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ABSTRACT
Design optimization, and particularly adjoint-based multi-

physics shape and topology optimization, is time-consuming and
often requires expensive iterations to converge to desired designs.
In response, researchers have developed Machine Learning (ML)
approaches—often referred to as Inverse Design methods—to ei-
ther replace or accelerate tools like Topology optimization (TO).
However, these methods have their own hidden, non-trivial costs
including that of data generation, training, and refinement of
ML-produced designs. This begs the question: when is it actu-
ally worth learning Inverse Design, compared to just optimizing
designs without ML assistance?

This paper quantitatively addresses this question by compar-
ing the costs and benefits of three different Inverse Design ML
model families on a Topology Optimization (TO) task, compared
to just running the optimizer by itself. We explore the relationship
between the size of training data and the predictive power of each
ML model, as well as the computational and training costs of the
models and the extent to which they accelerate or hinder TO con-
vergence. The results demonstrate that simpler models, such as
K-Nearest Neighbors and Random Forests, are more effective for
TO warmstarting with limited training data, while more complex
models, such as Deconvolutional Neural Networks, are prefer-
able with more data. We also emphasize the need to balance the
benefits of using larger training sets with the costs of data genera-
tion when selecting the appropriate ID model. Finally, the paper
addresses some challenges that arise when using ML predictions
to warmstart optimization, and provides some suggestions for
budget and resource management.

1. INTRODUCTION
Shape and Topology Optimization, or design optimization

more generally, can be time-consuming and require expensive
iterations to reach optimal results. For example, in Topology Op-
timization, solving forward problems requires an iterative algo-
rithm to minimize objective functions typically via an additional
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adjoint-based backward pass to perform gradient-based optimiza-
tion at each iteration. While these can be efficient for large-scale
problems, existing gradient-based methods do still require multi-
ple passes through an often computationally expensive simulator,
and can get trapped in local optima, owing to their gradient-based
nature. To overcome these challenges, researchers have studied
methods that combine or supplement TO with inverse design and
Machine learning methods. These methods can have significant
time and resource savings compared to optimizing a design for
each input condition, when compared with solving the forward
model. For example, Chen et al. [15] showed that ML-based
Inverse Design methods could predict an optimal airfoil shape to
within 96% of the optimal efficiency compared to gradient-based
methods, and more importantly, further warm-start Shape Op-
timization on the ML-predicted solution produced, on average,
better solutions than gradient-based methods could achieve by
themselves.

The use of ML-based design methods, however, come with
an important, often unaddressed cost: one has to either find
or generate data with which to train such models. For exam-
ple, Woldseth et al. [34] investigated several previous studies
in terms of the computational effort associated with generating
training samples, running the learning algorithm, and applying
the proposed procedure to obtain the optimal solution. They
showed, for instance, Nakamura et al. [26] sampled 300,000 op-
timized structures for their training and validating data. They
concluded that each Inverse Design model should be applied to
at least 333,001 new similarly-sized problems to be “worth it”
which they viewed as a high computational cost relative to just
running a TO procedure [34].

This concern about the data needed for ML-based methods
leads to an important, though often ignored question: when is
it actually worth learning Inverse Design? That is, under what
conditions would it actually make sense to go through the trou-
ble of collecting the data for and then training any kind of ML
method, as opposed to just expending the high computational cost
needed to run a high-quality TO method for that same problem?
This paper attempts to quantitatively address that question, by
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specifically contributing the following:

1. We study how changing the amount of training data provided
to several classes of Inverse Design models impacts both
the Instantaneous and Cumulative Optimality Gaps of the
generated designs on a specific 2D Heat Diffusion SIMP
Topology Optimization problem. We show that, as expected,
increasing training data size produces lower optimality gaps,
and that the extent of this improvement is model and problem
dependent.

2. We introduce several cost measures that quantify and dif-
ferentiate different ID models and provide quantitative com-
parisons of those costs on an example ID problem. This
allows us to broadly analyze the Return-on-Data-Investment
(RODI) for a given model, taking into account costs of data
generation, training, and warmstart optimization of the ML
predicted solution.

3. We use these investment measures to quantify a “breakeven
point” where Inverse Design produces positive return, com-
pared to just running TO in isolation. We demonstrate how
this breakeven point changes depending on the type of model
and amount of training data used.

2. BACKGROUND AND RELATED WORK
2.1 Inverse Design

An inverse design problem belongs to the broader category
of inverse problems. Inverse problems use observed measure-
ments to infer model parameters [31]. The measurements can be
obtained either by observing physical systems or by simulating
them. The formulation for inverse design can be described as
follow:

𝑦 = 𝐹 (𝑥) + 𝜖 (1)

where y ∈ Y measurement data, x ∈ X parameter of interests,
F is the forward model which maps the parameter of interest
to the measurement data, and 𝜖 is the noise of observed data.
One of the main essential needs for using inverse problems is
that the underlying governing equation on many applications are
unknown or costly [4]. Therefore developing a surrogate model
to map between observed data and parameters of interests are one
of the main strategies for solving inverse problems.

Researchers have studied Inverse design in the field of me-
chanical engineering for a variety of problems including material
design [3, 28], hydrodynamic design [32, 36], and aerodynamic
shape design [15, 22].

Inverse design is also used extensively for warm starting
optimization process [19, 20], as opposed to just using the ML-
provided solution as-is. In warm start optimization, the ML-
predicted solution is used as an initial point to reduce the running
time of iterative methods. A common hypothesis is that if the
initial ML-predicted solution is close to the true optimum, this
warm start will significantly reduce the running time of traditional
optimization [14, 17]. In comparison, this paper attempts to
quantify such gains as a function of the amount of training data.

2.2 Topology optimization
Topology optimization (TO) determines how to place mate-

rial in a design domain to optimize one or more objectives while
satisfying constraints [29]. One of the most widely used for-
mulations of TO problems are pseudo-density-based approaches
such as the Solid Isotropic Material with Penalization method
(SIMP) [5]. Both Topology and Shape Optimization are widely
used for finding local and global optima for a variety of de-
sign tasks [5, 6]. Gradient-based topology optimization has
been widely studied to place material within a design domain.
However, computing the solutions to such optimization tasks
can be computationally prohibitive, motivating the use of fast,
Machine Learning based approximations of the optimal solu-
tion [13, 21, 24, 33]. Recently, promising work in applying
ML to Optimization problems has focused on Deep Generative
Models [16, 27], and specifically, the incorporation of physics or
other engineering constraints into those models [23]. Beyond di-
rect Inverse Design prediction as a supervised learning problem,
some research has alternatively formulated this as a reinforcement
learning problem [10].

The above works demonstrate a variety of methods for inte-
grating deep learning into design optimization. However, all are
either supervised or unsupervised algorithms that rely on the use
of training data to learn the ML model. In contrast to this paper,
none rigorously or quantitatively address the important question
of when such models are worth the return on time or cost needed
to generate the training data or how the performance improves or
degrades as we change that cost.

2.3 Return-on-Data-Investment
While the above-mentioned papers have shown that using

ML-based methods for Inverse Design can be possible and per-
formant, they come with a non-trivial cost: the need to generate
training data to feed into the model. To understand under what
conditions generating this data is “worth it,” we need to define
a way to measure the impact on a model’s performance as we
generate additional data. We refer to this throughout the paper
as the Return-on-Data-Investment (RODI), after common Return
on Investment (ROI) measures used in economics.

Finding the ROI parameter plays a key role in decision-
making in engineering and business [11]. As we use more com-
plex ML models to improve ID results, the data investment costs
often increase nonlinearly. There is, however, a point at which the
quality and performance of a given ML model saturates, imply-
ing that there is no benefit to adding more complexity or data to
the models [18]. For instance, Deshpande et al. [18], analyzed
Random Forest and Bidirectional Encoder Representations from
Transformers, based on the accuracy and ROI for two publicly
available data sets and they recommend selecting ML classifica-
tion not solely based on performance, but also given how much
data one has available.

Calculating a Return on data investment is one of the most
important parameters that can help us address when Inverse De-
sign is actually worth it. In the TO community, this motivation
has not received much attention and there are few studies on it.
For example, Woldseth et al. [34], introduced the computational
costs in general terms for ML-based TO including the actual solu-
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tion time, collecting data, and quality needed for the performance.
They compared some methods in the reviewed literature via the
perceived generalization ability to when speed-up is achieved, and
defined a qualitative breakeven threshold. To make the analysis of
that breakeven point more precise, one of this paper’s main con-
tributions is to study the exact relationship between three driving
costs on a concrete common example: (1) TO iterations, which
also drives Data Generation Cost; (2) ML model choice, which
drives Model Training Cost; and (3) a model’s ID performance
quality, which drives its Relative Performance Improvement (de-
fined below) with respect to TO. We compare these across a range
of models and on common problems such that we can compare
them fairly. The next section further details our test problem and
exact cost measures.

3. METHODOLOGY
To address the contributions mentioned in the introduction,

our methodology is divided into the following sections: (1) Defin-
ing our Heat condition topology optimization problem and how
we generate the data set, (2) how we train and optimize our mod-
els, and (3) how we measure and evaluate the performance and
cost results.

3.1 Heat conduction topology optimization problem
While research literature uses a variety of TO test prob-

lems, we chose to use a fast-to-evaluate and simple to replicate
2D Heat Conduction test problem that might serve as a use-
ful baseline (§5 addresses other or more complex problems).
Topology optimization has been successfully applied to deter-
mine the material distribution in a variety of heat conduction
applications [25], and the purpose of these studies was to find
the optimal material distribution for a heat transfer problem in-
side a region of interest while satisfying design constraints. For
instance, Yang et al. investigated the optimality of structures op-
timization of heat conduction structures for minimum thermal
compliance while satisfying minimum-maximum temperature
conditions [35].

In this study, we consider a 2D heat sink problem subjected
to pure conduction. This problem can be described as finding the
material distribution that minimizes the integral of the tempera-
ture when the amount of highly conducting material is limited.
This Test case was derived from a demo example described in the
dofin-adjoint solver [1] and which we had used in a prior study of
Inverse Design methods [8]. The goal of this problem is to min-
imize the thermal compliance subjected to the Poisson equation
with mixed Dirichlet–Neumann conditions [1], which formulate
as follows: ∫

Ω

𝑓 𝑇 + 𝛼

∫
Ω

∇𝑎 · ∇𝑎 (2)

where f is the heat source term (here is a constant 10−2), T is
the temperature, Ω is the region of interest (unit square), 𝛼 is a
regularization term, and a is the mass distribution function (a(x)
= 1 for material, a(x) = 0 for no material). It is subjected to a
control constraint over the domain:∫

Ω

𝑎 ≤ 𝑉 (3)
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FIGURE 1: THE PHYSICAL LAYOUT OF THE TOPOLOGY OPTIMIZA-
TION PROBLEM WE USED IN THIS PAPER. THE COLOR BAR REP-
RESENTS THE VALUE OF THE MASS FUNCTION AT ANY POINT.

𝑎 ∈ [0, 1] (4)

Where 𝑉 is the volume bound over the region of the interest
domain Ω.

3.1.1 Dataset and Preprocessing. In this topology opti-
mization problem, we aim to minimize the compliance of the
domain upon a given limit on the volume of conducting material
and length of the adiabatic region as design parameters similar to
our previous study [8]. The adiabatic region is shown with a blue
color in Fig 1.

To generate the data set needed for this study, we used two
input parameters (design parameters): the volume limits on the
material distributions and the length of the adiabatic region. The
physical layout of this topology optimization problem is shown in
Fig 1. We chose adiabatic length which is shown with a blue re-
gion at the bottom of the geometry between 0 and 1 and bounded
the upper volume limit between 0.3 and 0.6, since our interior
solver (IPOPT) cannot produce converged results outside of these
ranges. Each of these parameters was divided into 20 equal seg-
ments, which resulted in 21 values for each. Hence, using 21*21
design parameters, 421 different optimized designs were gener-
ated.
In order to show the details without increasing the computational
time, a mesh 100 x 100 was used as the design domain. In
addition, every combination of design parameters was run for
100 iterations until IPOPT satisfied the tolerance of 1.0e-100.
For every combination design space, five values are collected for
each point, including x-coordinate, y-coordinate, volume bound,
adiabatic region length, and mass function value.
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3.2 Machine Learning Models Compared in this Paper
Understanding under what conditions data collection and

model training is actually worthwhile for Inverse Design clearly
depends on the quality and sample efficiency of the underlying
Machine Learning model one might use. While there are a large
number of possible models, we selected a representative subset of
supervised learning models spanning a range of complexities to
compare in this paper. These range across three main model fam-
ilies of non-linear Supervised Learning approaches from fairly
simple prototype-based methods, such as K-Nearest Neighbors
(KNN), to Ensembles such as Random Forests, and to Adap-
tive Basis Function methods, such as Deconvolutional Neural
Networks (DeCNN). This section briefly reviews each of these
models and provides citations to further reading for interested
readers.

K-Nearest Neighbors: K-nearest neighbors (KNN) is a non-
parametric and supervised learning algorithm used for classifica-
tion and regression. We used a regression model of KNN, whose
predictions for a given test point are weighted averages of the k-
closest training data points. This algorithm uses different types of
distances to compute that proximity, such as Euclidean distance,
Manhattan distance, and Minkowski distance, and can modify
the number of neighbors (k) over which it takes a weighted aver-
age [30]. We chose to use a KNN model for comparison, since it
is straightforward to implement, fast to evaluate for a small num-
ber of samples, has a limited range of hyper-parameters requiring
tuning, and has fast and deterministic training procedures. In
this sense, while it is not as capable of generalization compared
to other models, it represents a model with comparatively “low-
cost.”

Random Forests: A Random Forest (RF) is an ensemble
learning method for classification and regression which builds a
number of decision trees using independent bootstrapping sam-
ples of the dataset [9]. We used the RF regression model which
predicts a given test point based on averaging over multiple de-
cision trees employed over training data sets. In this algorithm,
trees are run in parallel, meaning there is no interaction between
them. We used an RF model for comparison since it is one of
the most widely used ensemble learning models, while also pos-
sessing a limited number of hyperparameters that require tuning,
thus limiting required computational costs.

Deconvolutional Neural Network: Deconvolutional neural
networks (DeCNNs) are also called transposed convolution neu-
ral networks, which use a special case of convolution to perform
weight-sharing within a feedforward network. At the time of writ-
ing, Deconvolutional Neural Network architectures were among
the most commonly used by contemporary papers attempting to
do Inverse Design of Topologically or Shape Optimized prob-
lems, and thus represent a natural comparison case [37]. Their
popularity is due to the comparatively large hypothesis class of
functions that DeCNNs can learn, owing to their large model ca-
pacity. This has led to generally lower test Mean Squared Error
on Inverse Design tasks compared to simpler models, although
DeCNN’s possess their own shortcomings. For example, they
have many possible hyper-parameters that need to be optimized,
such as training epochs, learning rates, regularization strengths,
and neural network architectures, making them harder to train and

optimize with stable variance given a small number of training
samples. In addition, the non-convexity of the training loss sur-
face often necessitates additional diagnostic checks or multiple
restarts during training, further increasing the cost and complex-
ity of training such models. A common criticism of such DeCNN
models in Inverse Design is that, while their performance may
appear to be relatively strong, their needed training time and com-
plexity, along with their dependence on a larger training sample
size may not make them “worth it” [34]. This paper helps illumi-
nate under what conditions that conjecture might be true.

3.2.1 Model Training, Hyperparameter Optimization,
and Data Postprocessing. To conduct our subsequent ex-
periments, we had to perform several steps for creating a
cross-validation set, optimizing each model’s hyperparameters,
downsampling the training datasets, and pre-processing the input
data to make it compatible with each model.

Cross Validation and Hyperparameter Optimization: To
perform cross-validation and hyperparameter optimization, we
randomly selected two unique values of adiabatic length and vol-
ume limits from the dataset and excluded them from training data
to act as a test set. After this, we randomly selected half of the
excluded data as validation data and the other half as test data.
To find the point-wise mean squared error for hyperparameter
optimization, we tested each models’ predictive abilities on vali-
dation data points corresponding to the topologies defined in the
excluded validation dataset.

We used the KNN and RF implementations from the scikit-
learn library [12]. In the KNN model, hyperparameter optimiza-
tion involves both the weighting and number of neighbors. In the
RF model, we optimize the number of estimators as well as the
minimum number of samples in newly created leaves. We imple-
mented the DeCNN model using Tensorflow [2] and optimized
the learning rate based on the maximum batch sizes possible for
each training size.

All models were trained on the different training datasets de-
scribed above, and each model’s hyperparameters were optimized
on the common validation data. Therefore, hyperparameters are
chosen for each model such that it produced the best performance,
as measured by point-wise mean square error (PMSE) on a val-
idation dataset. We exclude the test data from both the training
and validation datasets, such that the test errors are not influenced
by our hyperparameter selection approaches.

Training Dataset Downsampling: To study how each
model performs when trained on varying amounts of data, we
gradually reduce the size of the training dataset. After exclud-
ing the validation and test dataset—which we will keep common
across all models—the largest training data set includes 361 de-
signs. Every subsequent training set is obtained by randomly
removing data from the next largest set. For example, the train-
ing dataset with a size of 200 is obtained by removing 50 data
from the training dataset with a size of 250. In this way, the 200
size dataset is a strict subset of the 250 size dataset. This ensures
that any difference in performance between models of different
sizes is due only to additional training points. Below, we evaluate
the models on training data sets ranging in size from 2 to 361
designs.

Data Postprocessing: During our model evaluation process,
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the thermal compliance (the objective value) and trajectory are
normalized and averaged. The specific postprocessing procedure
is:

• The objective value of each model/data size is normalized
with respect to the optimal value obtained in the control
trajectory (i.e., a uniform initialization with no ML warm-
starting).

• The number of iterations of each trajectory extended to the
maximum number of iterations if the run that converged prior
to the maximum. Taking the optimal value that reached the
trajectory and extrapolating it to the remaining iterations,
makes it easier to visually compare different trajectories.

• The average objective values and the 95% Empirical CI on
the average percentile are calculated for each trajectory and
shown as a solid line and shaded color, respectively.

3.2.2 Return in Data Investment Measures. To define an
actual breakeven point where actually ML-based Inverse Design
is worth it, this section defines the overall computational costs
of generating training samples, computational effort associated
with running the learning model, and the desired performance
quality. These cost measures allow us to talk about trade offs
among them. Our first step is to introduce the costs associated
with iterative solvers and training models. Then we describe
the relative percentage performance improvement, which is es-
sentially a measure of solution quality. Understanding return
on data investment requires describing trade-offs among all the
above-mentioned parameters.

Data Generation Cost: The computational cost of ML-
based inverse design is not only related to the machine learning
model, but also time spent on generating sample training data.
Creating training samples is usually expensive and depends on
the type of solvers used, the quality needed (such as the resolution
or fidelity) and convergence criteria, as well as the computational
resources used to prepare the data. In this study, we fix the quality
needed for training data samples such as resolution and conver-
gence criteria as described in Sec. 3.1.1 which quantifies the
number of iterations needed for the solver to converge the desired
criteria. To establish a common basis among different examples,
this cost is converted into the time needed for simulating each
problem on an Intel(R) E5-1620 CPU. Herein, we convert the
generation data cost to time spent on the mentioned CPU for this
generation. Later sections will discuss how hardware changes
may affect our results.

Model training cost: The model training cost plays a key
role in choosing among ML models. We used various ML models,
each of which has different computational costs for training. We
measure this cost via training each model on a single CPU E5-
1620 Intel(R) similar to data generation costs. Therefore, for
various amounts of training data and ML-models we report the
training cost of each model with time values measured on a single
CPU. Later sections will discuss how hardware changes may
affect our results.

Relative performance improvement: The other important
factor in calculating our return data investment is how well the

trained model produces high quality (i.e., high performing) solu-
tions. We will use the relative percentage improvement (RPI) in
each problem’s objective function to measure this, formulated as
follows:

𝑅𝑃𝐼 =
𝐶 𝐼𝑛𝑖𝑡
𝐶𝑂𝑁𝑇𝑅𝑂𝐿

− 𝐶𝑀𝐿

𝐶 𝐼𝑛𝑖𝑡
𝐶𝑂𝑁𝑇𝑅𝑂𝐿

− 𝐶𝑂𝑃𝑇
𝐶𝑂𝑁𝑇𝑅𝑂𝐿

× 100% (5)

where 𝐶 𝐼𝑛𝑖𝑡
𝐶𝑂𝑁𝑇𝑅𝑂𝐿

is initial compliance (first iteration) calcu-
lated based on a uniform initialization of the SIMP method,
𝐶𝑂𝑃𝑇
𝐶𝑂𝑁𝑇𝑅𝑂𝐿

is optimal compliance (last iteration) calculated
based on the final converged SIMP method, 𝐶𝑀𝐿 is the com-
pliance of the design computed based on ML models prediction.
Therefore, the return on data investment can be interpreted as
a tradeoff between the RPI and the data generation and model
training costs.

4. EXPERIMENTAL RESULTS AND DISCUSSION
Given this methodology, below we first demonstrate the im-

pact of different training sizes for different ID models on the
warm start initialization performance. The shaded parts of these
plots represent 95% confidence intervals for corresponding plot-
ted functions. Following that, we plot the return on data invest-
ment to determine when different ID methods can find designs
with lower Instantaneous and Cumulative Optimality Gaps as a
function of additional training data samples. As we detail further
below, this curve, coupled with the cost associated with generat-
ing additional training data, helps us determine the return on data
investment.

4.1 How well do ID models warmstart TO?
KNN: using hyperparameters optimized for each size of

training data, we now compare how well a simple KNN model
can predict the optimal geometry, as well as that prediction’s use-
fulness as a warm start for further topology optimization. As
a baseline, we compare it with uniform initialization commonly
used in TO (We label this baseline “Control”).

On average, we found that a KNN model with all sizes of
training data from 15 to 361 samples outperformed the control
condition. Furthermore, when the size of training data exceeds
two samples, the KNN models produced predictions with thermal
compliance values that were significantly lower than the control
model. As well as improving prediction compliance, we found
that increasing the number of training sizes accelerates conver-
gence to optimal compliance value. Figure 2 plots a subset of
the training data sizes for clarity’s sake, and plots containing the
full set of results are located in the Supplemental Material. As
Fig. 2 shows, in all warm start trajectories the optimizer increases
the thermal compliance in early iterations of warm starting (see
around iteration 7), and then it accelerates the convergence to
optimal compliance values compared to the control condition.
These early “spikes” in the objective function value (roughly be-
tween iterations two to ten) are related to the IPOPT solver, and
we detail this behavior in the later discussion section.

RF: we use hyperparameters optimized for each size of train-
ing data to predict the optimal geometries for test data in order to
compare the effects of changing training size on RF predictions.
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FIGURE 2: 2D HEAT CONDUCTION OPTIMIZATION TRAJECTORIES WARMSTARTED WITH ALL THREE ID MODELS, TRAINED ON THE NUM-
BER OF DATA NOTED IN THE LEGEND. THE ‘CONTROL’ TRAJECTORY IS INITIALIZED WITH A CONSTANT DISTRIBUTION SET TO THE
VOLUME FRACTION. TRAJECTORIES OF FURTHER DATA SIZES CAN BE FOUND IN THE SUPPLEMENTAL MATERIAL.

Then, we compare the performance of each training size predic-
tion as optimal geometry and a warm start for further topology
optimization.

On average, Fig. 2 shows that the RF model with training
set size of more than seventy five converges faster to the optimal
design compared to the control condition. Fig. 2 shows that the
same increasing trend in compliance occurs in the early stages
of RF warm start trajectories as it does for KNN trajectories.
In addition, the performance of RF models improves as training
sizes are increased.

DeCNN: we use the hyperparameter optimized for each size
of training data to train the deconvolutional neural network model.
We found that on average the DeCNN model predicts geome-
tries with lower initial optimality gap compared to the RF and
KNN models. As above, we compare the performance of dif-
ferent training sizes at predicting the optimal geometry and as a
warm start for further topology optimization. Figure 2 provides
a subset of training sizes, with the full version provided in the
Appendix. Figure 2 shows that the DeCNN model with training
sizes beyond twenty five design samples outperforms the control
condition. Also, the DeCNN model can predict optimal designs
with significantly lower thermal compliance with respect to the
control condition. In the early stages of the warm start trajectory,
compliance increases similarly to the KNN and RF models.

Overall, our results in Fig. 2 show that, with a limited amount
of training data (≈ 5+), the KNN model is the most effective
in terms of convergence speed. However, when the amount of
training data increases (≈ 25+), the DeCNN model outperforms
the other models in terms of both the initial design prediction
as well as convergence acceleration, although simpler models
like KNN and RF also improve with increased training data.
Our findings suggest (perhaps somewhat expectedly) that when
warmstarting TO with limited training sizes, simpler models can
be more effective, whereas with more data more complex models
like DeCNN produce better warmstarts.

4.2 How well do ID models predict the optimal design
without warmstarting?
What if we do not have access to a TO solver to warm-

start further optimization and wish instead to just use directly the
geometry or design output by the ID model?

Figure 3 relates the size of training data to the Normalized
Initial Optimality Gap, which measures how close in performance
to the Control (TO) solution the initial ID model’s prediction gets
before further optimization. Figure 3 shows the initial optimally
gap reduces, on average, when we increase the amount of training
data.

As expected, we observe that increasing the amount of train-
ing data decreases the initial optimally gap, that is, more data
improves the ML models’ prediction accuracy. In this measure,
the DeCNN model outperforms the other models, on average.
This suggests that if we only care about an ID model’s predic-
tion without further optimization, the DeCNN model is the best
choice among the models studied in this paper. Notably, none
of the models ever achieved complete parity in performance with
the Control (TO-only) solution.

4.3 How much data do ID models actually need to
accelerate optimization?
The whole point of attempting Inverse Design is to reduce

needed optimization effort on subsequent design cases. As such,
one of the most important costs we need to track is how increas-
ing the data budget reduces the computational budget we need
to spend on further optimization of new or unseen problems.
If investing in an ID method significantly reduces subsequent
optimization costs, then perhaps the return on data and model
investment is worth it; otherwise, it may not be.

To show the effect of data set investment versus further op-
timization cost, we measured the relative performance improve-
ment of three machine learning models versus the time cost of
warm start optimization—that is, how much further time did we
need to spend to optimize the ID provided solution to achieve
results similar to TO without the ML-based warmstart? Figure 4
varies the amount of training data given to each model.

Expectedly, Fig. 4 depicts that as each ID model is given
a larger training size, each outputs designs that have better Rel-
ative Performance Improvement (Eqn. 5), i.e., are closer to the
optimal thermal compliance found by the TO-only Control so-
lution. Among the models, the DeCNN outperformed the other
two models in terms of initial relative performance. The DeCNN
model with 300 training data produces the best initial relative per-
formance improvement, whereas the KNN model with 5 training
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data shows the lowest initial relative performance improvement.
Furthermore, when used to warm start further optimization, the
DeCNN trained with 300 training data requires the fewest itera-
tions to converge to the optima, compared to the control solution.
This implies that, when given at least some small amount of
training data, ID methods can meaningfully accelerate TO con-
vergence.

4.4 What about the cost of data generation?
While our earlier results would seem to imply that a DeCNN

with 300 training samples is best, this ignores both the data gen-
eration cost and training costs. To capture data generation cost,
Fig. 5 compares the time spent on both warmstart optimization
and data generation. Factoring in data generation, the total cost
increases as the amount of training data grows—note in particular
the different x-axis scales. As expected, the models that predict
designs with the best initial RPI also have the highest training
data costs.

Figure 5 suggests that the amount of data used to train ID
models has a significant positive impact on their performance.
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FIGURE 5: COMPARISON BETWEEN OF THE TIME SPENT ON OP-
TIMIZATION AND DATA GENERATION FOR WARMSTARTED OPTI-
MIZATION TRAJECTORIES WITH VARIOUS MODELS AND TRAIN-
ING DATA SIZES.

Past literature also uses large dataset sizes to train ID models,
such as in [26] where the authors create 300,000 optimized struc-
tures for their training and validation data. As expected, using
larger training sets leads to better ID-predicted designs and im-
proved relative performance improvement. But at what cost?
Existing papers often ignore the non-trivial sunk cost of gener-
ating this data. Specifically, the models that produced the best
initial relative performance improvement also had the highest data
generation costs, implying a trade off between the compute cost
we wish to “invest” into data generation versus the amount the
trained ID model would “save” on downstream optimization. For
example, while Fig. 4 showed that a DeCNN model trained with
a large number of samples accelerated optimization the fastest,
when we include the time needed to generate training data in
Fig. 5 the hidden time cost of this data generation becomes plain
to see.

4.5 What about the cost of training time?
From Fig. 5 alone, it would again appear that subject to

similar training data amounts, a DeCNN model outperforms oth-
ers; however this ignores the model training cost/time. Figure 6
provides a comparison of various inverse design optimization
trajectories that were warm-started while adding in the amount
of training time required for each model. (Note: in Fig. 6 we
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have removed the data generation costs of Fig. 5 so as to only
demonstrate the differences in training time.) The results illus-
trate that the DeCNN has the most significant training cost when
compared to other models and that cost depends strongly on the
training data amount.

Several studies have emphasized the importance of training
cost in model selection. For instance, Bengio et al. found that the
cost of training deep neural networks is a significant barrier to the
adoption of deep learning in the industry [7]. Figure 6 demon-
strates similar effects in ID models, where we observe that the
DeCNN model outperforms other models in terms of initial rela-
tive performance, but it has far higher training cost compared to
inexpensive models such as KNN and RF (for simplicity, the fig-
ure ignores the data generation costs show in Fig. 5). In fairness,
the time costs here were all normalized to CPU time for con-
sistency across the paper, and in practice one could take greater
care to leverage distributed training across GPU resources as we
describe later, but even under those cases the training costs would
remain non-trivial. We suspect this result is painfully obvious to
any readers who have actually tried training a DeCNN model on
these types of problems, but hopefully it is illustrative to readers
who have not.

4.6 What if I had different cost tradeoffs between data
generation, optimization, and training?
Our above comparisons are limited to our chosen example

problem and, more specifically, the fact that the optimization,
data generation, and training time costs are all treated equally as
normalized to common CPU time for our particular computing
platform. How would things change if the relative costs of op-
timization, data-generation, and training differed? For example,
if we already had an existing dataset, or if we could parallelize
the training costs? To consider cases where these relative costs
change, Fig. 7 compares different relative weights between model
training, data generation, and warmstart optimization (i.e., run-
ning further TO on the ID model provided solution).

In that figure, we simplify each model’s optimization trajec-
tory by creating a line connecting the initial design predicted by
the ID method with the corresponding design after completing
warmstart optimization—as such, these end points will generally
have an RPI of 100% unless the warmstart traps the TO solver
in a local optima. The total time cost on the x-axis is calculated
based on a weighted average of the three costs described above:
optimization cost (the cost of warmstart iterations), data genera-
tion cost, and model training cost. The simplex on the left-hand
side of Figure 7 allows us to define different weights for each
time cost using Barycentric coordinates, and the right-hand side
compares different models under the corresponding cost weight.

Figure 7.A describes the situation we have used thus far
throughout the paper where the model training, data generation,
and optimization costs have equal weight. As we saw above, in
this case the KNN and RF models with lower training data size
outperform the more complex DeCNN model, largely due to their
lower model training cost and the relative inexpense of running
additional TO optimization iteratons for this simple 2D thermal
compliance problem.

Figure 7.B describes the situation where data generation is
effectively free, while the model training and optimization costs
have equal weight. In practice, this could occur when an existing
dataset is available, but a researcher or company would need to
bear the burden of model training and further optimization. In
such cases, a KNN with a larger training size outperforms other
models due largely to its lower training cost.

Figure 7.C describes the situation where we ignore the model
training cost (i.e., training is free), and optimization and data
generation have equal weight. In practice, this could occur when
training is hardware parallelized or where the training cost is
borne by a third party. In such cases, complex models such as
the DeCNN with smaller amounts of training data produce better
return compared to simple models such as a KNN.

Figure 7.D describes the situation where we heavily discount
the costs of both data generation and model training, compared
to warmstart optimization. In practice, this could occur in cases
where we use high quality pre-trained models that are fine-tuned
on small set of domain-specific training samples, but where the
optimization task itself is extremely costly—such as a 3D mul-
tiphysics optimization problem with multiple constraints. This
is the most common setting in “Transfer Learning” approaches
to Inverse Design. In such cases, Fig. 7.D suggests that even
simple models trained on small-to-moderate amounts of training
data may produce greater return than investing in larger training
datasets or complex models.

Note the large difference between point D in Figure 7 com-
pared to the nearby edge of the simplex where both data generation
and model training costs are considered “free”—the earlier Fig. 4
showed this exact case where complex DeCNN models with large
amounts of training data appeared to dominate all other models.

4.7 When do ID methods break even compared to just
using TO?
One of this paper’s main objectives is to determine the break-

even point where a machine learning (ML) based inverse design
method generates positive returns on investment, compared to
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only using topology optimization. Up until now our focus has
been solely on comparing the cost of generating a single predicted
solution. This is an unfair comparison. In practice, no sane
person would invest in data generation and model training unless
they were able to amortize that fixed cost over many future design
tasks to reduce their variable costs.

To analyze this trade-off between an upfront fixed invest-
ment and a reduction in variable costs, we first calculated the
median number of warmstart optimization iterations each model
required—this represents the variable cost of using a model to
predict and then optimize a new design. To compute the fixed
costs, we added each model’s data generation cost and training
cost. For comparison, we calculated the median number of itera-
tions and corresponding costs for the control method (TO-only),
which represents the variable costs of the TO solver, and we note
that the control condition has no fixed cost, since there is no data
or training.

Figure 8 plots both the fixed and variable costs of the control
condition and the various models under different amounts of
training data cost. Our results demonstrate that after a certain
breakeven threshold of the number of new designs, some ML-
based inverse design models outperform the control in terms of
cost. For example, in the top left diagram, if you “invest” in
generating 5 training data points, then an RF model would be
less costly than the Control condition if you needed to compute
47 or more new designs. In the top right figure, after investing
in 25 training data points, a KNN model breaks even with the
Control condition after 168 designs. Furthermore, the bottom
left diagram demonstrates that investing in 75 training points
leads the DeCNN and KNN models to break even with Control
after 1074 and 294 new designs, respectively. Lastly, the bottom
right diagram shows that DeCNN and KNN models require you
to use the model for 2492 and 1768 new designs, respectively,

to recoup the 300 training data investment. Interestingly, even
though complex models trained on large datasets have faster TO
convergence—seen as a lower slope and thus variable cost in
Fig. 8—they have larger breakeven points, owing to the fixed
costs required for data generation and training.

5. DISCUSSION AND LIMITATIONS
5.1 When do ML models provide suboptimal warmstart

conditions?
One challenge we observed is that in a small subset of cases

an ML model’s warmstart initialization was suboptimal compared
to uniform initialization, leading the IPOPT solver to get stuck
in a local optima. This resulted in a small handful of cases that
highly skewed the mean optimization trajectories for each model,
which is why we chose to report each model’s median value for
the optimization trajectories since it is less sensitive to outliers.
Nevertheless, it is important to discuss here the fact that in a
small percentage of cases ID methods might produce warm start
initializations that are worst than uniform initialization.

5.2 Effect of hardware parallelism
Using hardware parallelism, GPUs can significantly improve

both the training and hyper-parameter optimization time of ma-
chine learning models. While studying parallelization was not a
rigorous focus of this paper, anecdotally, we observed that using
GPUs could reduce the DeCNN training costs by about one order
of magnitude. This case can be considered similar to Fig. 7.C
in which we assume that model training is hardware parallelized,
and as a result, the DeCNN model with smaller amounts of train-
ing data performs better compared to simple models such as the
KNN. This suggests that parallelization plays a crucial role in
making complex models more viable for inverse design and im-
proves the return on investment in such models.
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Similarly, in Fig. 7.D, where both data generation and model
training costs are heavily discounted compared to warm start op-
timization, it is also possible that parallelism in terms of data
generation (for example, on a compute cluster) could have a sig-
nificant impact on the results.

5.3 Why does the thermal compliance increase after
warm-starting?
In our previous paper, we presented a visual demonstration

of designs that exhibit an early increase in compliance when us-
ing warm-starting [8]. To gain insight into the cause of this
behavior, we conducted a comparison of the IPOPT and scipy
solvers using the sequential least squares programming (SLSQP)
method which the results are located in the Supplemental Mate-
rial. We observed the scipy solver exhibits a gradual, monotonic
decrease, while the trajectory of the warm start optimization with
IPOPT displays an initial increase in compliance. We hypothesize
that IPOPT behaves this way due to its solution method, which
numerically approximates the hessian matrix during the initial
solver iterations, and thus may take early sub-optimal steps. We
hypothesize that this explains initial “bump” in the convergence
trajectory.

5.4 Limitations in the test problem
This paper focused on a 2D heat diffusion problem with a

limited volume fraction range of 0.3 to 0.6 and an adiabatic re-
gion width that can vary from 0.0 to 1.0. While this choice
helped us obtain useful insights into this problem, it is natural to
ask whether our results would generalize to three dimensional or
more complex problems. Future work could explore the extent
to which each model’s cost-benefit behavior changes under in-
creased complexity. Additionally, to assess the transferability of
our claims to other problems, it would be beneficial to compare
our results across multiple Inverse Design problems.

Relatedly, this paper did not consider other optimizers be-
yond the IPOPT solver, and less-efficient TO solvers will shift
the costs-benefit trade-off substantially by increasing the costs of
both the optimizer and the data-generation reducing the compar-
ative effect of training costs. There are also additional hidden
costs such as hyperparameter optimization of ML models, which
can add significantly to training-time costs. We did not consider

those rigorously here for sake of compactness and brevity, but fu-
ture work can investigate the impact of these hidden costs on the
performance of the model and explore alternative optimization
strategies to address them.

6. CONCLUSION
So, when is it actually worth learning Inverse Design? Our

answer ranges from “Almost Never” to “Worth Experimenting
With” to “Almost Always” depending on the design situation.

Almost Never If the only performance metric we care about is
the ability of an ID model to accurately and reliably predict close
to the optimal design without further warmstarting, then §4.2 and
Fig. 7 imply that only a complex model (such as the DeCNN
or better) trained on large quantities of training data (75+ in our
example), can achieve an RPI even close to 95% when compared
to a TO-only control condition. Such models incur large training
and data generation costs, and in cases where we only intend to
evaluate a few new design cases, this cost will almost never be
worth the large fixed cost. Thus, such methods may only apply
to problems where effective Transfer Learning can take place or
where data and training are effectively “free” as in Fig. 4 and 7.D.
In this sense, our results mirror the somewhat pessimistic view
taken by the conclusions in [34].

Worth Experimenting With However, if we relax the above
conditions only slightly in one of several directions, then the pic-
ture changes significantly enough to warrant initial experiments
in new problem domains. For example, if achieving up to an 80%
RPI is acceptable for an initial design case, such as an approxi-
mate trade-space analysis or rough downselection of alternatives,
then our results suggest that simple ID methods are efficient for
this, breaking even with TO at anywhere from a small handful to
a few hundred cases (on our admittedly simple example). Like-
wise, if your domain possesses existing datasets or specialized
hardware that reduces the relative cost of data generation and
training relative to optimization cost, then experimenting with
possible gains from ID methods may be worthwhile.

Almost Always We saw several conditions under which train-
ing and using ID methods was almost always a good idea. Most
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importantly, if we allow the ID method to work in concert with
existing TO solvers as a warm start mechanism, there is compar-
atively little disadvantage to using ID methods, except in all but
the most expensive of cases, and much to be gained. Figure 2’s
log-scaled x-axis shows that even simple models trained on a few
data points can meaningfully accelerate TO convergence, even if
their initial RPI is not great. In cases where we need to evalu-
ate many possible new designs, Fig. 8 demonstrates clearly how
ID methods reduce variable costs compared to only using TO,
breaking even with them within a few hundred cases. While the
specific break-even numbers we report are idiosyncratic to our
example (and may be low compared to more complex problems),
we suspect that similar behavior will occur in other problems,
and that there will always exist a threshold wherein ID methods
produce positive return on data investment.

Looking forward, we expect that ongoing and future work in
improving both the sample efficiency and generalization ability
ID methods will continue to shift these break even points lower
over time. While there may be niche cases where investing in ID
methods does not make sense—such as in large one-off optimiza-
tion problems wherein generating data is neither practical nor
warranted—we suspect that, given design’s iterative nature, fur-
ther ID advances will create a supportive interplay with existing
optimizers that will be greater than the sum of their parts.
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FIGURE 9: THE EVOLUTION OF 2D HEAT CONDUCTION DESIGNS
OVER THE COURSE OF THE OPTIMIZATION PROCESS. HERE,
TRAJECTORY 2, 5, 15,....,300, AND 361 BELONGS TO THE TRAJEC-
TORY INITIALIZED WITH THE PREDICTION OF THE KNN MODEL
WITH THE CORRESPONDING SIZE OF TRAINING DATA.

SUPPLEMENTAL MATERIAL
Figure 9, 10 and 11 show the trajectories 2, 5, 15,....,300,

and 361 belong to the trajectory initialized with the prediction of
the KNN and RF model with the corresponding size of training
data, respectively.
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FIGURE 12: COMPARISON OF DIFFERENT WARMSTART TO
SOLVERS COMPARED TO THE CONTROL CONDITION.

We used a KNN model prediction to warm start the optimiz-

ers for a design with a volume limit of 0.4 and an adiabatic length
of 0.35. The comparison of warm start optimization with scipy
and warm start optimization with IPOPT is shown in Fig 12.
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FIGURE 10: THE EVOLUTION OF 2D HEAT CONDUCTION DESIGNS
OVER THE COURSE OF THE OPTIMIZATION PROCESS. HERE,
TRAJECTORY 2, 5, 15,....,300, AND 361 BELONGS TO THE TRA-
JECTORY INITIALIZED WITH THE PREDICTION OF THE RF MODEL
WITH THE CORRESPONDING SIZE OF TRAINING DATA.

100 101 102

Number of iteration

0
2
4
6
8

10
12

M
ED

IA
N 

No
rm

al
ize

d 
Ob

je
ct

iv
e 

Fu
nc

tio
n 

Va
lu

e DECNN
CONTROL
2
5
15
25
50
75
100
150
200
250
300
361

FIGURE 11: THE EVOLUTION OF 2D HEAT CONDUCTION DESIGNS
OVER THE COURSE OF THE OPTIMIZATION PROCESS. HERE,
TRAJECTORY 2, 5, 15,....,300, AND 361 BELONGS TO THE TRAJEC-
TORY INITIALIZED WITH THE PREDICTION OF THE DECNN MODEL
WITH THE CORRESPONDING SIZE OF TRAINING DATA.
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