Learning Research, Vol. 87). 856–868.

M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau, T. Schaul, B.

Shillingford, and N. de Freitas. 2016. Learning to Learn by Gradient Descent by

Gradient Descent. In Neural Information Processing Systems. 3988–3996.
K. Bergamin, S. Clavet, D. Holden, and J. R. Forbes. 2019. DReCon: Data-Driven

Responsive Control of Physics-Based Characters. ACM Trans. Graph. 38, 6 (2019).
D. Berthelot, T. Schumm, and L. Metz. 2017. BEGAN: Boundary Equilibrium Generative

Adversarial Networks. arXiv:1703.10717 [cs.LG]

P. Bojanowski, A. Joulin, D. Lopez-Pas, and A. Szlam. 2018. Optimizing the Latent

Space of Generative Networks. In Int. Conf. on Machine Learning (Proc. of Machine
Learning Research, Vol. 80). 600–609.

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

https://arxiv.org/abs/1703.10717

177:16 • P. Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, I. Karamouzas, and V. Zordan

J. Chemin and J. Lee. 2018. A Physics-Based Juggling Simulation Using Reinforcement

Learning. In ACM SIGGRAPH Conf. on Motion, Interaction and Games. Article 3.
J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. 2014. Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling. In NIPS 2014 Workshop on Deep
Learning.

C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine. 2017. Learning Modular Neural

Network Policies for Multi-Task and Multi-Robot Transfer. In IEEE Int. Conf. on
Robotics and Automation. 2169–2176.

Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. 2016. RL
2
: Fast

Reinforcement Learning via Slow Reinforcement Learning. arXiv:1611.02779 [cs.AI]

D. Epstein, T. Park, R. Zhang, E. Shechtman, and A. A. Efros. 2022. BlobGAN: Spatially

Disentangled Scene Representations. In Computer Vision – ECCV 2022. 616–635.
C. Finn, P. Abbeel, and S. Levine. 2017. Model-Agnostic Meta-Learning for Fast Adap-

tation of Deep Networks. In Int. Conf. on Machine Learning. 1126–1135.
A. Frezzato, A. Tangri, and S. Andrews. 2022. Synthesizing Get-Up Motions for Physics-

based Characters. Comput. Graph. Forum 41, 8 (2022), 207–218.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand,

and V. Lempitsky. 2016. Domain-Adversarial Training of Neural Networks. Journal
of Machine Learning Research 17, 1 (2016), 2096–2030.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. 2017. Improved

Training of Wasserstein GANs. In Neural Information Processing Systems, Vol. 30.
5769–5779.

A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine. 2018. Meta-Reinforcement

Learning of Structured Exploration Strategies. In Neural Information Processing
Systems, Vol. 31. 5307–5316.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. 2017. Reinforcement Learning with

Deep Energy-Based Policies. In Int. Conf. on Machine Learning. 1352–1361.
T. Harada, S. Taoka, T. Mori, and T. Sato. 2004. Quantitative Evaluation Method for

Pose and Motion Similarity Based on Human Perception. In IEEE/RAS Int. Conf. on
Humanoid Robots, Vol. 1. 494–512.

F. G. Harvey, M. Yurick, D. Nowrouzezahrai, and C. Pal. 2020. Robust Motion In-

betweening. ACM Trans. Graph. 39, 4, Article 60 (2020).
N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver. 2015. Memory-based control with

recurrent neural networks. arXiv:1512.04455 [cs.LG]

N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang,

S. M. A. Eslami, M. Riedmiller, and D. Silver. 2017. Emergence of Locomotion

Behaviours in Rich Environments. arXiv:1707.02286 [cs.AI]

D. Hejna, L. Pinto, and P. Abbeel. 2020. Hierarchically Decoupled Imitation For Mor-

phological Transfer. In 37th Int. Conf. on Machine Learning, Vol. 119. 4159–4171.
J. Ho and S. Ermon. 2016. Generative Adversarial Imitation Learning. Advances in

Neural Information Processing Systems 29 (2016).
R. Houthooft, Y. Chen, P. Isola, B. Stadie, F. Wolski, O. Jonathan Ho, and P. Abbeel.

2018. Evolved policy gradients. In Neural Information Processing Systems, Vol. 31.
5405–5414.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. 2021.

LoRA: Low-Rank Adaptation of Large Language Models. arXiv:2106.09685 [cs.CL]

A. Jahanian, L. Chai, and P. Isola. 2020. On the "Steerability" of Generative Adversarial

Networks. In Int. Conf. on Learning Representations.
J. Juravsky, Y. Guo, S. Fidler, and X. B. Peng. 2022. PADL: Language-Directed Physics-

Based Character Control. In SIGGRAPH Asia 2022 Conf. Papers. Article 19.
A. Karpathy and M. van de Panne. 2012. Curriculum Learning for Motor Skills. In

Canadian Conf. on Artificial Intelligence. Springer, 325–330.
T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. 2020. Analyzing

and Improving the Image Quality of StyleGAN. In Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition. 8110–8119.

D. P. Kingma and J. Ba. 2017. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs.LG]

A. Kwiatkowski, E. Alvarado, V. Kalogeiton, C. K. Liu, J. Pettré, M. van de Panne, and

M.-P. Cani. 2022. A Survey on Reinforcement Learning Methods in Character

Animation. Comput. Graph. Forum 41, 2 (2022), 613–639.

C. Li, H. Farkhoor, R. Liu, and J. Yosinski. 2018. Measuring the Intrinsic Dimension of

Objective Landscapes. In Int. Conf. on Learning Representations.
J. H. Lim and J. C. Ye. 2017. Geometric GAN. arXiv:1705.02894 [stat.ML]

H. Y. Ling, F. Zinno, G. Cheng, and M. van de Panne. 2020. Character controllers using

motion VAEs. ACM Trans. Graph. 39, 4, Article 40 (2020).
L. Liu and J. Hodgins. 2017. Learning to Schedule Control Fragments for Physics-Based

Characters Using Deep Q-Learning. ACM Trans. Graph. 36, 4, Article 42a (2017).
L. Liu and J. Hodgins. 2018. Learning Basketball Dribbling Skills Using Trajectory

Optimization and Deep Reinforcement Learning. ACM Trans. Graph. 37, 4, Article
142 (2018), 14 pages.

Y. Luo, K. Xie, S. Andrews, and P. Kry. 2021. Catching and Throwing Control of a

Physically Simulated Hand. In ACM SIGGRAPH Conf. on Motion, Interaction and
Games. Article 15.

V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N.

Rudin, A. Allshire, A. Handa, and G. State. 2021. Isaac Gym: High Performance

GPU-Based Physics Simulation For Robot Learning. arXiv:2108.10470 [cs.RO]

I. Mason, S. Starke, H. Zhang, H. Bilen, and T. Komura. 2018. Few-shot Learning

of Homogeneous Human Locomotion Styles. Comput. Graph. Forum 37, 7 (2018),

143–153.

J. Merel, Y. Tassa, D. TB, S. Srinivasan, J. Lemmon, Z. Wang, G. Wayne, and N. Heess.

2017. Learning human behaviors from motion capture by adversarial imitation.

arXiv:1707.02201 [cs.RO]

J. Merel, S. Tunyasuvunakool, A. Ahuja, Y. Tassa, L. Hasenclever, V. Pham, T. Erez,

G. Wayne, and N. Heess. 2020. Catch & Carry: Reusable Neural Controllers for

Vision-Guided Whole-Body Tasks. ACM Trans. Graph. 39, 4, Article 39 (2020).
C. Mou, X. Wang, L. Xie, Y. Wu, J. Zhang, Z. Qi, Y. Shan, and X. Qie. 2023. T2I-Adapter:

Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion

Models. arXiv:2302.08453 [cs.CV]

A. Nichol, J. Achiam, and J. Schulman. 2018. On First-Order Meta-Learning Algorithms.

arXiv:1803.02999 [cs.LG]

E. Parisotto, L. J. Ba, and R. Salakhutdinov. 2016. Actor-Mimic: Deep Multitask and

Transfer Reinforcement Learning. In Int. Conf. on Learning Representations.
X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. 2018a. DeepMimic: Example-

Guided Deep Reinforcement Learning of Physics-Based Character Skills. ACM Trans.
Graph. 37, 4, Article 143 (2018).

X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. 2018b. Sim-to-Real Transfer

of Robotic Control with Dynamics Randomization. In IEEE Int. Conf. on Robotics
and Automation. 3803–3810.

X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine. 2019. MCP: Learning

Composable Hierarchical Control with Multiplicative Compositional Policies. In

Advances in Neural Information Processing Systems. 3681–3692.
X. B. Peng, Y. Guo, L. Halper, S. Levine, and S. Fidler. 2022. ASE: Large-Scale Reusable

Adversarial Skill Embeddings for Physically Simulated Characters. ACM Trans.
Graph. 41, 4, Article 94 (2022).

X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa. 2021. AMP: Adversarial

Motion Priors for Stylized Physics-Based Character Control. ACM Trans. Graph. 40,
4, Article 144 (2021).

P. Pope, C. Zhu, A. Abdelkader, M. Goldblum, and T. Goldstein. 2021. The Intrinsic

Dimension of Images and Its Impact on Learning. In Int. Conf. on Learning Represen-
tations.

A. Radford, L. Metz, and S. Chintala. 2016. Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial Networks. arXiv:1511.06434 [cs.LG]

A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine. 2017. EPOpt: Learning Ro-

bust Neural Network Policies Using Model Ensembles. In Int. Conf. on Learning
Representations.

S. Ravi and H. Larochelle. 2017. Optimization as a Model for Few-Shot Learning. In Int.
Conf. on Learning Representations.

A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pas-

canu, V. Mnih, K. Kavukcuoglu, and R. Hadsell. 2016a. Policy Distillation.

arXiv:1511.06295 [cs.LG]

A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K.

Kavukcuoglu, R. Pascanu, and R. Hadsell. 2016b. Progressive Neural Networks.

arXiv:1606.04671 [cs.LG]

A. A. Rusu, M. Večerík, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell. 2017. Sim-to-

Real Robot Learning from Pixels with Progressive Nets. In Conf. on Robot Learning.
262–270.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. Proximal Policy

Optimization Algorithms. arXiv:1707.06347 [cs.LG]

Y. Shen, J. Gu, X. Tang, and B. Zhou. 2020. Interpreting the Latent Space of GANs for

Semantic Face Editing. In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition. 9243–9252.

T. Silver, K. Allen, J. Tenenbaum, and L. Kaelbling. 2019. Residual Policy Learning.

arXiv:1812.06298 [cs.RO]

S. Starke, I. Mason, and T. Komura. 2022. DeepPhase: Periodic Autoencoders for

Learning Motion Phase Manifolds. ACM Trans. Graph. 41, 4, Article 136 (2022).
J. K. Tang, H. Leung, T. Komura, and H. P. Shum. 2008. Emulating human perception of

motion similarity. Computer Animation and Virtual Worlds 19, 3-4 (2008), 211–221.
T. Tao, M. Wilson, R. Gou, and M. van de Panne. 2022. Learning to Get Up. In ACM

SIGGRAPH 2022 Conf. Proceedings. Article 47.
C. Tessler, Y. Kasten, Y. Guo, S. Mannor, G. Chechik, and X. B. Peng. 2023. CALM:

Conditional Adversarial Latent Models for Directable Virtual Characters. In ACM
SIGGRAPH 2023 Conf. Proceedings. Article 37.

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. 2017. Adversarial Discriminative

Domain Adaptation. In IEEE Conf. on Computer Vision and Pattern Recognition.
2962–2971.

D. Wang, E. Shelhamer, S. Liu, B. A. Olshausen, and T. Darrell. 2021. Tent: Fully Test-

Time Adaptation by Entropy Minimization. In Int. Conf. on Learning Representations.
J. Won, D. Gopinath, and J. Hodgins. 2021. Control Strategies for Physically Simulated

Characters Performing Two-Player Competitive Sports. ACM Trans. Graph. 40, 4,
Article 146 (2021).

J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum. 2016. Learning a Probabilistic

Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. In Advances

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1705.02894
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/1707.02201
https://arxiv.org/abs/2302.08453
https://arxiv.org/abs/1803.02999
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06295
https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1812.06298

AdaptNet: Policy Adaptation for Physics-Based Character Control • 177:17

in Neural Information Processing Systems, Vol. 29.
Z. Xie, H. Y. Ling, N. H. Kim, and M. van de Panne. 2020. ALLSTEPS: Curriculum-driven

Learning of Stepping Stone Skills. Comput. Graph. Forum 39, 8 (2020), 213–224.

Z. Xie, S. Starke, H. Y. Ling, and M. van de Panne. 2022. Learning Soccer Juggling Skills

with Layer-Wise Mixture-of-Experts. In ACM SIGGRAPH 2022 Conf. Proceedings.
Article 25.

P. Xu and I. Karamouzas. 2021. A GAN-Like Approach for Physics-Based Imitation

Learning and Interactive Character Control. Proc. of the ACM on Computer Graphics
and Interactive Techniques 4, 3, Article 44 (2021).

P. Xu, X. Shang, V. Zordan, and I. Karamouzas. 2023. Composite Motion Learning with

Task Control. ACM Trans. Graph. 42, 4, Article 93 (2023).
Z. Xu, H. P. van Hasselt, and D. Silver. 2018. Meta-Gradient Reinforcement Learning.

In Advances in Neural Information Processing Systems, Vol. 31.

H. Yao, Z. Song, B. Chen, and L. Liu. 2022. ControlVAE: Model-Based Learning of

Generative Controllers for Physics-Based Characters. ACM Trans. Graph. 41, 6,
Article 183 (2022).

Z. Yin, Z. Yang, M. van de Panne, and K. Yin. 2021. Discovering Diverse Athletic

Jumping Strategies. ACM Trans. Graph. 40, 4, Article 91 (2021).
W. Yu, G. Turk, and C. K. Liu. 2018. Learning Symmetric and Low-Energy Locomotion.

ACM Trans. Graph. 37, 4, Article 144 (2018).
L. Zhang and M. Agrawala. 2023. Adding Conditional Control to Text-to-Image Diffu-

sion Models. arXiv:2302.05543 [cs.CV]

P. Zhuang, O. O. Koyejo, and A. Schwing. 2021. Enjoy Your Editing: Controllable

GANs for Image Editing via Latent Space Navigation. In Int. Conf. on Learning
Representations.

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

https://arxiv.org/abs/2302.05543

	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep Reinforcement Learning for Skilled Motion
	2.2 Transfer Learning
	2.3 Latent Space Adaptation

	3 AdaptNet Framework
	4 Policy Adaptation using Latent Space Injection
	5 Internal Adaptation for Control Layers
	6 Policy Training
	7 Experimental Setup
	8 Applications of AdaptNet
	8.1 Motion Style Transfer and Interpolation
	8.2 Morphological Adaptation
	8.3 Terrain Adaptation
	8.4 Perturbation Adaptation

	9 Ablation Studies
	9.1 Baseline Comparisons
	9.2 Latent Space Injection
	9.3 Comparison of Adaptation Methods

	10 Latent Space Analysis
	10.1 Latent Space Visualization
	10.2 Latent Injection Regularization

	11 Conclusions
	Acknowledgments
	References

