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the XRR fittings and plotted against the substrate temperature during 
deposition (Fig. 3a). GPC was calculated by dividing the average 
thickness of the film by the total number of metal or N2 plasma pulses. 
The GPC increased monotonically from 0.38 to 0.7 Å/cycle as the tem
perature increased from 200 ◦C to 350 ◦C. The increase in GPC with 
temperature seen in our data can be attributed to either 1) an increase in 
reactive sites at higher temperature or 2) increased reactivity of either or 
both precursor at higher temperature [19,31,41–43]. A similar increase 
in GPC with temperature has been observed in previous works for both 
TiN and VN PEALD processes [29,30]. CVD behavior is unlikely, as the 
GPC would be expected to exhibit a much steeper increase with tem
perature along with non-uniformities in thickness. 

At 150 ◦C the GPC observed was high relative to the 200 ◦C GPC. 
Although high growth rates at low temperatures occur due to the 
condensation of reactants on the reaction surface [19,44], the deposition 
temperature of 150 ◦C was well above the precursor temperature (75 ◦C) 
to avoid condensation. The TDMAT precursor decomposition was found 
to be slow below 205 ◦C by FTIR for CVD growth of TiN using TDMAT 
and N2 [45]. Thus at 150 ◦C the TDMAT precursor may not have suffi
cient energy for surface reactions to occur. The incomplete reaction 
leaves ligands from the precursor causing high GPC. This theory can also 
be backed up by comparatively higher C impurity concentration found 
by XPS at 150 ◦C (Fig. 2c). 

3.4. Density 

The densities of the films were estimated from the fitting of XRR data 

and are plotted against the film deposition temperature(Fig. 3b). The 
theoretical density (Fig. 3b) was calculated from the weighted average 
of the bulk density of cubic TiN and cubic VN based on the XPS 
composition. At 150 ◦C, the incomplete surface reactions leave low- 
density organic species that contribute to lowering the film density 
[45]. Other contributing factors such as disorder in the crystal lattice as 
well as increased porosity are likely factors in the lower film density. 
With increasing deposition temperature, the densities of the films in
crease and saturate at 250 ◦C as the surface reactions presumably go 
toward completion. The high densities obtained at higher temperatures 
(200–350 ◦C) are still 4–8% lower than the theoretical values since the 
films contain impurities (C, O) and are nanocrystalline with an abun
dance of grain boundaries that introduce disorder in the structure and 
lower the density below the theoretical values. 

3.5. Crystal structure 

The films were found to be polycrystalline at all deposition tem
peratures, evident by the x-ray diffraction (XRD) measurements 
(Fig. 4a). Grazing incidence XRD (GIXRD) of the TiVN films shows peaks 
near 36.8◦, 42.8◦, 62.5◦, 75◦, 79◦, 106.5◦ and 111◦ that correspond to 
the (111), (200), (220), (311), (222), (331) and (420) planes respec
tively, of an FCC rock salt crystal structure with space group Fm 3 m and 
space group number 225 (Fig. 4a). All the observed peaks were located 
between the reference peak locations for FCC TiN (00-038-1420) and 
FCC VN (01-073-0528), suggesting a single-phase solid solution between 
cubic TiN and cubic VN. The smaller V3+ ion replaces the Ti3+ ion in the 

Fig. 2. a) The composition of the TiVN thin film is estimated from XPS measurement, b) the ratios of N:metal and Ti:V calculated, and c) the atomic % of O and C 
impurity found in the film at each deposition temperature (Tdep.). 

Fig. 3. Growth per cycle and film densities based on XRR experiments. a) GPC of TiVN thin films as a function of deposition temperature (Tdep.), calculated from XRR 
estimated film thickness for each N2 plasma (or metal precursor) pulse. b) Calculated density of TiVN as a function of deposition temperature (Tdep.), compared with 
single crystal theoretical density of corresponding TiVN compositions based on XPS measurements. 
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TiN lattice, effectively reducing the lattice spacing and increasing the 2θ 
values of the Bragg reflections. TiN films deposited at 150–350 ◦C by 
thermal ALD, using alkylamide precursors and NH3, generally tend to be 
amorphous or weakly crystalline [32,46–48]. The use of PEALD with 
alkylamide precursors has shown evidence of crystalline films [12,29, 
33,34,49], although amorphous structures have also been reported [50]. 

Increase in deposition temperature can also enhance crystal quality 
in a direct fashion by allowing atoms to occupy equilibrium positions 
during ALD cycles, or indirectly by reducing impurity concentration at 
elevated deposition temperatures [32]. A closer look at the θ-2θ XRD 
scans of polycrystalline TiVN films reveals the sudden increase or 
appearance of Bragg peak intensity beyond 150 ◦C deposition temper
atures (Fig. 4b), which coincides with the dramatic decrease in C con
centration beyond 150 ◦C (Fig. 2b). The θ-2θ XRD scans also reveal that 
the polycrystalline films grew with a <100> preferred orientation. With 
increasing temperature, the Bragg peak intensity increases, suggesting 
better crystallinity due to enhanced mobility of atoms on the growth 
surface. Thus, the increase in deposition temperature improved the 
crystallinity of the TiVN films. Additionally, the (200) plane grew 
preferentially out of plane with a lattice spacing of ~2.14 Å. The GPC of 
0.38–0.70 Å/cycle suggests, on average, it took 3 to 5 cycles to deposit a 
monolayer based on the out of plane direction being dominated by 

[200]. This suggests self-limiting ALD behavior and rules out CVD, 
where much higher GPC, along with non-uniformities in the film 
thickness, would be expected. 

The apparent crystallite sizes were estimated from the full width at 
half maximum (FWHM) of the (200) peak from the GIXRD data, using 
the Debye-Scherrer equation, considering crystallite size to be the only 
source of broadening. The diffraction data was not corrected for 
instrumental broadening or microstrain. The purpose of the crystallite 
size quantification is to determine the trend between samples. The 
calculated crystallite sizes hovered between 12.4 and 14.9 nm with 
minor changes for the films deposited at 200–350 ◦C. For the 150 ◦C 
sample, the calculated crystallite size was 6.8 nm, which may be because 
of broadening from the retained organic ligands from the precursor and 
does not necessarily represent the physical size of the crystallite. It 
should be noted that the crystallite sizes calculated are not limited by the 
film thickness; the crystallite sizes reported are approximately 5 – 8x 
smaller than the film thicknesses. Similar values of crystallite sizes were 
also found for TiMoN deposited by PEALD using identical growth con
ditions [33,34]. 

The lattice parameter of TiVN was calculated from all the observable 
Bragg peaks of the GIXRD and plotted as a function of deposition tem
perature (Fig. 5a). No significant difference in the lattice parameter was 

Fig. 4. a) Grazing incidence x-ray diffraction of 
TiVN thin films with peaks labeled for rock salt TiN 
(circles), rock salt VN (triangles) and Si substrate 
(red x). b) θ-2θ X-ray diffraction measured with a 5◦

offset to the incident angle (ω) to avoid detecting 
large substrate signals. Preferential orientation to
wards (100) is evident by the detection of (200) and 
(400) planes only. The (200) peak is enlarged in the 
inset to have better view for the changes in the in
tensity with deposition temperature (Tdep.). (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   

Fig. 5. a) The average lattice parameter from all the observable Bragg peaks for each deposition temperature compared to the theoretical lattice parameter of a stress 
free TiVN crystal structure of corresponding composition. b) Residual stress of TiVN thin film calculated from GIXRD using sin2ψ method showing compressive 
residual stress at all deposition temperatures (Tdep.). 
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