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We present a system identification method based on recursive least-squares (RLS) and
coprime collaborative sensing, which can recover system dynamics from non-uniform tem-
poral data. Focusing on systems with fast input sampling and slow output sampling, we use
a polynomial transformation to reparameterize the system model and create an auxiliary
model that can be identified from the non-uniform data. We show the identifiability of the
auxiliary model using a Diophantine equation approach. Numerical examples demonstrate
successful system reconstruction and the ability to capture fast system response with limited
temporal feedback. [DOI: 10.1115/1.4063481]
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1 Introduction
A common assumption for real-time control systems design is

that the sampling of input and output signals is uniform, periodic,
and synchronous [1]. In the information-rich world, however,
data streams are often non-uniform and asynchronous. (In fact, real-
time control system implementations often have to adjust the sam-
pling rate to deal with irregular data [2].) While non-uniformly
sampled data intuitively contain more temporal information for
system analysis and controls [3,4], they violate the classical real-
time control framework, and most existing methods for non-
uniformly sampled systems are heuristic and specific [5]. It
remains not well understood how to systematically leverage non-
uniform data streams for real-time dynamic systems. In particular,
as the first critical step in real-time controls, classic system identifi-
cation requires synchronous input and output data when building
the model of a dynamical system [6].
From a signal processing point of view, non-uniform data are nat-

urally dense in certain temporal regions where more information
about the system dynamics can be revealed [4]. The non-uniformly
sampled data can be collected by triggering the sensor with events,
by randomized sampling, or by fusing measurements from multiple
sensors. On the one hand, the temporal resolution is increased due
to the data irregularity [3]. On the other hand, it challenges conven-
tional system identification algorithms.
One approach to identifying a system under non-uniform data is

based on the approximation theory [7]. Briefly, the non-uniformly
collected data are approximated or reconstructed by a sequence of

uniform samples, and then, the conventional system identifi-
cation algorithms can be applied to the resulting uniform data
[8]. Several techniques have been proposed for the data recon-
struction, including linear [9], polynomial [10], and spline interpo-
lations [11]. Other works on system identification subject to non-
uniformly sampled data have also been conducted using the
expectation maximization approach [12–14], the maximum likeli-
hood estimation [14,15], the lifting operator [16,17], and the
output error method [18].
Stepping further beyond the existing approaches, this paper con-

tributes to a novel system identification that leverages the temporal
advantage of non-uniform sampling but overcomes the obstacle
imposed by non-uniform data collection for general input–output
models. We first propose a coprime collaborative sensing scheme,
which generates one set of data that appears non-uniform with
respect to time while, in the meantime, having systematic underly-
ing sampling patterns. Next, we implement a model reparameteriza-
tion tailored for the selected sensing scheme based on polynomial
transformation to construct an auxiliary model that can be directly
identified with the available observations. Then, a recursive
least-squares (RLS)-based algorithm is designed to identify the aux-
iliary model and to illustrate the feasibility of working with the
mechanism of collaborative sampling and model reparameteriza-
tion. Lastly, the parameters of the original fast system model are
recovered by removing the highest common factors between the
denominator and numerator polynomials.
The remainder of this paper is organized as follows. In Sec. 2,

technical preliminaries regarding the model reparameterization are
reviewed and introduced. The proposed coprime collaborative
sensing and system modeling are formally defined in Sec. 3. In
Sec. 4, we derive recursive system identification algorithms based
on the proposed sensing scheme and model reparameterization
strategies. Section 5 contains multiple classes of numerical exam-
ples. Section 6 concludes the paper.
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2 Preliminaries
In this section, we review the transfer operator and model param-

eterization in standard single-rate and multi-rate system identifica-
tion. Consider the deterministic autoregressive-moving-average
model for a linear time-invariant system:

y(k) =
q−dB(q−1)
A(q−1)

u(k) (1)

where d is an integer number of sampling periods contained in the
time delay of the systems, and q is the time-domain shift operator
defined as qy(k)= y(k+ 1) and q−1y(k)= y(k− 1), and A(q−1) = 1 +
a1q−1 + · · · + anaq

−na and B(q−1) = b1q−1 + b2q−2 + · · · + bnbq
−nb

are polynomials of q−1. Equation (1) can be rewritten as

A(q−1)y(k) = q−dB(q−1)u(k) (2)

or alternatively
(1 + · · · + anaq

−na )y(k) = (b1q−1 + · · · + bnbq
−nb )u(k − d). Expand-

ing and rearranging yield

y(k) = −a1y(k − 1) − · · · − anay(k − na)

+ b1u(k − d − 1) + · · · + bnbu(k − d − nb) (3)

or y(k)= θTϕ(k), where

ϕ(k) = [ − y(k − 1), − y(k − 2), . . . , − y(k − na), u(k − d − 1),

u(k − d − 2), . . . , u(k − d − nb)]
T

θ = [a1, a2, . . . , ana , b1, b2, . . . , bnb ]
T

When the system input and output are sampled at different rates
(slower output sampling in this paper), the available data become
y(Jk)= {y(k− J ), y(k− 2J ), …} and u(k)= {u(k− 1), u(k− 2),
…}, where J is a positive integer representing the ratio between
the input and output sampling rates. The original single-rate
model described in Eq. (1) can be transformed into a dual-rate
version that can be identified directly from the available measure-
ments [19]. The solution approach is first to recognize the factoriza-
tion:

1 − xJ = (1 − x)(1 + x + x2 + · · · + xJ−1) (4)

Next, consider the characteristic equation A(q−1) in the multiplica-
tion form:

A(q−1) ≜
∏na
i=1

[1 − (λiq)
−1] (5)

where λi’s are the reciprocals of the poles of the system, and na is the
order of the characteristic equation (i.e., the number of poles).
Observing the structure of Eq. (4), we notice that by designing a
polynomial:

FJ (q
−1) =

∏na
i=1

1 + (λiq)
−1 + (λiq)

−2 + · · · + (λiq)
−J+1[ ]

= 1 + f1q
−1 + · · · + fnaJ−naq

−naJ+na (6)

the original characteristic equation described in Eq. (5) can be trans-
ferred into

AJ (q
−J ) = A(q−1)FJ (q

−1)

= [1 − (λ1q)
−J ][1 − (λ2q)

−J ] · · · [1 − (λnaq)
−J ]

= 1 + aJ,1q
−J + aJ,2q

−2J + · · · + aJ,naq
−naJ

with a down-sampled observation space. Applying the same trans-
formation polynomial shown in Eq. (6) to the numerator of Eq. (1)

yields a multi-rate system model:

y(k) =
q−dB(q−1)FJ (q−1)
A(q−1)FJ (q−1)

u(k)

=
q−dBJ (q−1)
AJ (q−J )

u(k) (7)

or in a form similar to Eq. (2):

AJ (q
−J )y(k) = q−dBJ (q

−1)u(k) (8)

where BJ (q−1) = bJ,1q−1 + · · · + bJ,na(J−1)+nbq
−na(J−1)−nb . Rewriting

Eq. (8) in a predictor form similar to Eq. (3), we have

y(k) = −aJ,1y(k − J) − · · · − aJ,nay(k − naJ)

+ bJ,1u(k − d − 1) + · · · + bJ,nbu(k − d − na(J − 1) − nb)

where the output prediction is precisely a linear combination of u(k)
and y(Jk). Therefore, directly identifying the multi-rate model
parameters becomes possible after the aforementioned model
reparameterization.
The key insight of the introduced model reparameterization is to

recognize that the historical measurements required for system iden-
tification depend solely on the order of system polynomials (i.e.,
A(q−1) and B(q−1)). By designing a transformation polynomial,
we can freely adjust the order of system polynomials. Conse-
quently, the challenge posed by input and output asynchronism in
identifying system dynamics is effectively circumvented.

3 Proposed Coprime Collaborative Sensing and Model
Reparameterization
Figure 1 illustrates the proposed coprime collaborative sensing

scheme, where multiple sensors with coprime sampling rates collab-
oratively sense the system output. Assuming the fundamental sam-
pling period is T, and S represents the set of sensors sampling rate,
we define the coprime sampling rate as S= {aT, bT, cT, …}, where
a, b, c, … are coprime integers. The data collected from these
sensors are then combined chronologically, assuming that all
sensors begin sampling simultaneously. The coprime sampling
rates result in fewer measurements overlapping when multiple
sensor measurements are fused, providing the highest temporal res-
olution as more details of the system response become available.
This enables the parameter estimation to be updated with the
maximum information entropy precisely when all sensor measure-
ments overlap.
When n sensors of different rates are used, the available output

measurements become

y(J1k, . . . , Jnk) = {y(k − J1), y(k − 2J1), . . .

..

.

y(k − Jn), y(k − 2Jn), . . . }

Fig. 1 The proposed collaborative sensing scheme of multiple
sensors with coprime sampling rates. The illustration depicts
the case when three coprime sensors’ data are merged for use
(boxed in dashed lines). The instants enclosed by solid lines rep-
resent valid measurements for updating parameter estimation
(i.e., when all sensors’ measurements overlap).
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Based on the aforementioned multi-rate model reparameterization,
we know that there will be n unique transformation polynomials

FJ1 (q
−1) =

∏na
i=1

1 + (λiq)
−1 + (λiq)

−2 + · · · + (λiq)
−J1+1

[ ]

..

.

FJn (q
−1) =

∏na
i=1

1 + (λiq)
−1 + (λiq)

−2 + · · · + (λiq)
−Jn+1

[ ]

if we want to identify the system model with the given output obser-
vation space. Let

FJ∗ (q
−1) =

1
n

∑n
i=1

F ji (q
−1) (9)

Multiplying Eq. (9) to both sides of Eq. (2), we obtain the auxiliary
system model:

AJ∗ (q
−J1 , . . . , q−Jn )y(k) = q−dBJ∗ (q

−1)u(k) (10)

where

AJ∗ (q
−J1 , . . . , q−Jn ) = 1 +

aJ1,1
n

q−J1 + · · · + aJ1 ,na
n

q−naJ1

..

.

+
aJn,1
n

q−Jn + · · · + aJn,na
n

q−naJn

Therefore, the auxiliary model can be directly identified since the
required measurements now match the available measurements
after rewriting Eq. (10) in a predictor form. We will focus on the
case where two output sensors of different rates are used in the
remaining content for notational simplicity.

4 Recursive System Identification Under Collaborative
Sensing
4.1 Recursive Least-Squares Formulation. We present the

recursive least-squares formulation for the case where two
coprime sensors are deployed collaboratively in the scheme above
for the output measurement. First, we design transformation poly-
nomials for the characteristic equation of the original system
model as follows:

FJ1 (q
−1) =

∏na
i=1

(1 + (λiq)
−1 + · · · + (λiq)

1−J1 )

FJ2 (q
−1) =

∏na
i=1

(1 + (λiq)
−1 + · · · + (λiq)

1−J2 )

where J1 and J2 are coprime integers. Without loss of generality, we
assume that a smaller index denotes the sensor with a faster sam-
pling rate (i.e., J1 < J2). Summing up the two polynomials above
and implementing the normalization in Eq. (9) yield

FJ∗ (q
−1) =

1
2
[FJ1 (q

−1) + FJ2 (q
−1)] (11)

Next, multiplying the polynomial shown in Eq. (11) to both sides of
the original system model in Eq. (2) yields FJ∗ (q

−1)A(q−1)y(k) =
q−dFJ∗ (q

−1)B(q−1)u(k) or

AJ∗ (q
−J1 , q−J2 )y(k) = q−dBJ∗ (q

−1)u(k) (12)

where

AJ∗ (q
−J1 , q−J2 ) = 1 +

aJ1 ,1
2

q−J1 + · · · + aJ1,na
2

q−naJ1

+
aJ2,1
2

q−J2 + · · · + aJ2 ,na
2

q−naJ2

BJ∗ (q
−1) = bJ∗ ,1q

−1 + bJ∗ ,2q
−2 + · · · + bJ∗ ,na(J2−1)+nbq

−na(J2−1)−nb

The order of BJ∗ (q
−1) here comes from the sum of the order of

B(q−1), i.e., nb, and that of FJ∗ (q
−1), i.e., na(J2− 1). For simplicity,

let χ= na(J2− 1)+ nb. Equation (12) can be rearranged as

y(k) = −
aJ1,1
2

y(k − J1) − · · · − aJ1 ,na
2

y(k − naJ1)

−
aJ2,1
2

y(k − J2) − · · · − aJ2 ,na
2

y(k − naJ2)

+ bJ∗ ,1u(k − d − 1) + · · · + bJ∗ ,χu(k − d − χ)

or in a vector form:

y(k) = θTϕ(k) (13)

where

(14)

From the vector form of the predictor function in Eq. (13), we see
that the required historical output measurements are integer multi-
ples of J1 or J2 steps behind the current instant k. At time instant
iJ1J2, we have ŷ(iJ1J2) = ϕT (iJ1J2)θ̂(iJ1J2), i = 0, 1, 2, . . . Consider
the performance index:

Jk =
∑k
i=1

e(iϰ)2 =
∑k
i=1

y(iϰ) − ϕT (iϰ)θ̂(kϰ)
[ ]2

where ϰ = J1J2 for brevity of notation. The solution θ̂(kϰ) can then
be obtained using techniques from single-rate recursive
least-squares, and the parameter adaptation algorithm (PAA) is as
follows:

θ̂((k + 1)ϰ) = θ̂(kϰ) + F(k + 1)ϕ((k + 1)ϰ)ϵo((k + 1)ϰ) (15)

F(k + 1) = F(k) −
F(k)ϕ((k + 1)ϰ)ϕT ((k + 1)ϰ)F(k)

1 + ϕT ((k + 1)ϰ)F(k)ϕ((k + 1)ϰ)
(16)
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where the a priori output estimation ŷo and a priori output estimation
error ϵo are defined as

ŷo((k + 1)ϰ) = ϕT ((k + 1)ϰ)θ̂(kϰ)

ϵo((k + 1)ϰ) = y((k + 1)ϰ) − ŷo((k + 1)ϰ)

The stability of the PAA follows from standard hyperstability anal-
ysis for system identification and adaptive control [6]. Between kϰ
and (k + 1)ϰ, we keep the data asynchronous and hold the parame-
ter estimate: θ̂(kϰ + j) = θ̂(kϰ), j = 1, 2, . . . , ϰ − 1.

4.2 PAA Convergence and Identifiability Analysis. Parame-
ter convergence in standard system identification requires the model
to be irreducible, meaning that the polynomial orders cannot be
further reduced and there are no common factors between B(q−1)
and A(q−1).
When the input signal persistently excites the system dynamics,

the convergence condition reduces to the existence of the solution to
the following Diophantine equation associated with the polynomial
parameters [6]

Ã(q−1)B(q−1) − A(q−1)B̃(q−1) = 0

where Ã(q−1) and B̃(q−1) represent the difference between the
ground truth and the estimated system polynomials. In deterministic
cases, parameters converge to the true values when the only solution
to the Diophantine equation is Ã(q−1) = 0 and B̃(q−1) = 0. For the
proposed collaborative sensing, it can be shown that parameter con-
vergence still holds due to the following lemma.
LEMMA 1 (Diophantine multiplicative equations). Given a poly-

nomial of the following form:

F(z−1) = f0 + f1z
−1 + f2z

−2 + · · · + fmz
−m

where not all fi’s are zero, and

α(z−1) = 1 + α1z
−1 + · · · + αnz

−n

β(z−1) = β1z
−1 + β2z

−2 + · · · + βnz
−n

Then, the Diophantine equation

F(z−1)[α(z−1) σ(z−1)︸��︷︷��︸
unknown

+β(z−1) γ(z−1)︸�︷︷�︸
unknown

] = 0 (17)

has the unique zero solution for σ(z−1) and γ(z−1) (i.e., σ(z−1)= 0
and γ(z−1)= 0), if the numerators of α(z−1) and β(z−1) are
coprime, and the orders of σ and γ are restricted to be less than n
as follows:

σ(z−1) = σ0 + σ1z
−1 + · · · + σn−1z

−(n−1)

γ(z−1) = γ0 + γ1z
−1 + · · · + γn−1z

−(n−1)

The proof is provided in the Appendix.

4.3 Parameter Recovery. Recall the reparameterized system
model:

y(k) =
q−dB(q−1)FJ∗ (q

−1)
A(q−1)FJ∗ (q−1)

u(k) =
q−dBJ∗ (q

−1)
AJ∗ (q−J1 , q−J2 )

u(k)

By applying the aforementioned RLS-system identification algo-
rithm, the intermediate parameter vector, i.e., the coefficients of
BJ∗ (q

−1) and AJ∗ (q
−J1 , q−J2 ), can be identified directly. By removing

the highest-order common factor from BJ∗ (q
−1) and AJ∗ (q

−J1 , q−J2 ),
the original fast model polynomials B(q−1) and A(q−1) can then be
obtained.

5 Case Study
We present three cases with different system setups, including a

practical example in motion controls. We assume that two sensors
are deployed for the output data collection. For the first two simula-
tion cases, J1 and J2 are 2 and 3 times slower than the input sam-
pling rate, respectively, and an input pseudo-random binary
sequence (PRBS) signal is generated at 1024 Hz. A sufficiently
long time horizon is selected to ensure parameter convergence
(within ten iterations). For the third motion control example imple-
mented on a hard drive drive (HDD) benchmark, we assume that J1
and J2 are 9 and 13 times slower. The PRBS signal is generated at
50,400 Hz. Algorithm 1 outlines the implementation steps for the
proposed algorithm.

Algorithm 1 Collaborative sensing RLS system identification

Input: u(k), y(k), F, J1, J2, na, nb, d
θ, ϕ ← na, nb, d while t ≤ toperation do

if t mod J1 · J2 = 0 then
Update θ, F; // refer to Eqs. (15) and (16)
Update ϕ; // refer to Eq. (14)

else
if t mod J1 = 0 then

Update ϕJ1 , ϕu // refer to Eq. (14)
end
if t mod J2 = 0 then

Update ϕJ2 , ϕu // refer to Eq. (14)
end

end
end
BJ∗ (q−1), AJ∗ (q−J1 , q−J2 ) ← θ
B(q−1), A(q−1) ← BJ∗ (q−1), AJ∗ (q−J1 , q−J2 )
Return: B(q−1), A(q−1)

5.1 Third-Order System. Consider

y(k) =
q−2 + 0.5q−3

1 + 0.9q−1 + 0.26q−2 + 0.024q−3
u(k)

where the poles are at −0.2, −0.3, and −0.4, and the zero is at −0.5.
Rewrite the transfer function into the general form for system iden-
tification as follows:

G(q−1) ≜
q−dB(q−1)
A(q−1)

=
q−1(q−1 + 0.5q−2)

1 + 0.9q−1 + 0.26q−2 + 0.024q−3

From the general form, we record the hyperparameters for the
algorithm, which are d= 1, na= 3, and nb= 2. The model
parameters needed to be identified are B̃(q−1) : [1.0, 0.5],
Ã(q−1) : [1.0, 0.9, 0.26, 0.024]. The identified system response is
shown in Fig. 2 and the parameters convergence of the auxiliary
model is shown in Fig. 3. We also plotted the Nyquist frequencies
of the individual sensors and observed the accurate model identifi-
cation beyond the limitations of the individual sensors.

5.2 Higher-Order System. Consider a fourth-order system

G(q−1) =
q−1(q−1 + 1.5q−2 + 0.56q−3)

1 + 1.4q−1 + 0.71q−2 + 0.154q−3 + 0.012q−4

where the poles are at −0.2, −0.3, −0.4, and −0.5, and the zeros are
at −0.6 and −0.7. The hyperparameters are d= 1, na= 4, and nb= 3.
The identified parameters are B̃(q−1) : [0.9999, 1.4999, 0.5602],
Ã(q−1) : [1.0000, 1.3999, 0.7102, 0.1541, 0.0120].
Figure 4 compares the original and identified system responses.

5.3 Hard Drive Drive Benchmark System. Consider the
major first two modes in the voice coil motor of an HDD benchmark
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system [20]:

G(q−1) =
0.00033q−1 + 0.003q−2 + 0.00264q−3 + 0.00019q−4

1 − 3.559q−1 + 5.091q−2 − 3.506q−3 + 0.9739q−4

where the poles are at 0.7792+ 0.6055i, 0.7792− 0.6055i, 1,
and 0.9999, and the zeros are at −8.2069, −0.0831, and −0.8835.
The plant has common characteristics that relate torque/
force to position in motion control. The hyperparameters are
d = 0, na = 4, nb= 4, M= 9, and N= 13. The identified para-
meters are B̃(q−1) : [0.00033, 0.00303, 0.00265, 0.00020], Ã(q−1) :
[1, −3.55851, 5.09094, −3.50634, 0.97391]. Figure 5 compares
the original and identified system responses.
In all cases, the proposed algorithm was observed to have

accurately identified the underlying system dynamics beyond the
individual sensor’s Nyquist sampling limit.

6 Conclusion and Future Work
This paper presented a novel framework for non-uniformly

sampled system identification based on the proposed coprime collab-
orative sensing and the RLS-based algorithm. Leveraging a polyno-
mial transformation and characteristics of coprime numbers, we

showed how the algorithm can recover fast system models beyond
the Nyquist frequencies of multiple slow sensors. Example applica-
tions in motion control illustrate the effectiveness of the process.
Future work includes optimal sensor rate selection, minimum data
requirements, and addressing noise in stochastic environments.
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Fig. 2 The frequency response comparison of the third-order
system, and the identification beyond the Nyquist frequency

Fig. 3 Illustration of parameter convergence of the auxiliary
model for 30 iterations

Fig. 4 Higher-order system frequency response comparison,
and the identification beyond the Nyquist frequency

Fig. 5 HDD benchmark system frequency response compari-
son, and the identification beyond the Nyquist criterion
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Appendix: Diophantine Multiplicative Equations Proof
Proof. Given

F(z−1) = f0 + f1z
−1 + f2z

−2 + · · · + fmz
−m

let

η̃(z−1) = α(z−1)σ(z−1) + β(z−1)γ(z−1) (A1)

where

α(z−1) = 1 + α1z
−1 + · · · + αnz

−n

β(z−1) = β1z
−1 + β2z

−2 + · · · + βnz
−n

and

σ(z−1) = σ0 + σ1z
−1 + · · · + σn−1z

−(n−1)

γ(z−1) = γ0 + γ1z
−1 + · · · + γn−1z

−(n−1)

are unknown a priori.
We show that F(z−1)η̃(z−1) = 0 holds only when η̃(z−1) = 0 and

subsequently σ(z−1) and γ(z−1) must all be zero. After forming
the Sylvester matrix, Eq. (A1) is equivalent to the linear equality:

S

1
α1

..

.

αn−1
γ0
γ1

..

.

γn−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

η̃0
η̃1

..

.

η̃n−1
η̃n
η̃n+1

..

.

η̃2n−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

S =

1 0 . . . 0 0 . . . . . . 0

α1
. .
. . .

. ..
.

β1
. .
. ..

.

..

. . .
. . .

.
0 ..

. . .
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⎡
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2n,2n

Then, the coefficients of the filter product

F(z−1)η̃(z−1) = η0 + η1z
−1 + · · · + ηm+2n−1z

−m−2n+1

satisfies
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.
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⎡
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⎤
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.

γn−1

⎡
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸���︷︷���︸
ξ∗

where

F∗ =

f0 0 . . . 0

f1
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. . .

. ..
.
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.
0

..

. . .
.

f0
fm−1 f1

fm
. .
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.
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. . .

. ..
.

..

. . .
. . .

.
fm−1

0 . . . 0 fm

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m+2n−1,2n

and all columns of F∗ are linearly independent. Thus, if η∗ = 0, η̃∗
must be a zero vector. If the numerators of α(z−1) and β(z−1) are
copirme, Swill be nonsingular and thus η̃∗ and ξ∗ form a one-to-one
mapping. The unique solution to Eq. (10) is thus ξ∗ = 0. ▪
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