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ABSTRACT

With rapid development of techniques to measure brain activity and structure, statistical methods
for analyzing modern brain-imaging play an important role in the advancement of science. Imaging
data that measure brain function are usually multivariate time series and are heterogeneous across
both imaging sources and subjects, which lead to various statistical and computational challenges.
In this paper, we propose a group-based method to cluster a collection of multivariate time series
via a Bayesian mixture of smoothing splines. Our method assumes each multivariate time series is
a mixture of multiple components with different mixing weights. Time-independent covariates are
assumed to be associated with the mixture components and are incorporated via logistic weights of a
mixture-of-experts model. We formulate this approach under a fully Bayesian framework using Gibbs
sampling where the number of components is selected based on a deviance information criterion. The
proposed method is compared to existing methods via simulation studies and is applied to a study on
functional near-infrared spectroscopy (fNIRS), which aims to understand infant emotional reactivity
and recovery from stress. The results reveal distinct patterns of brain activity, as well as associations
between these patterns and selected covariates.

Keywords Bayesian mixture model · Brain-imaging · Functional near-infrared spectroscopy ·Model-based clustering ·
Multivariate time series · Smoothing splines · Face-to-face still-face

1 Introduction

Time series are realizations of random processes. Obtaining estimated time series trajectories may provide insights into
many practical problems. Functional near-infrared spectroscopy (fNIRS) is a noninvasive brain imaging technique that
measures changes in both oxy- and deoxy-hemoglobin using near-infrared light (Jobsis, 1977). In fNIRS, processed data
are nonstationary multivariate time series with a non-constant mean and high variability across time, which pose many
statistical challenges in inference and estimation. In the case of fNIRS, different subjects could have distinct patterns of
multivariate time series trajectories, which could be associated with certain clinical or demographic characteristics.
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Covariate-guided Bayesian mixture model for multivariate time series

The analysis of fNIRS data requires an appropriate method for the analysis of a collection of multivariate time series
observed from different subjects, which is often referred to as a replicated multivariate time series setting.

Cluster analysis is often used to address the issue of heterogeneity and identify subgroups from collections of time
series observed from different subjects. Time series clustering has been used in diverse scientific areas to discover
trajectory patterns, which can uncover valuable information from complex and massive datasets (Liao, 2005). Time
series clustering partitions the entire collection of data into different groups such that homogeneous time series are
grouped together based on a certain similarity measure. Challenges in time-series clustering include computational
issues due to high-dimensionality and the selection of proper similarity measures (Lin and others, 2003; Keogh and
Pazzani, 2000). Several authors have proposed clustering algorithms for multivariate time series. Kakizawa and
others (1998) used Kullback-Leibler discrimination information as the minimum discrimination criterion for clustering
multivariate Gaussian time series. Wang and others (2007) used a modified K-means clustering algorithm for clustering
multivariate time series based on univariate structures. A variety of papers have established different model-based
clustering methods for clustering multivariate time series, such as multivariate autoregressive models (Maharaj, 1999;
He and others, 2022), a hidden Markov model (Li and others, 2001) and smoothing splines (Krafty and others, 2017;
Li and Krafty, 2019). Comprehensive review of methods for time series clustering can be found in Liao (2005) and in
Maharaj and others (2019).

Covariate-dependent structures can often be associated with the mixture components from a clustering of time
series. Bertolacci and others (2022) presented an analysis of multiple nonstationary time series by using a covariate-
dependent infinite mixture with logistic stick-breaking weights, where mixing weights are computed based on covariates.
The mixture-of-experts model (Jacobs and others, 1991) assigns weights to each expert via a covariate-dependent
multinomial logists. Huerta and others (2003) addressed the issue of time series model mixing based on covariates
using the hierarchical mixture-of-experts (Jordan and Jacobs, 1994).

Smoothing splines, which are nonparametric methods that utilize roughness-based penalties, have been widely used in
the analysis of time series (Wang, 2011; Gu, 2013). Bayesian interpretations of smoothing splines were first discussed
by Kimeldorf and Wahba (1970). Wahba (1978) showed that the solution to the smoothing splines objective function is
equivalent to Bayesian estimation with a partially diffuse prior. Speckman and Sun (2003) adopted a fully Bayesian
approach for implementing smoothing splines with a noninformative prior on the variance component, as well as
derived necessary and sufficient conditions for the propriety of the posterior. Smoothing splines require estimation of
a large number of coefficients, which might be impractical in high-dimensional settings. Gu and Kim (2002) used a
subset of reproducing kernel functions to achieve a low-dimensional approximation. Wood and others (2002) obtained
a subset of basis functions using the eigen-decomposition of the Gaussian kernel. Krafty and others (2017) proposed a
tensor-product model for the analysis of replicated multivariate time series which decomposes the power spectrum into
products of univariate outcomes and frequencies.

Our goal in this paper is to perform a covariate-guided clustering of multivariate time series that can capture trajectory
patterns of mixture components and evaluate the relationship between covariates and trajectory patterns. To this end,
each mixture component is modeled via smoothing splines, and time-independent covariates are incorporated into the
mixture model via the mixing weights. The method is formulated in a fully Bayesian framework. The rest of this paper
is organized as follows. In Section 2 we introduce the motivating study. Sections 3 and 4 present the proposed model
and priors. Section 5 introduces the sampling scheme. In Section 6 we report simulation results under different settings
and Section 7 illustrates our proposed method with application to the motivating study. Section 8 concludes the paper
with a discussion.

2 Motivating Study

Our motivating study aims to understand patterns of infant’s brain activity before, during and after an emotionally
stressful probe called face-to-face still-face (FFSF) (Tronick and others, 1978). Participant mothers in this study were
recruited from the longitudinal Pittsburgh Girls Study (PGS), a population-based study of 2,450 girls who were recruited
in the city of Pittsburgh between the ages of 5 and 8 (Keenan and others, 2010). In 2016, a large-scale sub-study of
the PGS was initiated to investigate how environmental factors, such as psychological stressors experienced during
childhood and adolescence, affect later maternal pregnancy and child health. The study is part of the National Institutes
of Health Environmental Influences of Child Health Outcomes (ECHO) program, which examines different impacts of
prenatal environmental exposures across biological, chemical, physical and social domains on offspring health and
development (Gillman and Blaisdell, 2018). The PGS-ECHO study enrolls PGS participants as they become pregnant
or recently deliver a live birth. Participants complete multiple prenatal lab visits and the children are followed from
ages 6 to 36 months. The lab protocol includes interviews and interaction tasks to assess contextual stressors, health,
mood, lifestyle behaviors and offspring behavioral and emotional development.
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Covariate-guided Bayesian mixture model for multivariate time series

Face-to-face interactions between mothers and infants are essential to the development of infants with respect to
communication and social skills, as well as the regulation of emotion and temperament (Hipwell and others, 2019).
The FFSF paradigm is a widely used stress task (a violation of the expectation of social interaction) that allows for
biobehavioral measurement of individual differences in infant response and recovery. The FFSF comprises of three
phases: interact (or baseline), still-face and recovery (Adamson and Frick, 2003). In phase 1, mothers perform normal
interactions with infants without the use of toys; this phase serves as the baseline. In phase 2, mothers adopt a neutral
facial expression (still-face with no facial or oral communication) to infants, followed by phase 3, where mothers
resume normal interactions with their infants. Prior to the start of the FFSF, an fNIRS cap is fitted on the infant’s head
to measure the level of and change in brain activation across the three phases.

PGS-ECHO fNIRS still-face data are recorded using a continuous NIRS imaging system (NIRScout; NIRx Medical
Technologies, Berlin, Germany) at the sampling rate of 7.8125 Hz and using the NIRStart acquisition software. The
data are measured simultaneously at two wavelengths (760 nm and 850 nm). As shown in Figure 1(a), this fNIRS probe
consists of 12 channels from 8 sources and 4 detectors.

In the current study, we measured infant brain activity using the above fNIRS probe (roughly 120 seconds of measure-
ments for each phase). At the end of 2021, recorded fNIRS still-face data had been collected from 155 infant subjects.
Demographic variables of infants and mothers such as gestational age, infant age, sex, birth weight, head circumference,
along with parent reports on the Infant Behavior Questionnaire-Revised (IBQ-R) (Gartstein and Rothbart, 2003) were
also collected. By removing infants who did not complete the three phases of the still-face paradigm, who had large
outliers based on leverage and who had a very short period of measurements in any of the three still-face phases,
there were a total of 82 subjects with complete fNIRS still-face data available for future analysis. The above quality
control steps were performed by the NIRS brain AnalyzIR toolbox in MATLAB (Santosa and others, 2018). Moreover,
additional data pre-processing steps were performed in R software, including data interpolation and rescaling. Finally,
processed fNIRS data had a total of 1,500 measurement points for each subject and each channel, where each phase
consisted of 500 points. All measurements and sampling times were rescaled to be between 0 and 1, with the interact
phase occurring between time 0 to 1/3, still-face between 1/3 to 2/3, and recovery between 2/3 to 1. An example of
processed fNIRS time series from two selected subjects and four selected channels is displayed in Figure 2.

The goals of our analysis are to identify distinct patterns of brain activity trajectories from multiple fNIRS channels
represented by the relative concentration of oxy-hemoglobin, and to assess the association between trajectory patterns
and relevant covariates.

3 Model

In this section, we provide a detailed description of our proposed covariate-guided Bayesian mixture of spline experts
model. The proposed model consists of spline components whose mixing weights depend on covariates.

3.1 Mixture of splines model

We propose a tensor-product mixture of splines model for multivariate time series. For each subject i = 1, . . . , N , let
yi = (y′i1, . . . ,y

′
ik, . . . ,y

′
iK)′ be the nK-vector corresponding to the K-dimensional time series for k = 1, . . . ,K,

where yik =
[
yik(t1), . . . , yik(tj), . . . , yik(tn)

]′
contains the trajectory of measurements on the kth entry of the time

series evaluated over a grid of n time points for j = 1, . . . , n, and εi = (ε′i1, . . . , ε
′
iK)′ is the nK-vector of errors.

Following the model representation of Krafty and others (2017), the tensor-product model for the K-dimensional
multivariate time series, conditional on component g, g = 1, . . . , G, can be written as:

{yi | zig = 1} = (IK ⊗X)αg + (IK ⊗W )βg + εi, (1)

where {zig}Gg=1 are latent indicators as described in Section 3.3, αg = (α′g1, . . . ,α
′
gK)′ is a 2K-vector of intercepts

and slopes, βg = (β′g1, . . . ,β
′
gK)′ is a mK-vector of basis function coefficients as described in Section 4.1, IK is a

K ×K identity matrix and ⊗ denotes a tensor product. The matrixX is given byX =

(
1 1 . . . 1
t1 t2 . . . tn

)′
and the

m columns of the matrixW are smoothing splines basis functions as described in Section 4.1. We assume the error
vector εi follows a MVN(0,Ψg ⊗U) distribution, where U = In is the n× n identity matrix, and Ψg = diag(σ2

g) is
a K ×K diagonal matrix with the error variances σ2

g = (σ2
g1, . . . , σ

2
gK)′. We assume each subject has a common grid

of time points across all K entries, such that X and W are common to all subjects, although our proposed method
can be generalized to the case where subjects are observed at different grids of time points. In addition, we assume
E(yik,yih) = 0n×n for k 6= h.
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To simplify notation, we let S = [X W ] and θg = (α′g1,β
′
g1, . . . ,α

′
gK ,β

′
gK)′. Equation (1) can then be rewritten as:

{yi | zig = 1} = (IK ⊗ S)θg + εi. (2)

3.2 Model for the mixing weights

The mixture-of-experts model (Jacobs and others, 1991) is applied to form a covariate-guided structure for our proposed
model, where the mixing weights are multinomial logits that are functions of selected covariates. As in Sun and others
(2007), the mixing weights are expressed as

πig(V i) =
exp(V ′iδg + ζig)∑G
h=1 exp(V

′
iδh + ζih)

, (3)

where V i = (1, Vi1, · · · , ViP )′ is a vector of length (P + 1) containing values of P covariates for subject i, and
δg = (δg0, δg1, · · · , δgP )′ is the corresponding coefficient vector. For identifiability, we set δG = 0. Equation (3)
differs slightly from the weights in the traditional mixture of experts model in that it includes a random term ζig for each
subject. This term accounts for unmeasured factors beyond the observed covariates, and enhances model performance
and inference of the mixing weights.

3.3 Augmented likelihood

To account for heterogeneity across subjects, we assume that the kth entry of the multivariate time series, yik, comes
from a mixture model with G components, i.e.,

yik ∼
G∑
g=1

πigfgk(yik | µgk, σ2
gkIn), (4)

where fgk(yik | µgk, σ2
gkIn) is the probability density function of the multivariate normal distribution with mean

vector µgk = Xαgk +Wβgk and covariance matrix σ2
gkIn for the gth component and the kth entry. The πig are

mixing weights that depend on covariates as described in Section 3.2.

As is common in mixture models, augmenting the likelihood with latent variables indicating the component from which
a time series originates simplifies the computation greatly (Dempster and others, 1977). In particular, let zig = 1
if the ith multivariate time series belongs to the gth component and zig = 0, otherwise. Let y = (y1, . . . ,yN )′

be all observed multivariate time series and Θgk be the aggregation of all parameters for component g and entry k.
The parameter vector for all components and all entries is then denoted by Θ = (Θ′11, . . . ,Θ

′
GK)′. The augmented

likelihood of all N multivariate time series is given by

L(Θ | y, Z) =
N∏
i=1

G∏
g=1

[
πig

K∏
k=1

fgk(yik | Θgk)
]zig

, (5)

where fgk(yik | Θgk) is the probability density function as appeared in the (4). From Bayes’ rule, the distribution of
the latent indicators zig is given by

p(zig = 1 | y,S,Θ, πig) =
πig
∏K
k=1 fgk(yik | Θgk)∑G

h=1 πih
∏K
k=1 fhk(yik | Θhk)

. (6)

4 Priors

In this section, the priors on the model parameters are introduced.

4.1 Smoothing splines prior

The conditional expectation of a mixture component in model (4) is given by E(yik | zig = 1) = Xαgk +Wβgk.
We place a smoothing spline prior on βgk and let Hgk = Wβgk, where Hgk =

[
Hgk(t1), . . . ,Hgk(tn)

]′
is a

zero-mean Gaussian process with variance covariance matrix τ2gkΦ (Wahba, 1980; Wood and others, 2002), such that
cov
[
Hgk(tr),Hgk(th)

]
= τ2gkφrh, τ2gk is a smoothing parameter for component g and entry k, and the (r, h)th element
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of Φ is given by φrh = 1
2 t

2
r(th − tr

3 ) for tr ≤ th. The matrix Φ is common to all subjects since all entries of the
multivariate time series are observed at common time points.

As seen above, the matrix Φ is n× n, and to avoid the computational burden for large n, a low-rank approximation
is often adopted. To facilitate this approximation, we obtain basis functions via the spectral decomposition of Φ, as
has been proposed in Wood and others (2002) and used in Rosen and others (2009, 2012); Krafty and others (2011).
In particular, the matrixW consists of m basis functions evaluated at times t1, . . . , tn, and βgk is an m-dimensional
vector of basis function coefficients. These basis functions are obtained by applying the spectral decomposition to
Φ such that Φ = QΓQT , where Q is the matrix of eigenvectors of Φ, and Γ is a diagonal matrix containing the
eigenvalues of Φ. We then let the design matrix W = QΓ1/2 and place a normal prior N(0, τ2gkIn) on βgk, which
leads to Hgk orWβgk ∼ N(0, τ2gkΦ) as mentioned above.

By using the low-rank approximation, the number of columns ofW is reduced from n to m (m < n), which greatly
reduces the computational burden without sacrificing the model fit (Wahba, 1980; Wood, 2006). Eubank (1999)
indicated that the eigenvalues in the diagonal matrix Γ decay rapidly as m increases. Thus, we can achieve a good
approximation by selecting a relatively small number m of basis functions. The number of basis functions m is set to
10 in simulation studies as described in Section 6, which has been shown (Krafty and others 2011) to explain more than
98% of the total variability.

The prior on θg is thus θg ∼ N(0,Dg), where Dg = diag(σ2
α112, τ

2
g11m, . . . , σ

2
αK12, τ

2
gK1m) is the covariance

matrix of θg . The vector (σ2
α1, . . . , σ

2
αK)′ contains fixed prior variances for the regression coefficients αgk, common to

all components and entries. In particular, we fix the common prior variance σ2
α = 100. The vector τ 2

g = (τ2g1, . . . , τ
2
gK)′

contains the smoothing parameters for the gth mixture component and 1m is an m-vector of ones. We assume
independence between the regression coefficients αgk and the basis function coefficients βgk.

4.2 Priors on the smoothing parameters

We assume the smoothing parameters τ 2
g = (τ2g1, . . . , τ

2
gK)′ vary across components g and entries k. Although the most

common choice for the prior on a variance parameter is the inverse gamma distribution, Gelman (2006) and Wand and
others (2011) suggested that a half-t prior on the standard deviation can reflect lack of information on a scale parameter.
The half-t is a family of heavy-tailed distributions and has a good shrinkage performance. It can be expressed as a scale
mixture of inverse gamma random variables using a latent variable which follows an inverse gamma distribution (Wand
and others, 2011). Thus, we assume a half-t distribution such that τgk ∼ t+ντ (0, Aτ ), where ντ is a degrees of freedom
parameter, and Aτ is a scale parameter. We set ντ = 3 and Aτ = 10 for all components and entries.

4.3 Priors on the error variances

We assume σgk
i.i.d∼ t+νσ (0, Aσ) and set νσ = 3 and Aσ = 10 for all components and entries.

4.4 Priors on the logistic parameters and the variances of random intercepts

This section provides details on the prior distributions placed on the parameters of the logistic weights (3). For ease of
notation, we denote δ∗g = (δTg , ζ

T
g )
T , where ζg = (ζ1g, · · · , ζNg)T , g = 1, . . . , G. We let V ∗i = (V ′i, e

′
i)
′ where ei is

a vector of all zeros except for a single 1 in the ith position, andV ∗ is a matrix consisting of the rowsV ∗Ti , i = 1, . . . , N .
Gaussian priors are placed on the logistic parameters, i.e., δ∗g ∼ N(0,Bg), whereBg = diag(σ2

δg1P+1, κ
2
ζg1N), and

the priors on the random intercepts satisfy ζg ∼ N(0, κ2ζgIN ). As for the hyperparameters, we assume σ2
δg = 10 for

all components and covariates, and κζg ∼ t+νκ(0, Aκ), where νκ = 3 and Aκ = 10 for all components.

To sample the logistic parameters, Polson and others (2013) proposed a data augmentation scheme incorporating
Pólya-Gamma latent variables, which facilitates Gibbs steps. Details on sampling the logistic parameters are provided
in the Supplementary Material.

5 Sampling scheme

This section outlines the Gibbs steps for sampling from the conditional posterior distributions of all the model parameters.
More details are given in Supplementary Material.
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5.1 Gibbs sampling steps

Letting ` denote the current Gibbs sampling iteration, parameter values at the (`+ 1)th iteration are drawn according to
the following steps.

1. Draw θ(`+1)
gk from (θ

(`+1)
gk | y,S, τ2(`)gk , σ

2(`)
gk ) ∼ N(ugk, σ

2
gkΛgk), where ugk and Λgk are mean vectors and

covariance matrices.

2. Draw σ
2(`+1)
gk from (σ

2(`+1)
gk | ε(`+1)

igk , a
(`+1)
σgk ) ∼ IG

(
(nN

(`)
g + νσ)/2,

∑N
i=1 zigε

′
igkεigk/2 + νσ/aσgk

)
,

where N (`)
g is the current number of subjects in the gth component, εigk is the error vector for the gth

component, the ith subject and the kth entry, and aσgk is a latent variable in the IG scale mixture underlying
the half-t distribution.

3. Draw τ
2(`+1)
gk from (τ

2(`+1)
gk | β(`+1)

gk , a
(`+1)
τgk ) ∼ IG

(
(ντ +m)/2,β′gkβgk/2 + ντ/aτgk

)
, where aτgk is a

latent variable as in 2.

4. Draw δ∗(`+1)
g from (δ∗(`+1)

g | V ∗, z
(`)
ig , ω

(`+1)
ig , κ

2(`)
ζg ) ∼ N(Mg,Σg), where ω(`+1)

ig is a Pólya-Gamma latent
variable in the augmentation described in Section 4.4.

5. Draw κ
2(`+1)
ζg from (κ

2(`+1)
ζg | ζ(`+1)

g , a
(`+1)
κg ) ∼ IG

(
νκ/2, ζ

′
gζg/2 + (νκ +N)/aκg

)
, where aκg is a latent

variable as in 2 and 3.

6. The mixing weights π(`+1)
ig are obtained by computing p(π(`+1)

ig | V ∗, δ∗(`+1)
g , z

(`)
ig ) from Equation (3).

7. Draw z
(`+1)
ig ∼ p(z(`+1)

ig = 1 | y,S,θ(`+1)
gk , σ

2(`+1)
gk , π

(`+1)
ig ) according to Equation (6).

5.2 Selecting the number of components

Spiegelhalter and others (2002) suggested the use of the deviance information criterion (DIC) for model selection
based on the effective number of parameters. Gelman and others (2003) introduced an alternative measure of effective
number of parameters based on the variance of the log predictive density across MCMC iterations. This measure is
robust and more accurate than the original one. Moreover, it has the advantages of always being positive and invariant
to reparameterizations (Gelman and others, 2003).

In this paper, we use DIC to select the number of components for our proposed mixture model.

6 Simulation studies

To demonstrate the performance of the proposed method, we conduct simulation studies by generating data sets from
the proposed model under two scenarios: two-component mixture (G = 2) of trivariate time series (K = 3) and
four-component mixture (G = 4) of bivariate time series (K = 2). We simulate 100 replicates in each simulation
setting with N = 150 time series of length n = 50. A total of 20, 000 Gibbs sampling iterations are run with a burn-in
of 4, 000. In all simulation settings, the hyperparameters are assigned the same values, given in Section 4.

6.1 Two-component trivariate model

In this scenario, we consider the two-component trivariate model. From Equation (1), the gth component of the proposed
mixture model is given by

{y(tj) | zig = 1} = α0g +α1gtj +

m∑
q=1

wq(tj)βgq + εgtj , j = 1, . . . , n, g = 1, . . . , G, (7)

where y(tj) is the trivariate time series evaluated at time tj , α01 = (1,−3,−2)′, α02 = (5, 4, 3)′ and α11 =
(−2, 2, 0.5)′, α12 = (1,−1,−0.5)′ are independent intercepts and slopes for each component, respectively. The vector
βgq consists of the qth spline coefficients of all variates for component g, and wq(tj) is the qth spline basis function eval-

uated at time tj . The εgtj are independent zero-mean error terms, distributed as εgtj ∼ MVN
(
0,diag(σ2

g1, σ
2
g2, σ

2
g3)
)

,

where σ2
1 = (σ2

11, σ
2
12, σ

2
13)
′ = (3, 5, 4.5)′ and σ2

2 = (σ2
21, σ

2
22, σ

2
23)
′ = (4, 3.5, 4)′. The smoothing parameters are set

to τ21 = (τ211, τ
2
12, τ

2
13)
′ = (3.5, 5, 8.5)′ and τ22 = (τ221, τ

2
22, τ

2
23)
′ = (6, 2.5, 1.5)′.
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We investigate the performance of the trajectory and logistic parameter (see Equation (3)) estimates. For the former, we
calculate the averaged root square error (ARSE) of each mixture component g

ARSEg =

√√√√ 1

nK

n∑
j=1

K∑
k=1

[
µgk(tj)− µ̂gk(tj)

]2
,

where µgk(tj) is the expectation of yk(tj) according to the gth component, and yk(tj) is the kth entry of the time series
evaluated at time tj . The µ̂gk(tj) are the estimated posterior means of µgk(tj) for k = 1, . . . ,K and j = 1, . . . , n.

To handle a potential label switching across mixture components, we compute ARSEg as the minimum value across all
components, by using the estimate of the gth component and the truth of each group, g = 1, . . . , G. After obtaining
correct component labels by evaluating ARSE, we also report the averaged bias (A-bias) and the variance of the bias
(V-bias) of each mixture component g, where

A-biasg =
1

nK

n∑
j=1

K∑
k=1

[
µ̂gk(tj)− µgk(tj)

]
,

and V-biasg is computed by calculating the sample variance of the bias over entries and time points.

For each replicate, time series trajectories are estimated by three methods: the proposed method, the R package gbmt
(Magrini, 2022) and the TRAJ procedure in SAS (Nagin and others, 2018). Boxplots of ARSE, A-bias and V-bias of
each component are given in Figure 3. Notably, TRAJ is able to fit a regression spline model by treating basis functions
as time-varying covariates, while gbmt is only able to fit a cubic model. Our proposed method fits a penalized spline
model under the Bayesian framework and is able to outperform both gbmt and TRAJ in terms of ARSE and V-bias for
both components. A-biases are close to zero and comparable for all three methods. These findings demonstrate that
all three methods are able to achieve a reasonable fit to group-based trajectories since bias over the entire time series
is close to zero. Our proposed method is able to obtain more precise estimates of trajectories as is evident from the
smaller V-biases.

To evaluate the performances of the logistic parameters, we compute the root mean squared error (RMSE) for each
logistic parameter using the proposed method and TRAJ. Notably, gbmt is not able to incorporate covariates into the
computation of mixing weights. Results of RMSEs of each logistic parameter are given in Table 1. We also compare
RMSEs between the proposed method and TRAJ under four settings of different combinations of N = 150, 250 and
n = 50, 70. Our proposed method yields smaller RMSEs of the logistic parameters in all cases, especially for the
intercept δ0 and the first covariate δ1. This is to be expected since TRAJ uses a multinomial logistic model, which may
result in inflated parameter estimates in cases of unbalanced outcomes or perfect separation, while our proposed method
is able to obtain a shrinkage result using the penalization method.

6.2 Four-component bivariate model

In this scenario, we consider the four-component bivariate model whose gth component is given in Equation (7),
where the values of the intercepts and slopes are α01 = (1,−2)′, α02 = (5, 3)′, α03 = (−3, 5.5)′, α04 = (4,−1)′,
α11 = (−3, 0)′, α12 = (2,−3.5)′, α13 = (2.5, 2)′ and α14 = (−3, 1.5)′. By analogy to the two-component
trivariate model, the errors εgtj are independent zero-mean bivariate Gaussian random variables, distributed as εgtj ∼
MVN

(
0,diag(σ2

g1, σ
2
g2)
)

, where σ2
1 = (σ2

11, σ
2
12)
′ = (6, 9)′, σ2

2 = (σ2
21, σ

2
22)
′ = (8, 7.5)′, σ2

3 = (σ2
31, σ

2
32)
′ =

(10, 6.5)′ and σ2
4 = (σ2

41, σ
2
42)
′ = (7, 8.5)′.

The performances of the estimated trajectories and logistic parameters for this scenario are displayed in Figure 4 and
Table 2. As in the first scenario, our proposed method outperforms both gbmt and TRAJ in terms of ARSE and V-bias
for all components. Notably, TRAJ fails to yield precise estimates in several replicates and thus results in larger mean
ARSE and V-bias. In terms of the logistic parameters, the proposed method performs well with smaller RMSEs in
almost all cases, especially for δ0 and δ1. More simulation results based on different values of N and n under the two
scenarios considered above are presented in the Supplementary Material.

7 Real data application

We apply our proposed method to the analysis of the fNIRS still-face study introduced in Section 2. Six covariates
are considered in our covariate-guided model, including Infant Behavior Questionnaire-Revised negative emotionality
(IBQ-NE) score, Infant Behavior Questionnaire-Revised effortful control (IBQ-EC) score, gestational age (in Days),
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infant age (in Months), head circumference (in cm) and sex. All continuous covariates are centered and scaled. We set
the number of basis functions at m = 20 and run a total of 30, 000 Gibbs iterations with a burn-in period of 6, 000. The
values of the hyperparameters are the same as the ones used in the simulation studies.

The IBQ-NE construct combines data from the following subscales: Sadness, Distress to Limitations, Fear, and Falling
Reactivity/Rate of Recovery from Distress. IBQ-EC refers to the ability to inhibit a dominant response to perform a
subdominant one and has been shown to be protective against a myriad of difficulties (Gartstein and others, 2013).
Finally, the data consist of 79 subjects with complete fNIRS and covariate values. We present results based on analyzing
one set of four-channels. Additional results based on analyzing another set of four channels and all channels are given
in the Supplementary Material. The four channels are S1D1, S2D2, S5D3 and S6D4. Channels S1D1 and S5D3 are in
the central prefrontal region, while channels S2D2 and S6D4 are in the left and right prefrontal region, respectively. We
fit our proposed model with the number of components varying from 2 to 6. Based on values of DIC introduced in
Section 5.2, the two-component model is selected as the best model for this four-channel analysis.

Figure 5 presents the estimated trajectories of the two-component model fitted to the four channels. We are interested in
brain activation signals in the still-face period while the interact period is used as the reference level. For component
1, a decreasing trajectory is observed for the still-face period in all four channels. In contrast, an increasing trend is
observed for the still-face period in all four channels for component 2. After fitting the mixture model and finding
above trajectory patterns, we define component 1 as the no response component and component 2 as the response
component based on trajectory patterns in the still-face period. Figure 6 displays the logistic parameter estimates for all
covariates in the 2-component model, where component 2 is used as the reference. There is evidence that IBQ-NE
scores differ between the two components as its 95% credible interval does not include zero. A positive coefficient of
IBQ-NE indicates that a higher IBQ-NE score is associated with component 1, which has decreased brain activation
levels in the still-face period for all four channels. Though other logistic coefficients have 95% credible intervals that
include zero, the negative posterior mean estimate of the IBQ-EC score could still indicate that a high IBQ-EC is
associated with an increased brain activation as shown for component 2. These conclusions are consistent with findings
in Gartstein and others (2013) that IBQ-NE is negatively associated with IBQ-EC. Enlow and others (2016) reported
a negative association between activity level and IBQ-NE among infants whose families encourage a high level of
activities. Furthermore, a negative posterior mean of logistic coefficient of infant age suggests that younger infant tends
to have a decreasing brain activation level in the still-face period.

8 Discussion

The proposed covariate-guided Bayesian mixture of spline experts model aims to perform a model-based clustering of
multivariate time series from multiple subjects. The mixture components in this model are penalized splines, and the
mixing weights incorporate covariates. Our proposed method is compared to two commonly used methods through
simulation studies which demonstrate a better performance of our method under different scenarios. We apply our
proposed method to a fNIRS still-face study and find distinct patterns of components of time series trajectories, as well
as an association between IBQ-NE score and a pattern of decreased brain activity in the still-face period. To the best of
our knowledge, this is the first still-face study using fNIRS whose purpose is to identify trajectory components.

Our proposed method has some limitations. First, as in any mixture models, label switching may occur, especially in
the real-data application. We have adopted the Equivalence Classes Representatives (ECR) algorithm proposed by
Papastamoulis and Iliopoulos (2010) to make the components interpretable, but other methods may be considered.
Second, the proposed method assumes independence among the entries of the time series and does not allow spatial
dependence. Spatial correlations of fNIRS are correlations among fNIRS channels based on the placements and
locations of each source and detector. An extension to a multilevel multivariate model would be possible by considering
spatial correlations among time series entries. Lastly, our proposed method uses DIC to select the number of components
which might be sub-optimal. Bayesian model averaging and reversible jump MCMC (RJMCMC) methods could be
considered, but trans-dimensional sampling methods would pose challenges in providing interpretable components.

9 Software

Software in the form of R codes, together with an example data, is available at https://github.com/HaoyiFu1993/
CBMOSE.
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Figure 1: fNIRS probe configuration. (a) Positioning of 8 sources, 4 detectors and 12 channels. A channel is connected
by one source and one detector (blue line). (b) Brodmann areas covered by fNIRS probe.

Figure 2: An example of processed fNIRS time series from two selected subjects and four selected channels. The
measurements are the relative concentration of oxy-hemoglobin.
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Figure 3: Boxplots of the averaged root square error (ARSE), the averaged bias (A-bias) and the variance of bias
(V-bias) of estimated trajectories for each component from 100 replicates of 150 two-component trivariate time series of
length 50. The proposed method was compared to R package gbmt and TRAJ procedure in SAS. The diamond markers
denote the mean statistics of each method and component.

Table 1: Root mean square errors (RMSEs) of each logistic parameter for the two-component trivariate model from 100
replicates of N two-component trivariate time series of length n. RMSEs of the proposed method were compared to
TRAJ procedure in SAS. Parameters δ0, δ1, δ2 and δ3 are intercept, first, second and third logistic parameters, respectively.
The true values of logistic parameters are 5,−3.5, 1, 0.1, respectively

n N Method δ0 δ1 δ2 δ3

50 150 Proposed 0.89 0.52 0.29 0.32
TRAJ 1.57 0.87 0.36 0.34

70 150 Proposed 0.86 0.50 0.29 0.31
TRAJ 1.55 0.86 0.36 0.34

50 250 Proposed 0.77 0.40 0.22 0.23
TRAJ 0.96 0.50 0.23 0.24

70 250 Proposed 0.77 0.41 0.22 0.23
TRAJ 0.97 0.51 0.24 0.24
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Figure 4: Boxplots of the averaged root square error (ARSE), the averaged bias (A-bias) and the variance of bias
(V-bias) of estimated trajectories for each component from 100 replicates of 150 four-component bivariate time series of
length 50. The proposed method was compared to R package gbmt and TRAJ procedure in SAS. The diamond markers
denote the mean statistics of each method and component. All boxplots are zoomed in for better visualization.

Table 2: Root mean square errors (RMSEs) of each logistic parameter for the four-component bivariate model from 100
replicates of 150 four-component bivariate time series of length 50. RMSEs of the proposed method were compared to
TRAJ procedure in SAS. Parameters δ0, δ1, δ2 and δ3 are intercept, first, second and third logistic parameters, respectively.
The fourth component was used as the reference component. The true values of logistic parameters are 5,−3.5, 1, 0.1
(first component), −4, 2.5,−2,−0.2 (second component), 3,−2, 0.8, 0.2 (third component). C1, C2, C3 and C4 denote
first, second, third and fourth component, respectively.

n N Method Comparison δ0 δ1 δ2 δ3

50 150

Proposed
C1 vs C4 0.81 0.53 0.30 0.39
C2 vs C4 1.11 0.46 0.42 0.36
C3 vs C4 0.89 0.42 0.28 0.34

TRAJ
C1 vs C4 1.20 0.74 0.35 0.41
C2 vs C4 3.81 2.27 1.33 0.49
C3 vs C4 2.07 1.33 0.76 0.32
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Figure 5: Estimated trajectories of the two-component model with four selected channels. I: Interact S: Still-face R:
Recovery. Red curves are posterior mean and two green dashed curves are 95% pointwise credible intervals.
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Figure 6: Logistic coefficient estimates and 95% credible intervals for each covariate of the two-component model.
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10 Supplemental material

Appendix A: Details of the sampling scheme

As described in Section 5 of the paper, Gibbs sampling is used to facilitate Bayesian inference. We denote by
Θgk = (θ′gk, τ

2
gk, σ

2
gk, δ

∗′
g , κ

2
ζg)
′ the parameters for the gth component and the kth entry, and the parameters in this

vector are drawn from the corresponding conditional posterior distributions. Let ` be the current Gibbs sampling
iteration; detailed Gibbs sampling steps for drawing the parameters at the (`+ 1)th iteration are given below.

1. Sampling the basis function coefficients
For each component g and time series entry k, based on the augmented likelihood in Section 3.3 and the
priors on θgk = (α′gk,β

′
gk)
′ described in Section 4.1, the conditional posterior distribution of (θ(`+1)

gk |
y,S, τ

2(`)
gk , σ

2(`)
gk ) is:

p(θ
(`+1)
gk | y,S,τ2(`)gk , σ

2(`)
gk ) ∝ p(y | S,θ(`+1)

gk , σ
2(`)
gk ) · p(θ(`+1)
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∝
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−n/2 exp
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(yik − Sθgk)′(yik − Sθgk)
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(
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gk θgk

)
∝ exp

{
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′
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2
gkD
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gk θgk

]}
∝ exp

[
− 1

2σ2
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(θgk − ugk)′(Λgk)
−1(θgk − ugk)

]
∼ N(ugk, σ
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gkΛgk),

where Λgk = (N
(`)
g S′S + σ2

gkD
−1
gk )
−1, ugk = Λgk

∑N
i=1 zigS

′yik, N (`)
g is the current number of subjects

in the gth component, Dgk = diag(σ2
α12, τ

2
gk1m) is the prior covariance matrix for θgk. Hence, for each

component g and entry k, we draw θ(`+1)
gk from (θ

(`+1)
gk | y,S, τ2(`)gk , σ

2(`)
gk ) ∼ N(ugk, σ

2
gkΛgk).

2. Sampling the error variances
Gelman (2006) proposed using the half-t distribution as the prior on scale parameters. We follow Wand and
others (2011) and express the half-t prior of Section 4.3 as a scale mixture of inverse Gamma distributions as
follows

(σ2
gk | aσgk) ∼ IG

(νσ
2
,
νσ
aσgk

)
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(1
2
,
1
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σ

)
.
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gkIn). The conditional distribution of the error variance is
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3. Sampling the smoothing parameters
The smoothing parameters τ2gk are drawn by analogy to the error variances. We first draw (a

(`+1)
τgk | τ2(`)gk ) ∼
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4. Sampling the logistic parameters
Let δ∗g = (δTg , ζ

T
g )
T be the aggregation of the logistic parameters and all random intercepts for the gth

component. Based on the logits of Section 3.2 and the corresponding priors described in Section 4.4, the
conditional posterior distribution of (δ∗(`+1)
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ζg ) is
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N )′ is aN×(P+1) matrix with V ∗i representing all covariates (including intercepts)

for subject i. To sample from the posterior distribution of p(δ∗(`+1)
g | V ∗, z(`)ig , κ

2(`)
ζg ), we adopt the Póyla-

Gamma data augmentation strategy of Polson and others (2013) by introducing a latent variable ωig coming
from the Pólya-Gamma distribution. Thus, the conditional posterior distributions of the logistic parameters are
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h 6=j exp(V
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h), p(ωig | 1, 0) is the Pólya-gamma dis-

tribution PG(b, c) with b = 1 and c = 0, Bg is the prior covariance matrix of Section 4.4 and
Bg = diag(σ2

δg1P+1, κ
2
ζg1N ). By assuming the conjugate prior N(0,Bg) on δ∗g, the posterior distribu-

tion of the Pólya-gamma latent variable is

(ω
(`+1)
ig | V ∗, δ∗(`)g ) ∼ PG(1, ηig).

Thus, the conditional distributions of the logistic parameters (including the random intercepts) are

(δ∗(`+1)
g | V ∗, z(`)ig , ω

(`+1)
ig , κ

2(`)
ζg ) ∼ N(Mg,Σg),

where Σg = (V ∗′ΩgV
∗ + B−1g )−1, Mg = Σg

[
V ∗′(ΩgCg + ξg)

]
, Ωg = diag(ω1g, · · · , ωNg), Cg =

(C1g, · · · , CNg)′, and ξg = (ξ1g, · · · , ξNg)′, with ξig = zig − 1
2 . Thus, δ∗(`+1)

g is drawn by first sampling

(ω
(`+1)
ig | V ∗, δ∗(`)g ) and then (δ∗(`+1)

g | V ∗, z(`)ig , ω
(`+1)
ig , κ

2(`)
ζg ).

5. Sampling the variances of the random intercepts
By analogy with sampling the error variances and sthe moothing parameters, we first draw (a

(`+1)
κg | κ2(`)ζg ) ∼

IG
(
νκ+1

2 , νκ
κ2
ζg

+ 1
A2
κ

)
. The conditional posterior distributions of the variances of the random intercepts are

p(κ
2(`+1)
ζg | ζ(`+1)

g , a(`+1)
κg ) ∝ p(ζ(`+1)

g | κ2(`+1)
ζg ) · p(a(`+1)

κg | κ2(`+1)
ζg ) · p(κ2(`+1)

ζg )

∝ (κ2ζg)
−N+νκ

2 +1 exp
[
− 1

κ2ζg

( νκ
aκg

+
ζTg ζg
2

)]
,

which is IG
(
νκ+N

2 ,
ζTg ζg

2 + νκ
aκg

)
. The sampling scheme proceeds by first sampling (a

(`+1)
κg | κ2(`)ζg ) and then

(κ
2(`+1)
ζg | ζ(`+1)

g , a
(`+1)
κg ).
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6. Computing the mixing weights
After drawing the δ∗g , the mixing weights π(`+1)

ig for each component, given the design matrix V ∗i , are computed
by

p(π
(`+1)
ig | V ∗i , δ

∗(`+1)
g ) =

exp(V ∗Ti δ
∗
g)∑G

h=1 exp(V
∗T
i δ

∗
h)
.

7. Sampling the latent indicators
After sampling all parameters and computing the mixing weights, the final Gibbs step is to allocate subjects to
different components by drawing the latent indicators zig . As in Section 3.3, the conditional posterior of these
indicators is

p(z
(`+1)
ig = 1 | y,S,Θ(`+1), π

(`+1)
ig ) =

πig
∏K
k=1 fgk(yik | Θgk)∑G

h=1 πih
∏K
k=1 fhk(yik | Θhk)

,

and the indicators are drawn from the multinomial distribution.

Appendix B: Additional simulation results

Appendix B adds more simulation results in addition to simulation results in the paper itself. To further demonstrate the
performance of the proposed method, we conduct simulation studies under two scenarios: two-component mixture of
trivariate time series and four-component mixture of bivariate time series. The model formula is displayed in Section
6.1 of the paper. We investigate the performance of our proposed method in terms of estimated trajectories and logistic
parameters.

Mean(SD) of the ARSE, A-bias and V-bias for each component of the two-component trivariate model are given in
Table 3. To demonstrate the performance of the proposed method in various settings, we look at combinations of the
number of multivariate time series (N = 150, 250) and the length of each time series (n = 50, 70), and compare our
proposed method to two existing methods: gbmt package in R (Magrini, 2022) and TRAJ procedure in SAS (Nagin and
others, 2018). The case of n = 50 and N = 150 in Table 3 corresponds to Figure 3 in the main paper. The performance
of the logistic parameters (RMSEs) with different values of n and N are given in Table 1 of the paper.

The Mean(SD) of the ARSE, A-bias and V-bias for each component of the N = 150 four-component mixture of
bivariate time series of length n = 50 are given in Table 4, which corresponds to Figure 4 in the main paper. RMSEs of
the logistic parameters for this setting are listed in Table 2 of the paper. Tables 5 - 10 present performance measures of
the estimated trajectories and logistic parameters for combinations of different lengths of time series n and numbers of
time series N , under the scenario of the four-component bivariate model.

As expected, our proposed method outperforms the two existing methods in terms of the estimated trajectories for
each component under different settings (different values of n and N , for both the two-component trivariate and the
four-component bivariate scenarios). The proposed method is able to achieve smaller ARSE and V-bias, while all three
methods are able to obtain estimated trajectories with a very small bias. Notably, for the four-component bivariate
scenario, TRAJ gives larger values of mean ARSE, A-bias and V-bias, which result from imprecise estimates of several
replicates due to convergence issues. In terms of the logistic parameters, our proposed method outperforms TRAJ in
almost all comparisons, especially for the intercept δ0 and the slope of the first covariate δ1. Our proposed method
yields shrinkage estimates for the logistic parameters due to using a Bayesian method, while the multinomial logistic
regression used in TRAJ gives inflated parameter estimates in case of perfect separations and unbalanced designs.

Appendix C: Additional real-data results

Appendix C describes more real-data results in addition to those in Section 7 of the main paper. Our motivating study is
described in Section 2 of the paper. Figure 7 shows the estimated trajectories of the three-component model for another
set of four channels (S1D3, S3D2, S5D4, and S7D4). Based on the selection criterion DIC introduced in Section 5.2 of
the main paper, the three-component model was selected as the best model. We named the second component as the
mixture response component because it involves both increased and decreased brain activity or hemoglobin level for the
still-face period for different channels. In addition, Figure 8 displays the logistic coefficient estimates and 95% credible
intervals corresponding to each covariate. The last component (third component) is always used as the reference. We
reach the same conclusion with positive estimates of IBQ-NE scores and negative estimates of IBQ-EC scores for both
components (component 1 vs. 3, component 2 vs. 3).

In addition to the four-channel analyses, we also present results from all channels (twelve channels). Figures 9, 10, 11
present the estimated trajectories of the first, second and third component for the three-component model with all twelve
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Table 3: Mean (standard deviation) of the averaged root square error (ARSE), the averaged bias (A-bias) and the
variance of bias (V-bias) of estimated trajectories for each component from 100 replicates ofN two-component trivariate
time series of length n. The proposed method was compared to R package gbmt and TRAJ procedure in SAS. C1 and C2
denote first and second components. Means were calculated by averaging over estimates of 100 replicates. Standard
deviations are Monte Carlo standard deviations from estimates of 100 replicates. Each value was reported ×102.

n N Method ARSE C1 A-bias C1 V-bias C1 ARSE C2 A-bias C2 V-bias C2

50 150

Proposed 8.35
(1.26)

0.03
(1.83)

0.68
(0.22)

7.65
(1.38)

0.10
(1.76)

0.58
(0.22)

gbmt 10.67
(1.91)

0.03
(1.83)

1.15
(0.42)

9.08
(1.72)

0.10
(1.76)

0.83
(0.33)

TRAJ 11.06
(1.48)

0.03
(1.83)

1.22
(0.33)

10.59
(1.52)

0.10
(1.76)

1.12
(0.34)

70 150

Proposed 7.16
(1.04)

0.24
(1.38)

0.51
(0.16)

6.53
(1.07)

-0.11
(1.42)

0.42
(0.14)

gbmt 9.91
(1.96)

0.24
(1.38)

1.01
(0.40)

8.19
(1.65)

-0.11
(1.42)

0.68
(0.29)

TRAJ 9.34
(1.10)

0.24
(1.38)

0.87
(0.22)

8.95
(1.13)

-0.11
(1.42)

0.80
(0.20)

50 250

Proposed 6.81
(1.02)

0.07
(1.33)

0.46
(0.14)

6.22
(0.94)

0.02
(1.31)

0.38
(0.12)

gbmt 9.79
(1.91)

0.07
(1.33)

0.98
(0.40)

8.00
(1.53)

0.02
(1.31)

0.65
(0.26)

TRAJ 8.70
(1.18)

0.07
(1.33)

0.76
(0.21)

8.20
(1.03)

0.02
(1.31)

0.67
(0.17)

70 250

Proposed 5.65
(0.84)

0.08
(1.00)

0.32
(0.10)

5.27
(0.82)

-0.06
(1.42)

0.27
(0.09)

gbmt 9.15
(1.96)

0.08
(1.00)

0.87
(0.38)

7.43
(1.60)

-0.06
(1.42)

0.56
(0.26)

TRAJ 7.18
(0.94)

0.08
(1.00)

0.52
(0.14)

6.80
(0.77)

-0.06
(1.42)

0.45
(0.10)

Table 4: Mean (standard deviation) of the averaged root square error (ARSE), the averaged bias (A-bias) and the
variance of bias (V-bias) of estimated trajectories for each component from 100 replicates of 150 four-component
bivariate time series of length 50. The proposed method was compared to R package gbmt and TRAJ procedure in
SAS. C1, C2, C3 and C4 denote first, second, third and fourth component, respectively. Means were calculated by
averaging over estimates of 100 replicates. Standard deviations are Monte Carlo standard deviations from estimates of
100 replicates. Each value was reported ×102.

n N Method ARSE C1 A-bias C1 V-bias C1 ARSE C2 A-bias C2 V-bias C2

50 150

Proposed 4.38
(1.04)

0.38
(1.59)

0.18
(0.08)

3.76
(0.87)

-0.01
(1.37)

0.13
(0.06)

gbmt 4.75
(1.04)

0.38
(1.59)

0.21
(0.09)

4.79
(1.17)

0.01
(1.65)

0.22
(0.11)

TRAJ 13.87
(15.59)

0.62
(9.91)

3.39
(9.24)

12.41
(13.42)

0.08
(9.74)

2.41
(5.37)

n N Method ARSE C3 A-bias C3 V-bias C3 ARSE C4 A-bias C4 V-bias C4

50 150

Proposed 4.69
(1.14)

-0.11
(1.83)

0.20
(0.12)

3.88
(1.15)

-0.09
(1.56)

0.14
(0.08)

gbmt 5.08
(1.12)

-0.12
(1.83)

0.24
(0.12)

4.70
(1.32)

-0.09
(1.78)

0.21
(0.12)

TRAJ 14.55
(14.82)

-1.58
(10.31)

3.24
(7.35)

14.36
(17.01)

0.12
(9.92)

3.99
(10.70)
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Table 5: Mean (standard deviation) of the averaged root square error (ARSE), the averaged bias (A-bias) and the
variance of bias (V-bias) of estimated trajectories for each component from 100 replicates of 150 four-component
bivariate time series of length 70. The proposed method was compared to R package gbmt and TRAJ procedure in
SAS. C1, C2, C3 and C4 denote first, second, third and fourth component, respectively. Means were calculated by
averaging over estimates of 100 replicates. Standard deviations are Monte Carlo standard deviations from estimates of
100 replicates. Each value was reported ×102.

n N Method ARSE C1 A-bias C1 V-bias C1 ARSE C2 A-bias C2 V-bias C2

70 150

Proposed 3.82
(0.95)

0.44
(1.30)

0.14
(0.07)

3.22
(0.85)

-0.07
(0.95)

0.10
(0.06)

gbmt 4.05
(0.97)

0.44
(1.30)

0.16
(0.08)

4.11
(1.12)

-0.08
(1.15)

0.17
(0.10)

TRAJ 13.51
(17.04)

-0.30
(9.34)

3.86
(10.73)

10.00
(10.11)

-0.25
(6.21)

1.64
(4.02)

n N Method ARSE C3 A-bias C3 V-bias C3 ARSE C4 A-bias C4 V-bias C4

70 150

Proposed 4.12
(0.90)

-0.29
(1.69)

0.15
(0.06)

3.52
(0.85)

0.24
(1.22)

0.12
(0.06)

gbmt 4.38
(1.01)

-0.29
(1.69)

0.17
(0.07)

4.13
(0.99)

0.27
(1.40)

0.16
(0.09)

TRAJ 13.03
(17.04)

0.30
(10.49)

3.86
(10.73)

11.77
(13.78)

0.39
(8.49)

2.57
(6.45)

Table 6: Root mean square errors (RMSEs) of each logistic parameter for the four-component bivariate model from 100
replicates of 150 four-component bivariate time series of length 70. RMSEs of the proposed method were compared to
TRAJ procedure in SAS. Parameters δ0, δ1, δ2 and δ3 are intercept, first, second and third logistic parameters, respectively.
The fourth component was used as the reference component. The true values of logistic parameters are 5,−3.5, 1, 0.1
(first component), −4, 2.5,−2,−0.2 (second component), 3,−2, 0.8, 0.2 (third component). C1, C2, C3 and C4 denote
first, second, third and fourth component, respectively.

n N Method Comparison δ0 δ1 δ2 δ3

70 150

Proposed
C1 vs C4 0.81 0.51 0.29 0.41
C2 vs C4 1.42 0.73 0.58 0.36
C3 vs C4 1.05 0.58 0.37 0.31

TRAJ
C1 vs C4 1.13 0.66 0.31 0.45
C2 vs C4 3.12 1.66 0.99 0.55
C3 vs C4 1.15 0.74 0.48 0.35

Table 7: Mean (standard deviation) of the averaged root square error (ARSE), the averaged bias (A-bias) and the
variance of bias (V-bias) of estimated trajectories for each component from 100 replicates of 250 four-component
bivariate time series of length 50. The proposed method was compared to R package gbmt and TRAJ procedure in
SAS. C1, C2, C3 and C4 denote first, second, third and fourth component, respectively. Means were calculated by
averaging over estimates of 100 replicates. Standard deviations are Monte Carlo standard deviations from estimates of
100 replicates. Each value was reported ×102.

n N Method ARSE C1 A-bias C1 V-bias C1 ARSE C2 A-bias C2 V-bias C2

50 250

Proposed 3.42
(0.78)

0.18
(1.19)

0.11
(0.05)

2.86
(0.61)

-0.14
(0.98)

0.08
(0.04)

gbmt 3.57
(0.85)

0.18
(1.19)

0.12
(0.06)

3.68
(0.79)

-0.15
(1.20)

0.13
(0.06)

TRAJ 11.66
(15.03)

0.53
(10.63)

2.50
(6.30)

8.90
(9.38)

1.47
(7.81)

1.05
(2.16)

n N Method ARSE C3 A-bias C3 V-bias C3 ARSE C4 A-bias C4 V-bias C4

50 250

Proposed 3.93
(0.92)

-0.06
(1.48)

0.14
(0.07)

3.28
(0.76)

-0.10
(1.19)

0.10
(0.05)

gbmt 4.16
(0.95)

-0.06
(1.49)

0.16
(0.07)

3.83
(0.83)

-0.13
(1.36)

0.14
(0.06)

TRAJ 10.80
(9.92)

0.49
(5.78)

1.83
(3.70)

10.17
(12.54)

-0.17
(8.83)

1.84
(5.20)
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Table 8: Root mean square errors (RMSEs) of each logistic parameter for the four-component bivariate model from 100
replicates of 250 four-component bivariate time series of length 50. RMSEs of the proposed method were compared to
TRAJ procedure in SAS. Parameters δ0, δ1, δ2 and δ3 are intercept, first, second and third logistic parameters, respectively.
The fourth component was used as the reference component. The true values of logistic parameters are 5,−3.5, 1, 0.1
(first component), −4, 2.5,−2,−0.2 (second component), 3,−2, 0.8, 0.2 (third component). C1, C2, C3 and C4 denote
first, second, third and fourth component, respectively.

n N Method Comparison δ0 δ1 δ2 δ3

50 250

Proposed
C1 vs C4 0.63 0.41 0.26 0.29
C2 vs C4 1.00 0.46 0.40 0.27
C3 vs C4 0.63 0.33 0.23 0.24

TRAJ
C1 vs C4 0.91 0.56 0.30 0.28
C2 vs C4 1.40 0.86 0.61 0.35
C3 vs C4 2.24 1.40 0.85 0.27

Table 9: Mean (standard deviation) of the averaged root square error (ARSE), the averaged bias (A-bias) and the
variance of bias (V-bias) of estimated trajectories for each component from 100 replicates of 250 four-component
bivariate time series of length 70. The proposed method was compared to R package gbmt and TRAJ procedure in
SAS. C1, C2, C3 and C4 denote first, second, third and fourth component, respectively. Means were calculated by
averaging over estimates of 100 replicates. Standard deviations are Monte Carlo standard deviations from estimates of
100 replicates. Each value was reported ×102.

n N Method ARSE C1 A-bias C1 V-bias C1 ARSE C2 A-bias C2 V-bias C2

70 250

Proposed 2.94
(0.60)

-0.04
(1.06)

0.08
(0.04)

2.61
(0.57)

-0.01
(0.87)

0.06
(0.03)

gbmt 3.10
(0.63)

-0.04
(1.06)

0.09
(0.04)

3.18
(0.70)

0.01
(1.05)

0.10
(0.05)

TRAJ 13.52
(17.70)

-1.58
(11.09)

3.71
(8.80)

11.51
(14.85)

-0.19
(9.98)

2.54
(7.10)

n N Method ARSE C3 A-bias C3 V-bias C3 ARSE C4 A-bias C4 V-bias C4

70 250

Proposed 3.30
(0.76)

-0.02
(1.21)

0.10
(0.05)

2.85
(0.73)

-0.07
(0.97)

0.08
(0.04)

gbmt 3.51
(0.79)

-0.01
(1.21)

0.12
(0.06)

3.26
(0.80)

-0.09
(1.06)

0.10
(0.05)

TRAJ 13.07
(15.21)

1.48
(10.52)

2.90
(7.11)

10.68
(12.93)

0.65
(8.11)

2.16
(5.66)

Table 10: Root mean square errors (RMSEs) of each logistic parameter for the four-component bivariate model from 100
replicates of 250 four-component bivariate time series of length 70. RMSEs of the proposed method were compared to
TRAJ procedure in SAS. Parameters δ0, δ1, δ2 and δ3 are intercept, first, second and third logistic parameters, respectively.
The fourth component was used as the reference component. The true values of logistic parameters are 5,−3.5, 1, 0.1
(first component), −4, 2.5,−2,−0.2 (second component), 3,−2, 0.8, 0.2 (third component). C1, C2, C3 and C4 denote
first, second, third and fourth component, respectively.

n N Method Comparison δ0 δ1 δ2 δ3

70 250

Proposed
C1 vs C4 0.64 0.40 0.26 0.28
C2 vs C4 0.92 0.42 0.41 0.28
C3 vs C4 0.63 0.31 0.23 0.23

TRAJ
C1 vs C4 0.82 0.50 0.27 0.28
C2 vs C4 1.47 0.86 0.61 0.36
C3 vs C4 1.60 0.96 0.57 0.25
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channels, respectively. The three-component model was selected as the best model for the twelve-channel analysis
based on the adjusted DIC. We named the three components no response, mixture response, and response component,
respectively. Figure 12 displays the logistic coefficient estimates and 95 % credible intervals corresponding to each
covariate.
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Figure 7: Estimated trajectories of the three-component model with four selected channels. I: Interact S: Still-face R:
Recovery. Red curves are posterior means and the two green dashed curves are 95% pointwise credible intervals.
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Figure 8: Logistic coefficient estimates and 95% credible intervals corresponding to each covariate of the three-
component model.

25



Covariate-guided Bayesian mixture model for multivariate time series

Figure 9: Estimated trajectories of the first component for the three-component model with all twelve channels. I:
Interact S: Still-face R: Recovery. Red curves are posterior mean and two green dashed curves are 95% pointwise
credible intervals.
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Figure 10: Estimated trajectories of the second component for the three-component model with all twelve channels.
I: Interact S: Still-face R: Recovery. Red curves are posterior mean and two green dashed curves are 95% pointwise
credible intervals.
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Figure 11: Estimated trajectories of the third component for the three-component model with all twelve channels. I:
Interact S: Still-face R: Recovery. Red curves are posterior mean and two green dashed curves are 95% pointwise
credible intervals.
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Figure 12: Logistic coefficient estimates and 95% credible intervals for each covariate of the three-component model
for all twelve channels.

29


	1 Introduction
	2 Motivating Study
	3 Model
	3.1 Mixture of splines model
	3.2 Model for the mixing weights
	3.3 Augmented likelihood

	4 Priors
	4.1 Smoothing splines prior
	4.2 Priors on the smoothing parameters
	4.3 Priors on the error variances
	4.4 Priors on the logistic parameters and the variances of random intercepts

	5 Sampling scheme
	5.1 Gibbs sampling steps
	5.2 Selecting the number of components

	6 Simulation studies
	6.1 Two-component trivariate model
	6.2 Four-component bivariate model

	7 Real data application
	8 Discussion
	9 Software
	10 Supplemental material

