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Abstract

Domain generalization studies the problem of training
a model with samples from several domains (or distribu-
tions) and then testing the model with samples from a new,
unseen domain. In this paper, we propose a novel approach
for domain generalization that leverages recent advances in
large vision-language models, specifically a CLIP teacher
model, to train a smaller model that generalizes to unseen
domains. The key technical contribution is a new type of
regularization that requires the student’s learned image rep-
resentations to be close to the teacher’s learned text repre-
sentations obtained from encoding the corresponding text
descriptions of images. We introduce two designs of the loss
function, absolute and relative distance, which provide spe-
cific guidance on how the training process of the student
model should be regularized. We evaluate our proposed
method, dubbed RISE (Regularized Invariance with Seman-
tic Embeddings), on various benchmark datasets, and show
that it outperforms several state-of-the-art domain gener-
alization methods. To our knowledge, our work is the
first to leverage knowledge distillation using a large vision-
language model for domain generalization. By incorporat-
ing text-based information, RISE improves the generaliza-
tion capability of machine learning models.

1. Introduction

An image is worth a thousand words, indeed, because of
its power to convey a wealth of information through its vi-
sual details. However, a well-written sentence, on the other
hand, has the power to concisely capture the essential infor-
mation that is common to many different images. By de-
scribing a scene with a few carefully chosen words, a writer
can create a mental image in the reader’s mind that conveys
the essence of what is being depicted. This perspective is
particularly useful when communicating information effi-
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Figure 1. The key intuition behind our argument. While images
can capture more details, text can directly summarize the core con-
cept to represent the object of interest.

ciently, or when emphasizing a specific scene aspect with-
out getting bogged down in extraneous details. Thus, we
suggest that a sentence speaks a thousand images.

Essential semantic information delivered by an image
plays a pivotal role in helping models generalize to shifted
distributions, whereas other detailed information (e.g., in
the background not relevant to the main object) captured
in images may not be as effective for this purpose. The
study of domain generalization [37] investigates the prob-
lem of training a model with samples from several do-
mains (or distributions) and then testing the model with
samples from a new, unseen domain. The training do-
mains are commonly referred to as source domains, and
the test domain is referred to as the target domain. Previ-
ous studies have identified a challenge in training effective
domain generalization models due to the models’ tendency
to learn domain-specific features [11]. Consequently, nu-
merous works have focused on regularizing the models to
learn representations that are invariant to domain-specific
features [29, 31, 80, 56, 36, 4, 1, 10, 39, 47, 17]. This reg-
ularization ensures that the models extract features that are
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common to multiple domains and are therefore more likely
to generalize to unseen domains. By mitigating the influ-
ence of domain-specific features, the idea is to improve the
generalization capability of these models and ensure that
they perform well on a variety of different domains.

In this paper, we build upon this line of research by in-
vestigating methods for learning domain-invariant features
in machine learning models. Our proposed method is in-
spired by a simple intuition: while an image tends to con-
vey rich but sometimes excessive details through its pixels,
a corresponding text description can describe the crux of
the image content in a highly concise and complementary
manner; see Figure 1. Therefore, the most effective regular-
ization might involve incorporating a regularization strategy
in which the learned representations need to be close to the
representations obtained from encoding the corresponding
concise text descriptions of an image.

Building upon this argument, we propose a novel domain
generalization approach that leverages recent advances in
vision-language models, such as CLIP [46], to train our
domain generalization models. We are particularly inter-
ested in the setting where our final models are relatively
small, and thus, can benefit from a large pre-trained vision-
language teacher model through distillation. Our method,
dubbed RISE (Regularized Invariance with Semantic Em-
beddings), incorporates both the vision and language com-
ponents of a pre-trained and frozen CLIP teacher, inspired
by the importance of the representations encoded by the lan-
guage component. Specifically, RISE includes three loss
functions: the empiricial risk minimization (ERM) loss that
follows the standard pipeline of domain generalization, the
model distillation loss that leverages the pretrained weights
of the image component of CLIP, and the cross-domain (text
to image) distance loss that uses the power of text through
the language component of CLIP.

To fully harness the power of language, we introduce two
different designs of the cross-domain distance loss function:
the absolute distance design pushes the student’s learned
representation closer to the teacher’s domain-invariant rep-
resentation learned from language, while the relative dis-
tance design enforces that the relative domain distances in
the teacher’s encoded language space are transferred over
to the learned representation in the student’s encoded image
space.

Contributions. In summary, our main contributions are:

* To the best of our knowledge, we are the first to
leverage knowledge distillation using a large vision-
language model as a teacher for domain generalization.

* We propose to regularize the representation learned by
the student through images to be closer to the ones
from the teacher’s text representation, as text can be
more concise and capture the semantic essence.

* We propose two loss functions, namely the absolute
distance and the relative distance, which provide spe-
cific guidance on how the student model’s training pro-
cess should be regularized.

* We conduct a rich set of experiments to validate the ef-
fectiveness of our model RISE on domain generaliza-
tion benchmarks and ablate the performance of each of
its components.

2. Related Work
2.1. Domain Generalization

Domain Generalization [37] has been widely studied in
recent years. It mainly studies the problem of training a
model from the data collected from multiple source distri-
butions and then testing the trained model on a target distri-
bution that is different from the training ones. Because of
this problem formulation, a natural assumption to guide the
development of the methods is that if the model can learn
a representation that is invariant across the multiple train-
ing domains, it will generalize well to the unseen test do-
main. A large number of methods have been invented fol-
lowing this natural assumption, aiming to force the invari-
ance across samples of training distributions, either through
explicit regularization based methods [29, 31, 80, 56, 36, 4,

, 10, 39,47, 17, 83,9, 58, 62, 35, 27, 77, 69] or (virtual)
data augmentation methods [49, 75, 12, 82, 21, 61].

In addition, the assumption above of “invariance across
multiple domains” is being challenged in recent years with
the argument that a more realistic scenario is when the train-
ing datasets are not necessarily partitioned into multiple dis-
tributions/domains with clear boundaries during training.
As aresponse to this argument, more powerful methods that
do not rely on the domain partitions to force invariance have
been introduced [23, 53, 22]. Our method in this paper in
tested in the context of this challenging scenario.

Also, in recent years, it seems the community is using
the terminology out-of-distribution (OOD) generalization
to largely refer to domain generalization. For more detailed
discussions on the topics of domain generalization and out-
of-distribution (OOD) generalization, we refer the reader to
dedicated surveys [57, 51].

More closely related to our contribution in this pa-
per, we notice a prior work that also leverages a pre-
trained model to improve domain generalization perfor-
mance. Specifically, Domain Prompt Learning (DPL) [79]
utilizes a lightweight prompt adaptor to automatically gen-
erate a prompt that estimates domain-specific features given
unlabeled examples from each distribution. The following
two works are not closely related to CLIP but leverage CLIP
as their pre-trained model for domain generalization: [32]
dispatches proper pre-trained models (including CLIP) to
each sample based on their generalization ability. [6] re-
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formulates the DG objective by mutual information with
oracle models (including CLIP).

Key novelty: Unlike prior work, we leverage CLIP as a
teacher and regularize the student’s learned representation
through images to be closer to the corresponding text rep-
resentation of the teacher. Our method includes two loss
functions that directly leverage language for learning invari-
ant image representations.

2.2. Knowledge Distillation

Knowledge distillation is a technique for transferring
knowledge from a teacher model to a student model, by
optimizing the student model to match the outputs or in-
termediate features of the teacher model. This technique is
used in numerous distinct contexts, such as semi-supervised
learning [40] or even self-supervised learning [63].

Ever since the introduction of the term in [20], a plethora
of techniques have been developed [!3] with improvement
in various aspects, centering around the idea of how to align
the output of the student model to the teacher model for ev-
ery input, where the alignment and output are both subject
to various concrete definitions. For example, one branch
of works varies on how to enforce the alignment, with a
particular focus on the loss function design over the out-
puts between the teacher and the student for every sample,
with popular studies such as £; [26], €3 [7, 44, 59], MMD
[24], KL divergence [%, 43, 42], and cross-entropy losses
[64, 32]. Another branch studies how to define the out-
put, which, at a high-level, has variants of directly using the
embeddings from a certain (or final) layer [67, 15, 18, 50],
or some more structured functions of the (pair-wise) em-
beddings of those layers [30, 76, 72]. There are also other
branches such as the student-teacher architecture design or
distillation algorithms that are not directly related to our
study in this paper; we recommend the reader to refer to
a survey for more details [13].

Among these works, the most relevant technical devel-
opment to our method is to distill the preservation of the
relationship between samples from the teacher model to
the student model. For example, [7] distills while the the
student also learns the relationship between samples after
the relationship is projected to a lower dimensional space,
and other works more directly optimize the similarity of the
pair-wise distances between embeddings after each pair of
samples is fed into the teacher and student models, respec-
tively [74, 45, 34, 41].

Key novelty: The objective of prior work KDDG [60] is
to distill the knowledge of a pure vision teacher to a stu-
dent model. In contrast, our approach focuses on distilling
the knowledge of large-scale vision and language models
(CLIP) to the student model.

2.3. Large Vision-Language Models

Recent advances in vision-language models [16, 25, 606,
68, 65, 73] have shown promising results in learning generic
visual representations and facilitating zero-shot transfer to
diverse downstream classification tasks through the use of
prompts. These models typically rely on a contrastive loss
to align a visual encoder and a text encoder in a shared fea-
ture space. Trained on large-scale image-text pairs, these
vision-language models demonstrate transferability across a
wide range of applications, including object detection [14],
semantic segmentation [£1], and point cloud classifica-
tion [72].

In particular, Contrastive Language Image Pre-training
i.e., CLIP [46] utilizes 400M pretraining image-text pairs
to conduct image-caption contrastive pretraining. Empiri-
cally, CLIP shows superior zero-shot image classification
performance, achieving 76.2% top-1 accuracy on the Ima-
geNet validation set, which is on par with the performance
of an ImageNet fully-supervised ResNet101 model. Fur-
thermore, CLIP shows potential domain generalization ca-
pabilities. For example, it achieves 60.2% accuracy on Ima-
geNet Sketch Dataset while the ImageNet supervised train-
ing model (ResNet101) can only achieve 25.2% accuracy.
This motivates us to answer the following question: What
is the best way to distill CLIP’s rich domain knowledge to a
smaller student network for domain generalization tasks?

3. RISE: Regularized Invariance with Seman-
tic Embeddings

In this section, we present the details of our approach for
distilling a large vision-language model’s learned semantic
knowledge into a smaller student model for domain gen-
eralization. Importantly, we use a pre-trained and frozen
CLIP [46] as the teacher in this work.

3.1. Notations, Baseline, and Distillation from
Teacher’s Image Component

We first introduce our notations. We use (X,Y) to de-
note the training dataset with n (data,label) paired samples.
these data samples can be from multiple domains or distri-
butions, but since our model does not need the domain-ID
information, we do not need a notation to specify which dis-
tribution the samples are from. Let (x,y) denote one sam-
ple and f(-;#) denote the model we aim to train. Thus, a
vanilla paradigm of training a domain generalization model
without domain IDs is as simple as the standard empirical
risk minimization (ERM):

S Uf(x:0),), (1)

(e,y)e(X,Y)

where [(-, -) denotes a generic loss function.
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Figure 2. (Left) Overview of the pipeline of our proposed method as a combination of three losses: the cross-entropy loss as in standard
supervised training, the KL divergence loss as in domain distillation, and our proposed cross-domain (text to image) distance loss. Here,
a pre-trained and frozen CLIP is the teacher model. The teacher model is not trained. (Right) The intuition of our two proposed losses
and their combined effects. (i) In latent space, we aim to regularize the model to learn a representation that is close to the domain-invariant
representation from the teacher’s text space; (ii) the absolute distance loss can regularize the search to be within the shaded area; (iii)
the relative distance loss can regularize the search to be within the overlap area; (iv) the combined loss can shrink the search space by

overlapping these two.

We aim to incorporate rich prior knowledge from a CLIP
pretrained image model teacher through distillation. We use
h(-; @) to denote this pretrained model, and the training pro-
cess as:

S WA ), hu(x; 9)), @)

(e,y)e(X,Y)

where [(-,-) denotes a typical loss function that measures
the distance of two vectors (e.g., KL divergence between
the two predicted output distributions). f;(-; ) and hy(-; ¢)
denote the output of logits instead of the final prediction.

To use CLIP to produce output distributions in a classi-
fication setting, we feed in the text encoder of CLIP with
queries generated with the label of the images (one query
per label) such as “a photo of a dog”, “a photo of an ele-
phant”, etc. We use the image encoder’s embedding to
match each of the class query embeddings of the text en-
coder using cosine similiarity, and normalize the result to
generate the output logits.

3.2. Regularization with Teacher’s Language Com-
ponent

We use g;(-;d) to denote the CLIP teacher’s language
component that takes the input text phrase and generates an
embedding. In general, if we have a generic description of
the image, such as “z = a photo of a dog”, we can directly
feed this text phrase into the model to generate the corre-
sponding embedding, following e,(dog) = g;(z; §).

However, in practice, although “a photo of a dog” is rec-
ommended by CLIP as a standard text template, this text
might not be generic enough as it still indicates the pixel
statistics of the image following the typical statistics of
what a photo has, which is potentially different from what a
sketch or what a painting has.

To overcome the potential over-reliance on the pixel
statistics of photo, we use the recommended list of eighty
templates of text prompts by CLIP [46], including from “a
photo of my {}”, “an art of {}”, to even “a tattoo of the {}”
and consider their averaged representation as the generic
teacher’s text representation of the depicted object.

More concretely, we build the generic representation of
class i by

ez(i):% 3 a(z0)

nEZ(i)

where Z(z) denotes the set of recommended text templates
when the class is filled in with the class name corresponding
to object 7.

With the teacher’s generic text embedding e, (i), we aim
to regularize the learning process of the student model to
match its learned image representation to this generic repre-
sentation, with two losses that function differently: absolute
distance loss and relative distance loss.
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3.2.1 Absolute Distance Loss

The absolute distance loss is designed to directly push the
student’s learned image representation to be close to the
teacher’s generic text representation:

S Do) = k(i 0),en(@)), )

(x,¥)E(X,Y) i€l

where k(-,-) is a distance metric, I is the collection of all
possible classes, and I[e(x) = 4] is simply an identity func-
tion that returns 1 if the class of x is 7 and 0 otherwise.

Ideally, if we can achieve the minimum value from (3),
we will train a student model that can learn generic visual
representations that are likely to be invariant across the in-
put domains and perform well on target domains.

However, in practice, due to the difficulties of optimizing
deep learning models on real-world data, the optimization
cannot easily find such optimal solutions. Therefore, we
need to introduce an additional regularization to help shrink
the search space.

3.2.2 Relative Distance Loss

We introduce a relative distance loss that can better describe
where the target generic representation is.

To do so, we need to first introduce several additional
anchor points. For a domain generalization problem with
possible training domain d € D, and for every class i € I,
we generate e,(d, 1) by feeding the text prompt “a {d} of
{2} to the teacher’s text encoder.

Therefore, we have the relative distance loss as

Y YNl =43

(x,¥)€(X,Y) i€l deD

iy (ka(fi(x;6), €2(d,)), ks (ea(i), €4(d, 1)) ),
4)
where k; and ko denote two distance metrics.

Intuitively, the relative distance loss helps to pinpoint the
location of the teacher’s generic text representation by push-
ing the relative position of the student’s learned representa-
tion from images with respect to those anchor points to be
the same as the position of the generic representation with
respect to the anchor points.

The idea of the relative distance loss is to help the model
to get to the generic embedding more directly. How it can
help in searching for the generic representation is illustrated
in the right-hand side of Figure 2.

3.3. Full Method

Connecting all the pieces above, our full method is to
train the model with the loss functions from (1) to (4),
with hyperparameters to balance the contribution of each
method; see the left-hand side of Figure 2.

Formally, our final method is to train the model with

Do MUf(x30),y) + Xl (fi(x:0), hu(x; 6))+

(x.y)e(X,Y)

S lfe(x) = il (k(fe(X; ), ea(i)+

iel

S ki (kz( fi(x;6), e4(d, 1)), ka2 (e4(3), ex(d, @))))

deD

where A1, Az, and Az are three hyperparameters that balance
each loss term.

3.4. Implementation Details

In practice, we implement [ as cross-entropy loss, I’ as
KL divergence, k as CosineSimilarity, k; as CosineSimilar-
ity, and ko as L2 loss. The KL divergence I’ introduces one
more hyperparameter temperature ¢ to control the smooth-
ness of CLIP’s predictions. The detail of distance metrics
selection is analyzed in the ablation study. We use one lin-
ear layer to project the image embedding of the student to
the text embedding of the CLIP teacher. During inference,
images are passed through the student image encoder and
FC layer (or CLIP’s text embedding) to make final predic-
tions.

4. Experiments

We evaluate our approach in leveraging language as a
regularization strategy for training a student image model
for domain generalization. We compare state-of-the-art do-
main generalization methods and perform ablation studies
to analyze the various components of our model.

4.1. Setup

We follow the setting in [16, 71] and evaluate our do-
main generalization approach. Specifically, we use the same
strategy for model selection, dataset splitting, and network
backbone.

4.2. Datasets, Hyperparameter Search, and Model
Selection

We follow DomainBed [16] and Ood-bench [71] to
choose datasets that cover as much variety as possible from
the various OOD research areas for our experiments. We
conduct experiments on four OOD datasets: Terra Incog-
nita [3], OfficeHome [55], VLCS [54], and PACS [2£].

To be consistent with the existing line of work, we use
the training-validation protocol for model selection: given
N domains, it uses 90% the amount of data in N — 1 do-
mains for training, the other 10% for validation, selects the
best model based on the validation result, tests the model on
the held-out domain and reports this result.
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Table 1. Results of domain generalization methods with ResNet backbone. Ens/MA stands for Ensemble/ Moving Average. % denotes
fine-tuning on target datasets. Hint [19] stands for the distillation loss. AD stands for absolute distance loss. RD stands for relative distance
loss. MT stands for Mix Teacher engineering technique. We report averaged accuracy across three runs.

Method Backbone | Ens/MA PACS VLCS OfficeHome Terra Ave
ERM [70] ResNet18 No 81.5 73.2 63.3 43.6 65.4
Best SoTA competitor ResNet18 No 83.4[22] 74.1[22] 63.8 [29] 445221 | 66.5
ERM [16] ResNet50 No 85.7 77.4 67.5 47.2 69.5
Best SOTA competitor ResNet50 No 86.6 [48]  78.8[52] 68.7 [52] 48.6 [38] | 70.7
Ensemble [2] ResNet50 Yes 87.6 78.5 70.8 49.2 71.5
SWAD [5] ResNet50 Yes 88.1 79.1 70.6 50.0 71.9
EoA [2] ResNet50 Yes 88.6 79.1 72.5 52.3 73.1
CLIP [79] (Teacher) ViT B/16 No 96.1 82.3 82.3 50.2x 71.7
ERM + Hint ResNet18 No 84.6 78.0 64.6 47.0 68.6
ERM + Hint + AD ResNet18 No 85.1 78.5 65.6 48.2 69.4
ERM + Hint + RD ResNet18 No 84.9 78.2 65.2 479 69.0
ERM + Hint + AD + RD (Our full method) ResNet18 No 85.3 78.6 65.9 48.4 69.6
ERM + Hint ResNet50 No 88.4 80.7 70.2 50.5 72.5
ERM + Hint + AD ResNet50 No 89.0 81.5 71.3 52.2 73.5
ERM + Hint + RD ResNet50 No 88.8 81.2 71.1 51.7 73.2
ERM + Hint + AD + RD (Our full method) ResNet50 No 89.4 81.7 71.6 52.3 73.8
ERM + Hint + AD + RD + MT (Our full method) | ResNet50 Yes 90.2 82.4 72.6 54.0 74.8

There are altogether four hyperparameters for our
method — the weights of supervised loss A1, distillation loss
A2, distance losses A3, and temperature ¢. Overall, we set
the hyperparameter search space of our method as A\; €
[0.1,1.0], A2 € [0.1,1.0], A3 € [0.1,1.0], ¢t € [1.0,3.0].
We adopted the same hyperparameter search protocol used
in [16, 70].

4.3. Empirical Results

Zero-shot performance of CLIP teacher. We select
CLIP ViT-B/16 as the teacher for the following experiments
(due to limited computational resources we could not try
larger models). In Table 1, CLIP ViT-B/16 achieves 96.1%,
82.3%, 82.3%, and 34.1% on PACS, VLCS, Office-Home,
and Terra Incognita respectively when performing zero-shot
inference. Except for Terra Incognita, both CLIP models
outperform the best individual state-of-the-art results by up
to 7%. Because of the extremely low zero-shot accuracy on
Terra, we finetune CLIP on Terra to obtain a better CLIP
teacher, which achieves 50.2% zero-shot accuracy. Overall,
we use finetuned CLIP ViT B/16 for Terra Incognita and
zero-shot CLIP ViT B/16 for the remaining three datasets.

Comparison with existing DG methods We compare to
the recent top DG algorithms, using both ResNetl8 and
ResNet50 pre-trained on ImageNet-1k as the backbone.
Our results are presented in Table 1. The “Best SoTA com-
petitor” refers to the highest performance in the literature
within the standard DG experimental protocol, and the num-
bers listed under this category may be from different meth-
ods. In addition, we also include ensemble and weight-
averaging techniques in the third-row panel.

We first study the effect of the standard distillation
loss [19]. We use the soft labels produced by the CLIP

teacher as an additional target for the student to match, in
addition to the (one-hot) ground-truth labels. This is done
by minimizing the KL-divergence between the predicted
distributions of the student and the teacher. Training a stu-
dent with human labels and distillation loss (ERM + Hint in
the last two panels), already outperforms most of the state-
of-the-art methods on the benchmarks. EoA [2], a mov-
ing average variant method, is the only method that outper-
forms ERM + Hint with the ResNet50 backbone. Next, we
study the effect of our proposed method. We observe that
adding absolute distance (AD) and relative distance (RD)
to ERM + Hint both result in clear performance gains, and
together produce the best results which indicate their com-
plementarity. For ResNet 18, AD, RD, and AD + RD pro-
vide 0.8%, 0.4%, and 1.0% improvement over ERM + Hint
respectively. For ResNet 50, AD, RD, and AD + RD pro-
vide 1.0%, 0.7%, and 1.3% improvement over ERM + Hint
respectively.

4.4. Ablation Studies

In this section, we study the impact of each component in
our method. We evaluate our method with a ResNet50 back-
bone on the most popular DG benchmark PACS to conduct
the following experimental analyses.

4.4.1 Impact of using text embedding as supervision

We study the impact of using CLIP’s text embedding and
image embedding as supervision for our absolute distance
loss and relative distance loss. The results displayed in Ta-
ble 2 indicate that for both our absolute distance loss and
relative distance loss, utilizing text embedding of CLIP as
supervision yields better results compared to using the im-
age embedding counterpart for regulating the learning pro-
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Method | Embedding | Acc

ERM + Hint + AD | Image 88.4
ERM + Hint + AD | Text 89.0
ERM + Hint + RD | Image 88.1
ERM + Hint + RD | Text 88.8

Table 2. Analysis of using CLIP’s image embedding and text em-
bedding as supervision. Hint [19] stands for the distillation loss.
AD stands for absolute distance loss. RD stands for relative dis-
tance loss.

cess of our model, despite having the same loss function
setting. Specifically, ERM + Hint + AD and ERM + Hint +
RD with text embedding supervision outperform their im-
age embedding counterparts with 0.6% and 0.7% improve-
ment respectively. This analysis helps validate our assump-
tion that CLIP’s text embedding contains rich semantic in-
formation, and it can be treated as a domain-invariant rep-
resentation since it is independent of images. In addition,
Table 2 demonstrates that both our absolute distance loss
and relative distance loss exhibit comparable performance
under the ERM + Hint setting. Specifically, ERM + Hint
achieved 88.4% (+AD) and 88.1% (+RD) using image em-
bedding. Under ERM + Hint setting with text embedding,
absolute distance loss performs slightly better than relative
distance loss where ERM + Hint attains 89.0% (+AD) and
88.8% (+RD).

4.4.2 Impact of each loss component

Method [ Acc
ERM 85.7
ERM + Hint 88.4
ERM + AD 87.8
ERM + RD 87.2
ERM + Hint + AD 89.0
ERM + Hint + RD 88.8
ERM + Hint+ AD +RD | 89.4

Table 3. Analysis of the effectiveness of each loss function in our
method using ResNet50 backbone on PACS. Hint [19] stands for
the distillation loss. AD stands for absolute distance loss. RD
stands for relative distance loss.

Table 3 demonstrates that each component of our loss
function contributes to the final performance. By adding
one additional loss component to ERM (85.7%), ERM +
Hint (88.4%), ERM + absolute (87.8%), and ERM + relative
(87.2%), all get substantial improvements: +2.7%, 2.1%,
1.5%, respectively. Interestingly, ERM + AD achieves com-
parable performance with ERM + Hint which suggests that
using CLIP’s text embedding as supervision has the po-
tential to match the performance of using the entire CLIP
model. That is, a CLIP teacher can be used to generate su-
pervisory signals for distillation without having access to

any images. Moreover, by adding absolute distance loss
and relative distance loss to ERM + Hint, there are further
improvements of 0.6% and 0.4%, respectively, for ERM +
Hint + AD and ERM + Hint + RD. Finally, by combining
all components and using ERM + Hint + AD + RD (89.4%),
we observe a significant improvement of 3.7% compared to
using ERM only (85.7%).

4.4.3 Impact of prompt engineering and ensemble

Method | Template [ Acc
ERM + Hint + AD | aphoto of a {class} | 88.5
ERM + Hint + AD | Ensemble template 89.0
ERM + Hint + RD | aphoto of a {class} | 88.3
ERM + Hint + RD | Ensemble template 88.8

Table 4. Analysis of CLIP’s prompt engineering end ensemble.
Hint [19] stands for the distillation loss. AD stands for absolute
distance loss. RD stands for relative distance loss.

Table 4 demonstrates the effectiveness of having a
prompt ensemble template, which enhances the accuracy
compared to a single prompt template. Both ERM + Hint
+ AD and ERM + Hint + RD settings display an accuracy
improvement of 0.5%. The ensemble template utilizes 80
representative templates of text prompts by CLIP [46]. The
improvement in accuracy suggests that the text embedding
generated by the ensemble template is more robust than the
single template counterpart (i.e., “a photo of a {}”) when
facing distribution shift tasks. For those interested in ex-
ploring the details of the eighty prompt ensemble templates,
they can be found here.

4.4.4 Impact of different distance metrics

Method [ Loss [ Acc
ERM + Hint + AD CosineSimilarity 89.0
ERM + Hint + AD | Supervised Contrastive | 88.6
ERM + Hint + AD L1 88.0
ERM + Hint + AD L2 88.1
ERM + Hint + RD KL 88.7
ERM + Hint + RD L1 88.3
ERM + Hint + RD L2 88.8

Table 5. Effect of different regularization and distance metrics. For
ERM + Hint + RD, we fix k2 to be consine similarity, and only
explore which kind of distance metric k1 works the best with k.
Hint [19] stands for the distillation loss. AD stands for absolute
distance loss. RD stands for relative distance loss.

Table 5 shows the variation in performance due to dif-
ferent regularization and distance metrics. When consider-
ing the ERM + Hint + absolute distance loss setting (i.e.,
choosing the distance metric k in Eqn. 3), the Cosine Simi-
larity loss (89.0%) outperforms the Supervised Contrastive
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(88.6%), L1 (88.0%), and L2 (88.1%) approaches. (For
Supervised Contrastive, the positive/negative pairs are the
student’s image feature and teacher’s text feature for the
ground-truth/non-ground-truth class.) On the other hand,
for the ERM + Hint + relative distance loss setting (i.e.,
choosing the distance metric k; in Eqn. 4; to be consistent
with the final absolute distance metric, we set ko to be co-
sine similarity), KL (88.7%) and L2 (88.8%) exhibit simi-
lar performance and outperform L1 (88.3%). Overall, we
implement both k£ and k5 as ConsineSimilarity and k; L2
distance metrics.

4.4.5 TImpact of Mix Teacher

Teacher [ Ensemble [ A [ C [ P [ S [ Avg
CLIP ViT B/16 No 88.0 | 8.2 | 97.8 | 864 | 89.4
CLIP RN101 No 87.6 | 86.1 | 97.6 | 85.1 | 89.1
Mix Teacher Yes 88.7 | 86.7 | 98.3 | 86.9 | 90.2
CLIP ViT B/16 Yes 88.3 | 86.0 | 98.1 | 86.7 | 89.8

Table 6. Results of ERM + Hint + AD + RD with different CLIP
teachers on PACS. Hint [19] stands for the distillation loss. AD
stands for absolute distance loss. RD stands for relative distance
loss. MT stands for Mix Teacher engineering technique. A, C, P,
and S: art-painting, cartoon, photo, and sketch.

Finally, we explore the impact of having multiple CLIP
teachers, which we call “Mix Teacher” (MT). Specifically,
we use another CLIP ResNet 101 as a teacher model, which
achieves 94.9%, 80.0%, and 76.0% zero-shot inference on
PACS, VLCS, and Office-Home, respectively, and 50.5%
finetune inference on Terralncognita. Our ERM + Hint +
AD + RD method with this CLIP RN101 teacher achieves
89.1%, 81.6%, 70.9% and 52.3% on PACS, VLCS, Office-
Home and Terra respectively.

Table 6 shows the ensembling results. Overall, an en-
semble of teachers achieves higher accuracy compared to
non-ensemble teachers; from Table 6, we see that Mix
Teacher of CLIP ViT B/16 + CLIP RN101 (90.2%) exhibits
better performance than CLIP ViT B/16 non-ensemble
(89.4%) and CLIP RN101 (89.1%). We also investigate en-
sembling the outputs of two separate students trained with
the same CLIP ViT B/16 teacher (Table 6 last row). This en-
semble model also does better (+0.4%) than a single student
(1st row), but not as well as ensembling multiple teachers.

Although the overall performance is close between stu-
dents distilled by different CLIP teachers (row 1 vs row 2
in Table 6), upon closer inspection, we find that the student
distilled with CLIP VIT outperforms the CLIP RN coun-
terpart on sketch domains and worse on cartoon domains.
We suspect that the teacher CLIP with different model ar-
chitectures have different domain biases and perform well
on different domains. Thus, by ensembling student mod-

els distilled with different CLIP teachers that have different
network architectures, we can further improve the general-
ization capability of our student method. We report the en-
semble performance for two different ResNet50 pretrained
student models with mixed teachers in the last row in Ta-
ble 1. It provides a +1.0% boost (74.8% average accuracy)
over our single non-ensemble model.

5. Conclusion

One of the challenges in domain generalization is that
machine learning models tend to learn domain-specific fea-
tures, which can make them less effective at generalizing
to new domains. This is because domain-specific features
may be highly relevant to the training data but may not be
useful for prediction on new domains. To address this chal-
lenge, the community has focused on developing methods
to regularize the learned representations to become domain-
invariant features.

In this paper, we build upon this direction by investigat-
ing methods for learning domain-invariant features in ma-
chine learning models. Our proposed method is inspired
by the intuition that while an image tends to convey rich
but sometimes excessive details through its pixels, a corre-
sponding text description can describe the crux of the image
content in a highly concise and complementary manner.

Following this intuition, we proposed RISE, with main
loss functions (the absolute distance and relative distance)
to offer specific guidance on how the student model’s train-
ing process should be regularized, that provides a powerful
new direction for domain generalization research by incor-
porating the power of language to regularize image repre-
sentations.

Our results suggest that leveraging language as a regu-
larization strategy can achieve state-of-the-art performance
on popular domain generalization benchmarks. We have
demonstrated the effectiveness of our approach through a
comprehensive set of experiments.

In conclusion, RISE provides a new direction for do-
main generalization research by incorporating the power of
language to regularize image representations. Our results
suggest that leveraging language as a regularization strat-
egy can significantly improve the generalization capability
of machine learning models, and we believe that our work
can motivate further research in this direction.

Limitations. When facing the downstream task, such as
Terra where CLIP shows poor performance during zero-
shot inference, finetuning CLIP on the downstream task is
recommended before distilling knowledge to students.

In addition, the quality and relevance of text descrip-
tions used to regularize image representations may impact
the effectiveness of our approach. In our experiments, we
addressed this limitation by using an average of 80 differ-
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ent text descriptions for each image. However, obtaining a
more direct and generic text description might help improve
the efficiency of the method. We leave this to future work.
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