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ABSTRACT
Many data analysis and design problems involve reasoning

about points in high-dimensional space. A common strategy
is to embed points from this high-dimensional space into a low-
dimensional one. As we will show in this paper, a critical property
of good embeddings is that they preserve isometry—i.e., preserv-
ing the geodesic distance between points on the original data
manifold within their embedded locations in the latent space.
However, enforcing isometry is non-trivial for common Neural
embedding models, such as autoencoders and generative models.
Moreover, while theoretically appealing, it is not clear to what
extent enforcing isometry is really necessary for a given design or
analysis task. This paper answers these questions by construct-
ing an isometric embedding via an isometric autoencoder, which
we employ to analyze an inverse airfoil design problem. Specifi-
cally, the paper describes how to train an isometric autoencoder
and demonstrates its usefulness compared to non-isometric au-
toencoders on both simple pedagogical examples and for airfoil
embeddings using the UIUC airfoil dataset.

Our ablation study illustrates that enforcing isometry is
necessary to accurately discover latent space clusters—a com-
mon analysis method researchers typically perform on low-
dimensional embeddings. We also show how isometric autoen-
coders can uncover pathologies in typical gradient-based Shape
Optimization solvers through an analysis on the SU2-optimized
airfoil dataset, wherein we find an over-reliance of the gradient
solver on angle of attack. Overall, this paper motivates the use of
isometry constraints in Neural embedding models, particularly in
cases where researchers or designer intend to use distance-based
analysis measures (such as clustering, k-Nearest Neighbors meth-
ods, etc.) to analyze designs within the latent space. While this
work focuses on airfoil design as an illustrative example, it ap-
plies to any domain where analyzing isometric design or data
embeddings would be useful.

1. INTRODUCTION
Analyzing past design data via Machine Learning has opened

up new avenues for accelerating both human- and computer-
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generate designs in several ways [1]. For instance, in works
like [2–7], researchers developed conditional inverse design mod-
els that can generate new designs satisfying the performance
requirements, without going through time-consuming optimiza-
tion. Other researchers [8–12] have focused on unconditional
generation of designs, to either create more efficient shape pa-
rameterization functions or to augment an existing dataset with
high-quality designs. Lastly, surrogate modeling methods have a
long history using data-driven models to predict and optimize a
design’s performance so as to limit the need for computationally
intensive first-principles solvers, such as Finite Element or Finite
Volume solvers [13–17].

However, for all data-driven models researchers often need
to ensure a dataset’s quality by analyzing: how non-uniform
it is; whether the data are concentrated, multimodal, or biased
over regions of data space; or whether the data points are noisy.
Data analysis tools such as clustering or computing density or
topological properties are typically used to characterize some of
these factors, yet the curse of dimensionality [18] undermines
their use in high dimensional data space. Thus, practitioners
usually first embed the data into some low dimensional latent
space via a dimension reduction method, and then conduct the
analyses there instead [19–21]. But, given the large number of
existing embedding methods, what properties do we need from
the embedding to make such latent analyses reasonable? Chen et
al. [22] proposed that for design data, we should care about the
embedding’s preservation of the geodesic distance, but that paper
did not address the question of how to actually construct such an
embedding.

This paper answers that question by proposing the recently
developed isometric autoencoder [23–25] based on Riemann
geometry to embed designs in a bidirectional and distance-
preserving manner. We demonstrate the isometric embedding’s
necessity and practicality via a latent space analysis of the air-
foil inverse design problem. Specifically, the paper provides the
following contributions:

1. We describe how to produce a bidirectional isometric rep-
resentation with the isometric autoencoder. We apply this
architecture to both some pedogogical toy problems and
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the real-world UIUC airfoil dataset. These representations
preserves the geodesic distance on the UIUC airfoil man-
ifold in the form of the Euclidean distance in the latent
space. We show how to use this isometric low dimen-
sional embedding as a proxy to investigate the quality of
the UIUC dataset—i.e., its non-uniformity and multimodal-
ity—through the lens of HDBSCAN clustering.

2. We illustrate why preserving the geodesic distance when
learning the design representation is necessary through a
pedagogical counterexample incorporating flow-based mod-
els and optimal transport. We show that the lack of iso-
metricity can lead to ambiguity when analyzing the UIUC
airfoils’ latent embedding.

3. We use the isometric airfoil representation to study the qual-
ity and properties of the SU2 dataset of optimized airfoils.
This dataset was produced by a gradient-based (i.e., adjoint)
SU2 CFD solver and was used to train an CEBGAN for
inverse airfoil design. We unearth a pathology of the SU2
adjoint optimizer that it favors optimizing the angle of at-
tack more than the shape, and provide insights for future
improvement. In addition, the isometric embedding sheds
light on the robustness of different airfoils’ to various flow
conditions, which has implications for work in robust design
optimization.

2. BACKGROUND AND RELATED WORK
Before introducing the isometric autoencoder and how we

use it for latent space cluster analysis, this section briefly reviews
background and related work in clustering methods, how we de-
fine metric functions (in both the Euclidean and Geodesic sense),
common latent space dimension reduction methods, and lastly
basic definitions of isometry that we use through the rest of the
paper.

2.1 Clustering
A design dataset can be regarded as a collection of designs

sampled from a probability distribution supported by the set of
valid designs. Among all the techniques that analyze the data
samples to characterize their underlying distributions, clustering
is a fundamental and popular one. It aims to assign the samples
to different clusters by a certain algorithm on an unsupervised
basis, insofar as the samples in the same cluster are more sim-
ilar to each other than to those in other clusters. Owing to its
ability to taxonomically describe the data distribution, clustering
can highlight a distribution’s non-uniformity and multi-modality,
which makes it especially suitable to design datasets, as they are
in general non-uniform and may contain several exemplary and
timeless groups of designs that engineers desire to extract and
imitate.

Out of all the existing clustering schemes, density-based clus-
tering excels when the dataset consists of an unknown number of
clusters of arbitrary shapes. Empirically [26, 27], it is an ideal
choice when the data distribution is supported by a set comprised
of several separated-by-closed-neighbourhoods components and
the dataset is rich enough to delineate each, such that every dis-
connected component can be accurately identified as a cluster.

Because of these properties, density-based clustering is ideal for
cases where topological separation in data space among designs
can indicate crucial design variation. There exist many density-
based clustering models, among which DBSCAN [26] is probably
the most celebrated one thanks to its efficacy withstanding the test
of time [28, 29], yet it is still not perfect [29, 30] as a matter of
course. Several successors like OPTICS [31], DENCLUE [32]
and HDBSCAN [33] have since then being proposed to refine it.
HDBSCAN [33] is a recent density-based hierarchical innovation
with many great improvements, among which it in particular dis-
cards the annoying length scale hyperparameter 𝜖 of DBSCAN,
hence we shall use this model in the later experiments for our
convenience.

Despite clustering’s usefulness, there is one critical as-
pect upon which any method’s success hinges: the chosen dis-
tance function that describes similiarity between points. In-
deed, for clustering schemes either connectivity-based like hi-
erarchical clustering [34], or centroid-based like k-means [35], or
distribution-based like Gaussian mixture [36], or density-based
like DBSCAN [26], selecting the distance function to quantify
the resemblance between data samples is inevitably the first step
and the foundation of the remaining process. As such, the dis-
tance function has outsized influence on the final result. Beyond
clustering, this distance function is also important to any analyses
wherein the data samples need to be juxtaposed to perceive their
difference, such as in nearest neighbor search [37], DPP diversity
quantification [38, 39], etc., therefore it is worth being discussed
in depth next.

2.2 Distance Functions
The canonical distance function (or metric) for an Euclidean

space is the Euclidean distance. Despite being the most intu-
itive metric for low dimensional spaces—thus usually being the
default choice for clustering models—the Euclidean distance is
frequently challenged in high dimensional spaces. One well-
known curse of dimensionality is the diminishing contrast be-
tween the maximum and the minimum 𝐿𝑝 distance from a ran-
dom query point to a series of random data points as the space
dimensionality increases [40, 41]. This cripples the effectiveness
of distance-based algorithms like nearest neighbors or clustering
on high-dimensional data. Apart from suffering the contrast-
loss, Euclidean distance is also not even aware of the semantics
of many high dimensional data (i.e., what object(s) each data rep-
resents). For example, an image of object 𝐴 may appear closer in
Euclidean distance to an image of object 𝐵 than to another image
representing the same object 𝐴 but in a different pose [42]. One
plausible interpretation of this is that most high dimensional data
only reside on low dimensional manifolds [43], yet an Euclidean
distances defined over the ambient space (i.e., the Euclidean space
containing that manifold) cannot take the shape and curvature of
the embedded data manifold into account, as illustrated in Fig. 1.

Many alternative metrics have been proposed to overcome
these issues. As an example, it is suggested that employing 𝐿𝑝

distance functions of smaller (even fractional) 𝑝 can mitigate the
contrast-loss in high dimensional spaces [41]. Nevertheless, just
like their 𝐿2 counterpart, these candidates are still unaware of the
geometry of the data manifold, not to mention it is dubious to
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FIGURE 1: DIFFERENCE BETWEEN EUCLIDEAN DISTANCE AND
GEODESIC DISTANCE WHEN QUANTIFYING DESIGN DIFFER-
ENCES.

adopt them simply because of their better contrast, as 𝐿𝑝 distance
functions with 𝑝 < 1 are not even well-defined, violating the
triangular inequality that a legitimate metric should obey. Maha-
lanobis distance is another popular option [42, 44, 45], which is
equivalent to performing a linear transformation over the entire
ambient space prior to measuring distances with the Euclidean
distance, so that when comparing points, different directions can
be either emphasized or downplayed depending on their contri-
bution to the semantics. However, such linear transformation
needs to be trained beforehand by leveraging additional knowl-
edge about the data’s semantics, which is not always available.
On top of that, linear transformation could be too primitive to
simplify complicated nonlinear data manifold structure.

A probably more proper and natural choice of distance func-
tion for high dimensional data is the geodesic distance (or Rie-
mannian distance) [46, 47] induced by the Euclidean metric over
the data manifold, provided that the data manifold resides on a
connected Riemann manifold—which can be intuitively called
extended data manifold—such that the geodesics on it are well
defined. This distance function adapts to the geometry of the data
manifold because it is defined as the length of the shortest path on
it connecting two given points, thereby it is designed exclusively
for that particular manifold and makes more sense both intuitively
and empirically [48–52]. The greatest downside of this metric
is its general lack of closed-form expression, since the evalua-
tion of the geodesic length involves integration over the irregular
manifold. Luckily, we can to some extent circumvent this issue
by preserving this geodesic distance in a low dimensional latent

Euclidean space after establishing an isometry between the data
manifold and a latent set in the latent space, so that the latent set
serves as a proxy for that data manifold equipped with geodesic
distance and we can equivalently perform geodesic-based analy-
ses on it instead. To initiate this latent analysis, we need to start
with dimension reduction to construct a map between the data
space and the latent space at first.

2.3 Dimension Reduction
Dimension reduction aims to map data points in the high

dimensional space into a low dimensional latent space while
preserving some necessary information, such that the validity
of certain analyses performed in the latent space can be en-
sured. For instance, t-SNE [20] retains the disconnectedness
of the dataset [53], so that the disconnected subsets remain dis-
connected in the latent space. Isomap [54] preserves the graph
distance on the neighborhood graph as an approximation of the
true geodesic distance.

Generally, the data manifold is nonlinear, which often ren-
ders linear dimension reduction methods like PCA and NMF fu-
tile [54, 55]. Out of all the nonlinear dimension reduction models,
the autoencoder [56] is special for its simple reconstruction-loss-
based formulation and the ability to not only map forward but also
backward from the latent space to the data space. This ability to
transform data bidirectionally is ideal for designs, as it can not
only help us analyze designs conveniently in a low dimensional
setting—which is the focus of this paper—but also enable us to
use its backward mode as a design parameterization to synthesize
novel designs after we efficiently perform optimization or con-
struct conditional generative models in the low dimensional latent
space. In addition, being a parameteric model, once trained the
autoencoder can be immediately applied to unseen new designs
to derive the corresponding latent codes without starting from
scratch. This advantage should compound as the dimensionality
and scale of the design problem grows. It is therefore worth-
while to model that isometry for designs with the autoencoder
rather than the other unidirectional, non-parametric methods like
Isomap.

Compared with its counterparts like Isomap [54], LLE [55],
UMAP [21], or diffusion map [57] that need to scrutinize each
data point’s neighborhood to infer the local manifold structure, the
autoencoder has a more straightforward formulation which only
needs us to globally minimize the reconstruction loss. However, it
is still a dimension reduction method that can preserve a dataset’s
topological properties. This is because it approximately learns a
topological embedding—which is a homeomorphism—between
the dataset in the high dimensional data space and latent set in the
low dimensional latent space, such that the original dataset’s cru-
cial topological properties like connectedness—which are invari-
ant under homeomorphism—are preserved on the latent set [58].
Our claim about the autoencoder’s homeomorphicity is bolstered
by the rationale that both the encoder 𝑒 and the decoder 𝑔 are
modeled by continuous neural networks, and the minimization of
the reconstruction loss E𝑥∼X∥𝑔 ◦ 𝑒(𝑥) − 𝑥∥ encourages the com-
position 𝑔 ◦ 𝑒 to be an identity function over the dataset X and
drives both 𝑔 and 𝑒 to be bĳective between the dataset X and the
latent set 𝑒(X) [59], which is the very definition of a topological
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embedding [58].
However, preserving the topological properties alone is not

enough for clustering on the latent set, since there exists an infinite
number of latent sets that each has different pairwise distances but
is still homeomorphic to the same dataset (this non-uniqueness
of homeomorphism is why flow-based models [60–62] can ap-
proximate different distributions with a fixed latent distribution,
as we will see in §4.1.3). This may in consequence induce an
infinite number of results for latent clustering and lead to ambi-
guity. Therefore, preserving a selected distance function in the
data space is necessary, and this brings us to the preservation of
the aforementioned geodesic distance on the data manifold.

2.4 Isometry
An isometry between two Riemann manifolds is a locally iso-

metric diffeomorphism (i.e., a smooth homeomorphism), which
preserves the geodesic distances between points. For simplicity,
if we restrict this generic definition to our special case where this
map is modeled by an autoencoder, then based on the discus-
sions in [23–25], we say the autoencoder establishes an isometry
between a Riemann data manifold in the high dimensional data
space and a Riemann latent manifold in the low dimensional
latent space—provided that they are connected sets and inherit
their Riemann metrics from their Euclidean ambient spaces re-
spectively—if the autoencoder is:

1. A diffeomorphism: Both the encoder and the decoder are
modelled by smooth neural networks, and the autoencoder’s
reconstruction loss is also minimized to near zero over the
Riemann data manifold, creating a homeomorphism.

2. Locally isometric: All singular values of the Jacobians of
both the decoder and the encoder need to be 1 at every
point over the Riemann manifolds. Intuitively, this means
the local linear transformation (i.e., the differential) does not
stretch or compress the input along any direction tangent to
the manifold.

On top of that, ideally we hope the latent space’s dimension is
equal to the latent manifold’s dimension and the latent manifold
is a convex set—which aligns its geodesic distance with the Eu-
clidean distance—such that the geodesic distance between any
pair of points on the data manifold equals the Euclidean distance
between their corresponding latent codes. However, this ideal
setting is not always encountered for the following reasons:

1. The dataset (and thus the latent set) may not be connected.
Remember this is what motivates us to use HDBSCAN to in-
vestigate the dataset’s topology. Intuitively, this means there
exist some intervals between these components that are not
regularized for the autoencoder, such that while the distance
within each component is preserved, these components can
be arbitrarily close to each other in the latent space.

2. The latent space’s dimension could be larger than the
dataset’s dimension. There are many causes for this issue.
For example, the dataset may not be a manifold, as it could
be not locally Euclidean somewhere. The dataset could also
be a manifold unable to be embedded in a space of the same

dimension, as will be discussed later. Moreover, the dimen-
sion of the latent space needs to be determined beforehand,
but we may not be able to estimate it accurately.

3. The latent set is not necessarily convex, as its shape is de-
termined by the shape of the dataset through the isometry.
In addition, if the above dimension misalignment exists, the
nonlinearity of the latent set may also destroy its convexity.

All these issues suggest that we need to somehow extend
the dataset into a well-behaved connected Riemann manifold to
establish that isometry robustly. We introduce methods to do this
next.

3. METHODOLOGY
This section covers the two primary methods that we use in

this paper’s later experiments: (1) the Isometric Autoencoder and
(2) a method for estimating the intrinsic dimension of the data
manifold.

3.1 Isometric Autoencoder
Since the reconstruction loss enforces homeomorphicity, and

both the decoder and the encoder are smooth models, to enforce
isometry within an autoencoder we only need to make the en-
coder and the decoder locally isometric. We can accomplish this
by having their Jacobians’ singular values all equal to one over
the dataset (or equivalently the latent set). This is easier said
than done, due to the substantial computational cost entailed in
explicitly deriving the Jacobian’s singular values, particularly in
high dimensional cases. Thus, instead of regularizing those sin-
gular values explicitly, researchers typically impose the isometry
constraint implicitly via random vectors sampled uniformly from
a unit sphere S𝑚−1 embedded in the 𝑚-D latent space, such that
∥𝐽𝑔𝑣∥ = 1 and ∥𝑣⊤𝐽𝑒∥ = 1 for every 𝑣 ∈ S𝑚−1, where 𝐽𝑔 and
𝐽𝑒 are the Jacobians of the decoder and the encoder respectively.
It can be verified that this leads to unitary singular values [24].
More importantly, we can compute the Jacobian-Vector Prod-
uct (JVP) or Vector-Jacobian Product (VJP) far more efficiently
than the full Jacobian via modern packages like functorch and
JAX, which can also invoke the optimal auto-differentiation mode
(forward-mode for JVP and backward-mode for VJP) providing
efficient backpropagation.

Enforcing isometry only over the dataset may not be enough,
due to the three problems mentioned in §2.4. To overcome
these issues, we employ the latent interpolation or mixup
method [23, 63] to additionally enforce isometry over some in-
terpolated latent points. Specifically, these interpolated points
are sampled uniformly from the lines connecting some random
pairs of real latent points (i.e., the corresponding latent points
of real data samples). This latent interpolation approximately
samples points from the convex hull of all real latent points, so
that by enforcing isometry over this extended convex latent set,
we equivalently enforce isometry over its image in the data space,
which is a connected Riemann manifold covering the dataset.
This connected manifold can thus be regarded as an extended
data manifold that has a well-defined geodesic distance and a
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convex latent set. To make sure the extended latent set is homeo-
morphic to the extended data manifold, we additionally minimize
the cycle consistency loss [64] over the interpolated latent points.

Altogether, the loss function of the isometric autoencoder
consists of four square terms:

𝐿 = E
𝑥∼X, 𝑧∼𝑒 (X) , 𝑣∼S𝑚−1 {[𝑔 ◦ 𝑒(𝑥) − 𝑥]2 + 𝛽[𝑒 ◦ 𝑔(𝑧) − 𝑧]2

+ 𝜆[∥𝐽𝑔 (𝑧) · 𝑣∥ − 1]2 + 𝜆[∥𝑣⊤ · 𝐽𝑒 (𝑥)∥ − 1]2} (1)

where 𝛽 and 𝜆 are weight coefficients for cycle consistency loss
and isometry regularization respectively, 𝑒(X) is the extended
latent set consisting of the interpolated points, and the random
vectors (𝑥 & 𝑣) are sampled uniformly from their respective sets.
To sample 𝑣 uniformly from S𝑚−1, we can take advantage of
the radial symmetry of the unit Gaussian distribution by simply
normalizing the vectors sampled from it.

3.2 Intrinsic Dimension Estimation
To construct the autoencoder, we must first determine the

latent space dimension (𝑚). This dimension is vital for two rea-
sons. On one hand, if the dataset constitutes a manifold—which
is locally Euclidean of certain dimension—and we attempt to fit
an autoencoder whose latent space is lower than this intrinsic di-
mension, the autoencoder will never establish a homeomorphism
between the dataset and the latent set due to the topological in-
variance of dimension [65]. This would cause the autoencoder
to map different data points to the same latent point, making the
encoder no longer injective. This “data collapse” is detrimental
to latent clustering for the following reasons. First, the autoen-
coder is thereby no longer isometric, which makes the intrinsic
latent space metric unreliable for clustering. In addition, although
the connectedness of the dataset is still preserved on the latent
set thanks to the encoder’s continuity, the disconnectedness is
not guaranteed to remain; this means that multiple disconnected
clusters in the data space may be merged into a single connected
one in the latent space. This merging would clearly mislead any
clustering algorithm. While some may argue that this collapse is
not always unfortunate since some trivial data dimensions might
be eliminated in our favor in the latent space, this removal is out
of our control and it is unwise to rely on luck. On the other hand,
avoiding this collapse problem by setting the latent space dimen-
sion higher than absolutely necessary creates its own problems:
our whole reason for conducting dimension reduction in the first
place is to reduce clustering problems that occur in high dimen-
sional spaces and make isometry regularization more efficient.

To this end, we employ the Maximum Likelihood Estimation
(MLE) [66] with bias correction [67] as the intrinsic dimension
estimator, which performed well in our previous work [68]. In
brief, MLE presumes locally constant data density and Poisson-
distributed number of neighbors around each point. Under that
model, the likelihood maximization leads to the local estimate

𝑚̂𝑘 (𝑥) =
⎡⎢⎢⎢⎢⎣

1
𝑘 − 1

𝑘−1∑︂
𝑗=1

log
𝑇𝑘 (𝑥)
𝑇𝑗 (𝑥)

⎤⎥⎥⎥⎥⎦
−1

(2)

where 𝑘 is the pre-selected number of neighbors for each evalu-
ation and 𝑇𝑗 (𝑥) is the Euclidean distance between 𝑥 and its 𝑗 𝑡ℎ

nearest neighbor. The debiased global estimator [67] summariz-
ing these local results is

𝑚̄𝑘 =

[︄
1
𝑛

𝑛∑︂
𝑖=1

𝑚̂𝑘 (𝑥𝑖)−1

]︄−1

=

⎡⎢⎢⎢⎢⎣
1

𝑛(𝑘 − 1)

𝑛∑︂
𝑖=1

𝑘−1∑︂
𝑗=1

log
𝑇𝑘 (𝑥𝑖)
𝑇𝑗 (𝑥𝑖)

⎤⎥⎥⎥⎥⎦
−1

(3)
More details about improving its precision can be found in our
previous work [68].

Even when we estimate the data manifold’s dimension 𝑑

accurately, it is not necessarily the proper number for the latent
dimension, because we cannot always embed some manifolds of
a given dimension into an ambient Euclidean space of the same
dimension. The Klein bottle is a well-known example—this 2-
manifold can only embed successfully in at-least-4D Euclidean
spaces. Luckily, the Whitney embedding theorem [65] suggests
that to obtain a homeomorphic autoencoder we can upper bound
the latent dimension by 2𝑑. Therefore, a practical way to attain
the optimal latent dimension is to incrementally increase it from
𝑑 all the way to 2𝑑 until the final reconstruction loss becomes
marginal. For data manifolds that do not have complexities or
pathologies similar to the Klein bottle example, we would expect
the result to be much closer to 𝑑 than 2𝑑, and thus attainable in a
few trial-and-error shots.

4. EXPERIMENTS AND DISCUSSION
In this section, we use the airfoil designs as a concrete ex-

ample to demonstrate how the isometric autoencoder can help
engineers analyze high dimensional designs intuitively in a low
dimensional setting for different purposes. Overall, we first apply
the isometric autoencoder to the UIUC airfoil dataset to obtain a
low dimensional isometric latent representation of the historical
airfoil designs. Then, we perform latent HDBSCAN to locate
common past airfoil designs—for pedagogical effect, we will
disrupt the isometricity of this autoencoder in one experiment to
highlight the importance of preserving distance for latent clus-
tering. In the second half of our experiments, we introduce and
employ the resulting isometric autoencoder to derive the latent
representation of a subset of airfoils optimized by the SU2 suite
under a large variety of boundary conditions. We then use this
isometric embedding to investigate how the airfoil shape and an-
gle of attack are related to different input conditions.

4.1 UIUC Airfoil Latent Clustering
4.1.1 Isometric Representation of UIUC Airfoils. To help

generate smooth airfoil curves, we integrate the Bézier layer used
in our previous works [11] into the decoder as its output layer.
Our decoder and encoder also inherit their general architectures
respectively from the generator and discriminator in [11], since
their complexity was previously sufficient for this dataset. We set
both 𝛽 and 𝜆 to 0.01 for the isometry regularization. We set the
latent space dimension to 3, based on prior published experiments
with the UIUC dataset [68]. After constructing the autoencoder,
we then train it with an Adam optimizer of learning rate 0.0001 for
6000 epochs with batch size 32 over the UIUC dataset consisting
of 1528 airfoils. During each epoch, the autoencoder is trained
48 times over different shuffled mini-batches.
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After training, the autoencoder achieves a reconstruction er-
ror of approximately 5×10−5 and a cycle consistency loss around
9 × 10−4, while the isometry regularization errors of the decoder
and the encoder are around 8× 10−5 and 4.5× 10−3 respectively.
These results indicate that the isometric autoencoder does not sac-
rifice reconstruction error relative to the unregularized version.
We then use the isometric encoder to map all of the UIUC airfoils
into the latent space, and we use these encoded coordinates for
the following latent analyses. Figure 2b shows the 2D principal
projection of this (3D) latent set.

4.1.2 Latent Clustering with HDBSCAN using the Iso-
metric Autoencoder. At first, we perform HDBSCAN on the
latent set with both 𝑚𝑝𝑡𝑠 and 𝑚𝑐𝑙𝑆𝑖𝑧𝑒 set to 5—namely the min-
imum number of neighbors a given point should have to qual-
ify as a core and the minimum number of cores that a cluster
should have. This HDBSCAN configuration classifies < 10% of
the latent points as noise and does not produce as many trivial
tiny clusters, thus reasonably grasping the overall structure of the
dataset. Fig. 2 shows that over 90% of airfoils in the UIUC dataset
are considered density-connected by HDBSCAN under this hy-
perparameter setting and assigned to cluster #3, while there are
only a few (139) outliers left surrounding it (Fig. 2b). In other
words, in UIUC dataset there exists a dominant connected subset
in which the airfoils are densely distributed everywhere (other-
wise they would not become cores in HDBSCAN). This cluster
can be regarded as the group of ‘canonical’ airfoil designs. The
illustrations in Fig. 2c and Fig. 2d seem to testify to this claim,
as subjectively those noise-airfoils have a higher variety of un-
usual shapes than those in cluster #3, although this is a qualitative
conjecture on our part.

Despite its mechanical and systematic procedure, HDB-
SCAN is still highly sensitive to varying 𝑚𝑝𝑡𝑠 and 𝑚𝑐𝑙𝑆𝑖𝑧𝑒, which
can significantly alter each point’s cluster assignments. For in-
stance, when we increase 𝑚𝑝𝑡𝑠 and 𝑚𝑐𝑙𝑆𝑖𝑧𝑒 to 10 and 50 respec-
tively to sift out low density regions and small clusters more
radically, we can get a different result as shown in Fig. 3. Due
to the current higher standard for what constitutes a cluster, only
a few (4) regions of higher density in the previous cluster #3
now qualify as clusters. In that sense, we can regard these four
as the most typical groups of airfoils among all canonical airfoil
designs. We can plot the mass centers of these clusters as the
representatives of them, as shown in Fig. 3c.

4.1.3 What happens to Latent Clustering when we de-
stroy Isometry?. It may not be easy to appreciate the impor-
tance of isometry regularization without a contrast, so here we
purposefully sabotage the airfoil autoencoder’s isometricity to
demonstrate how its absence may lead to distortion of the la-
tent set and hence to a misleading clustering result. Specifically,
our overall ‘trick’ below will be to enforce the exactly same au-
toencoder reconstruction loss, but selectively destroy the latent
space’s isometricity using a tunable bĳective distortion that al-
lows us to increasingly “break" only the isometricity between the
design and latent spaces.

To do this in practice, we first unlock the autoencoder’s iso-
metricity by attaching a flow-based model like RealNVP [61]
to its latent space. Specifically, let 𝑔 and 𝑒 be the decoder and

encoder of the isometric airfoil autoencoder and 𝑓 be the Real-
NVP, then construct a new latent set with 𝑓 ◦ 𝑒(X), where X

denotes the UIUC dataset. We can thereby regard 𝑒′ := 𝑓 ◦ 𝑒

and 𝑔′ := 𝑔 ◦ 𝑓 −1 as the new pair of encoder and decoder be-
tween the UIUC dataset and the new latent set, where 𝑓 −1 can
be readily retrieved given that 𝑓 is a diffeomorphism between
the old and new latent spaces by construction. Therefore, the
reconstruction loss does not change at all for any flow 𝑓 , as
∥𝑔′ ◦ 𝑒′ (𝑥) − 𝑥∥ = ∥𝑔 ◦ 𝑓 −1 ◦ 𝑓 ◦ 𝑒 − 𝑥∥ = ∥𝑔 ◦ 𝑒(𝑥) − 𝑥∥. In
other words, through this new autoencoder we get a new latent
set that is also homeomorphic to the dataset (and thus to the old
isometric latent set), but we can train 𝑓 while fixing 𝑒 and 𝑔 to
tamper with its isometricity.

Next we show this unlocked autoencoder can obtain a latent
set (as shown in Fig. 4) dramatically different from the isometric
one in Fig. 2b. We start by constructing a 3D Gaussian mixture
target distribution 𝑝𝑡 (𝑧) of three components centered at [1, 0, 0],
[0, 1, 0] and [0, 0, 1] respectively, each having an isotropic stan-
dard deviation equal to 0.1. Then we drive the empirical distribu-
tion 𝑝𝑓 (𝑧) of the new latent codes 𝑒′ (X) to 𝑝𝑡 by only training 𝑓

and leaving 𝑔 and 𝑒 fixed. Since we do not know the probability
density function over the isometric latent set 𝑒(X), there is no
way to train 𝑓 via log likelihood maximization, so we achieve this
instead by minimizing the Sinkhorn divergence between 𝑝𝑡 and
𝑝𝑓 . More information about this method can be found in [69].
This encourages 𝑓 to transform the old isometric latent set into
a new one with most of its points concentrating around [1, 0, 0],
[0, 1, 0] and [0, 0, 1], and thus may form three big clusters instead
of one. If our claim is true that the lack of isometricity can lead
to distortion, this 3-cluster latent set should be attainable as long
as 𝑓 has enough complexity.

Figure 4 shows the clustering result of the non-isometric la-
tent set after training. It now consists of three major clusters (#7,
#8, #13) corresponding to the three Gaussian components of 𝑝𝑡 .
This stands in stark contrast to the single giant cluster in Fig. 2b,
despite the two models having identical reconstruction error, and
exemplifies the ambiguity problem mentioned in §2.3. That is,
we cannot use reconstruction error alone to know that the result-
ing latent space distances preserve isometry, and the isometric
autoencoder provides a mean to regularize this directly. While in
real applications an autoencoder may not distort the dataset’s dis-
tance and topology quite as severely as in our extreme example,
naïve models have no protection against it. As such, it is therefore
always worthwhile to switch on the isometry regularization when
doing latent analyses relying on distance functions.

4.2 Latent Shape Analysis of SU2 Airfoil Optimization
As mentioned earlier in §2.3, one great advantage of the au-

toencoder over many other non-parameterized dimension reduc-
tion methods is its ability to perform amortized inference, i.e., it
can immediately process unseen data samples without retraining.
In the following experiments, we exploit this advantage to analyze
the SU2 airfoil dataset [5] consisting of 1245 airfoil-AoA (angle
of attack) pairs that are optimized under a variety of boundary
conditions by the SU2 CFD toolset. Specifically, we postulate
that these optimized airfoil shapes still reside on the UIUC airfoil
manifold, and apply the pre-trained UIUC airfoil autoencoder di-
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(a) Airfoil Distribution (#-1 for noise) (b) PCA of Isometric Latent Set

(c) Airfoils Regarded as Noise (#-1)

(d) Airfoils in Cluster #3

FIGURE 2: RESULT OF LATENT HDBSCAN ON UIUC AIRFOIL DATASET, WITH mpts = mcl S i z e = 5.

(a) Airfoil Distribution (#-1 for noise) (b) PCA of Isometric Latent Set (c) Airfoil Representatives

FIGURE 3: RESULT OF LATENT HDBSCAN ON UIUC AIRFOIL DATASET, WITH mpts = 10 AND mcl S i z e = 50.

FIGURE 4: PCA OF AND HDBSCAN ON NON-ISOMETRIC LATENT
SET, WITH mpts = mcl S i z e = 5.

rectly on the SU2 dataset (shapes only, without AoAs) to derive its
isometric latent representation for the following latent analyses.

4.2.1 Latent Clustering of Optimized Airfoils. We per-
form HDBSCAN with 𝑚𝑝𝑡𝑠 = 10 and 𝑚𝑐𝑙𝑆𝑖𝑧𝑒 = 30 on the latent

set of SU2 airfoils first and illustrate its result in Fig. 5. Com-
pared with the 1528 UIUC airfoils that cover a large area and
comprise a giant cluster, the 1245 SU2 airfoils only occupy a few
small regions and form 5 clusters, as we can see in Fig. 5a. This
higher regional density is the prime reason why in this case we
do not reuse the previous 𝑚𝑝𝑡𝑠 = 𝑚𝑐𝑙𝑆𝑖𝑧𝑒 = 5 setting for Fig. 2,
as otherwise it will produce over 30 tiny clusters and leave about
25% airfoils categorized as noise, which is not reasonable.

The SU2 airfoils’ distinctive regional concentration probably
stems from the way they were created. Chen et al. [5] observed
that the gradient-based airfoil adjoint optimization often arrived
at sub-optimal local optima. Consequently, for each input condi-
tion they performed eight restarts of the adjoint optimization by
selecting a diverse set of starting airfoils sampled from Bézier-
GAN approximating the UIUC airfoil distribution. In [5], the
final training set included only the highest efficiency final design
from these eight optimization trials. In practice, in many cases
the SU2 optimizer found that altering only the AoA was suffi-
cient to find the most efficiency design, compared to modifying
the airfoil shape. As such, we would expect to find dense clus-
ters of initial shapes (in the latent space) for the cases where the
optimized design only modified the AoA. We shall verify if this
is true next.
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(a) PCA of SU2 Dataset’s Isometric Latent Set

(b) SU2 Airfoil Distribution (#-1 for noise)

FIGURE 5: RESULT OF LATENT HDBSCAN ON SU2 AIRFOIL
DATASET, WITH mpts = 10 AND mcl S i z e = 30.

4.2.2 How much do airfoils morph in optimization?. To
investigate the airfoil shape’s degree of variation during optimiza-
tion, especially in comparison to that of the AoA, we perform
PCA on the Cartesian product of the normalized 3D latent code
and normalized AoA—namely their 4D concatenation. To avoid
distortion of the latent code, when normalizing/standardizing the
code we use the standard deviation across all three latent dimen-
sions as the scaling factor, instead of scaling it dimension-wisely
after mean centering. By doing this, we can make sure the nor-
malized latent set is still isometric to the dataset up to a scale
factor [23], so that some potentially trivial latent dimensions will
not be emphasized relative to the principal ones after normaliza-
tion.

The new PCA result is plotted in Fig. 6, where each point
is colored according to the cluster found earlier plotted in Fig. 5.
In contrast to Fig. 5a, the introduction of AoA in PCA induces
a reorientation that reveals each cluster’s linear pattern along the
AoA direction (which is illustrated by the dashed line in Fig. 6).
There are two naïve takeaways from this graph, if we (for now)
ignore some technical caveats and presume that smaller varia-
tion in the direction perpendicular to the AoA direction indicates

FIGURE 6: 2D PRINCIPAL PROJECTION OF THE CARTESIAN
PRODUCT OF AIRFOIL LATENT CODE × AOA.

smaller change in shape:

1. In general, the SU2 adjoint optimizer tends to optimize
the airfoil’s lift-drag efficiency for different input condi-
tions—Re, Ma, & Lift Coefficient—more by adjusting its
AoA than by morphing its shape, given that each cluster’s
variation along the AoA direction is more substantial than
that along the perpendicular direction.

2. Not all airfoils are created equal. We can notice that the
airfoil shapes in cluster #0 and #1 have much smaller varia-
tion compared with the ones in cluster #2, #3 and #4. If it
is true that almost all airfoils in each cluster are optimized
from the same initial design from among the provided eight
restarts,1 then this suggests some of the eight initial airfoils
are better starting shapes (i.e., lie close to the basin of the
optima) under certain ranges of boundary conditions com-
pared to others, leading the SU2 optimizer to only need to
adjust the AoA to improve efficiency. The overwhelming
number of airfoils in cluster #1 (Fig. 5b) also reflects this
inequality, suggesting that the initial design that, when opti-
mized, yielded the shapes in cluster #1 is not just optimal for
some conditions, but rather broadly optimal under a wide
range of boundary conditions, compared with the others.

Despite seeming plausible, these two takeaways need to be
taken with a grain of salt, as there are several caveats that may
undermine their validity:

1. The high variation along the AoA direction in Fig. 6 may
not be attributed to the AoA alone, as some variations in
the latent code may also have been projected along it under
PCA. However, we think it is still safe to regard AoA as the
dominant contributor to this direction’s variation and ignore
the airfoil shape’s influence, as otherwise we should have
already seen a similar linear pattern in Fig. 5a, i.e., the PCA
without AoA.

1This is likely considering how separated these clusters are away from one
another in the latent space. We will also see this visually later in Fig. 7
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2. The distance variation among the latent codes shown in
Fig. 6 may not be directly comparable to variations in AoA.
For instance, when comparing data A and data B, we may
come up with a Mahalanobis distance function for A that
scales up A’s space arbitrarily large, such that the varia-
tion of data A measured by it is also arbitrarily large. It
is then pointless to compare this variation with a normal
Euclidean-based one of data B. In our case, the variations
of shape and AoA are based on the Euclidean distances de-
fined on the normalized latent space and normalized AoA
space respectively. Because the latent set is isometric to the
dataset, the variation of shape is also equivalently based on
the geodesic distance on the shape manifold, up to the shape
code’s normalization factor.

3. The previous caveat seems to not affect our second take-
away, because for that claim we only compare each cluster’s
shape variation (not including the AoA). The variation of
shape, as mentioned above, is based on the geodesic dis-
tance between shapes. However, despite its awareness of
the data manifold’s geometry, whether or not the geodesic
distance is reasonable for comparing shapes is still an open
question. For instance, it might actually not be aligned with
a human’s “perceptual metric” [70], such that a large differ-
ence between airfoils in terms of the geodesic distance only
corresponds to a small visual difference, and vice versa. In
addition, sometimes a subtle visual change in shape may
lead to a huge shift in the design’s performance. Since the
design’s performance is what we care about ultimately, it
might be more reasonable to compare shapes by measuring
their difference in performance.

These concerns, together with our above takeaways, require fu-
ture research. Nonetheless, it could be informative to investigate
the third caveat tentatively by illustrating all airfoil shapes in
each cluster. This allows us to see how varied they are visu-
ally and whether the degrees of visual variation agree with the
Euclidean/geodesic based variations in Fig. 6. We can then as-
sess, albeit qualitatively, if the geodesic distance agrees with our
“perceptual metric.”

To do this, for each cluster we superpose all its airfoils and
plot them altogether on the left of Fig. 7. Visually, we see that
cluster #0 and #1 (Fig. 7a, 7c) have much lower variation in their
airfoil shapes compared to cluster #2 to #4 (Fig. 7e, 7g, 7i). This
agrees well with the variation difference shown in Fig. 6. This
suggests the geodesic distance is at least a reasonable choice for
evaluating the visual difference between shapes. On the right side
of Fig. 7, we also plot the five initial airfoil designs—handpicked
out of the eight restart candidates—that look the most similar to
the airfoils in different clusters. We can see that for all clusters
(maybe except #3), the optimized airfoils look almost identical to
their corresponding initial designs, which testifies to both of our
takeaways.

4.2.3 Relationships between Airfoil Shape, AoA and
Boundary Condition. So far we have only analyzed the shape-
AoA configurations of SU2 airfoils, without taking any boundary
conditions into account. One potential hypothesis for the clus-
tering of shapes in the latent space could be that each cluster

(a) Cluster #0 (b) Initial Design #0

(c) Cluster #1 (d) Initial Design #1

(e) Cluster #2 (f) Initial Design #2

(g) Cluster #3 (h) Initial Designs #3

(i) Cluster #4 (j) Initial Design #4

(k) Cluster #-1 (Noise) (l) Remaining Initial Designs

FIGURE 7: AIRFOILS IN DIFFERENT CLUSTERS AND THEIR INI-
TIAL DESIGNS

corresponds to some identifiable change in the boundary condi-
tions—i.e., that certain clusters arise naturally when optimizing
a design within a range of conditions, and that the optimal cluster
switches at some flow regime.

To investigate this hypothesis, we demonstrate the condi-
tional distribution of airfoil shapes w.r.t. to the three boundary
condition parameters—Reynolds number, Mach number and lift
coefficient. Figure 8 scatter plots all the boundary conditions in
the SU2 dataset, with each point colored according to its corre-
sponding shape’s cluster. We observe several features from this
plot:

1. There is a conspicuous laminated pattern along the Mach
number dimension (bottom left and bottom right), which
divides this dimension into five distinctive segments. Each
segment is prominently occupied by the airfoil shapes in a
single cluster. As the Mach number incrementally increases
from ∼0.2 to ∼0.8, the optimal airfoil shape morphs from
cluster to cluster following the order #0 → #1 → #2 →
#4 → #3. Not only that, this morphing is also in general
monotonic or injective, namely no airfoil cluster appears
dominantly more than once in different Mach number seg-
ments.

2. In contrast, the optimal shape is in general independent of
Reynolds number and lift coefficient, as least within the
SU2 dataset’s cubic boundary condition regime. This is
reflected in both how uniformly the shape clusters distribute
in the Re-Lift subspace (top right), and how perpendicular
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FIGURE 8: DISTRIBUTION OF SHAPE CLUSTERS W.R.T. MACH
NUMBER, REYNOLDS NUMBER AND LIFT COEFFICIENT

the lamination boundaries are to the Ma dimension (bottom
left and bottom right).

3. Again, not all airfoils are created equal. For example, cluster
#1 dominates the wide flow velocity regime roughly between
Mach 0.3 to 0.55, whereas cluster #4 concentrates around
Ma 0.7, at the boundary between cluster #2 and #3.

Overall, in aerodynamic design optimization, the airfoil shape
morphs primarily to adapt to its working velocity. This is con-
sistent with existing design practice of customizing aerodynamic
surfaces to different speed regimes (e.g., Boeing 737 vs Con-
corde). Not only that, as expected, an airfoil shape that is optimal
within a given speed regime is not likely to be optimal within
another. Moreover, different airfoil shapes also have different
sensitivities to velocity, as some are adaptable to a wider range
of speeds than the others. It is intriguing that Fig. 8 found this
known behavior in an unsupervised manner only through analyz-
ing the learned latent space rather than being directly trained on
the boundary conditions.

Figure 9 demonstrates whether this same pattern exists for
changes in the AoA, with each point colorized according to its
AoA value. This graph shows that, in general, the optimal AoA
is correlated not only with lift coefficient but also with Mach
number. The latter, however, might be considerably affected by
the shape lamination along the Ma dimension, as each cluster of
shapes may have a distinctive optimal range of AoAs that couples
with it, such that the AoA-Ma correlation mainly results from
this cluster-wise coupling. Indeed, we can notice this coupling
between shape cluster and AoA in Fig. 10.

To avoid the influence of this shape lamination, we instead
study how AoA varies w.r.t Ma, Re, and Lift with the airfoil

FIGURE 9: DISTRIBUTION OF AOA W.R.T. MACH NUMBER,
REYNOLDS NUMBER AND LIFT COEFFICIENT

FIGURE 10: DISTRIBUTION OF AOA W.R.T. CLUSTERS

shape fixed. Specifically, we evaluate the Pearson correlation co-
efficients (PCC) between AoA and the three conditions in each
cluster (recall that the shapes in each cluster look very similar, thus
may be roughly regarded as fixed). The results are demonstrated
in Fig. 11, which reveals AoA’s moderate negative correlation
with Mach number (PCC on average −0.57, weighted by clus-
ter size), high positive correlation with lift coefficient (PCC on
average 0.83, likewise) and negligible correlation with Reynolds
number (PCC on average 0.03, likewise).

5. CONCLUSIONS
In this paper, we employed the isometric autoencoder to learn

an isometric representation of the airfoil designs that preserves the
geodesic distance. Then we performed distance-based analyses
such as clustering in the isometric latent space to study different
airfoil dataset’s characteristics and complexity, while investigat-
ing the necessity and validity of preserving the geodesic distance
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(a) AoA - Ma (b) AoA - Re

(c) AoA - Lift

FIGURE 11: PEARSON CORRELATIONS BETWEEN AOA AND
BOUNDARY CONDITIONS IN DIFFERENT CLUSTERS

in the latent space.
As to the preservation of the geodesic distance, we found in

§4.1.3 that without it the latent set produced by the autoencoder
is at risk of comprising an arbitrary number of clusters, which
may mislead engineers’ interpretation of the design distribution.
It is therefore necessary to impart isometricity to the autoencoder
when analyzing data in its latent space. We also verified that the
geodesic distance agrees well with our visual perception when
it comes to detecting shape variation (at least for the airfoils,
§4.2.2), hence it is reasonable to preserve it for shape analysis.

Through the lens of the isometric autoencoder and HDB-
SCAN clustering, we found that compared to the high-quality
and diverse UIUC dataset, the SU2 dataset of optimized airfoils
has far less variation in its airfoil shapes. This may be blamed on
two culprits. First, when optimizing the airfoil’s L/D efficiency,
the SU2 adjoint optimizer prefers adjusting the angle of attack
(AoA) to morphing the airfoil shape, probably because this is
more effective in increasing the L/D ratio in terms of the adjoint
gradient (specifically, the L/D objective’s gradient w.r.t. the AoA
may have much larger norm than that w.r.t. the airfoil spline’s
control parameters). Second, when creating the SU2 dataset with
the SU2 optimizer, for each boundary condition we only per-
formed eight restarts from the eight candidate airfoils and kept
only the best final design. This, paired with the first issue, leads to
the lack of diversity in the SU2 dataset. A future way to improve
the quality of the SU2 dataset would be to either introduce more
candidate airfoils or replace the current adjoint-based optimizer.

Despite the SU2 dataset’s diversity issue, analyzing it in the
isometric latent space still provides many insights into the condi-
tional distribution of optimized airfoils. It shows that the cruising
speed is the primary factor in the design of airfoil shapes, and not
all airfoil shapes are created equal, as some can work optimally
in a broader range of speed. In addition, an airfoil shape that

works optimally in one speed regime is not likely to do so in
another—in other words, it is unlikely to find an airfoil that is
universally optimal at every speed. Moreover, when the airfoil
shape is determined, if we want to increase or maintain its lift
coefficient while the speed goes down, the airfoil should pitch up.
In conjunction, these two results suggests the condition distribu-
tion 𝑝(shape, AoA | Ma, Re, Lift) that the inverse airfoil design
models in [5] tried to capture might be factorized and simplified
into 𝑝(AoA | Lift, Ma, shape) · 𝑝(shape | Ma). Although the in-
sights on this specific domain are already known from past human
efforts in airfoil design, what is unique is that the proposed Iso-
metric AE uncovered these without explicitly being trained to do
so, and that this technique can be applied to many other domains.
This demonstrates the value of constructing isometry via Isomet-
ric AEs to new, more complex problems. We are investigating
more complicated, high-dimensional design problems as one av-
enue of future work, and expecting more meticulous research on
the sensitivity of the autoencoder and clustering method’s hyper-
parameters.
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