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Unlike coumarins, the sulfur analogues, 2-thioxo-coumarins (TCs) have not attracted attention. Given the large
energy gap between Sy and S; and high spin-orbit coupling between S; and T; in these systems lack of attention
is surprising. In this manuscript, we are concerned with the phosphorescence of seven TCs at room temperature.
The TCs investigated here belong to two groups, one with the amino substitution at the 7-position and the other
with an assorted collection of the parent, alkoxy and acetoxy substituted ones. All seven TCs show phospho-
rescence at 77 K while the ones with amino substitution exhibit both fluorescence and phosphorescence. The
inability of phosphorescence to compete fully in this set is attributed to intramolecular electron/charge flow from
the lone pair of the amino functionality. Occurrence of such a process opens opportunities to examine the sol-
vation dynamics and TICT process in these systems. The most important result relates to the observation of room
temperature phosphorescence (RTP) of these molecules in water with the help of octa acid host. TCs that are not
soluble can be solubilized in water with OA capsule and this strategy suppresses self-quenching and oxygen
quenching in favor of radiative process in the triplet state. When the chemical reaction is facile as in one system
investigated here OA fails to bring about RTP. In our opinion, octa acid capsule can serve as an excellent medium

to bring about RTP from organic molecules in water.

1. Introduction

During the last two decades, room temperature phosphorescence
(RTP) of organic molecules has become an active area of investigation
[1-9]. This has prompted us to present our recent results and place them
along the historical evolution of this topic. We begin the presentation
with a brief history: Even five hundred years ago (1600 CE), RTP was a
well-known phenomenon [10,11]. At that time, most materials that
showed RTP were identified to be either inorganic minerals or gems.
These materials showed two types of luminescence, one with short and
the other with long lifetimes. The second one was termed phosphores-
cence. At the early part of the last century, when electron, quantum and
spin became the most important concepts, thanks to the pioneering
contributions of a number of physicists and Lewis, Kasha and their co-
workers a better understanding of this emission with long lifetime was
reached [12-14]. By now it is common knowledge that phosphorescence
originates from the triplet state of organic molecules where the ground
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state is a spin paired closed singlet [15].

Lewis and co-workers in their groundbreaking publications during
1941-1944 reported phosphorescence of organic molecules both at
room and low temperatures [12-14]. Recognizing the importance of
restricting the motions of the lumiphore, Lewis’s group used boric acid
glass at room temperature and EPA (ethanol/isopentane/ether mixture)
glass at 77 K as the media to record phosphorescence [14]. Thus, the
condition that the molecule should be rigidified to observe phospho-
rescence was recognized as early as 1941. In spite of this, RTP in solution
was a rarity until the record-breaking independent publications of
Backstrom and Parker groups reporting RTP of benzil in benzene, and
benzophenone in perfluoromethylcyclohexane appeared in the early
1960s [16-18]. Examination of these and other reports [19-21] reveals
that to record RTP one should avoid solvents with which excited mol-
ecules react, and the medium should be free of oxygen. Perfluorinated
hydrocarbon solvents were identified to be ideal when C-H abstraction
by the excited molecule (e.g., carbonyl and thiocarbonyl compounds)
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occurs at a faster rate [22]. Up to 1972, RTP remained only an intel-
lectual curiosity, and most workers for publications recorded phospho-
rescence at 77 K in an organic glass [23].

Recognition that RTP can be a valuable analytical tool for trace
analysis, resulted in renaissance of interest in RTP in early 1970s
[24,25]. Organic molecules adsorbed on solid surfaces of filter paper,
silica gel, clays and inorganic salts such as alkali halides and acetates
showed RTP [26-30]. The fact that the molecules that do not show
phosphorescence in organic solvents at room temperature, do so on solid
surfaces was attributed to rigidification of the lumiphore, a technique
practiced by Lewis [14]. These reports prompted the search for methods
to record RTP in solution, especially in aqueous media. This led to the
discovery of RTP from molecules included within micelles (by Thomas
et. al. and Gratzel et. al.) and cyclodextrins (by Turro et. al.) in aqueous
media [31-36]. Lumiphore’s isolation within micelles and cyclodextrins
are thought to be the reason for RTP. RTP even from aromatic molecules
with poor ISC from S; to Ty could be recorded when the cations in mi-
celles were exchanged with heavy ones such as TI" [31]. Cyclodextrins
(CD) also enable RTP from aromatic molecules when heavy atom
bearing organic molecule such as dibromo ethane is co-included with
the lumiphore [37-44]. Thus, the well-known heavy atom effect due to
Kasha is important to bring about RTP [45,46]. Cline Love’s group
developed micellar and cyclodextrin induced RTP as a powerful
analytical tool to detect trace quantities of organic molecules in water
and as a HPLC detector [37-42]. Along the same line, Nocera and co-
workers demonstrated that RTP from 1-bromonaphthalene can be
detected when it is included within CD in presence of aliphatic alcohols.
Apparently tight inclusion arrests oxygen quenching and radiationless
decay. Using this technique Nocera’s group developed a methodology to
detect aliphatic alcohols in aqueous media [47,48]. Thus, RTP enjoyed
intense activity during 1975-1990 [24,25]. During this time, impor-
tance of suppressing the oxygen quenching to record RTP was
emphasized.

In fact, one of the authors of this manuscript (VR) was involved with
RTP research in early 1990s [49-56]. The medium employed by his
group to induce phosphorescence was alkali cation exchanged zeolites.
Importantly, they were able to record RTP of aromatic molecules, ole-
fins, diarylpolyenes and azo compounds. Especially important to note is
the ability of zeolites to facilitate recording RTP of highly flexible diaryl
polyenes, 1,4-diphenyl butadiene, 1,6-diphenyl hexatrience and 1,8-
diphenyl octateraene. Apparently, the solid zeolite matrix suppressed
the radiationless process, rotation of C = C bond and quenching by
oxygen. In addition, heavy cations such as Cs* and T1" induced ISC from
S; to T; even in the case of aromatic molecules and olefins. The ability to
record RTP from polyenes whose phosphorescence has never been
recorded even at 77 K illustrates the power of heavy cation exchanged
zeolites as matrices in the context of RTP. Extensive literature on RTP
has been summarized in two valuable monographs devoted to this topic
published in 1984 and 1990 [24,25]. Publications up to 2000 establish
the criteria to observe RTP to be: (a) the molecule should have high rate
of ISC from S; to Ty (ks1 to T1), (b) high radiative rate constant (kp), (c)
low rate of internal conversion (kt1 1o s0), (d) low rate of chemical re-
action from T; and (e) low rate of quenching by oxygen (Scheme 1).

While in early 1970s recognition that RTP would be a powerful
analytical tool prompted a renaissance in this area of research, in early
2010 yet another renaissance occurred when the value of RTP was
recognized in bioimaging, sensing, lighting etc [57,58]. It is important
to note that fundamentally there is no change in the behavior of mole-
cules with time [15]. The availability of better instrumentation, syn-
thetic methods and experimental methods has led to intense exploration
of activity and proliferation of publications in the area of RTP directed
towards applications. Conventional organic glass at 77 K has been
replaced by crystals, aggregates, very viscous solutions, polymer
matrices, and supramolecular hosts in water at room temperature. These
media by confining the lumiphore allow phosphorescence to compete
with unimolecular radiationless and bimolecular quenching processes.
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Scheme 1. Competition of phosphorescence with other excited state decay
pathways. Two criteria should be met for efficient RTP.

Although numerous molecules are reported to show RTP, to our
knowledge the criteria listed in Scheme 1 still apply. Tremendous
progress in instrumentation especially in terms of sensitivity has facili-
tated recording RTP of solid samples easier. In the context of the use of
supramolecular hosts the principles developed with cyclodextrins, and
micelles still apply [31-35]. It is our opinion, novices to this area of
research would benefit by familiarizing themselves with the literature
beginning with the 1941-45 publications of Lewis, Kasha and co-
workers and the two monographs on phosphorimetry
[12-14,24,25,45,46].

With this comprehensive introduction, we begin the presentation of
our results on RTP of 2-thioxo-coumarins (TCs) in aqueous medium. The
choice of (TCs) was driven by our long-standing interest in the photo-
chemistry and photophysics of thiocarbonyl chromophores [49,59].
Given that coumarins, carbonyl analogues, serve as probes to monitor
solvation dynamics and the micorpolarity of a medium [60-63], we
were interested in understanding the photophysics of TCs which we
believed would be equally useful as probes. Our recent interest in
employing TC derivatives as phototriggers necessitated us to gain a
better understanding of the dynamics of such molecules in the excited
singlet and triplet surfaces [64]. To our knowledge no systematic
investigation of RTP of TCs has been reported. We have shown earlier
that RTP from thioketones could be recorded when they are included
within cucurbiturils and octa acid (OA) capsules [59]. Results presented
below form a continuation of our earlier reports on the use of OA in
recording RTP [59,65,66].

2. Experimental Details

Reagents and solvents were purchased from Sigma Aldrich/Alfa
Aeser/TCI/VWR. Spectrophotometric solvents (Sigma-Aldrich) were
used whenever necessary unless otherwise specified. Luzchem UV
quality fluorimeter cells (with a range until 190 nm) were used to record
emission spectra at room temperature. For low temperature emission
measurements, a quartz Dewar flask and 3-mm quartz tubes (inner
diameter) were used. Synthesis and characterization of TCs are included
in the Supplementary Information section (SI).

TH NMR (400 MHz, 500 MHz) and 13¢ NMR (125 MHz) spectra were
recorded on a Bruker NMR spectrometer at 25 °C. The complexation of
guest molecules with the host (octa acid) was monitored using a 500
MHz Bruker NMR spectrometer at 25 0c. uv-vis absorption spectra
were recorded by using either UV-2600 UV-vis Spectrophotometer
(Shimadzu) or Cary 300 UV-Vis spectrophotometer. Steady-state and
time-resolved fluorescence measurements at room temperature were
performed either on a FS920CDT Edinburgh fluorimeter or FLS1000
Photoluminescence Spectrometer (Edinburgh Instruments). All emission
and excitation spectra are corrected for phototube and lamp intensity
fluctuations. Phosphorescence lifetimes were recorded using FLS1000
Photoluminescence Spectrometer (Edinburgh Instruments). Time-
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resolved phosphorescence measurements of TC 4 in OA at room tem-
perature were performed on a LP980 spectrometer (Edinburgh In-
struments) using a Q-switched Nd-YAG laser pumped OPO (OPOTEK) as
pulsed excitation source (410 nm). The protocol for the complexation of
guest molecules with octa acid for UV-vis and emission studies is
detailed in SI.

3. Results

Structures of guests TCs (1-7) whose phosphorescence spectra are
reported here and the host OA are shown in Scheme 2. TCs 1-7 were
synthesized and characterized as outlined in SI and OA was synthesized
and purified as reported in the literature [67]. True to the name, the host
OA contains eight acid groups and in borate buffer these ionize making it
soluble in water. All studies involving OA reported here were carried out
in borate buffer solution (pH = 8.7) at room temperature. In the absence
of guest in solution, OA remains as free monomer. However, in presence
of guests, it forms a capsular assembly including either one (host to guest
ratio: 2:1) or two guest molecules (host to guest ratio: 1:1). Host to guest
ratio of 1:1 could imply either a capsule formed by two molecules of OA
containing two molecules of guest (capsularplex; 2:2) or a cavitand ac-
commodating one guest molecule (cavitandplex; 1:1) [15,68-71]. In this
study all complexes were capsular in nature containing either one or two
guest molecules. Thus, the guests were fully protected from water and
oxygen dissolved in water and remained within the non-polar interior of
the host [72].

3.1. Host-guest complexation

Hydrophobic TCs 1-7 that are insoluble in water are readily dis-
solved in borate buffer in presence of OA. Inclusion of 1-7 within OA in
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borate buffer was confirmed by recording 'H NMR spectra of the
host-guest complexes. In Fig. 1 'H NMR spectra of free host OA (Fig. 1i)
and host-guest complexes are shown (Fig. 1lii-viii). Indication of guest
inclusion within OA is generally inferred from the upfield shift of the
guest hydrogen signals with respect to that in CDCl3, and displacement
of OA signals (~6 5.8-8.0 ppm) with respect to the free one in borate
buffer [73]. In all cases except TC 4, upfield shifted signals for the guests
are evident (note the signal below § 0 ppm). The upfield shift is attrib-
uted to diamagnetic ring current effect of the aryl framework of OA
[73-76]. In case of coumarin 4 there are no alkyl substituents that would
unequivocally confirm its inclusion within OA. Therefore, we depended
on changes in the host signals to infer complexation. Comparison of the
spectra in Fig. 1(ii-viii) with the OA spectrum in (i) reveals the distinct
difference between the complexed and free OA. In the case of 4, since the
aromatic hydrogen signals are merged with the OA signals, we could not
identify their signals in the spectrum (Fig. 1v).

Confirmation of its inclusion came from the 'H NMR titration studies
(Figs. S14-S18). Close examination of the spectra in Fig. S17 reveals that
when the host:guest ratio is 1:0.5, i.e the ratio corresponding to a capsule
with one guest molecule, signals due to free OA are visible (Fig. 2 iii).
This suggested that 50 mol% of guest is not sufficient to fill all the host
capsules. These signals completely disappeared only when the ratio
reached 1:1 indicating that when the OA capsule is filled with two
molecules, no free OA remains in solution. Similar to coumarin 4,
coumarin 5 also forms 2:2 complex with OA (Fig. 2). This is evident
when one compares the titration spectra of coumarin 5 with that of
coumarin 4 (Fig. 2 with Fig. S17). Similar to 4, when the host-guest ratio
reached 1:1, no longer there were signals due to free OA, and the OA
signals were not split. These suggested that two molecules of guest are
accommodated in a symmetrical fashion within a capsule made up of
two molecules of OA. As opposed to short alkoxy chain appended 5, the

Scheme 2. Structures of TC derivatives (1-7) and water-soluble octa acid (OA) cavitand (8).
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Fig. 1. 1H NMR (500 MHz) spectra of guest molecules included within octa acid (OA). Bottom to top guest (i) OA, (i) 1@O0A,, (iii) 2@0A,, (iv) 3@O0A,, (V) 4,@0A,,
(vi) 52@0A;, (vii) 6@0A,, and (viii) 7@0A,. W indicates OA impurity peak; , indicates the residual solvent peak (water) of D,O. The guest signals are indicated

with colored stars.

long alkoxy chain appended guest 6 (7-hexyloxy) forms 2:1 complex. In
both cases, inclusion within OA capsule is confirmed by the upfield shift
of the signals due to of the alkoxy chain. In the case of 5, when the ratio
of the host to the guest is 2:1, the OA signal at § ~ 5.9 is split indicating
almost half of OA molecules in solution remain uncomplexed. On the
other hand, in the case of 6, the host does not solubilize more than half
equivalent of the guest indicating the formation of 2:1 complex. At this
stage (Fig. 3v) the host signals are split due to unsymmetrical nature of
the capsule after guest inclusion. Since the large guest molecule does not
tumble within the OA capsule, identical hydrogens present in the top
and bottom halves of the capsule experience different magnetic shield-
ing [73,77]. This is the case with all guest molecules that form 2:1
complex (1-3, 6 and 7). Based on H NMR spectra (Figs. S14-518 in SI)
we conclude except for 4 and 5 all other TCs form 2:1 while these two
forms 2:2 capsular assemblies. As will become obvious in the discussion
section this is an important conclusion. Independent of how many
molecules are included within OA, all TCs are protected from water
molecules and dissolved oxygen by OA. In the context of RTP these are
important inferences.

3.2. Absorption spectra

Focus of this manuscript is on the demonstration of RTP of 1-7 in
aqueous medium. Spectroscopic details and intersystem crossing
mechanism of these molecules will be detailed in an independent pub-
lication. The absorption spectra shown in Fig. 4 reveals that three of the
seven TCs substituted with 7-amino group, exhibit solvent dependence
(1-3). Similar solvatochromic properties are exhibited by the corre-
sponding carbonyl analogs (coumarins) [78,79]. Unlike thioketones
where the nz* and nn* absorptions are well separated (~150-200 nm)
and distinctly visible as two independent bands, in TCs there is no clear
absorption due to nn* [49]. Most likely it is hidden under the strongly

absorbing nn* band extending upto ~ 475 nm in 1-3 and ~ 450 nm in
4-7 (in hexane).

3.3. Emission spectra at 77 K

To ascertain the likelihood and location of phosphoresce from 1 to 7,
emission spectra were recorded at 77 K in ethanol glass (Figs. 5 and 6) by
exciting the molecule in the stronger an* band. The spectra on the left
are steady-state emission spectra detecting the total luminescence
(fluorescence and phosphorescence). The spectra on the right were
recorded with pulsed excitation and gated detection, where the data
collection time-window is delayed after the short-lived fluorescence has
decayed to collect only phosphorescence. The long lifetime varying
between 33 and 15,100 ps (Table 1) measured for the emission in the
region 570-740 nm further supports their assignment to phosphores-
cence. It is interesting to note that of the seven TCs only 4 and 5 form 2:2
complex. Of these 5 shows two triplet lifetimes indicating that the two
molecules in the cage do not have identical environments. On the other
hand, TC 4 show only one lifetime. It is quite likely that smaller 4 is able
to freely rotate within the capsule making the two molecules experience
identical environments. The ungated spectra displayed in Figs. 5 and 6
unambiguously suggest that all three amino substituted TCs show both
fluorescence and phosphorescence. However, the rest show only phos-
phorescence at room temperature and 77 K. This suggests that the
intramolecular charge transfer (ICT and TICT) most likely play a role in
decay of the excited singlet state of 1-3. We are currently investigating
the role of charge transfer phenomenon in TCs 1-3 in the context of
solvation dynamics and phototriggering mechanism.
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Fig. 2. 1H NMR spectra (500 MHz, 10 mM Na,B40; buffer/ D,0, pH = 8.7) of (i) OA; ([OA] = 1 mM; (ii) 5@OA; ([OA] = 1 mM and [5] = 0.25 mM; (iii) 5@O0A;
([0A] =1 mM and [5] = 0.5 mM; (iv) 5@O0A; ([OA] = 1 mM and [5] = 0.75 mM; (v) 5@0A; ([OA] = 1 mM and [5] = 1 mM. “*” indicates the OA-bound guest

proton resonance. m indicates the residual solvent peak (water) of D50.

3.4. Emission spectra at room temperature in organic solvents and in
aqueous solution

Having identified the characteristics of the phosphorescence from 1
to 7 at 77 K, we recorded the phosphoresce spectra at room temperature.
Our goal was to demonstrate the value of OA in facilitating RTP from
TCs. We have shown earlier that OA is a valuable host to record RTP of
thioketones, benzil and pyrene [59,65,66]. The current undertaking is to
establish the generality of OA as a host to record RTP of organic mole-
cules in water. Before proceeding to present the results, it is important to
note that the seven thiocoumarins 1-7 discussed here can be classified
into four categories. Close examination of their behavior provide op-
portunities to test whether the OA capsule can facilitate RTP in systems
undergoing a variety of competing processes: (a) TCs in general are
known to undergo diffusion limited self-quenching [80-84]. Question is
when there are two molecules encapsulated within a single OA capsule
can RTP compete with self-quenching? TCs 4 and 5 help to address this
question. (b) Excited states of TCs are well known to be quenched by
oxygen both by physical and chemical processes [80,85-89]. Can
encapsulation overcome this process? In fact, all systems investigated
here help to answer this question. (¢) Coumarins with 7-amino sub-
stituents are well-known to exhibit charge transfer behavior in the
excited singlet state [60-62,78,80]. Will the charge transfer process
from amino group to the excited thiocarbonyl group (ICT and TICT
processes) suppress the RTP of OA encapsulated guests? TCs 1-3 were
selected to find the answer to this question. (d) TC 2 undergoes unim-
olecular fragmentation process from the excited state. Can RTP compete
with a fast chemical reaction?

The emission spectra at room temperature were recorded in organic

solvents and in borate buffer solution. In Figs. 7 and 8 emission spectra
of 1 and 2-7 in polar hydroxylic solvent methanol, nonpolar hexane and
capsular assembly OA in borate buffer are provided. A quick glance of all
spectra reveals that the phosphorescence is stronger within OA
compared to that in isotropic solvents methanol and hexane. Fig. 7a and
b display the absorption and emission spectra of 1. In methanol there is
fluorescence but no phosphorescence while in hexane negligible fluo-
rescence and only weak phosphorescence is observed. On the other
hand, OA encapsulated 1 in water show mostly phosphorescence. This
example clearly brings out the value of OA in the context of RTP. To be
sure that OA is responsible for this dramatic change in the emissive
behavior, titration by gradual addition of OA to 1 in borate buffer was
performed and the changes in absorption and emission were monitored.
Results shown in Fig. 7c (absorption) and 7d (emission) are telling. The
absorption shows a blue shift with increased addition of OA indicating 1
is being slowly encapsulated with the increased addition of OA. The
encapsulation as shown in Fig. 7d shifts from fluorescence to phospho-
rescence with the increased addition of OA. This is more easily seen in
the inset of Fig. 7d. Similar changes in absorption and emission spectra
for 3 are shown in Fig. S27. As seen in Fig. 8b-f, an enhancement in
phosphorescence within OA was observed for TCs 3-7. As mentioned
above, TC 2 undergoes facile cleavage of the Aryl-CH>—O(C = O)CHs to
release CH3COO ™. At room temperature this molecule does not show
phosphorescence (Fig. 8a). The radiative process, most likely, is unable
to compete with the p-cleavage process. Interestingly at 77 K this
molecule phosphoresces (Fig. 5b). Probably, at this temperature the
emission is able to compete with the slowed p-cleavage process. Also, to
note is that this molecule does not cleave in nonpolar solvents such as
hexane and ethyl acetate. In both solvents very weak phosphorescence is
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Fig. 3. 1H NMR spectra (500 MHz, 10 mM Na,B40 buffer/ D,O, pH = 8.7) of (i) OA; [OA] = 1 mM; (ii) 6@0A; [OA] = 1 mM and [6] = 0.125 mM; (iii) 6@O0A;
[OA] =1 mM and [6] = 0.25 mM; (iv) 6@0A; [OA] = 1 mM and [6] = 0.375 mM; and (v) 6@OA; [OA] = 1 mM and [6] = 0.5 mM. “*” indicate the OA bound guest
proton resonance, m indicates the residual solvent peak (water) of D,O. indicates the OA impurity peak.

seen (Fig. S21). However, lack of RTP from OA encapsulated 2 suggests
that the cleavage does occur in this environment and the radiative
process is unable to compete with it. Detailed discussion of this obser-
vation will be published elsewhere. To conclude this section, we present
the time gated RTP emission spectra of six of the seven TCs investigated
here. These spectra unequivocally attest to the usefulness of OA as the
medium to record RTP of organic molecules (Fig. 9).

3.5. Control experiments

To confirm the observed emission is not due to impurity and the
emission is indeed phosphorescence, additional experiments were car-
ried out. Results are presented in SI. The excitation spectra for 4-7
reproduced in Fig. S19 (SI) confirm that the phosphorescence excitation
and absorption spectra overlap confirming the emission indeed arises
from TCs. As expected of the phosphorescence, the emission was
quenched by oxygen in organic solvents but when the coumarins are
encapsulated within OA (for one example see Fig. 10 and for all see
Figs. S$20-S26) the quenching was inefficient. Triplet decay as followed
by changes in the phosphorescence intensity are provided in Figs. S28
and S29. The decay is almost single exponential within OA at room
temperature and double exponential in ethanol glass at 77 K. Micro-
second lifetimes (Table 1) at room temperature, oxygen quenching of
the emission, overlap of the excitation and absorption spectra and
identical spectra at 77 K in ethanol glass support our conclusion that OA
capsule facilitates RTP of TCs.

4. Discussion
4.1. Background

Prior to discussing the results presented above, it is useful to sum-
marize what is known about the excited state properties of molecules
possessing thiocarbonyl chromophore [22,49,90,91]. Thiocarbonyls in
general have near unit quantum yield of intersystem crossing (ISC) from
exited singlet (S;) to triplet manifold and possess high inherent
spin-orbit coupling, the reason for which yet to be fully understood
[49,92,93]. They show phosphorescence from T; and fluorescence from
S,. Because of high spin—orbit coupling no external perturbation such as
heavy atom effect is needed to induce ISC. This eliminates the need to
suppress pathways that deactivate S; (Scheme 1) to observe RTP.
Therefore, in principle, restraining the pathways that compete with the
radiative one in the triplet manifold (kp vs the rest in Scheme 1), should
be sufficient to record RTP from molecules having C=S chromophore.
Earlier we showed that RTP from several aromatic thioketones can be
recorded with the help of OA and cucurbiturils as hosts in water [59]. In
this article, we demonstrate that the same experimental method can be
applied to TCs whose excited state properties are slightly different from
thioketones. In this context, we have explored the use of OA capsule in
borate buffer solution as a medium to record RTP from TCs 1-7 (Scheme
2) in aqueous solution.

Unlike thioketones, photochemical studies on TCs are very few
[80,94-97]. Time resolved (nano to femtosecond) experiments and
quantum chemical calculations on the parent TC [80,95,97] have
revealed it to have unit quantum yield of ISC from S;(nn*) to triplet
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methanol (MeOH, red) and OA (black) recorded at room temperature.

manifold and high spin-orbit coupling constant between S; to T, (~24
cm™1). Based on computational methods the parent TC is speculated to
have Ty with nn* character [94]. This is different from thioketones
where the two states (S; and T;) are of nn* in character. In TC, as
compared to that in thioketones, the energy gap between S, and S; is
small (~6000 cm’l), which lowers the nn* triplet below S;(nn*) state.
Based on this it is suggested that the ISC in this system occurs from

Si(nn*) to Ti(nrn*). This is in accordance with the El-Sayed’s rule
[15,98,99], which suggests that ISC between spin states of different
electronic characters would be faster. Thus, high spin-orbit coupling in
C=S chromophore and states involving different electronic character
favor high rate of ISC in TC.

To our knowledge there is only one report of recording the phos-
phorescence of TC at room temperature in perfluoro-hydrocarbon
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Fig. 5. Emission spectra of guests 1-3 without gating (left panel a-c) and with gating (right panel a’-c’) in ethanol glass at 77 K.

solvent [95,97]. Even in this case the quantum yield is reported to be less
than 107 indicating that one can’t record RTP from TCs using readily
available conventional fluorimeters. Lack of literature on RTP of TCs
could be attributed to diffusion limited self-quenching and oxygen
quenching in the triplet state and their facile reaction with solvent
molecules, especially hydrocarbons from the triplet state [80]. Thus, the
parent and substituted TCs are ideal set of molecules to test the value of
OA capsule to enhance phosphorescene at the expense of self-quenching,
oxygen quenching and reaction with solvent molecules. Spectra pre-
sented in the results section demonstrate that we have succeeded in this
effort and have recorded RTP of several TCs. Results are discussed below
in the following order: (a) OA-TCs complex (represented as TC@OA32)
formation in borate buffer (b) emission from TCs in solution at low and
room temperature, (¢) emission from TC@OA; at room temperature in
borate buffer.

4.2. OA-TCs complexation in borate buffer

The focus of this investigation is to establish that OA capsule can
serve as a vehicle to bring about RTP of TCs in water. Therefore, the first
step is to establish the inclusion of 1-7 within OA capsule. Inclusion was
established by monitoring the changes in the 'H NMR signals of the
guests and the host OA in each other’s presence. The 'H NMR spectra

presented in Figs. 1-3 and Figs. S14-S18 in SI suggest that the inclusion
indeed occurs. As discussed in the results section inclusion of guests
within OA is revealed by the significant upfield shift in the 'H NMR
signals of the guest and moderate, yet readily seen disturbance in the
signals of the host OA. Such changes confirm the inclusion of 1-7 within
OA capsule. Also, the number of guest molecules included within OA
capsule is deduced from 'H NMR titration experiments (Figs. 2 and 3,
and Figs. S14-518). Except for parent TC (4) and 7-methoxyTC (5) all
others formed 2:1 (host:guest) complexes. These two formed 2:2 com-
plex resulting in exceptionally high local concentration within a capsule.

The interior of the OA capsule is established to have a polarity similar
to that of benzene [72]. Therefore, the guest molecules residing within a
OA capsule in aqueous medium are expected to experience a polarity
similar to that of benzene rather than that of water. The absorption
spectra of 1-3 in presence of OA confirm that these molecules reside
within a non-polar environment and not in water. As shown in Fig. 4 the
absorption maxima of 1-3 are solvent polarity dependent, the maximum
being at shorter wavelength in hexane than in methanol. The absorption
spectra displayed in Fig. 7(c) and Fig. S27 nicely bring out the conse-
quence of inclusion of 1-3 within OA. Upon slow addition of OA to 1-3
in water, the absorption maximum shifts to shorter wavelength indi-
cating that the molecule moves from polar aqueous environment to a
non-polar one. Inclusion within OA results in changes in the emissive
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Table 1
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Triplet lifetime of guest molecules inside OA complex at room temperature and at low temperature in EtOH glass (77 K).

Triplet lifetime in OA complex at RT (ps)

Triplet lifetime in EtOH at 77 K (ps)

T =123 (100 %)

tpfl

Guest 1
O\ﬂ/ No phosphorescence
Peot
NK 0" s
Guest 2
T =281 (100 %)
( X
N 0" s
Guest 3
m T =3 (100 %)
]
Guest 4
m 71 = 6.8 (10 %)
~o o Ng T9 = 21 (90 %)
Guest 5

m T =16 (100 %)

Guest 6
T =20 (100 %)
0 S
)l\o 0" s
Guest 7

T, = 3800 (69 %)
T, = 10200 (31 %)

T, = 1612 (55 %)
Ty = 3921 (45 %)

71 = 4800 (64 %)
T = 15100 (36 %)

T = 33 (100 %)

71 = 112 (87 %)
Ty = 292 (13 %)

7, =117 (83 %)
T, = 238 (17 %)

T =103 (100 %)

behavior. Briefly, 1-3 when present in water emit only fluorescence at
room temperature (Fig. 7d and Fig. S27). Upon addition of OA, the
fluorescence is replaced by phosphorescence. Obviously, the emission
characteristic of 1-3 depends on their immediate environment. Details
will be discussed below.

4.3. Emission in ethanol glass at 77 K

The emission spectra at 77 K in ethanol glass displayed in Figs. 5 and
6 suggest that TCs examined here could be divided into two groups, one
that emits only phosphorescence (4-7) and the other that show both
fluorescence and phosphorescence (1-3). Based on the literature reports
on the parent system 4 [94,95] and other thioketones [22,49], TCs are
expected to show only phosphorescence. The behavior of 4-7 is
consistent with this expectation. The fact that the 4-7 phosphoresce in
the same region with similar vibrational pattern indicates that the
emitting state in all of them probably have the same electronic char-
acter. The lifetimes of the emitting state in 4-7 at 77 K varies between 33
and 292 ps (Table 1). This is in the range (109-210 ps) reported earlier
for pure nn* triplet state of aryl alkyl thioketones at 77 K (EPA glass)
[100]. Based on the lifetime, we surmise the emitting triplet in 4-7 is
also nn*. However, for 4, based on quantum chemical calculations the
lowest triplet is suggested to be nn* [94]. Resolution of the nature of the
emitting state requires further experimentation.

The unexpected observation relates to 1-3. Despite expected high
rate of ISC in C=S systems, these three TCs substituted with amino group
at the 7-position emit both fluorescence and phosphorescence at 77 K.
Comparison of the intensities of fluorescence and phosphorescence
suggest that intramolecular electron/charge transfer from the electron
donor 7-amino group to the excited C=S chromophore can compete with
the ISC from S; to T,. Comparison of the three systems reveals that the
relative fluorescence in 1 and 2 is lower than that in 3. In structural
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terms, the difference between the first two and 3 is mainly the flexibility
of the amino group. In 3, the amino group is constrained and planarized
which would lead to better conjugation of the p-orbital on nitrogen with
the n-frame of the aromatic and C=S groups. Due to steric reasons, in 1
and 2 the amino group most likely would remain rotated out of plane in
ethanol glass at 77 K. This would reduce the rate of electron/charge
transfer from amino group to the excited C=S group. Thus, the enhanced
fluorescence in 3 is consistent with the expected difference in rates of
electron/charge flow from the nitrogen lone pair to the excited C=S
chromophore. Thus, the difference in emissive behavior of the two
groups could be attributed to the possibility of electron/charge transfer
in 1-3 and its absence in 4-7. Similar intramolecular electron/charge
transfer properties of corresponding coumarins have been extensively
investigated and are used to probe solvation dynamics and mechanism
of intramolecular charge transfer (ICT) and twisted intramolecular
charge transfer (TICT) phenomenon [60-63,101]. We believe similar
ICT and TICT experiments could be used to probe the origin of the high
rate of ISC process in thiocarbonyl systems. We are currently pursuing
experiments to understand these interesting aspects of 1-3.

In addition, a point to note is that the triplet lifetime of these three
TCs are at least an order of magnitude longer than that of 4-7 (range:
1612-15,100 ps; Table 1). Most likely, the emitting triplets in the two
groups of molecules are not the same; in 1-3 the triplets may have some
charge transfer character, similar to that in the singlet state while that in
4-7 it may be a localized nt* or nn*. Such a difference could lead to
variation in k, (Scheme 1) and lifetime between the two groups of TCs
(Table 1). In conclusion all TCs investigated here show phosphorescence
at 77 K. Interestingly the spectra including vibrational pattern are
similar for all seven molecules. However, the spectra in 1-3 are slightly
shifted to longer wavelength than in 4-7.
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4.4. Absorption and emission in isotropic solvents at room temperature

To record emission spectra we considered polar water, methanol and
acetonitrile, and non-polar hexane and ethyl acetate as solvents. All TCs
investigated here are practically insoluble in water and slightly soluble
in hexane and methanol. Although, absorption, and emission could be
recorded in water, hexane and methanol, because of solubility limits B3
NMR spectra could not be recorded in these solvents. Luckily, TCs sol-
ubility in ethyl acetate and acetonitrile allows recording of 'H NMR
spectra in addition to absorption and emission.

The absorption spectra of 1-7 in methanol, acetonitrile, hexane and
ethyl acetate are displayed in Fig. 4. Like the emission spectra at 77 K
discussed above, the absorption characteristics also differ between the
two groups, 1-3 and 4-7. The absorption of 1-3 is solvent dependent,
the maximum shifts towards shorter wavelength with decreasing po-
larity. On the other hand, the absorption spectra of 4-7 are relatively
solvent independent. This difference suggests that the electronic char-
acter of the excited singlet states involved in transition are not identical
in these two groups of molecules. In the former, charge transfer from
amino lone pair may also play a role. Another feature to note is that
unlike in thioketones, the nt* and nn* absorptions are not well sepa-
rated. The former appears only as an inflection on the stronger nn* band.
The close placement of the two states suggests that both S; and S, states
may have mixed nt* and nn* character and may not be pure states as in
thioketones.

The emission spectra of 1-7 in various solvents under nitrogen
saturated and aerated conditions at room temperature are presented in
Figs. 7 to 9 and Figs. S20-526. In all cases the phosphorescence, if at all
observed was weak. As seen in Figs. 7 and 8 and Figs. S20-522, 1-3 emit
only fluorescence in polar methanol and acetonitrile. However, in
nonpolar solvents such as ethyl acetate and hexane they show extremely
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weak phosphorescence. As expected, the latter emission is quenched in
aerated solvents. Apparently, the intramolecular electron/charge
transfer discussed above occurs only in polar medium and in this the ISC,
a pre-requisite for phosphorescence is unable to compete with this
process. In contrast to 1-3, TCs 4-7 show weak phosphorescence both in
polar and nonpolar solvents (Fig. 8). Obviously, absence of intra-
molecular electron/charge transfer in these media, independent of the
solvent, permits ISC to compete with the decay of S; (Scheme 1). Results
presented here suggest that TCs do show weak phosphorescence in
organic solvents provided they are deoxygenated. Difference in in-
tensities of phosphorescence between 77 K and room temperature
(strong vs weak) could be attributed to diffusion limited self-quenching
in isotropic solution medium. Given the early reports on the phospho-
rescence of benzophenone, benzil and acetophenones at room temper-
ature in organic solvents, ability to record weak phosphorescence should
not come as a surprise [16-20]. To curtail self-quenching and oxygen
quenching and improve the solubility, we explored OA as the host to
solubilize TCs in water.

4.5. Room temperature phosphorescence from OA encapsulated TCs
(TCs@OA2)

In this section we discuss the emissive behavior of 1-7 included
within OA in borate buffer solution at room temperature. Relevant
spectra are shown in Figs. 7-10 and Figs. S21-S27. TCs examined here
are soluble in water only to the extent of being able to record absorption
and emission spectra. However, when these TCs were added to a borate
buffer solution containing OA, they readily dissolved enabling recording
of absorption, emission and 'HNMR spectra. Since NMR and absorption
spectra that confirmed the inclusion of TCs within OA were discussed in
detail in an earlier section, only emission properties are discussed below.
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Remarkably, 4-7 showed intense phosphorescence as OA complexes
in water than as free molecules in water, hexane and methanol (Figs. 7
and 8). As expected, the emission at room temperature resembles that at
77 K. Confirmation that this is indeed phosphorescence came from the
overlap of absorption and excitation spectra (Fig. S19). We have earlier
established that oxygen quenches the phosphorescence from OA
encapsulated guest molecules provided their lifetimes are longer than 5
ps [102]. This is the minimum time required for the capsule to open-
close for oxygen to reach the excited guest molecule (note that the
opening-closing time could vary with the guest molecule). The emission
spectra under nitrogen saturated and aerated conditions shown in
Fig. 10 and Figs. S20-S26 illustrate that the phosphorescence of OA
encapsulated TCs is quenched by oxygen, but much less efficiently than
in free solution. For quenching by oxygen the capsule has to open at least
partially for it to reach the excited TC. The lifetimes of most TC listed in
Table 1 are closer to or longer than 5 ps. In this time range the capsule
would be expected to open partially allowing quenching by oxygen to
occur. Different amounts of quenching can be due to different lifetimes
of TCs. Also, how much the capsule would open would depend on how
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tightly the guest resides within OA. The uniqueness of OA as a medium is
brought out by the emissive behavior of 4 and 5 that form 2:2 complexes
(4,@O0A; and 5,@O0A,). Based on the established behavior in solution,
when two TC molecules are trapped in a small space as in OA capsule,
one would expect the triplet TC to be immediately quenched by the
second molecule in the ground state [49,81-83,90]. This would
completely suppress the phosphorescence. Ability to record RTP from
these two OA encapsulated TCs, even when two molecules are adjacent
to each other, we believe, is a consequence of two molecules having very
little freedom to undergo rotational and translational motions within the
capsule. This restriction of mobility, likely, does not allow the excited
and ground state molecules to get close in the correct geometry for
quenching [81]. This observation is consistent with the behavior of OA
encapsulated thioketones reported earlier [59]. The above examples
illustrate that one can record RTP even from the TCs that have very little
solubility in water, possess diffusion limited self-quenching and oxygen
quenching.

Of the three 7-amino substituted TCs, only OA encapsulated 1 and 3
showed phosphorescence. A compelling result came during the titration



S.K. Ghosh et al. Journal of Photochemistry & Photobiology, A: Chemistry 451 (2024) 115510

©
)
w
o
)

Guest 3
- a. Guest 1 - b
&7 ©2.5-
x 6 B x B
z 2201 N 0~s
251 AN 0s £
s 4 1.5
- \ £
5% §1.0-
121 3,
R i
" T : 0.0 T : .
500 600 700 500 600 700
Wavelength (nm) Wavelength (nm)
12
191 c. Guest 4 d. Guest 5
‘S 1.14 m :’o_ 104 X
~ ~
;1 141 0s = 84 (o} 0o°™s
% 1.131 @
g g 6]
£1.134 i
c H 4_
(=} -—
5 1.121 2
2 £ 2.
E1.121 5
1.114 v r 0 T T T
400 500 600 700 400 500 600 700
Wavelength (nm) Wavelength (nm)
°1f
_1.2- € Guest 6 P Guest 7
) o5
~ )L
z 0"~""07"s =4 o 0s
£0.8 =
2 c
& 2 3
£061 £
c S24
2 0.4 .%
o 2]
£ E 14
I.IEJ 0.2 o
0.0 - T . 0 T T T
400 500 600 700 400 500 600 700
Wavelength (nm) Wavelength (nm)

Fig. 9. Time-gated emission spectra at room temperature in deoxygenated (nitrogen bubbled) solutions of (a) 1@O0Az (Aex = 430 nm, gate width 1 ms, delay 0.15
ms), (b) 3@0A; (ex = 470 nm, gate width 1 ms, delay 0.15 ms), (c) 42@O0A» (Aex = 410 nm, gate width 400 ns, delay 100 ns), (d) 52@O0A3 (Aex = 390 nm, gate width
1 ms, delay 0.135 ms), (€) 6@0A, (Aexy = 392 nm, gate width 1 ms, delay 0.1 ms), (f) 7@OAz (Aex = 381 nm, gate width 1 ms, delay 0.14 ms).

o
-
=3

] a. Guest 1 _ b. Guest 1
‘:’;5- Hexane “"S 0.8 OA
x x
s N 0s 0.
Q
23 k £
£ < 0.4
c
8 21 2
@ 0
2 202
£1+ uE.l
w
0+ T . r = mercfiasdel 0.0 - v . . . .
450 500 550 600 650 700 750 450 500 550 600 650 700 750
Wavelength (nm) Wavelength (nm)

Fig. 10. Emission spectra of guest 1 in (a) hexane under aerated (red) and nitrogen saturated (black), (b) OA under aerated (red) and nitrogen saturated (black).

of OA into a borate buffer solution (pH ~ 8.5) of 1 (Fig. 7d). In water,
where it is very poorly soluble, showed only fluorescence. Upon slow
addition of OA into the buffer solution of 1, the phosphorescence

enhanced at the expense of fluorescence and upon complete complex-
ation of the guest by OA there was only phosphorescence (see TOC
graphics and Fig. 7d). Similar behavior was exhibited by 3 (Fig. S27).
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Clearly, OA has suppressed the intramolecular electron/charge transfer
that favored the fluorescence in ethanol glass at 77 K, as well as in water,
methanol and acetonitrile as solvents at room temperature. The sup-
pression of this charge/electron transfer could be attributed to the non-
polar nature of the OA interior. Similar suppression of intramolecular
electron/charge transfer was noticed in hexane and ethyl acetate. Thus
OA is able to promote RTP even from molecules that has the potential to
compete with ISC process that is needed to promote phosphorescence.

One anomaly in this set of molecules is 2 that does not show RTP
even in presence of OA. However, at 77 K this molecule like the other
two showed fluorescence and phosphorescence. The reason for this lies
in the fact that 2 is the only one among the three that undergoes facile
fragmentation of the aryl-CH,—O-C=0 bond to release the acetate
anion. Such a process is well studied in coumarinyl system [103]. We are
currently examining the phototriggering behavior of TC 2 and related
molecules; the results will be published independently in future.
Apparently, the OA is unable to suppress the reaction pathway in the
excited state (probably the triplet state) although it does the electron/
charge transfer pathway (in the excited singlet state). The fact that the
triplet lifetimes of the two sets of molecules (1-3 and 4-7) are distinctly
different (Table 1) indicate that the electronic nature of the emitting
triplets are unlikely to be the same. This bears resemblance to their
behavior in ethanol glass at 77 K.

5. Conclusion

To conclude, OA has enabled RTP from six TCs in aqueous solution.
The gated spectra shown in Fig. 9 are quite clean and striking. Consid-
ering that all these molecules are only sparingly water soluble, ability to
record phosphorescence in water is remarkable. Further, OA has sup-
pressed the highly competing pathways of self-quenching in 1-7 and
electron/charge transfer in 1 and 3. To some extent, it has reduced the
oxygen quenching compared to that in organic solvents. However, OA is
unable to favor phosphorescence at the expense of a fast chemical re-
action, namely C-O cleavage in the case of 2. Thus, we have established
that one can use OA as host to observe RTP of guest molecules in water.
Clearly the TCs that are not capable of intramolecular electron transfer
emit strongly within OA capsule. Thus, our contributions to the topic of
RTP involves introducing zeolites [54] and octa acid [59] as media. The
first enables recording phosphorescence even from highly flexible and
photochemically reactive molecules such as polyenes in the solid-state
and the latter helps to record phosphorescence in water from mole-
cules that undergo diffusion limited quenching. Potential of these as
media to record RTP from a variety of organic molecules is limitless and
it is yet to be fully explored. Although the current study was restricted to
TCs, most molecules that fit within the capsule are likely to show RTP.
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