)

Check for

updates

AdaptNet: Policy Adaptation for Physics-Based Character Control

PEI XU, Clemson University, USA and Roblox, USA
KAIXIANG XIE, McGill University, Canada

SHELDON ANDREWS, Ecole de Technologie Supérieure, Canada and Roblox, USA

PAUL G. KRY, McGill University, Canada
MICHAEL NEFF, University of California, Davis, USA

MORGAN MCGUIRE, Roblox, USA and University of Waterloo, Canada
IOANNIS KARAMOUZAS, University of California, Riverside, USA
VICTOR ZORDAN, Roblox, USA and Clemson University, USA

Fig. 1. Examples policy adaptation for locomotion. From left to right and top to bottom: motion interpolation, local collision avoidance, body-length changes,

style transfer, morphology changes, rough terrain adaptation.

Motivated by humans’ ability to adapt skills in the learning of new ones,
this paper presents AdaptNet, an approach for modifying the latent space of
existing policies to allow new behaviors to be quickly learned from like tasks
in comparison to learning from scratch. Building on top of a given reinforce-
ment learning controller, AdaptNet uses a two-tier hierarchy that augments
the original state embedding to support modest changes in a behavior and
further modifies the policy network layers to make more substantive changes.
The technique is shown to be effective for adapting existing physics-based
controllers to a wide range of new styles for locomotion, new task targets,
changes in character morphology and extensive changes in environment.
Furthermore, it exhibits significant increase in learning efficiency, as indi-
cated by greatly reduced training times when compared to training from

Authors’ addresses: Pei Xu, Clemson University, USA and Roblox, USA, peix@clemson.
edu; Kaixiang Xie, McGill University, Canada, kaixiang.xie@mail. mcgill.ca; Sheldon An-
drews, Ecole de Technologie Supérieure, Canada and Roblox, USA, sheldon.andrews@
gmail.com; Paul G. Kry, McGill University, Canada, kry@cs.mcgill.ca; Michael Neff,
University of California, Davis, USA, mpneff@ucdavis.edu; Morgan McGuire, Roblox,
USA and University of Waterloo, Canada, morgan@roblox.com; Ioannis Karamouzas,
University of California, Riverside, USA, ioannis@cs.ucr.edu; Victor Zordan, Roblox,
USA and Clemson University, USA, vbzordan@roblox.com.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Association for Computing Machinery.
0730-0301/2023/12-ART177 $15.00
https://doi.org/10.1145/3618375

scratch or using other approaches that modify existing policies. Code is
available at https://motion-lab.github.io/AdaptNet.

CCS Concepts: « Computing methodologies — Animation; Physical
simulation; Reinforcement learning.

Additional Key Words and Phrases: character animation, physics-based
control, motion synthesis, reinforcement learning, motion style transfer,
domain adaptation, GAN

ACM Reference Format:

Pei Xu, Kaixiang Xie, Sheldon Andrews, Paul G. Kry, Michael Neff, Morgan
McGuire, Ioannis Karamouzas, and Victor Zordan. 2023. AdaptNet: Policy
Adaptation for Physics-Based Character Control. ACM Trans. Graph. 42, 6,
Article 177 (December 2023), 16 pages. https://doi.org/10.1145/3618375

1 INTRODUCTION

Research on physically-based character animation has received a
great deal of attention recently, especially using reinforcement learn-
ing (RL) to develop control policies that produce a wide spectrum
of motion behaviors and styles with few or no manual inputs. Most
techniques rely on reference human motion to either provide di-
rect tracking or indirect comparison to constrain movement, along
with additional targets and rewards to shape task success (e.g., [Liu
and Hodgins 2018; Peng et al. 2018a; Xu and Karamouzas 2021]).
However, methods to date largely develop policies or controllers
for a known behavior, and must be relearned (usually from scratch)
to produce a new behavior. While curriculum-style learning and
warm-start approaches may be used to migrate policies to targeted

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

HTTPS://ORCID.ORG/0000-0001-7851-3971
HTTPS://ORCID.ORG/0000-0002-5877-9374
HTTPS://ORCID.ORG/0000-0001-9776-117X
HTTPS://ORCID.ORG/0000-0003-4176-6857
HTTPS://ORCID.ORG/0000-0003-0226-2808
HTTPS://ORCID.ORG/0000-0003-1074-0953
HTTPS://ORCID.ORG/0009-0000-4315-6556
HTTPS://ORCID.ORG/0000-0002-7309-7013
https://orcid.org/0000-0001-7851-3971
https://orcid.org/0000-0002-5877-9374
https://orcid.org/0000-0001-9776-117X
https://orcid.org/0000-0001-9776-117X
https://orcid.org/0000-0003-4176-6857
https://orcid.org/0000-0003-0226-2808
https://orcid.org/0000-0003-1074-0953
https://orcid.org/0009-0000-4315-6556
https://orcid.org/0000-0002-7309-7013
https://doi.org/10.1145/3618375
https://motion-lab.github.io/AdaptNet
https://doi.org/10.1145/3618375
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618375&domain=pdf&date_stamp=2023-12-05

177:2 « P.Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, |. Karamouzas, and V. Zordan

goal tasks [Tao et al. 2022; Yin et al. 2021], we instead aim to broadly
adapt previously trained policies to make them usable in a wide
spectrum of new scenarios without the need for full retraining.

Inspired by recent work in conditioning existing models in image-
based stable diffusion and large language models [Hu et al. 2021;
Zhang and Agrawala 2023], we introduce AdaptNet as an approach
for controlling physically based characters that modifies an existing
policy to produce behavior in a variety of new settings. The main
novelty of our work is the ability to control the motion generation
process through editing the latent space. In physics-based character
control tasks, there is an opportunity to better understand and
exploit the latent space representation of control policies obtained
using reinforcement learning frameworks. AdaptNet provides an
initial step in this direction.

Specifically, our approach relies on the training of weights for
new network components that are injected into a previously trained
policy network. Building on top of a pre-existing multi-objective
reinforcement learning controller, we propose a two-tier architec-
ture for AdaptNet that augments the latent state embedding while
adding modifications to the remaining layers for control refinement.
The first layer modifies the latent space projected from the associ-
ation of the task and character state. It supports adding elements
to the control state, as well as changing the imitation and task re-
wards. Meanwhile, the deeper, control-level refinement augments
the policy’s action derived from the latent state, supporting more
substantive changes to the task control. Together, AdaptNet per-
forms fast training from a previously trained policy and is capable
of making a wide spectrum of adaptations from a single behavior.

As in Figure 1, we showcase our learning framework with numer-
ous controller adaptation examples, including changes in the style
of locomotion derived from very short reference motions. AdaptNet
can perform this “few-shot style transfer” using only the embed-
ding layer augmentation in a fraction of the time it takes to learn
the original locomotion policy. Furthermore, through interpolating
in the latent space, it is possible to control the generated control
dynamically and smoothly transition from the original behavior to
the new style. We further experiment with changes to the character
morphology by “locking” joints and changing limb lengths. While
these changes lead to failure in the original policy, AdaptNet aug-
ments the policy easily to account for the various changes. We also
investigate changes in the environment, exploring adaptation for
locomotion on rough and slick (low-friction) terrains, as well as
on obstacle-filled environments. In each case, AdaptNet provides
significant improvement leading to characters that robustly traverse
a range of new settings (see Figure 1 and accompanying video).

We evaluate the effectiveness of AdaptNet on various tasks, in-
cluding its ability for adaptation of imitation learning, different
goal rewards, and environmental states. We compare our approach
against training from scratch, as well as training-continuation (fine-
tuning). Training with AdaptNet can typically be carried out within
10-30 minutes for simple adaptation tasks, and up to 4 hours for
complex locomotion tasks and environment changes. Within such
modest training time budgets, in most cases it is impossible to ob-
tain a working controller that can adhere to imitation and goal-task
objectives when training from scratch or finetuning a pre-existing
policy. Additional ablation studies support the specific architecture

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

we propose over several alternatives along with highlighting Adapt-
Net’s ability to successfully control and modify the latent space.
The contributions of our work are summarized as follows:

o We show how the latent space representation of an RL policy
can be modified for motion synthesis in physics-based motor
control tasks.

o Based on this, we introduce AdaptNet as a framework to
efficiently modify a pre-trained physics-based character con-
troller to new tasks.

o We showcase the applicability of AdaptNet on a variety of
multi-objective adaptation tasks, including few-shot motion
style transfer, motion interpolation, character morphology
adaptation, and terrain adaptation.

2 RELATED WORK

Our approach follows a wide set of previous related work stemming
from general disciplines in computer animation, robotics, machine
learning and image generation. We focus on the background that is
most relevant, categorized in physically based character skill control,
transfer learning, and latent space adaptation.

2.1 Deep Reinforcement Learning for Skilled Motion

Deep learning neural network control policies have become the
staple for physics-based character animation research due to their
ability to synthesize a range of skilled motions. In recent years, tech-
niques have trained control policies to animate physics-based hu-
manoid characters for agile motions [Yin et al. 2021], team sports [Liu
and Hodgins 2018; Xie et al. 2022], martial arts [Won et al. 2021],
juggling [Chemin and Lee 2018; Luo et al. 2021; Xu et al. 2023],
performing complex environment interactions [Merel et al. 2020],
as well as general locomotion tasks [Bergamin et al. 2019; Peng et al.
2018a]. The recent survey by Kwiatkowski et al. [2022] provides a
comprehensive overview of approaches that have been developed
for motion synthesis and control of animated characters.

Training skill-specific policies often requires extended training
time, necessitating years of simulated learning [Peng et al. 2022].
Skill re-use and combining pre-trained policies to perform more
complex tasks offer an alternative that can create needed savings
from this extensive training. To this end, a number of papers have
proposed ways to reuse and/or combine policies. For example, Deep-
Mimic [Peng et al. 2018a] trains a composite policy that transitions
between a collection of different skills. Liu and Hodgins [2017]
experiment with hierarchical models that sequence a set of pre-
trained control fragments. Hejna et al. [2020] explore a hierarchi-
cal approach to decouple low and high-level policies to transfer
skills from agents with simple morphologies to more complex ones,
and found that it helps to reduce overall sampling. Likewise, we
demonstrate that the proposed AdaptNet approach is effective when
adapting pre-trained policies to new character morphologies and
motion styles with relatively little additional training time.

Curriculum learning is also related to skill adaptation since the
agent is trained on tasks with increasing difficulty [Karpathy and
van de Panne 2012; Yu et al. 2018]. The approach is demonstrated
to be effective for training controllers that allow agents to traverse
environments of increasing complexity [Heess et al. 2017; Xie et al.

2020] and recover to standing [Frezzato et al. 2022] under increas-
ingly challenging conditions. In comparison, we demonstrate that
our approach efficiently allows a physically simulated humanoid to
adapt pre-trained walking and running skills to new terrains as well.
However, the aim for curriculum learning is somewhat different
than our own in that it is usually used as a means to develop a single
advanced skill while we focus on the ability to generalize from one
behavior to many.

2.2 Transfer Learning

In machine learning, a common approach for model adaptation is to
start with a pre-trained model and fine tune it on a new task. Over
the years a number of architectures have been proposed to overcome
the overfitting and expressivity issues of finetuning, including GAN-
inspired approaches for domain adaptation [Ganin et al. 2016; Tzeng
etal. 2017] and adding new models to previously learnt ones through
lateral connections [Rusu et al. 2016b, 2017]. To facilitate better
model transfer, algorithms have been explored that account for
entropy optimization [Haarnoja et al. 2017; Wang et al. 2021]. As
well, others directly manipulate the source task domain through
randomizing physical parameters of the agent and/or environment
while adapting the source domain to the target one [Ganin et al. 2016;
Peng et al. 2018b; Rajeswaran et al. 2017]. To encourage diversity
during early training, recent work on transfer learning has also
explored a multi-task paradigm where a model is pre-trained on
many tasks before being transferred to a new target domain [Alet
et al. 2018; Devin et al. 2017]. Some multi-task transfer learning
solutions include policy distillation that seeks to “distill” knowledge
from expert policies to a target policy [Parisotto et al. 2016; Rusu
etal. 2016a]. Another approach with a similar goal is policy learning
which learns a residual around given expert policies [Silver et al.
2019].

Meta learning has also gained popularity recently in computer
vision and robotics, seeking to leverage past experiences obtained
from many tasks to acquire a more generalizable and faster model
that can be quickly adapted to new tasks [Andrychowicz et al. 2016;
Ravi and Larochelle 2017]. The related formulations can be broadly
classified into models that ingest a history of past experiences
through recurrent architectures [Duan et al. 2016; Heess et al. 2015],
model-agnostic meta-learning methods [Finn et al. 2017; Nichol
et al. 2018], and approaches for meta-learning hyperparameters,
loss functions, and task-dependent exploration strategies [Gupta
et al. 2018; Houthooft et al. 2018; Xu et al. 2018].

While some of the aforementioned approaches have shown great
promise for agent control problems, in this paper, we propose an
approach that can quickly adapt RL policies for physically simulated
humanoids through fine control tuning as well as augmentation
injected in the latent space, loosely inspired by recent findings in
image diffusion [Hu et al. 2021; Mou et al. 2023; Zhang and Agrawala
2023]. In character animation, related work has focused on motion
style transfer tasks for kinematic characters [Aberman et al. 2020;
Mason et al. 2018] and the recent work of Starke et al. [2022] shows
exciting results about how a well-learned latent space can aid motion
synthesis. However, in physics-based character control tasks, there
is still little investigation about the latent space representation of the

AdaptNet: Policy Adaptation for Physics-Based Character Control « 177:3

control policy obtained using reinforcement learning frameworks.
We believe that AdaptNet provides a promising step in bridging that

gap.

2.3 Latent Space Adaptation

We are inspired by research in image and 3D model generation that
shows it is possible to control the synthesis process to generate
targeted artifacts through purposeful modification of the latent
space [Abdal et al. 2019; Berthelot et al. 2017; Bojanowski et al.
2018; Epstein et al. 2022; Karras et al. 2020; Radford et al. 2016;
Shen et al. 2020; Wu et al. 2016; Zhuang et al. 2021]. While we
have seen related work in RL for character control, AdaptNet offers
a unique approach to latent space adaptation, drawn from these
adjacent works’ successes. Related works in physics-based character
control, such as [Juravsky et al. 2022; Ling et al. 2020; Peng et al.
2019, 2022; Tessler et al. 2023; Won et al. 2021], explore using pre-
trained latent space models to facilitate the training of a control
policy. These methods intend to adapt the pre-trained multi-skill
model for downstream tasks by controlling skill latent embeddings,
focusing on reusing skills for motion generation. In contrast, our
approach does not break down the latent space by task and character
state and instead allows the policy to be adapted to heterogeneous
tasks that require learning new (out-of-distribution) motions/skills.
Further, previous methods discard the pre-trained latent encoder
during adaptation and rely on re-training to obtain a new encoder. In
contrast, our approach directly edits the latent space projected from
the association of the task and character state via the pre-trained
policy. To do this, we use a gated recurrent unit (GRU) [Chung
et al. 2014] layer as the encoder and initialize it by duplicating
the original encoder parameters. Next, a fully connected layer is
applied after the GRU to ensure zero initialization and convert the
encoded state to a latent modification. In sum, the training for our
adaptation starts from modifying the pre-trained policy rather than
from scratch, which benefits adaptation in comparison to previous
work in sample efficiency and, at times, overall effectiveness.

3 ADAPTNET FRAMEWORK

An overview of the AdaptNet framework is shown in Figure 2. The
GAN-style control framework (top), described below, produces an
original (pre-trained) policy (bottom, left) while AdaptNet is used to
adapt that pre-trained control policy to a new task controller (bot-
tom, right). Notably, the adaptation process could involve changes
to the reward function (e.g., motion stylization) or the state and
dynamics model (e.g., character morphology and terrain adaptation).
Components of the AdaptNet for policy adaptation are shown: a
latent space injection component and an internal adaptation compo-
nent. The latent space injection performs policy adaption by editing
the latent space, which is conditioned on the pre-trained policy’s
state as well as any additional state information, for example, for new
tasks. This component is trained to cooperate with the pre-trained
policy by generating offsets to the original latent space instead of
trying to learn how to generate latent variables for new tasks from
scratch during adaptation This leads to an efficient state-action ex-
ploration that starts from the pre-trained policy, instead of complete
random exploration. Internal adaptation further tunes the policy by

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

177:4 « P.Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, |. Karamouzas, and V. Zordan

Reference

Motions Simulated Character 120Hz
[Physics
& PD Controller Simulator
S,
! r\ask

Goal-Directed
Task Reward

Imitation
Reward 't

critic |—p| Gonmol e | e
Policy

S

sl
0 2 o,
o, g

[
e |
ey A

Latent Space Injection

logo,

SN

T

z Internal
‘ Adaptation

0.¢

o
1
t} Parameter Lock Zero Initialization .E> Trainable Copy

Fig. 2. Overview of our approach for adapting motor control policies for
physics-based characters. Top: We model both pretraining and adapted
tasks using a multi-critic reinforcement learning framework that balances
the training of imitation and goal-directed control objectives. After a policy
is trained, we can quickly adapt it to a new task using AdaptNet. Bottom:
AdaptNet starts with a copy of the pre-trained policy network and modifies
it through editing the latent space conditioned on the character’s state and
introducing optional adaptation modules for further finetuning.

adding a branch to each internal fully-connected layer in the policy
network. This allows for more flexibility, enabling AdaptNet to shift
away from the pre-trained policy and generate refinement through
control actions that the pre-trained policy may not reach easily.

In our implementation, both the pre-trained policy and the adap-
tation are produced using a multi-objective learning framework [Xu
et al. 2023] combining reinforcement learning with a GAN-like
structure for effective policy learning that accounts for both mo-
tion imitation and goal-directed control (see Figure 2, top). During
runtime, AdaptNet can be activated flexibly and dynamically al-
lowing us to control the level of adaptation of the original control
policy. The control policy 7 (als;) is a neural network taking the
agent state s; as input and outputting a probability distribution
from which a control a; can be drawn from the action space A.

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

For physics-based character control tasks with dynamic goals, we
consider s; := {0, g:}, where o; denotes the current state of the
character, e.g., joint or body link positions and velocities, and g;
is an optional task-related goal state or an encoding variable that
indicates desired motion parameters, such as target speed and direc-
tion, end-effector positions, motion style, etc. The action vector a;
is the target posture fed to a PD servo through which the simulated
character is controlled at a higher frequency. As shown in Figure 2,
a; is expressed as a multivariate Gaussian distribution.

Under the framework of reinforcement learning, our goal is to
find the policy 7 that maximizes the discounted cumulative reward:

J= Er~p(r|7r) [Z Ytr(sta at)} > (1)
t=0

where p(z|7) = p(sp) Hﬁ‘ol p(se+1lse, ar)m(ar|sy) is the state-action
visitation distribution for the trajectory r = {s;, a;} over a horizon
of H time steps, y € [0, 1] denotes the discount factor, and r(-) is the
reward received at a given time step and p(-) is the state-transition
probability of the underlying Markov decision process. In our do-
main, when the character faces a new task, p(-) and/or r(-) may
change. AdaptNet seeks to efficiently modify & and adapt it to the
new task by editing the latent space and finetuning the policy.

4 POLICY ADAPTATION USING LATENT SPACE
INJECTION

If we consider the first layer, or first several layers, in the policy
network 7 as an encoder to embed the state s; into a latent space
Z, the control policy can be rewritten as

7o (ar|E¢ (se)), @

where &y is the encoding layers with parameters £, 0 are the param-
eters for the layers in the policy network that follow the encoder,
and (6, £) denote the weights of 7. In this formulation, the policy
network 7y decides the projection from the latent z; = E¢(s;) into
the action space A. Assuming that 7y is optimized by a typical
on-policy policy gradient algorithm, the optimization objective with
the introduction of the latent becomes

max E¢ [A(st, ar) log mp(atlzs5 8], ©)
where A(-) provides an advantage function estimation based on the
received rewards {ry }r»; during the interaction with the environ-
ment and represents how good an action sample a; is given the
conditional state s;.

Given the generalization of neural networks, the latent space
Z can be considered as a superset covering all the possible latent
states, which could lie outside of the domain that 7y can reach
during its training. Based on this observation, when g needs to
be adapted to a new task, we propose to edit z; = Eg(st) ¢ Z
instead of discarding the original encoder &y and training a new
one from scratch. The intuition is that for similar tasks, adjusting
the current encoder provides better efficiency, allowing the desired
control policy to be learned by a modified projection function from
sy to zy.

Our approach manipulates the full latent space projected from
both the character state o; and the goal state g;. Specifically, as

shown in Figure 2, we perform latent space injection by introducing
a new conditional encoder Zy with parameters ¢ after the first
encoding layer, where the character state o; and the goal state g;
are concatenated to generate &;. This latent space is modified via

z¢ = Eg(st) + 1y (st, 1), (4)

where c; is an additional control input for the new task which could
be optional. The injector module Jj; is

Ty (se.cr) = F (Concat(Ey(se), Gy (cr))), (5)

where G is an optional module to process the additional control
input c;, &y is a state encoder that has exactly the same structure as
the original encoder E, and ¥ is a final embedding module, which
can be a fully-connected layer or a stack of multiple fully-connected
layers.

During retraining for adaptation, we perform policy optimization
as in Eq. 3, but only optimize the new parameters ¢ while keeping
the parameters 0 and & fixed:

IH;SIXEt [A(St, at) IOg ﬂ@(at|8§(st) + I¢(S[, Ct))] . (6)

We begin with copying the original encoder parameters ¢ into the
new encoder &y and initializing the last fully-connected layer inside
% with zero weight and bias. In this way, the new encoder 8¢,
is optimized by finetuning a set of parameters that are already
optimized for state feature extraction during pre-training. The zero
initialization of lets the control policy give exactly the same
action output as the original pre-trained one, i.e., mg(a;|E¢(st)), at
the beginning of re-training. It guides the adaptation to start from
the state-action trajectory generated by the original policy rather
than from a completely random exploration.

We refer to Figure 2 for the default implementation of AdaptNet,
where the latent space injection is performed right after the con-
catenation of o; and g;. We denote this latent space as Z 0 and the
following ones after each fully-connected layer but before the final
action layer as Z? where i = 1,2, - - -. Empirically, we note that it
is more challenging to perform optimization when the injection
occurs at a deeper layer in the policy network, leading typically to
unstable training and low-fidelity controllers. An extreme case is
to perform injection directly at the action space, which makes the
whole system similar to directly finetuning the pre-trained policy
network. We refer to Section 9 for related sensitivity analysis on
introducing latent space injection at different network layers and for
comparisons with directly finetuning a pre-trained policy network
for new tasks.

During runtime, we can further introduce an extra scaling coef-
ficient to the injection term in Eq. 4. Since our approach does not
change the original encoder &; as well as the policy 7y, the scale
coefficient allows us to turn the injection on and off, or control the
transition from the original policy to the fully adapted one. In such
a way, we can perform motion style or behavior transitions (e.g.,
walk to skip) by interpolation in the latent space, as we will show
in Section 8.1.

5 INTERNAL ADAPTATION FOR CONTROL LAYERS

The latent space injection component of AdaptNet edits the latent
space based on the input state and further allows us to introduce

AdaptNet: Policy Adaptation for Physics-Based Character Control « 177:5

additional control input for new tasks. However, the expressive
ability of the action policy is still constrained by the pre-trained
layers after the state encoder in the policy network, i.e., 7. While
utilizing the pre-trained 7y for fast adaptation to new tasks, we
introduce an internal adaptation component through which we can
finetune my, overcoming the bias it introduces and allowing for
more flexibility in the types of generated controls compared to the
ones obtained from the original training domain. The goal of the
finetuning is to find a small increment Azi to the original latent zi in
each latent space Z%,i > 1, to help optimize the objective function
in Eq. 6 during adaptation training, but without changing the g
too much to avoid drifting too far away from the pre-trained policy
and being stuck at overfitting during adaptation. To do so, we add
a branch to each fully-connected layer between two latent spaces.
As shown in the red block of Figure 2, the corresponding latent is
generated as:

7 = Folor)+ Fy (), ™
Here, 7‘3 denotes the fully-connected layer between the latent space
Z' 1 and Z' in the policy network g, and 77,7’ is the newly in-
troduced adaptor that generates Azi and is modeled as a fully-

connected layer in the added branch. The parameter 7 is defined
as

n = {AWj, Ab;}, ®

with AW; and Ab; being the weight and bias parameters in 7",7’
respectively. Similarly to the embedding module ¥ in the latent

space injection component, 7:,7’ is initialized as zero and will not
influence the output of the policy network at the beginning of
policy adaptation. We lock 6 in 779’ during adaptation training and
introduce the parameter 7 into the optimization function in Eq. 6.

Our approach is different from directly finetuning zy. When di-
rectly finetuning 7, the gradient from z! with respect to z.™! is
decided by the weight W; in the layer ¥/, which may be highly bi-
ased and have relatively large or very small values given it was fully
trained. Therefore, finetuning 7y directly for new tasks may lead to
unstable training compared to only finetuning the newly introduced
parameter set n which is initialized with zero. Furthermore, we can
easily apply regularization on AW; and Ab; to prevent aggressive
finetuning regardless of the value of the parameters W; and b; in
the pre-trained layer 7'; This will limit the possible change that
the internal adaptation can bring about in order to prevent overfit-
ting. We can also introduce an extra scaling weight to control the
adaptation level during runtime, as discussed in Section 4.

Our proposed internal adaptation component is similar to the ap-
proach of low-rank adaptation (LoRA) proposed by Hu et al. [2021].
The major difference is that instead of directly employing a fully-
connected layer, LoORA decomposes the weight matrix AW; into
two low-rank matrices, i.e., AW; = B;A;, where, B; isa | Z~! |-by-r
matrix, A; is a r-by-|Z*| matrix, and r < min(|Z*7!|,|Z7)). In
contrast, our approach can be considered a full-rank adaptation.
LoRA has been demonstrated as an effective way to fine tune large
language and image generation models, reducing the number of
parameters that need to be optimized during model adaptation.
However, as shown in Section 9.3, we found that LoRA does not
work well for physics-based character control tasks. A possible

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

177:6 « P.Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, |. Karamouzas, and V. Zordan

ALGORITHM 1: Policy Adaptation using AdaptNet
Obtain the policy g and the state encoder & by performing training
to optimize Eq. 9 in a general or default environment setting.
1 Build up the latent space injection component 75 based on Eq. 5 and
the internal adaptation component {‘7—;} based on the Eq. 7.

2 Lock the parameters 0 and &.

3 Initialize &y using the pre-trained parameter &.

4 Initialize the last layer inside ¥y and each ‘7:,’7 using zero weight and
bias.

5 Adapt the policy for a new task by only optimizing the parameters ¢
and 7 using Eq. 12.

reason is that the related policy networks are markedly smaller
compared to large language and image generation models that may
have more than 12K dimensions. The latent spaces of our policy
network have a typical size of 512 or 1024 dimensions and may not
exhibit the lower intrinsic ranks that larger models do [Aghajanyan
et al. 2021; Li et al. 2018; Pope et al. 2021].

6 POLICY TRAINING

We use the multi-objective learning framework for physics-based
character control proposed by Xu et al. [2023] to perform both
the original (pre-)training and adaptation training. The framework
leverages a multi-critic structure where the objectives of motion
imitation and goal-directed control are considered independent
tasks during policy updating. In Figure 2, for example, the imitation
objective is associated with a critic network labeled in blue, and the
goal-directed objective is associated with a critic in magenta. The
advantage (cf. Egs. 3, 6) with respect to each objective is estimated
only by its associated reward and critic network. To ensure that
the policy can be updated in a balanced way taking into account
both the imitation and goal-directed control objectives, all estimated
advantages are standardized independently before policy updating.

During pre-training, we seek to find a basic motor control policy
ng(a:|E¢(s¢)), which we can later adapt to new tasks. In this work,
we focus on locomotion tasks, and thus 7y involves two objectives:
a motion imitation objective given a batch of reference motions
of walking and running, and a goal-directed objective involving a
given target direction and speed. Using the multi-objective learning
framework, the optimization objective function during pretraining
shown in Eq. 3 can be written as

nelifXEt[(Zk: wkfilf) log ﬁg(at|6§(st))]’ 9)

where A]; is the standardization of the estimated advantage asso-
ciated with the objective k and wy satisfies)} wg = 1 providing
additional control to adjust the policy updating in a preferred man-
ner when conflicts between multiple objectives occur.

We employ a GAN-like structure [Ho and Ermon 2016; Merel
et al. 2017] that relies on an ensemble of discriminators [Xu and
Karamouzas 2021] to evaluate the imitation performance and gen-
erate the corresponding reward signals for advantage estimation
and policy updating. In particular, we take an ensemble of N dis-
criminators and use a hinge loss [Lim and Ye 2017] with policy
gradient [Gulrajani et al. 2017] for discriminator training, resulting

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

in the following loss function:

N
min = " (E: [max(0,1+ Dp(00)] + ¢ [max(0, 1~ Dy ()]

n=1
+1%PE; [(11V6, Da(60)1lz = 1)?]).
(10)

Here, D, denotes a discriminator network, 6; = aos + (1 —)0,
with & ~ Un1rorm(0, 1) and ACY is gradient penalty coefficient. The
reward function to evaluate the imitation performance is defined as

N
. 1
rM sy, ag, 8p41) = N ; Cuip (Dp(0y),-1,1). (11)

The reward for the goal-related task is computed heuristically. We
refer to the appendix for the representation of the goal state g; and
the definition of the goal-related task reward.

After obtaining 79 and & in pre-training, we introduce the pro-
posed AdaptNet to perform policy adaptation for new tasks that
are relative to but have different reward definitions and/or envi-
ronment settings from the one in the pre-training phase. Before
the adaptation training starts, we lock the parameters 6 and £ We
then initialize &y inside the latent space injection component 74
using the weights £, and initialize with zero weight and bias the last
layer of ¥ inside 74 along with each fully-rank adaptor FLi>o0.
To stabilize the training, besides applying a common weight decay
to the parameter set (Eq. 7) via L2 regularization, we introduce
an additional regularization on the latent injection generated by
1. The adaptation training is still performed under the aforemen-
tioned multi-objective learning framework in the same way as the
pre-training phase. The optimization objective for policy adaptation
is

%ax E; [(Z ka];) log 7g (ar|E¢(st) + Iy (st,¢t)3 1)
1 k

(12)
=By (st ez = xllnllz

where f§ and k are regularization coefficients. In Section 10, we give
a detailed analysis of the regularization on the latent space injection.

We refer to Algorithm 1 for the outline of the whole training
process. Adaptation with the proposed AdaptNet can be done very
quickly within 10-30 minutes for simple control tasks and up to
4 hours for challenging terrain adaptation tasks with new control
input processed by an additional convolutional neural network Gy,
as defined in Eq. 5.

7 EXPERIMENTAL SETUP

Our experiments were run using IsaacGym [Makoviychuk et al.
2021] with 512 environments running in parallel during training.
The simulated character has 15 body links and 28 degrees of freedom,
where the elbow and knee joints are implemented as 1-dimensional
revolute joints, and the hands are fused with the forearms and
uncontrollable. All simulations run at 120Hz with a normal PD
controller employed as the low-level actuator to directly manipulate
the simulated character, while the control policy runs at 30 Hz, as
shown in Figure 2.

FC
' e (256)
(1024) F) FC
FC (128)
(512) 2 FC
0 (32)
/‘z log o, V,imi[Vttmk r’imit

(a) Policy Network (b) 2-Head Value Network (c) Discriminator

Fig. 3. Network structures. Here, © denotes the concatenation operator
and © denotes the average operator. The state encoder &¢ is shown in the
dashed block. An optional control input encoding module G is included if

the additional control input ¢; is provided during adaptation training.

We run policy optimization using PPO [Schulman et al. 2017]
and update policy parameters using the Adam optimizer [Kingma
and Ba 2017]. To encode the character’s state, we take the position,
orientation, and velocities of all the body links related to the pelvis
(root link) in the last four frames as the state representation o; and
employ a gated recurrent unit (GRU) [Chung et al. 2014] with a
256-dimension hidden state to process this temporal state. For dis-
criminator training, we take the character’s pose at five consecutive
frames as the representation of {oy, 0;+1} to evaluate the policy’s
imitation performance during the transition from timestep ¢ to ¢ + 1.
We employ an ensemble of 32 discriminators and model it by a
multi-head network, as shown in Figure 3. The critic network has a
similar structure to the policy network, but with a 2-dimensional
output for the value estimations to the imitation objective and goal-
directed objective respectively. We refer to the appendix for the
hyperparameters used for policy training and the representation of
the goal state g; in the locomotion task.

Rewards for both task and imitation are employed during policy
adaptation. To avoid bias from the pre-trained policy, we discard
the discriminators for imitation from the original policy and new
discriminators are trained from scratch. Intuitively, in tasks such as
motion style transfer the original discriminator will not work well
for the new given reference style and thus a new one is needed. Even
for other adaptation tasks, we found utilizing old discriminators to
be problematic, as the optimal action in the new task can dramati-
cally change from the original in the context of how it employs the
reference motion. Empirically, when we experimented with reusing
the old discriminators, we found they introduce too much bias to-
wards the old task. Finally, with training new discriminators for a
new task, we also perform value estimation by re-training a new
critic from scratch.

All our tests were run on machines with a V100 or A100 GPU.
To achieve a good locomotion policy based on which we perform
further adaptation, the pre-training took around 26 hours and con-
sumed 4 X 108 training samples. The reference motions are around

AdaptNet: Policy Adaptation for Physics-Based Character Control « 177:7

Table 1. Reference motions for policy pre-training (top) and stylized motion
learning (bottom).

Motion ‘ Length ‘ Description

Walk | 334.07 s | normal walking motions for pre-training
Run | 282.87 s | normal running motions for pre-training

Swaggering Walk | 1.07s | exaggerated walking with one arm akimbo
Goose Step 2.20s
Stomp Walk | 1.23s
Kicking Walk | 2.03s
Stoop 093s

Jaunty Skip 1.60 s
Sashay Walk | 1.07 s
Limp 1.90 s

Pace 1.70 s

Penguin Walk | 0.77 s
Strutting Walk 1.40 s
Joyful Walk | 1.20s

goose step with arms akimbo

walking while stomping on the ground
walking with leg kicking

slow walking with body bent over
skipping in a spirited manner

walking in a slightly exaggerated manner
slow walking with right leg hurt

slow walking with arms akimbo

moving with very small and steps

walking with shoulder moving aggressively

strut walking rhythmically

300 seconds long including normal walking and running motions
with turning poses and various speeds (cf. Table 1, top). All the refer-
ence motions used during pre-training and adaptation training are
recorded at 30 Hz and extracted from the publicly available dataset
LAFAN1 [Harvey et al. 2020].

8 APPLICATIONS OF ADAPTNET

In this section, we apply the AdaptNet technique to demonstrate
the success and efficiency of learning new physics-based controllers
through adaptation. Our experiments use two pre-trained locomo-
tion policies (walking and running) that account for two objectives:
motion imitation based on a batch of walking or running reference
motions, respectively, and a goal objective as defined by a target
direction of motion and speed. We adapt the pre-trained policies to
a range of new tasks, highlighting applications of AdaptNet to style
transfer, character morphology changes and adaptation to different
terrains. Figure 1 shows snapshots from different outcomes. Please
refer to the supplementary video for related animation results.

8.1 Motion Style Transfer and Interpolation

We consider a variety of motion style transfer tasks where a pre-
trained walking locomotion policy is adapted to a particular style.
Note, this is not a simple motion imitation task, since all the style
reference motions are very short (see Table 1, bottom), containing
only one or two gait cycles. It is therefore impossible to train an
equivalent locomotion policy that supports goal-directed steering
using the target reference motion. Instead, the nature of this test
is few-shot learning, where AdaptNet is expected to effectively
learn how to perform locomotion in the style provided by the small
duration of the style example in the new reference, while relying on
the pre-trained policy to perform turning and goal-directed steering.
Figure 5 depicts related qualitative results. AdaptNet can effectively
learn how to do goal-directed turning in the provided style. Further,
adaptation training can be done very quickly, within 10-30 minutes,
in contrast to the original that we obtained during pre-training took
about one day for training. We refer to the supplementary video for

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

177:8 « P.Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, |. Karamouzas, and V. Zordan

0.00 0.25

1 1
0.50 0.75 1.00

Fig. 4. Motion interpolation between walking (pre-trained policy) shown at the top-left corner and different stylized motions by controlling the adaptation
level of the associated AdaptNet model (cf. Eq. 13). Snapshots on the left show the learned stylized motions of Stoop walking and Jaunty Skip. When a = 0, the
character is controlled only by the original walking policy. When a = 1, the character is controlled with a full injection of AdaptNet.

Fig. 5. Example of motion style transfer learning with goal-steering navi-
gation using AdaptNet. Green arrow indicates the dynamically generated
target directions for locomotion control.

animation results, and Section 9 for comparing AdaptNet to learning
stylized locomotion from scratch.

As discussed in Sections 4 and 5, we can perform motion interpo-
lation in the latent space by introducing a scale variable to control
the adaptation level. This process can be described by modifying
Eqs.4and 7 as

Z(t) = 8§(St) + anS(St,Ct),

zi = };(zi_l) + a‘?f,li(zi_l),

(13)

where o € [0, 1] is the introduced scale variable. In Figure 4, we
show interpolation results. As shown in the figure, we can achieve
motions with different style intensity, which can transition between
the base walking motion and the stylized ones in a smooth manner.

We can further extend Eq. 13 to perform interpolation between
any two AdaptNet models via

Z(t) = 8§(st) + an&'(St,ct) + (l - a)]¢/,(st, Ct),

i_ i i-1 icoi-1 _ icoi-1 (14
z; = Fy(zy)+a7—‘q,(zt)+ (1 a)(F”,,(zt),

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

where the parameters ¢’ and n’ are from one AdaptNet model and
¢"" and '’ are from the other one. Such an interpolation scheme
can be regarded as applying two independently trained AdaptNet
models simultaneously on the same, pre-trained policy, with an
example shown in Figure 6.

The above interpolation results demonstrate that during adapta-
tion training, AdaptNet can effectively learn structured information
about the latent space with respect to the desired motion styles. We
refer to Section 10 for more details on controlling the latent space
and related visualizations, along with an analysis of the training
difficulty (time consumption) when learning different styles.

8.2 Morphological Adaptation

We consider two kinds of morphological changes: body shape and
joint lock. Due to physical constraints, morphological changes in
the character model will cause the same action a; to lead to different
resulting states compared to the ones observed in the pre-training
phase. Without adaptation, the pre-trained policy does not perform
well if it’s even able to keep the character balanced, especially when
the lower body is modified.

We tested eight body-shape variants of the original character
model, as shown in Figure 7. In the LongBody variant, we extend the
abdomen length by 50%, while the BigBody variant increased the
torso size by 50%. The latter leads to an increase in the torso mass
of over 300%. In LongUpperArms and LongLowerArms variants, the
length of the upper and lower arms are extended by 25% respectively,
while in AsymmetricUpperArms, we increase the length of the right
upper arm but decrease the length of the left upper arm. In the
LongThighs and LongShins variants, the length of the upper and
lower legs are extended by 50% respectively, the latter akin to a
human walking on stilts. In the model of SuperLongLegs, both the

AdaptNet: Policy Adaptation for Physics-Based Character Control « 177:9

Fig. 6. Motion interpolation in the latent space by activating and switching between multiple AdaptNet models to let the character perform style transition

interactively during goal-steering navigation.

Fig. 7. Character models with body shape variants. From left to right: Long-
Body, BigBody, LongUpperArms, LonglowerArms, AsymmetricUpperArms,
LongThighs, LongShins, and SuperLongLegs.

S1AR

Fig. 8. Character models with joints being locked. From left to right, the
locked joints are abdomen, elbows, ankles, and right knee respectively
(shown in red). Corresponding body parts between a locked joint are high-
lighted in orange.

thighs and shins are extended resulting in a character that is over
2 m tall.

We also experimented with different configurations, as shown
in Figure 8, where some of the joints (in orange) are ‘locked’. The
locked joints are removed from the character model such that the
linked body parts are fused together. This reduces the number of
dimensions of the action space. To make the pre-trained policy
compatible with the new action space, we simply prune the weight
and bias matrices of the last layers in the policy network and remove
the output neurons corresponding to the locked joints.

Even though the pre-trained policy would not completely lose
control of the character when the torso or arms are modified, the
character still loses balance quite often. As more challenging ex-
amples, the morphological changes in the lower body parts and
joints leave the pre-trained policy unable to control the character
without falling. For example, when the knee joint is locked, the
policy needs to adjust the output of the hip and ankle in order to
compensate for the ‘disability’ of the knee. This requirement leaves
the pre-trained policy incapable of suitably controlling the modified
character model.

During adaptation, we did not do any retargeting to generate
new reference motions for AdaptNet to learn. Instead, we simply
modify the character’s model while relying on the reference motions
used to pre-train the original policy, retargeted to the character
model without any morphological changes. We found it takes 15-30
minutes to finish the adaptation training depending on the difficulty
of the morphology change task. The character controlled by the
AdaptNet policy can maintain its balance and walk or run without
falling down. An interesting observation is that in order to match
the provided height of the root link (pelvis) in the reference motions,
the AdaptNet policy will control the character to walk or run in a
crouch with the body at a relatively low position compared to the
leg length. We show some representative results in Figure 9, and
refer to the supplementary video for animations.

8.3 Terrain Adaptation

Next we discuss policy adaptation for character locomotion on low
friction and rough terrains as well as obstacle-filled scenes that
require extra control input.

8.3.1 Friction Adaptation. To simulate an icy surface, we signif-
icantly reduce the ground friction. In particular, we decrease the
friction coefficient from 1 to 0.15 for walking and to 0.35 for running.
Figure 10 compares results obtained for the running policy with and
without using AdaptNet. Note, AdaptNet can effectively control the
character to change its moving direction by sliding on its feet, as
shown in the left example of the figure. In addition, using AdaptNet,

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

177:10 « P.Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, |. Karamouzas, and V. Zordan

Fig. 10. Comparison of characters controlled with and without AdaptNet running on an ice floor with very low friction. Left: character controlled with
AdaptNet slides and skids on the ice ground while running. Right: character without AdaptNet slips down.

the character lowers its center of mass and takes quick steps to main-
tain its balance. In contrast, with the original policy, the character
cannot run on the icy ground without falling down. For walking, the
AdaptNet controller is more cautious with the character preferring
to stop and change its direction in place. Without using AdaptNet,
the character tends to turn around with a bigger radius, but not
slow down. This demonstrates the ability of AdaptNet to change
the behavior provided by the original policy to make it better suited
to new environmental settings.

8.3.2 Terrain Adaptation with Additional Control Input. To test
AdaptNet with extra control input, we designed several experi-
ments where the character is asked to do goal-steering navigation
in challenging environments with procedurally generated terrains.
A local heightmap is provided as the additional control input c;
through which the character is expected to adjust its motions to
prevent falling down during walking. The heightmap is extracted
locally based on the character’s root position and aligned with the
orientation of the root, with a left and right horizon of 1.7 m, back-
ward horizon of 1 m and forward horizon of 2.4 m. To process the
heightmap c;, we introduce a convolutional neural network (CNN)
as the encoding module G (see Eq. 5) for AdaptNet. We refer to
the appendix for the network structure of the CNN. An extra map
encoding module having the same structure with G is added to
the critic network for value estimation during adaptation. We show
representative examples of our tested terrains in Figure 11 and note
the appendix also gives more detail on terrain.

We refer to the companion video for the navigation performance
of the character when walking on the designed terrains after adap-
tation training. Even in terrains where the height changes smoothly,
the character teeters under the control of the pre-trained policy
and a minor change in the terrain slope is enough to make the
character stumble. After adaptation training, AdaptNet can enable
the character to smoothly walk and turn on the uneven terrains

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

Fig. 11. Character controlled with AdaptNet navigates in the environment
with procedurally generated terrains.

without falling. Besides being able to step over low-height obstacles,
the AdaptNet character exhibits intelligent local decision making,
trying not not to step on the edge of the rocks on the rough terrain
and avoids overly rugged paths by altering its moving trajectory to
an easy-to-follow one.

To further demonstrate the ability of AdaptNet to perform local
path planning, we designed a more challenging environment with
uncrossable obstacles randomly placed on the ground. We quali-
tatively show the results in Figure 12. As seen in the figure, the
character controlled with AdaptNet (blue) can successfully walk
around the obstacles. Without accounting for collisions, the charac-
ter controlled solely by the initially trained policy (green) crosses
through the regions where obstacles are placed.

il il
W % =

| 4 /é // I/ I/ l/ I/ I/ II l’ I’ 1 T ’\ A© ‘\ \ AT

Fig. 12. Local collision avoidance in an obstacle-filled environment using
AdaptNet. Green characters show the movement trajectory generated by
the original walking policy without AdaptNet.

Unsurprisingly, the introduction of the CNN (detailed in Appen-
dix B) increases the time needed to perform policy optimization
iterations in the training for rough terrains. Still, for the easier
terrains, training can be done within 1.5 hours. The more rugged
terrain took around 4 hours for training. Finally, it took around 22
hours to train adaptation for the local obstacle avoidance test case.
We note that this is still less time than is needed for training the
original flat-ground locomotion policy from scratch (26 hours).

8.4 Perturbation Adaptation

In a final experimental foray, we investigate AdaptNet’s ability
to improve the handling of perturbations. Although the original
policy can handle small perturbations, the character will still fall
under larger impulses. In order to achieve more robust control,
we adapt the control policy’s ability to maintain balance in the
presence of large disturbances. We begin with pre-trained policies
for target-directed locomotion for walking and running. During the
training process, we randomly apply perturbations (1000 N, lasting
for 0.2 seconds) in different directions on the character’s torso. With
adaptation training of around 5 hours, the character is able to stay
balanced against comparable impulses following training for both
running and walking tasks. In contrast, the original controls are not
able to handle such perturbations repeatably and they often lead
to the characters falling over. Furthermore, we also observe that
AdaptNet control adjusts the character’s footsteps to recover balance
when the character is highly out of balance due to perturbations. A
comparison of the original policy and our results can be seen in the
supplementary video.

9 ABLATION STUDIES

In this Section, we compare the performance of AdaptNet to different
baselines along with performing sensitivity analysis on the two
components of the proposed AdaptNet technique.

AdaptNet: Policy Adaptation for Physics-Based Character Control « 177:11

Limp Pace PenguinWalk

1.0

Task Reward

Task Reward

012345678
x 109

012345678
x106

012345678

x 106

Samples Samples Samples

—— AdaptNet (Ours) ~ —— Scratch —— FT —— FT + Reg —— PNet
Fig. 13. Learning performance of our adaptation scheme using AdaptNet,
training from scratch for each task (Scratch), using a progressive network
(PNet), and adaptation via directly finetuning the pre-trained policy (FT)
and finetuning with regularization (FT + Reg). Colored regions denote mean
values + a standard deviation based on 5 trials. The top row consists of
motion style transfer tasks, while the bottom row focuses on morphological
and terrain adaptation tasks.

9.1 Baseline Comparisons

We consider the following baselines: Scratch where a new policy is
trained from scratch on a given task; FT where we directly finetune
the pre-trained policy network to the newly given task; FT + Reg
where we apply regularization on the weights of the policy network
during finetuning; and PNet where policy adaptation is performed
using a progressive neural network approach [Rusu et al. 2016b].
Figure 13 compares the learning curves for the goal-task perfor-
mance between the baselines and AdaptNet on three style-transfer
tasks (top row) and three adaptation tasks (bottom row), two in-
volving changes in the character’s morphology and one for lowered
ground friction. For fair comparison, we employ the same training
setup for all baselines, where the reward function of the new policy
accounts for both a task objective and an imitation objective using
an automatic weighting scheme [Xu et al. 2023]. In the motion style
transfer experiments, the imitation term is computed using a new
discriminator that takes only the stylized motions as the reference
similar to Section 8.1.

As can be seen from the learning curves in Figure 13, Scratch fails
to attain the desired goals in the considered benchmarks, achieving
a very low goal task reward within the given budget of 8M training
samples. FT can effectively modify the locomotion policy in the
bottom three tasks where the character’s morphology or environ-
mental friction changes. However, in the motion style transfer tasks,
the reward curve of FT noticeably drops after the training begins as
FT overfits the imitation of the newly provided stylized reference
motion and ignores the goal direction signal. In contrast, AdaptNet
provides a stable task reward curve during the adaptation training
with the character being able to imitate the newly provided style
without forgetting the previously learned locomotion behaviors
as seen in Figure 14. The above findings are in line with previous
works [Peng et al. 2019; Rusu et al. 2016b] that have shown finetun-
ing to be efficient when the parameters of a pre-trained model need

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

177:12 « P.Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, I. Karamouzas, and V. Zordan

Fig. 14. Top: AdaptNet successfully controls the character to turn during
walking in Pace style. Bottom: The character controlled by FT policy keeps
imitating the reference motion to pace straightly, and fails to turn due
to overfitting. Green arrows indicate the dynamically generated target
directions for locomotion control.

to be slightly adjusted to a new target domain. However, FT can be
susceptible to catastrophic forgetting when the imitation objective
is significantly changed, as in the motion style transfer tasks. FT +
Reg leads to poor training and low-fidelity controllers in all tasks.
While, in theory, adding regularization can improve the navigation
performance, in practice, it is hard to regulate the weights during
finetuning due to the presence of both significant large and small
weights in the pre-trained policy.

PNet shares similarities with AdaptNet as both approaches add
new weights to the original policy network and freeze the old
weights during transfer learning. However, despite these similarities,
the architectures of the two approaches are significantly different.
AdaptNet uses a residual structure that supports merging, resulting
in a single policy network which allows forward propagation in one
pass during inference. In contrast, PNet does not support merging
and requires the original network to be present and run first to
compute the values of the hidden neurons in the added network.
This adds significant complexity and memory overhead, with the
network structure becoming larger and slower. Importantly, dur-
ing training, the added network in PNet cannot start from zero as
compared to AdaptNet. In essence, the zero initialization in Adapt-
Net allows us to guide the adaptation starting from the original
policy. This is clear in the style-transfer tasks, where AdaptNet
begins training with a much higher reward than PPNet due to the
locomotion ability provided by the original policy. Despite its com-
petitive final performance in several of the adaptation tasks, PNet is
sample inefficient. Finally, we note that it can lead to forgetting the
prior knowledge provided by the pre-trained policy as the added
network can significantly change the output of the whole model in
some cases. This can be seen in the Penguin Walk task where the
navigation performance drops after 5M samples.

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

S S, S

TP L

P

w loge, w loge, n loge, # loge,

i
-

Fig. 15. Injection at different latent spaces. Gray blocks represent the orig-
inal policy network locked during adaptation. Green blocks are the state
encoder &, and blue ones are F. For left tor right, the manipulated latent
spaces are Z° (the default implementation of AdaptNet), Z', Z? and Z%?
respectively. We ignore G, given that there is no extra control input in the
tested examples here.

Strutting Walk Stomp Walk

Left Foot

Right Foot

1.5

Time [s] Time [s]

—_ 20 =1 22 202

Fig. 16. Foot height (in meters) relative to the root when performing adap-
tation for motion style transfer tasks with different latent spaces being
injected. Injection at Z° (blue) leads to the smoothest and most repeatable
stepping motions.

Overall, AdaptNet consistently outperforms all four baselines in
terms of final performance and sample efficiency. In terms of mem-
ory efficiency, Scratch and FT do not add any overhead. AdaptNet
introduces additional parameters, but since the original network
is frozen, the number of trainable parameters is still at the same
scale with the original neural network when no conditional input,
ie., ¢y and Q¢, is needed. While the the total number of parameters
increases, the effective number of parameters is the same as the
original policy because AdaptNet can be merged into the original
network. In contrast, PNet requires both networks to be present and
effectively doubles the number of parameters.

9.2 Latent Space Injection

Our default implementation performs injection on the latent space
ZO right after the goal state g; and character state o; are encoded
and concatenated together. Here, we test the application of the
injection module to other latent spaces after Z° but before reaching
the action space, along with applying injection on all possible latent
spaces simultaneously. To solely study the performance of latent
space injection, we also remove the full-rank adaptation modules for
these tests. The tested network structures are shown in Figure 15.

To explore how the injection schemes perform differently in gen-
erating new policies, we run tests on several motion style transfer
tasks. During our experiments, we observe qualitatively that injec-
tion at the lower space Z 2 or at all the latent spaces Z 02 which
also includes the lower one, can easily produce jerky motions with
stiff movements of the torso and legs. It can also lead to failures in
training where the character falls repeatedly after a few training
iterations. In Figure 16, we plot the trajectory of the foot height
in two of our tested cases. While injection at Z° (blue) leads to a
smooth repeatable trajectory, the curves become more irregular as
the injected latent space changes from Z! (green) to Z? (orange)
and then to Z%2 (red). We also see some sharp jumps in the curves
of Z2 and Z%2, which represent fast motion transitions. We re-
fer to the supplementary video for the animation results including
examples where injection at Z 2 and Z°2 fails.

Overall, our tests show that as the chosen target latent space is
closer to the action space, it becomes more difficult for AdaptNet to
generate desired motions, with Z° both intuitively and empirically
giving the best results. This observation is in agreement with recent
work in image synthesis where the target space for manipulation is
usually chosen nearer to the input of the generator rather than near
the final output [Abdal et al. 2019; Karras et al. 2020; Zhuang et al.
2021]. In terms of the network structure in our implementation,
the input state s; € R’8 is encoded into the first latent space
Z° € R%0 and then projected to Z' € R192%, The whole network,
therefore, can be regarded as an encoder-decoder structure where
the bottleneck is at Z°. As we will show in Section 10, Z° is well-
structured which makes it amenable to manipulation for motion
generation.

9.3 Comparison of Adaptation Methods

We quantitatively evaluate the imitation performance of AdaptNet
with other adaptation approaches, including alternate methods with
and without using its internal adaptation component. As in prior
work [Harada et al. 2004; Peng et al. 2021; Tang et al. 2008; Xu and
Karamouzas 2021], we measure the imitation error via:

Niink

D o= pull (15)
I=1

er =
Nink

where Njjyy is the total number of body links, p; € R? is the position
of the body link [in the world space at the time step t, and p; is the
body link’s position in the reference motion. The evaluation results
are shown in Table 2.

We find our proposed approach to combine latent space adapta-
tion (LSA) and internal adaptation (IA) results in the best perfor-
mance. While the results in Table 2 imply LSA alone is sufficient in
many cases, [A appears to help most in the difficult motion style
transfer tasks, e.g., Goose Step, Jaunty Skip and Joyful Walk, where
the stylized motions are relatively far away from the pre-trained
walking motions. In these tasks, adding IA improves the visual qual-
ity as well as motion smoothness, foot height, and gait frequency as
shown in the supplementary video. It is important to note, however,
that IA alone produces subpar performance. In addition, it cannot
account for the additional control input needed in other adaptation
tasks such as terrain adaptation. Further, even when no additional

AdaptNet: Policy Adaptation for Physics-Based Character Control « 177:13

Table 2. Imitation error during motion style transfer with different adapta-
tion components. Values are reported in meters in the format of mean+std.

AdaptNet LSA LSA

(LSA+IA) | +LoRA-64| 57 A

Motion wio 8¢

Swaggering | 0.05 £ 0.02 | 0.05 + 0.02 | 0.06 + 0.02 | 0.11 + 0.03 | 0.11 £ 0.03
Goose Step [0.11 +£0.08 | 0.18 £0.08 | 0.21 £0.12 | 0.35 £ 0.11 [0.36 £ 0.11
Stomp | 0.08 + 0.04 | 0.10 = 0.05 | 0.11 = 0.06 [0.26 = 0.07 | 0.27 + 0.08
Kicking | 0.08 +0.03 | 0.08 + 0.03 | 0.09 + 0.05 | 0.20 = 0.07 | 0.21 £+ 0.07
Stoop | 0.07 £ 0.02 | 0.07 + 0.02 | 0.07 + 0.02 | 0.14 + 0.03 | 0.13 £ 0.03
Jaunty Skip | 0.16 = 0.09 | 0.22 £ 0.10 | 0.25 £ 0.12 [0.56 £0.18 [0.61 £ 0.21
Sashay | 0.06 £ 0.03 | 0.06 + 0.03 | 0.06 + 0.03 | 0.09 + 0.03 | 0.09 + 0.04
Limp | 0.10 = 0.07 { 0.10 £ 0.07 | 0.12 = 0.07 { 0.22 £ 0.09 { 0.29 £ 0.11

Pace | 0.09 + 0.03 | 0.10 £ 0.03 | 0.10 = 0.03 | 0.14 + 0.03 | 0.13 + 0.03
Penguin | 0.11 £ 0.04 | 0.13 £ 0.05 | 0.15 £ 0.05 [0.31 £ 0.09 | 0.38 £ 0.13
Strutting | 0.09 + 0.03 | 0.10 = 0.05 | 0.12 = 0.06 | 0.23 + 0.06 | 0.27 + 0.06
Joyful | 0.17 £ 0.07 | 0.22 £ 0.09 | 0.28 + 0.12 | 0.54 = 0.22 | 0.59 + 0.24

input is needed, IA components cannot be applied for modification
of the state encoder as we cannot initialize the GRU layer of the
encoder to zero. Latent modification is a distinctive feature of LSA,
rendering Egs. 4 and 7 unsuitable to be merged into the same for-
mulation. To highlight the importance of the state encoder module
&y in LSA, we consider an additional ablation where we remove
&4 and connect the output of & directly to Fy (see Figure 2). As
shown in Table 2, utilizing just the old latent space embedding is
useful but no more valuable than using internal adaptation.

In addition to ablations to our own architecture, we also compare
our IA component, which can be regarded as a full-rank adaptation
scheme, to the low-rank adaptation (LoRA) scheme [Hu et al. 2021].
LoRA typically works well for adapting large language models with
alow rank < 8. However, we did not find any evident improvement
over just using LSA when an intrinsic rank of 8 was employed.
Even after increasing the rank to 64, the performance gap between
the full-rank adaptation scheme and LoRA still remains as listed in
Table 2. Though using a low-rank decomposition can reduce the
total number of parameters, it increases the computation cost since
one more matrix multiplication is needed for each adaptor. Given
the small size of our policy network, from our findings we conclude
that the full-rank adaptation offers desirable benefits over LoRA.

10 LATENT SPACE ANALYSIS

In this section, we provide more insights on the ability of AdaptNet
to successfully control and modify the latent space.

10.1 Latent Space Visualization

Figure 17 visualizes the latent space for different motion style trans-
fer tasks. For each task, a controller was trained using AdaptNet
starting from the same pre-trained locomotion policy of walking.
During adaptation training here, we use only the latent space in-
jection component as in Z° for all models. We also remove the
regularization term 7, in Eq. 12 and prolong the training time to let
AdaptNet fit the style motions as much as possible. After training,
we collect samples for each stylized motion from the simulated char-
acter following a straight path without any goal-direction changes.

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

177:14 « P.Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, I. Karamouzas, and V. Zordan

Joyful Strut Penguin Pace Limp Sashay Skip Stoop Kick Stomp Goose Swagger Walk

Fig. 17. Latent space visualization with respect to different styles of walk-related motions. The latent representations of the stylized motions are obtained by
AdaptNet without using the internal adaptation component. The walk motion (dark purple) near the center is provided by the pre-trained policy based on
which AdaptNet performs adaptation to learn the stylized motions. The visualization is achieved using multidimensional scaling technique to project the

latent representations from 260 dimensions to 2 dimensions.

We use a multidimensional scaling technique to reduce the dimen-
sion of the collected latent samples.

As seen in the figure, the 2D projection of the latent space exhibits
a circular shape with the pre-trained walking policy (dark purple)
located near the center. There is a clear and roughly continuous
transition when the motion style changes from one to the other,
which demonstrates the well structured nature of the latent space
with the different motion styles. The distribution of the stylized
motion in the visualized space is roughly consistent with the imi-
tation error distribution listed in Table 2 when no internal adaptor
is employed. Motions with smaller imitation errors are distributed
generally closer to the pre-trained policy while Joyful Walk (light
green) has the largest error and is located the farthest away from
the center of the circle. We also note the Penguin Walk (red) and
Pace (light purple) show greater differences in frequency and speed
and appear farther away from the center of the figure. This indicates
that the distribution in the latent space not only reflects the pose
similarity between motions but also some semantic information, like
motion rhythm and gait frequency. Similar conclusions have been
drawn by recent work in the field of image generation, where the
latent space for image generation is considered to capture semantic
information more than just simple color transformations [Epstein
et al. 2022; Jahanian et al. 2020; Shen et al. 2020].

10.2 Latent Injection Regularization

In Figure 18, we show the latent visualizations of several motions
generated by AdaptNet when L2 regularization is applied on the
injected latent. For comparison, we highlight in white each motion’s
distributions in the full latent space shown in Figure 17. In the lower
figures, the dark purple points represent the latent embedding of the
pre-trained walking, while the gray points are generated by the pre-
trained encoder &; when the simulated character performs stylized
motions. Other colors represent varying levels of regularization, as

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

shown. The goal of regularization is to ensure that the generated
latent can fall into the manifold composed of the gray dots. This
represents a relatively safe region where the latent space is expected
to be handled properly by the pre-trained policy.

In the Stoop task, there is almost no difference with and without
using the L2 regularization. All visualized samples are overlapped
together and covered by the gray region. This is expected given that
the style motion of Stoop is close to the walking motion in the latent
space. However, in the example of Pace, there is a clear separation
when different regularization coefficients are employed. Note when
a coefficient of 0.1 is taken, the generated stylized motion (orange)
is overlapped with the walking motion (dark purple). AdaptNet, in
this case, is over-regularized. It yields to the pre-trained policy and
fails to adapt the pre-trained policy to perform the desired stylized
motion. In contrast, without regularization (f = 0), the latent is
already outside of the safe, gray region. AdaptNet, in this case,
simply overfits to imitating the style motion and loses the ability
to perform goal-steering navigation. While in Jaunty Skip, any f-
value can be employed, in Limp a f-value of 0.01 best ensures that
the latent space stays into the grey manifold while attaining high
imitation performance. In all adaptation tasks detailed in the paper,
we found f = 0.01 to be sufficient. We note that such regularization
is not necessary in other tested adaptation tasks without motion
style transfer. In such cases, the new expected motions are close to
the original policy and already lie in the safe region. We refer to
the supplementary video for a visual comparison of the generated
motions when different regularization coefficients are employed.

11 CONCLUSIONS

This paper presents AdaptNet, an approach for adapting existing
character RL-based control policies to new motion tasks. Our ap-
proach applies two strategies. The first adapts the latent space by
conditioning on the character’s state and allowing the addition of

AdaptNet: Policy Adaptation for Physics-Based Character Control « 177:15

—— =0 —— B=001

B =0.05

B=0.1

—— Walk (Pre-trained)

Fig. 18. Latent space distributions of Stoop, Pace, Jaunty Walk, Limp (left to right). The top figures show the distribution of the stylized motions in the full latent
space without regularization, and the bottom figures show the distribution with regularization applied during adaptation training. Gray points shown in the
bottom figures are the latent embeddings generated by the pre-trained encoder E¢ while the character performs the stylized motions. 8 is the regularization

coefficient from Eq. 12.

new control inputs that will allow the control policy to perform new
tasks. The second aims at control refinement which allows policy
adaptation by shifting the original policy and generating new con-
trol actions based on new training. Importantly, AdaptNet training
always begins with having no (zero) influence, starting from the
existing policy and increasing its influence as training proceeds.

We demonstrate that a previously trained control policy for loco-
motion can be adapted to support diverse style transfer, morpholog-
ical changes including limb length variation and locked joints, and
terrain adaptation including varied friction and geometry. These
adaptations are also very efficient to learn. While the original loco-
motion policy requires 26 hours of training, our style adaptations
take less than thirty minutes to produce a full controller that is capa-
ble of goal-directed steering while adhering to a specified walking
style. More extreme adaptations require more time, but training is
still far more efficient than the cost of learning the initial policy.

A core limitation of this work is that policy adaptation requires
an existing pre-trained policy, and thus it cannot act to produce
new motions on its own. While it is capable of migrating the policy
to many new behaviors and conditions, extreme adaptions (e.g.,
training a jumping action with long flight phase from a walking
controller) do not produce the expected results. We believe this is
due to the distinct characteristics of the two behaviors and we see
such ‘deep’ adaptation as a direction for future work. Also, while we
demonstrate smooth interpolation between latent space embeddings
when we employ control-layer refinement, interpolation does not
always produce coherent in-between behaviors. As we show in
Section 9.2, an improper choice of the target latent space could lead
to undesired control results. As such, we found starting with a proper
latent space is important for obtaining high-quality controllers.

In the current work, we use the recent approach of Xu et al. [2023]
for pre-training an initial policy that is then modified by AdaptNet.

In the future, we would like to see how well other recent approaches
for training physics-based controllers [Peng et al. 2022, 2021; Yao
et al. 2022] can work with our proposed approach. We would also
like to investigate how our approach can be extended to generate
a well-represented latent space that can be further exploited for
motion synthesis. This opens up many avenues for further research,
including latent space disentanglement, inversion, and shaping.

ACKNOWLEDGMENTS

We acknowledge the support of the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) and the National Science
Foundation under Grants No. IIS-2047632 and IIS-2232066. Support
for the first author was made through a generous gift from Roblox.
The Bellairs Workshop on Computer Animation was instrumental
in the conception of the research presented in this paper.

REFERENCES

R. Abdal, Y. Qin, and P. Wonka. 2019. Image2StyleGAN: How to Embed Images Into
the StyleGAN Latent Space?. In Proc. of the IEEE/CVF Int. Conf. on Computer Vision.
4432-4441.

K. Aberman, Y. Weng, D. Lischinski, D. Cohen-Or, and B. Chen. 2020. Unpaired Motion
Style Transfer from Video to Animation. ACM Trans. Graph. 39, 4 (2020).

A. Aghajanyan, S. Gupta, and L. Zettlemoyer. 2021. Intrinsic Dimensionality Explains
the Effectiveness of Language Model Fine-Tuning. In 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). 7319-7328.

F. Alet, T. Lozano-Perez, and L. P. Kaelbling. 2018. Modular meta-learning. In Conf. on
Robot Learning (Proc. of Machine Learning Research, Vol. 87). 856—868.

M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau, T. Schaul, B.
Shillingford, and N. de Freitas. 2016. Learning to Learn by Gradient Descent by
Gradient Descent. In Neural Information Processing Systems. 3988-3996.

K. Bergamin, S. Clavet, D. Holden, and J. R. Forbes. 2019. DReCon: Data-Driven
Responsive Control of Physics-Based Characters. ACM Trans. Graph. 38, 6 (2019).

D. Berthelot, T. Schumm, and L. Metz. 2017. BEGAN: Boundary Equilibrium Generative
Adversarial Networks. arXiv:1703.10717 [cs.LG]

P. Bojanowski, A. Joulin, D. Lopez-Pas, and A. Szlam. 2018. Optimizing the Latent
Space of Generative Networks. In Int. Conf. on Machine Learning (Proc. of Machine
Learning Research, Vol. 80). 600-609.

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

https://arxiv.org/abs/1703.10717

177:16 + P.Xu, K. Xie, S. Andrews, P. Kry, M. Neff, M. McGuire, I. Karamouzas, and V. Zordan

J. Chemin and J. Lee. 2018. A Physics-Based Juggling Simulation Using Reinforcement
Learning. In ACM SIGGRAPH Conf. on Motion, Interaction and Games. Article 3.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. 2014. Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling. In NIPS 2014 Workshop on Deep
Learning.

C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine. 2017. Learning Modular Neural
Network Policies for Multi-Task and Multi-Robot Transfer. In IEEE Int. Conf. on
Robotics and Automation. 2169-2176.

Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. 2016. RL?: Fast
Reinforcement Learning via Slow Reinforcement Learning. arXiv:1611.02779 [cs.AI]

D. Epstein, T. Park, R. Zhang, E. Shechtman, and A. A. Efros. 2022. BlobGAN: Spatially
Disentangled Scene Representations. In Computer Vision — ECCV 2022. 616-635.

C. Finn, P. Abbeel, and S. Levine. 2017. Model-Agnostic Meta-Learning for Fast Adap-
tation of Deep Networks. In Int. Conf. on Machine Learning. 1126-1135.

A. Frezzato, A. Tangri, and S. Andrews. 2022. Synthesizing Get-Up Motions for Physics-
based Characters. Comput. Graph. Forum 41, 8 (2022), 207-218.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand,
and V. Lempitsky. 2016. Domain-Adversarial Training of Neural Networks. Journal
of Machine Learning Research 17, 1 (2016), 2096-2030.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. 2017. Improved
Training of Wasserstein GANSs. In Neural Information Processing Systems, Vol. 30.
5769-5779.

A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine. 2018. Meta-Reinforcement
Learning of Structured Exploration Strategies. In Neural Information Processing
Systems, Vol. 31. 5307-5316.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. 2017. Reinforcement Learning with
Deep Energy-Based Policies. In Int. Conf. on Machine Learning. 1352-1361.

T. Harada, S. Taoka, T. Mori, and T. Sato. 2004. Quantitative Evaluation Method for
Pose and Motion Similarity Based on Human Perception. In IEEE/RAS Int. Conf. on
Humanoid Robots, Vol. 1. 494-512.

F. G. Harvey, M. Yurick, D. Nowrouzezahrai, and C. Pal. 2020. Robust Motion In-
betweening. ACM Trans. Graph. 39, 4, Article 60 (2020).

N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver. 2015. Memory-based control with
recurrent neural networks. arXiv:1512.04455 [cs.LG]

N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang,
S. M. A. Eslami, M. Riedmiller, and D. Silver. 2017. Emergence of Locomotion
Behaviours in Rich Environments. arXiv:1707.02286 [cs.AI]

D. Hejna, L. Pinto, and P. Abbeel. 2020. Hierarchically Decoupled Imitation For Mor-
phological Transfer. In 37th Int. Conf. on Machine Learning, Vol. 119. 4159-4171.

J. Ho and S. Ermon. 2016. Generative Adversarial Imitation Learning. Advances in
Neural Information Processing Systems 29 (2016).

R. Houthooft, Y. Chen, P. Isola, B. Stadie, F. Wolski, O. Jonathan Ho, and P. Abbeel.
2018. Evolved policy gradients. In Neural Information Processing Systems, Vol. 31.
5405-5414.

E.J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. 2021.
LoRA: Low-Rank Adaptation of Large Language Models. arXiv:2106.09685 [cs.CL]

A. Jahanian, L. Chai, and P. Isola. 2020. On the "Steerability" of Generative Adversarial
Networks. In Int. Conf. on Learning Representations.

J. Juravsky, Y. Guo, S. Fidler, and X. B. Peng. 2022. PADL: Language-Directed Physics-
Based Character Control. In SIGGRAPH Asia 2022 Conf. Papers. Article 19.

A. Karpathy and M. van de Panne. 2012. Curriculum Learning for Motor Skills. In
Canadian Conf. on Artificial Intelligence. Springer, 325-330.

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. 2020. Analyzing
and Improving the Image Quality of StyleGAN. In Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition. 8110-8119.

D. P. Kingma and J. Ba. 2017. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs.LG]

A. Kwiatkowski, E. Alvarado, V. Kalogeiton, C. K. Liu, J. Pettré, M. van de Panne, and
M.-P. Cani. 2022. A Survey on Reinforcement Learning Methods in Character
Animation. Comput. Graph. Forum 41, 2 (2022), 613-639.

C. Li, H. Farkhoor, R. Liu, and]. Yosinski. 2018. Measuring the Intrinsic Dimension of
Objective Landscapes. In Int. Conf. on Learning Representations.

J.H. Lim and J. C. Ye. 2017. Geometric GAN. arXiv:1705.02894 [stat.ML]

H. Y. Ling, F. Zinno, G. Cheng, and M. van de Panne. 2020. Character controllers using
motion VAEs. ACM Trans. Graph. 39, 4, Article 40 (2020).

L. Liu and J. Hodgins. 2017. Learning to Schedule Control Fragments for Physics-Based
Characters Using Deep Q-Learning. ACM Trans. Graph. 36, 4, Article 42a (2017).

L. Liu and J. Hodgins. 2018. Learning Basketball Dribbling Skills Using Trajectory
Optimization and Deep Reinforcement Learning. ACM Trans. Graph. 37, 4, Article
142 (2018), 14 pages.

Y. Luo, K. Xie, S. Andrews, and P. Kry. 2021. Catching and Throwing Control of a
Physically Simulated Hand. In ACM SIGGRAPH Conf. on Motion, Interaction and
Games. Article 15.

V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N.
Rudin, A. Allshire, A. Handa, and G. State. 2021. Isaac Gym: High Performance
GPU-Based Physics Simulation For Robot Learning. arXiv:2108.10470 [cs.RO]

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

1. Mason, S. Starke, H. Zhang, H. Bilen, and T. Komura. 2018. Few-shot Learning
of Homogeneous Human Locomotion Styles. Comput. Graph. Forum 37, 7 (2018),
143-153.

J. Merel, Y. Tassa, D. TB, S. Srinivasan, J. Lemmon, Z. Wang, G. Wayne, and N. Heess.
2017. Learning human behaviors from motion capture by adversarial imitation.
arXiv:1707.02201 [cs.RO]

J. Merel, S. Tunyasuvunakool, A. Ahuja, Y. Tassa, L. Hasenclever, V. Pham, T. Erez,
G. Wayne, and N. Heess. 2020. Catch & Carry: Reusable Neural Controllers for
Vision-Guided Whole-Body Tasks. ACM Trans. Graph. 39, 4, Article 39 (2020).

C. Mou, X. Wang, L. Xie, Y. Wu, J. Zhang, Z. Qi, Y. Shan, and X. Qie. 2023. T2I-Adapter:
Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion
Models. arXiv:2302.08453 [cs.CV]

A. Nichol, J. Achiam, and J. Schulman. 2018. On First-Order Meta-Learning Algorithms.
arXiv:1803.02999 [cs.LG]

E. Parisotto, L. J. Ba, and R. Salakhutdinov. 2016. Actor-Mimic: Deep Multitask and
Transfer Reinforcement Learning. In Int. Conf. on Learning Representations.

X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. 2018a. DeepMimic: Example-
Guided Deep Reinforcement Learning of Physics-Based Character Skills. ACM Trans.
Graph. 37, 4, Article 143 (2018).

X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. 2018b. Sim-to-Real Transfer
of Robotic Control with Dynamics Randomization. In IEEE Int. Conf. on Robotics
and Automation. 3803-3810.

X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine. 2019. MCP: Learning
Composable Hierarchical Control with Multiplicative Compositional Policies. In
Advances in Neural Information Processing Systems. 3681-3692.

X. B. Peng, Y. Guo, L. Halper, S. Levine, and S. Fidler. 2022. ASE: Large-Scale Reusable
Adversarial Skill Embeddings for Physically Simulated Characters. ACM Trans.
Graph. 41, 4, Article 94 (2022).

X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa. 2021. AMP: Adversarial
Motion Priors for Stylized Physics-Based Character Control. ACM Trans. Graph. 40,
4, Article 144 (2021).

P. Pope, C. Zhu, A. Abdelkader, M. Goldblum, and T. Goldstein. 2021. The Intrinsic
Dimension of Images and Its Impact on Learning. In Int. Conf. on Learning Represen-
tations.

A. Radford, L. Metz, and S. Chintala. 2016. Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks. arXiv:1511.06434 [cs.LG]

A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine. 2017. EPOpt: Learning Ro-
bust Neural Network Policies Using Model Ensembles. In Int. Conf. on Learning
Representations.

S. Ravi and H. Larochelle. 2017. Optimization as a Model for Few-Shot Learning. In Int.
Conf. on Learning Representations.

A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pas-
canu, V. Mnih, K. Kavukcuoglu, and R. Hadsell. 2016a. Policy Distillation.
arXiv:1511.06295 [cs.LG]

A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer,]. Kirkpatrick, K.
Kavukcuoglu, R. Pascanu, and R. Hadsell. 2016b. Progressive Neural Networks.
arXiv:1606.04671 [cs.LG]

A. A. Rusu, M. Vecerik, T. Rothorl, N. Heess, R. Pascanu, and R. Hadsell. 2017. Sim-to-
Real Robot Learning from Pixels with Progressive Nets. In Conf. on Robot Learning.
262-270.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. Proximal Policy
Optimization Algorithms. arXiv:1707.06347 [cs.LG]

Y. Shen, J. Gu, X. Tang, and B. Zhou. 2020. Interpreting the Latent Space of GANs for
Semantic Face Editing. In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition. 9243-9252.

T. Silver, K. Allen, J. Tenenbaum, and L. Kaelbling. 2019. Residual Policy Learning.
arXiv:1812.06298 [cs.RO]

S. Starke, I. Mason, and T. Komura. 2022. DeepPhase: Periodic Autoencoders for
Learning Motion Phase Manifolds. ACM Trans. Graph. 41, 4, Article 136 (2022).

J. K. Tang, H. Leung, T. Komura, and H. P. Shum. 2008. Emulating human perception of
motion similarity. Computer Animation and Virtual Worlds 19, 3-4 (2008), 211-221.

T. Tao, M. Wilson, R. Gou, and M. van de Panne. 2022. Learning to Get Up. In ACM
SIGGRAPH 2022 Conf. Proceedings. Article 47.

C. Tessler, Y. Kasten, Y. Guo, S. Mannor, G. Chechik, and X. B. Peng. 2023. CALM:
Conditional Adversarial Latent Models for Directable Virtual Characters. In ACM
SIGGRAPH 2023 Conf. Proceedings. Article 37.

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. 2017. Adversarial Discriminative
Domain Adaptation. In IEEE Conf. on Computer Vision and Pattern Recognition.
2962-2971.

D. Wang, E. Shelhamer, S. Liu, B. A. Olshausen, and T. Darrell. 2021. Tent: Fully Test-
Time Adaptation by Entropy Minimization. In Int. Conf. on Learning Representations.

J. Won, D. Gopinath, and J. Hodgins. 2021. Control Strategies for Physically Simulated
Characters Performing Two-Player Competitive Sports. ACM Trans. Graph. 40, 4,
Article 146 (2021).

J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum. 2016. Learning a Probabilistic
Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. In Advances

https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1705.02894
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/1707.02201
https://arxiv.org/abs/2302.08453
https://arxiv.org/abs/1803.02999
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06295
https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1812.06298

in Neural Information Processing Systems, Vol. 29.
Z.Xie, H. Y. Ling, N. H. Kim, and M. van de Panne. 2020. ALLSTEPS: Curriculum-driven
Learning of Stepping Stone Skills. Comput. Graph. Forum 39, 8 (2020), 213-224.
Z.Xie, S. Starke, H. Y. Ling, and M. van de Panne. 2022. Learning Soccer Juggling Skills

with Layer-Wise Mixture-of-Experts. In ACM SIGGRAPH 2022 Conf. Proceedings.

Article 25.

P. Xu and I. Karamouzas. 2021. A GAN-Like Approach for Physics-Based Imitation
Learning and Interactive Character Control. Proc. of the ACM on Computer Graphics
and Interactive Techniques 4, 3, Article 44 (2021).

P. Xu, X. Shang, V. Zordan, and I. Karamouzas. 2023. Composite Motion Learning with
Task Control. ACM Trans. Graph. 42, 4, Article 93 (2023).

Z.Xu, H. P. van Hasselt, and D. Silver. 2018. Meta-Gradient Reinforcement Learning.

In Advances in Neural Information Processing Systems, Vol. 31.

AdaptNet: Policy Adaptation for Physics-Based Character Control « 177:17

H. Yao, Z. Song, B. Chen, and L. Liu. 2022. ControlVAE: Model-Based Learning of
Generative Controllers for Physics-Based Characters. ACM Trans. Graph. 41, 6,
Article 183 (2022).

Z.Yin, Z. Yang, M. van de Panne, and K. Yin. 2021. Discovering Diverse Athletic
Jumping Strategies. ACM Trans. Graph. 40, 4, Article 91 (2021).

W. Yu, G. Turk, and C. K. Liu. 2018. Learning Symmetric and Low-Energy Locomotion.
ACM Trans. Graph. 37, 4, Article 144 (2018).

L. Zhang and M. Agrawala. 2023. Adding Conditional Control to Text-to-Image Diffu-
sion Models. arXiv:2302.05543 [cs.CV]

P. Zhuang, O. O. Koyejo, and A. Schwing. 2021. Enjoy Your Editing: Controllable
GANs for Image Editing via Latent Space Navigation. In Int. Conf. on Learning
Representations.

ACM Trans. Graph., Vol. 42, No. 6, Article 177. Publication date: December 2023.

https://arxiv.org/abs/2302.05543

	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep Reinforcement Learning for Skilled Motion
	2.2 Transfer Learning
	2.3 Latent Space Adaptation

	3 AdaptNet Framework
	4 Policy Adaptation using Latent Space Injection
	5 Internal Adaptation for Control Layers
	6 Policy Training
	7 Experimental Setup
	8 Applications of AdaptNet
	8.1 Motion Style Transfer and Interpolation
	8.2 Morphological Adaptation
	8.3 Terrain Adaptation
	8.4 Perturbation Adaptation

	9 Ablation Studies
	9.1 Baseline Comparisons
	9.2 Latent Space Injection
	9.3 Comparison of Adaptation Methods

	10 Latent Space Analysis
	10.1 Latent Space Visualization
	10.2 Latent Injection Regularization

	11 Conclusions
	Acknowledgments
	References

