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Novel attentional gait index
reveals a cognitive ability-related
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Introduction: Gait automaticity refers to the ability to walk with minimal
recruitment of attentional networks typically mediated through the prefrontal
cortex (PFC). Reduced gait automaticity (i.e., greater use of attentional resources
during walking) is common with aging, contributing to an increased risk of
falls and reduced quality of life. A common assessment of gait automaticity
involves examining PFC activation using near-infrared spectroscopy (fNIRS)
during dual-task (DT) paradigms, such as walking while performing a cognitive
task. However, neither PFC activity nor task performance in isolation measures
automaticity accurately. For example, greater PFC activation could be interpreted
as worse gait automaticity when accompanied by poorer DT performance, but
when accompanied by better DT performance, it could be seen as successful
compensation. Thus, there is a need to incorporate behavioral performance and
PFC measurements for a more comprehensive evaluation of gait automaticity.
To address this need, we propose a novel attentional gait index as an analytical
approach that combines changes in PFC activity with changes in DT performance
to quantify automaticity, where a reduction in automaticity will be reflected as
an increased need for attentional gait control (i.e., larger index).

Methods: The index was validated in 173 participants (>65 y/o) who completed
DTs with two levels of difficulty while PFC activation was recorded with fNIRS.
The two DTs consisted of reciting every other letter of the alphabet while walking
over either an even or uneven surface.

Results: As DT difficulty increases, more participants showed the anticipated
increase in the attentional control of gait (i.e., less automaticity) as measured
by the novel index compared to PFC activation. Furthermore, when comparing
across individuals, lower cognitive function was related to higher attentional gait
index, but not PFC activation or DT performance.

Conclusion: The proposed index better quantified the differences in attentional
control of gait between tasks and individuals by providing a unified measure
that includes both brain activation and performance. This new approach
opens exciting possibilities to assess participant-specific deficits and compare
rehabilitation outcomes from gait automaticity interventions.

KEYWORDS

aging, near-infrared spectroscopy, locomotion, community mobility, cognition, brain
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1 Introduction

The ability to move around in the community is essential for
independent living (Patla and Shumway-Cook, 1999; Rosso et al.,
2013; Sheppard et al., 2013; Rantakokko et al., 2016). Successful
community mobility requires gait automaticity (Van Swearingen and
Studenski, 2014; Clark et al., 2014b; Brustio et al., 2018), which refers
to the automatic control of walking with minimal recruitment of
attentional networks primarily residing in the prefrontal cortex (PFC)
(Van Swearingen and Studenski, 2014; Clark, 2015). Gait automaticity
declines with age (Gschwind et al., 2010; Montero-Odasso et al., 2011;

Jan Swearingen and Studenski, 2014; Clark, 2015) and may contribute
to an increased risk of falls (Gschwind et al., 2010; Montero-Odasso
etal., 2011). Therefore, it is important to have a standardized way to
quantify gait automaticity to help evaluate fall risks and promote
mobility in older adults.

Gait automaticity can be evaluated by behavioral or
neurophysiological assessments. The behavioral assessment uses dual-
task walking (DT, i.e., walking and performing a cognitive task
simultaneously) and compares the performance in DT relative to
single-task (ST, i.e., either walking or performing a cognitive task)
(Paul et al., 2005). High automaticity is reflected by similar walking
(e.g., gait speed or task completion time) and cognitive performance
in DT and ST (Paul et al., 2005; Brauner et al., 2021; Longhurst et al.,
2022). When walking is automatic, it is assumed to require minimal
attentional resources, resulting in no impact on the participants
task (Clark, 2015). The
neurophysiological approach more directly measures the attentional

performance on the cognitive
resources required to complete the task. The attentional resources are
usually quantified by the cortical activation of the PFC (Holtzer et al.,
2011; Clark, 2015; Herold et al., 2017; Menant et al., 2020) using
non-invasive brain imaging technologies such as functional near-
infrared spectroscopy (fNIRS).

DT paradigms integrated with fNIRS-based PFC measurements
provide a useful avenue to assess gait automaticity. However, it is
challenging to interpret PFC measurements and task performance
independently during automaticity assessments. Specifically, a small
change in PFC activation from ST to DT has opposing interpretations
depending on task performance. Namely, a small increase in PFC
activation alongside good task performance may indicate high
automaticity (Beurskens et al., 2014; Clark, 2015; Mirelman et al,,
2017). In contrast, when a small increase in PFC activation is coupled
with poor task performance, it could indicate inefficiency in recruiting
neural resources or the task is beyond capacity (Holtzer et al., 2011;
Beurskens et al., 2014), as suggested by the CRUNCH model (Reuter-
Lorenz and Cappell, 2008). Similarly, a large increase in PFC activation
from ST to DT yields different interpretations contingent on task
performance. A larger increase in PFC activation paired with
maintained task performance could imply successful compensation
(Clark et al., 2014b; Holtzer et al., 2015; Mirelman et al., 2017) from
PEC for other brain regions whose structures and integrities have
declined with aging, as suggested by several theories such as the
HAROLD and STAC models (Cabeza, 2002; Reuter-Lorenz and
Cappell, 2008; Park and Reuter-Lorenz, 2009; Maillet and Rajah, 2013;
Fettrow et al., 2021). Conversely, when a large increase in PFC
activation is paired with poor task performance, it could represent
unsuccessful compensation (Clark et al., 2014a; Fraser et al., 2016;
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Osofundiya et al., 2016; Mirelman et al., 2017) or dedifferentiation,
i.e., non-task-specific overactivation (Cabeza, 2002; Cabeza and
Dennis, 2012; Festini et al., 2018; Fettrow et al., 2021). Therefore, there
is a need to consider PFC activation and task performance
simultaneously to characterize gait automaticity more accurately.

Given the interrelation of PFC activation and behavioral
performance, analyzing them together may provide a more
comprehensive measure of an individual’s gait automaticity than
examining either alone. To address this need, we propose a novel
attentional gait index that combines PFC activity and DT performance
to quantify gait automaticity. Specifically, a large index represents a
greater need for attentional control during walking when automaticity
is comprised. The objective of the study was to test the ability of the
index to differentiate the change in automaticity (1) between tasks
within the same participants and (2) between participants. For
objective 1, to compare between tasks, we computed the attentional
gait index in older participants (>65years of age, n=173) who
completed two difficulty levels of DT. We expected a higher attentional
gait index, indicating worse automaticity, at greater levels of task
difficulty. For objective 2, to compare between participants, we tested
if an individual’s cognitive abilities, measured by Mini-Mental State
Exam scores, were related to automaticity. We anticipated that better
cognitive ability would be correlated with a lower attentional gait
index (i.e., better automaticity) and that associations would be stronger
for the attentional gait index compared to either behavioral or
neurophysiological measures alone.

2 Materials and methods
2.1 Participants

The data included participants from three previously published
studies: Program to Improve Mobility in Aging, n=42 (Brach et al,,
2020); Neural Mechanisms of Community Mobility, n=29 (Aizenstein
et al,, 2008); and Move Monongahela-Youghiogheny Healthy Aging
Team, n=102 (Ganguli et al., 2010). The three datasets, although
collected for different purposes with different experimenters, included
similar protocols. Two studies were collected in the same lab with the
same fNIRS system, while the other study was collected in a different
laboratory with different fNIRS equipment (same model). All data
collection was overseen by the same investigator. There was no
statistical difference by study of PFC activation or change in
performance from ST to DT. Therefore, all datasets were combined
for analysis.

All study participants were at least 65years old, able to walk
unassisted, fluent English speakers, had no dementia, had no severe
vision or hearing impairment, and had no major neurological or
psychiatric diseases. More study-specific inclusion criteria and
medical conditions were reported in the published studies (Aizenstein
etal., 2008; Ganguli et al., 2010; Brach et al., 2020). The Institutional
Review Board at the University of Pittsburgh approved the studies,
and all participants gave written informed consent.

2.1.1 Participant characteristics

In all studies, age, sex, race, and highest level of education were
self-reported. General cognitive ability was assessed using the
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Mini-Mental State Exam (MMSE), a commonly used screening
instrument for cognitive impairments (Folstein et al., 1975). The
Program to Improve Mobility in Aging study administered the
Modified Mini-Mental State (3MS) Examination (Teng and Chui,
1987), which is an expanded version of the MMSE and includes all
items of MMSE (Van Patten et al., 2019). For consistency across
studies, MMSE scores were derived from the 3MS in this study by
extracting only items equivalent to the MMSE.

2.2 Experimental paradigm

Participants performed single or dual tasks on an oval track with
a 15-meter straight walkway on each side. One side had a standard
surface (even), and the other side had wood prisms underneath
carpets (uneven; Thies et al., 2005; Hoppes et al., 2020). All
participants performed four experimental trials, and each trial
included a pseudo-randomized sequence of four conditions outlined
here: two single tasks (ST) and two dual tasks (DT) (Figure 1). The
order was pseudo-randomized such that walking continued along
the oval track. Single tasks included a motor single-task, walking at
a comfortable pace on an even surface (walk), and a cognitive single-
task, standing while reciting every other letter of the alphabet
starting from B (standABC; Holtzer et al., 2011; Brandler et al., 2012;
Verghese et al., 2012). The single tasks were used as a reference to
compute the change in performance during DT to account for the
different baseline abilities of each participant. The DT conditions
required performing the cognitive task while walking on even
(evenABC) or uneven surfaces (unevenABC). No instruction was
given about which task to prioritize. The unevenABC condition was
considered a harder DT condition than the evenABC because of the
increased challenge of balancing and walking on the uneven
floor surface.

The task duration was 20s for standABC. The duration for the
motor ST (walk) and both DTs (evenABC and unevenABC) varied
depending on the time the participant took to walk over the 15m
straightway. Every condition was preceded by a quiet standing for 20s
where participants were simply instructed to stand still and not do
anything. The quiet standing allowed the hemodynamic response to
return to rest level such that relative changes in oxygenation of the
blood could be computed for each task condition compared to
quiet standing.

2.3 Data collection

Motor performance was quantified by gait speed (m/s). Gait speed
is computed as the distance (15m) divided by the time it took to walk
the 15-meter walkway, where time was measured by a stopwatch.
Cognitive performance was quantified by the rate of correct letters of
the alphabet generated per trial duration (correct letters/s). Average
motor and cognitive performance for each condition across the four
trials is reported.

PEC activation was measured using fNIRS, which measures
changes in blood oxygenation based on the distinct light absorption
properties of oxygenated (Hbo) and deoxygenated (Hbr) hemoglobin
(Miyai et al., 2001; Perrey, 2014; Hoppes et al., 2020). Participants
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A
Experimental Paradigm
|
I |
Dual-Task (DT) )
Walking Assessments (x4 Trials)
B

Task conditions performed in randomized
order in each trial

Motor single-task (ST) functional

(walk) +— hear-infrared
spectroscopy (fNIRS)
Speed (m/s)
Even Surface |
Cognitive ST -
(standABC) B.DF, ..
Rate (correct # of
alphabet generated/s)
Easy DT
(evenABC)
Even Surface
Hard DT
(unevenABC) B.D.F, ..
Uneven Surface
FIGURE 1

Experiment Protocol. (A) Overall protocol. Participants performed
four trials of dual-task (DT) assessments. (B) Each trial includes four
task conditions presented in pseudo-random order. The four tasks
are a motor single-task (ST): walking on an even surface; a cognitive
ST: standing and reciting every other letter of the alphabet
(standABC); and two DTs: reciting every other letter of the alphabet
while walking on an even (evenABC) or uneven (unevenABC) surface.
Motor performance is measured by gait speed (m/s), and cognitive
performance is measured by the rate of correct letters generated.
Prefrontal cortex activation was measured by functional near-
infrared spectroscopy throughout the trial

wore an eight-channel continuous wave fNIRS headband (Octamon,
Artinis Medical Systems, Netherlands) over their forehead during the
entire experiment. The headband contained two detectors and eight
sources with a source and detector pair distance of 35 mm covering
both the left and right PFC regions, specifically Brodmann areas 9, 44,
45, and 46 (Hoppes et al., 2020). The center of the headband was
aligned with the center of the participant’s nose, and the bottom of the
headband was just above the eyebrow (Bohlke et al., 2023). No short
separation channel was available in the equipment, and physiological
and extracortical noises were addressed statistically (See 2.4 fNIRS
Data Analysis). Near-infrared light transmitted at 850 nm and 760 nm
was used to detect changes in Hbo and Hbr. Data were sampled at
10 Hz and collected by the OxySoft software (Artinis Medical Systems,
Netherlands).
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2.4 fNIRS data analysis

fNIRS data were processed using the NIRS Brain AnalyzIR
toolbox (Santosa et al., 2018) in MATLAB 2021b (Mathworks, Natick,
Massachusetts). Data for a given task were excluded from processing
and analysis (1.51% of the tasks) if there were experimental errors or
if the participant clearly violated the protocol (e.g., walking during a
standing task). During processing, the fNIRS recording for each trial
was first trimmed to keep only 2's of the data before and after the first
and last task of a trial to reduce global baseline noise. Data channels
with flat signals due to data saturation or equipment malfunction
were identified by flagging channels with small variance (less than
107~ in a 5-s moving variance window). The flat channels (0.97% of
data) were then visually inspected and removed from analysis. Light
intensity was converted to optical density and then converted to Hbo
and Hbr measurements using the modified Beer-Lambert law with a
partial path length factor of 0.1 (Hoppes et al., 2020). The time series
data for each source-detector pair was used to fit a general linear
model (GLM). The design matrix of the GLM was the convolution of
stimulus timing, duration, and a canonical hemodynamic response
function (Hoppes et al., 2020). To minimize motion and physiological
artifacts, the model was solved with an autoregressive pre-whitening
iteratively reweighted least square approach (Santosa et al., 2018). In
brief, the autoregressive filter is a statistical method to alleviate
physiological noise and motion artifacts. The iterative reweighted
least square approach further downweights large motion artifacts
(Barker et al., 2013; Santosa et al., 2018; Bohlke et al., 2023). A
Student’s ¢-test was then performed on the regression coefficients, and

10.3389/fnagi.2023.1283376

the t-score represents the changes in Hbo or Hbr in each task
compared to the quiet standing before the task. The results across four
trials for the eight channels covering the whole PFC were combined,
taking into account the covariance using the toolbox to generate one
AHbo and one AHbr for each participant for each task relative to
quiet standing. Typically, an increase in PFC activity will
be represented by an increase in oxygenated hemoglobin (i.e., a
positive AHbo value) and a decrease in deoxygenated hemoglobin
(i.e., a negative AHbr value).

AHbo often has a stronger signal-to-noise ratio (Menant et al.,
2020) and, therefore, was used as the main measure of PFC activation
for the remainder of the article. However, the same approach applies
to both Abo and AHbr measurements. The results of calculating the
index using Hbr are included in Supplementary materials.

2.5 Attentional gait index

The goal of the attentional gait index is to create a single
monotonic axis that combines performance and PFC activation,
where a larger index will always represent a greater need for attentional
control during walking, indicating worse automaticity. Worse
automaticity is reflected by more interference between dual tasks
where they compete for the same attentional resources (Paul et al.,
2005), leading to decreased task performance and increased
recruitment of attentional resources (i.e., higher PFC activation).

The attentional gait index combining cortical activation and
performance is defined as the following:

Attentional Gait Index = Gain * PFC 4 tivation 1

where Gain = f(APerformance) = e * *APerformance

o = hyperparameter regulating the impact of APerformance on the Attentional Gait Index

AMotor N ACognitive _ Speedpr — Speedsr N Ratepr — Rategt

APerformance =
Motorsy

Cognitivest

Speedsr Rategt

ST = single-task conditions (walk or standABC)
DT =dual-task conditions (evenABC or unevenABC)
Speed = gait speed (m/s), measures motor performance

Rate =rate of correct letters of alphabet generated (letters/s), measures cognitive performance.

The attentional gait index is generated by scaling PFC,yation With
a gain that is a function of the hyperparameter, o , and performance
change, APerformance (Eq. 1). Figure 2 demonstrates the process of
computing the attentional gait index using one of the datasets with
three example participants highlighted to visualize the transformation
of the data.

The performance change, denoted as APerformance (Figure 2A),
is computed as the combined changes in cognitive and motor
performances from ST to DT, normalized to performance in domain-
The
normalization accounts for individual differences in walking speed

specific ST (standABC and walk, respectively, Eq. 1).

and alphabet performance at baseline. Cognitive and motor
performances are weighted equally in APerformance to account for
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the different strategies employed by the participants during dual
tasking since no specific prioritization instruction was given
(Verghese et al., 2007; Yogev-Seligmann et al., 2010; Lagué-Beauvais
et al., 2015). Studies with prioritization in the instruction should
consider weighting the motor and cognitive performance differently.
The definition of APerformance is similar to dual-task cost in existing
literature (Brauner et al., 2021; Longhurst et al., 2022). A more
negative APerformance value indicates performance was worse (i.e.,
participants walked slower and/or generated fewer correct alphabet
letters) during DT compared to ST. Conversely, a positive
APerformance represents better performance in DT compared to ST.

A negative sign was added before APerformance (Eq. 1) because
we expected performance to decrease during DT (i.e., APerformance

frontiersin.org
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Flowchart of the process to compute the attentional gait index
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FIGURE 2
Schematics and flowchart illustrating the process of computing the attentional gait index. The displayed example is one of the included datasets
(n=29) with three example participants highlighted (yellow, red, and blue). The evenABC (easier dual task, DT) task is represented by hollow circles,
and the unevenABC task is marked with filled circles. (A) Normalized performance change from single-task (ST) baseline to each DT. The
performance combines both motor and cognitive performances. A positive value indicates performance is better in DT than in ST. (B) Calculation of
the gain from APerformance. A large decrease in performance is mapped to a large gain (e.g., yellow empty circle). (C) The raw measure of the
prefrontal cortex (PFC) activity, which are t-scores representing changes in oxygenated hemoglobin (AHbo) concentration from rest to each DT. A
positive value indicates increased Hbo concentration in DT compared to quiet standing. A negative value indicates a decrease in Hbo
concentrations in DT from rest. (D) The second term in the attentional gait index equation, PFCaivaion. SIMply shifts raw PFC activity values to
be above or equal to 1. (E) The computed attentional gait index, which is the multiplication of the gain (B) and the PFC Activation (D).

< 0; Figure 2A, majority of data points < 0). The negative APerformance
reflects cognitive-motor interference during DT, which is expected in
populations where gait automaticity is reduced, such as older adults.
The exponential weighting in the gain (Eq. 1) is chosen such that
(1) performance decreases (APerformance < 0) scale the attentional
gait index up, with a large decrease weighted much more than a small
decrease (Figure 2B), (2) performance improvements (APerformance
> 0, less common occurrences; Figure 2B) scale the attentional gait
index down, but to a much smaller extent, and (3) unchanged
performance will result in an index that is equal to the PFC activation.
We weighted the gain in this way so that the index would more

sensitively discriminate between participants with decreased rather
than increased DT performance, as decreased performance with
increasing task challenge is expected and is particularly relevant in
the participant populations where gait automaticity is most
often studied.

The hyperparameter ¢ in the gain equation regulates the impact
of APerformance on the attentional gait index (Eq. 1). a was
optimized to minimize outliers while maximizing the sensitivity to
the increase in attentional control of gait (i.e., reduction in gait
automaticity) as the task difficulty increased from the evenABC to
the unevenABC task. Specifically, the objective function is defined as:

Objective function = %(Attentional Gait IndexpardpT > Attentional Gait Index gasyDT ) —%outlier

= %( Attentional Gait Index ynevenaBC > Attentional Gait Index evenaBC ) — %o0utlier (2)

Outliers were defined as values more than three scaled median
absolute deviations from the median, which is a robust measure of
dispersion and outliers (Leys et al., 2013). The objective function
value was evaluated for @ €[0,5] with 0.1 increments. The optimal &
was chosen as the smallest o that maximizes the objective function.

Frontiers in Aging Neuroscience

At the start of the search range (o = 0), the gain from APerformance
is equal to 1 and the attentional gait index is equal to the PFC
activation, which is the current standard in the field. The upper
bound of the search range @ =5 was chosen heuristically for the
combined dataset. Notice that the search range and optimal & value
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found are specific to the current dataset, but the objective function
(Eq. 2) and the optimization procedure can be applied to any
experimental design with two levels of DT difficulties.

To maintain the monotonic property of the attentional gait index
and the relative differences across people and conditions, we turned
all PFCyivaion Values positive by shifting all PFC activity data, i.e.,
AHbo at DT compared to ST, by an offset (Figures 2C,D), specifically:

PFCctivation = f(Raw PFC Activities)
= f(AHbo) = AHbo + min (AHbo) + &,
where g >0 (3)

We shifted all PFC activation values by the minimum value
across participants and tasks and then included an offset (¢ =1) such
that the minimum PFC activation would be different than zero
(Eq. 3). This was done to keep the attentional gait index (the scaled
PFC activation) monotonic while maintaining the relative difference
in PFC activation across participants. Notice that Eq. 3 is a linear
operation. Thus, the specific value of & does not impact the results.
In this case, we chose & =1 for simplicity (Figure 2D). Since the shift
eliminates the sign of Hbo changes, our measure cannot determine
how the attentional gait index changes with respect to rest. However,
it maintains the relative differences between tasks within a participant
and across participants. In other words, the linear operation does not
impact the goal of the attentional gait index, which is to compare
attentional control of gait (i.e., a proxy for gait automaticity) across
tasks and individuals. A higher value before or after the shifting will
always represent more PFC activation during the task.

If we were to use Hbr to represent the PFC activation, Hbr is
the first sign flipped to maintain the convention where higher
PFC Activation

Supplementary materials).

always represents more PFC activity (see

Figure 2 demonstrates the flowchart for computing the attentional
gait index using one of the three included datasets. The blue participant
is a typical example that behaves as we expected from the task design.
As task difficulty increased, the blue participants performance
decreased (Figure 2A, negative slope) and PFC activation increased
(Figures 2C,D, positive slope), suggesting the harder task had more
interference between walking and the alphabet tasks and required more
attentional resources. In other words, the harder task was performed
with higher attentional control, i.e., less automaticity. As a result, the
harder task had a larger attentional gait index (Figure 2E, positive slope).
In contrast, the yellow participant increased performance (Figure 2A)
and decreased PFC activation (Figures 2C,D) as the task became harder,
suggesting the harder task was performed with improved automaticity
(Figure 2E, lower value in attentional gait index for the harder task).
This could result from the participant not being fully engaged in the
easy task or the overall task design not being challenging enough.

The attentional gait index is also effective in differentiating
between participants. The red and blue participants had similar
patterns of performance change (Figure 2A, negative slopes for both)
and PFC activation (Figures 2C,D, positive slopes), but the red
participant achieved better performance than the blue participant
(APerformance red > blue in both tasks). This observation suggests
that with similar PFC resources, the red participant utilized the
resources more effectively to achieve better performance.
Consequently, the red participant should be considered to have better
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automaticity than the blue participant, i.e., lower attentional gait index
values (Figure 2E, red much smaller than blue).

2.6 Statistical analysis

For objective 1, to assess how each metric captured the anticipated
task-difficulty changes in gait automaticity, we descriptively compared
the attentional gait index, PFC activation, and APerformance by
reporting the percentage of participants following the expected trend
for each metric as task difficulty increases.

For objective 2, linear regressions were performed to test if the
independent variable, MMSE scores, is related to the dependent
variables, attentional gait index, PFC activation, and performance,
while adjusting for demographics: age, sex, race, and highest level of
education. Since the variables are on different scales, all variables were
first standardized as Z-scores before the model fitting. The variance
inflation factor (VIF) was computed to assess the multicollinearity
among the independent variables in the adjusted models. Variables
with VIF <10 would be kept in the multiple regression models. Model
significance was determined by an F-test comparing the regression
model with a constant model. To compare the impact of MMSE
across the models, the standardized f is reported. In brief, the
standardized B represents in standard deviation unit how much a unit
increase in MMSE will impact the dependent variable. We reported
the ordinary R* values, the p-values for the models, and standardized
coefficient estimates with their respective standard errors and
p-values. A one-sample Kolmogorov-Smirnov test was performed to
check the normality of the standardized residuals.

Two participants did not follow the instructions to recite every other
letter of the alphabet. A sensitivity analysis was included to test the impact
of removing these two participants on the fitting of the models adjusted
for demographics and our conclusions. All analyses were performed in
MATLAB 20204, and a statistical significance of @ = 0.05 was used.

3 Results

Demographics, cognitive test results, cognitive and motor task
performances, and fNIRS measurements of PFC activation in dual
tasks are shown for the full sample in Table 1. Among the 22 non-white
participants, one participant identified as Asian, one identified as
American Indian or Alaskan Native, 19 identified as Black, and one
identified as mixed or other race. Among the participants with
education less than or equal to high school, only one participant’s
highest level of education was less than high school.

3.1 Attentional gait index increases as task
difficulty increases

By experimental design, a harder task should require more
attentional resources, i.e., increased PFC activation (Figure 3A top left
panel) and have poorer performance (Figure 3B top left panel),
resulting in worse automaticity, i.e., increased attentional gait index
(Figures 3A,B bottom left panels).

Only 57% of participants increased PFC activation as the task
became harder (Figure 3A top middle panel), showing no clear
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TABLE 1 Demographic, clinical assessment results, task performances, and prefrontal cortical (PFC) activation (AHbo) of the study participants.

Variables Mean (SD) or n (%)

Sample size

173

Age (years)

73.9+5.6

Female, n (%)

108 (62.4%)

Race, n (%)

White

151 (87.3%)

Non-white

22 (12.7%)

Highest level of education, n (%)

Less than or equal to high school/equivalent

43 (24.9%)

College 87 (50.3%)
Postgraduate 43 (24.9%)
Mini-Mental State Exam (MMSE) score (max 30) 28.4+1.8
Gait speed at walk (motor single-task, m/s) 1.01+0.17
Gait speed at evenABC (m/s) 0.90+£0.19
Gait speed at unevenABC (m/s) 0.84+0.19
Rate of correct alphabet letters at stand ABC (cognitive single-task, letters/s) 0.56+0.15
Rate of correct alphabet letters at evenABC (letters/s) 0.59+0.16
Rate of correct alphabet letters at unevenABC (letters/s) 0.58+0.16
Change in oxygenated hemoglobin (AHbo) from rest to evenABC (t-stats) 1.64+2.85
AHbo from rest to unevenABC (t-stats) 1.99+3.24

All data are shown as mean + SD except for sex, which is binary, and race and highest level of education, which are categorical.

evidence of increased attentional control as task difficulty increased by
this measure alone. However, 73% of participants increased attentional
gait index (i.e., had worse automaticity) as task difficulty increased
(Figure 3A bottom middle panel), matching our anticipated result that
more challenging tasks would be performed with lower automaticity.
Notice that the increase from 57 to 73% of participants following our
expectation was primarily due to the gray participants whose PFC
activation unexpectedly decreased with increased task difficulty
(Figure 3A top right). These gray participants recruited less PFC as the
task became harder, but their performance declined, suggesting that
PFC resources were not being used as effectively as needed by the task
demand, which indicates reduced automaticity in the harder task.

In comparison, a larger percentage of participants (71%) decreased
their performance (combined cognitive and motor performance) as
the task became harder (Figure 3B top middle panel), which was
expected. A smaller percentage had better task performance during the
more difficult task (29%, Figure 3B top right panel). Some of these
participants with improved task performance moved in the expected
direction when using the attentional gait index (gray in Figure 3B
bottom middle panel), perhaps identifying individuals who improved
their performance at a cost of greater PFC recruitment. The increased
PFC recruitment could represent a compensatory strategy to cope with
the task demand, which corresponds to reduced automaticity.

In summary, as task difficulty increases, more participants showed
the expected decrease in automaticity as measured by the attentional
gait index and APerformance compared to PFC activation, suggesting
that attentional gait index and APerformance are more sensitive to the
between task differences within the participants.
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3.2 Greater attentional gait index is related
to worse cognitive function

All independent variables (MMSE score, age, sex, race, and
highest level of education) had VIF less than 10 and were all kept in
the multiple regression models.

As expected, higher MMSE was associated with lower attentional
gait index at both tasks (Table 2; evenABC: R*=0.06, p=0.002;
unevenABC: R*=0.05, p=0.003), and this association at the easier
task was robust to adjustment by age, sex, race, and highest level
of education (Table 3; Figure 4; evenABC: R*=0.09, p=0.02).
The association between MMSE and attentional gait index was
slightly weaker in the adjusted model at the harder task (Table 3;
Figure 4; unevenABC: R*=0.07, p=0.06). Higher MMSE was also
associated with lower PFC activation at the easier task (Table 2;
evenABC: R*=0.03, p=0.02, B =-0.18 £ 0.08), but this relation was
weaker (Table 3; evenABC: R*=0.07, p=0.06, § = —0.13 £ 0.08) after
adjusting for covariates.

The association between MMSE and attentional gait index had
the largest variance accounted for and largest standardized S
magnitude across both tasks in the unadjusted (Table 2; even ABC:
B =-0.23£0.07, p = 0.002unevenABC: 8 =—0.22 £ 0.07, p = 0.003)
and adjusted (Table 3; even ABC: B =-0.20+0.08,p=0.01;
unevenABC: § =—-0.19 4 0.08, p = 0.02) models.

The result remains robust after removing the two participants
who did not follow instructions to recite every other letter of the
alphabet. The models between MMSE and attentional gait index still
had the largest variance accounted for and largest standardized f
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FIGURE 3

Descriptive comparison between attentional gait index, prefrontal
cortical (PFC) activation, and APerformance as task difficulty
increases. (A) Comparison between attentional gait index and PFC
activation at each dual-task (DT) relative to rest. Blue always
represents participants who showed an expected increase in PFC
activation (top middle panel) and gray always represents participants
who decreased PFC activation (top right) as the task became more
difficult. Colors in the bottom panel represent how participants from
different groups at the top panel moved into different categories
(increase or decrease) in attentional gait index. Notice that some
participants with an unexpected decrease in PFC activation will now
have an expected increase in attentional gait index after considering
performance (gray in the top right moved to the bottom middle panel).
(B) Comparison between attentional gait index and APerformance. Blue
always represents participants who showed an expected decrease in
APerformance as the task becomes harder (top middle panel) and gray
always represents the ones who increased APerformance (top right).
Colors in the bottom panel represent how participants from different
APerformance at the top panel moved into different categories
(increase or decrease) in attentional gait index (bottom panel).

magnitude across both tasks (Task evenABC: Attentional Gait Index
R*=0.10, B = —0.21, PFC iyation: R*=0.07, B = —0.14, APerformance:
R*=0.03, B = 0.13. Task unevenABC: Attentional Gait Index
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R*=0.08, 8 = —0.20, PFC,gyation: R*=0.04, B = —0.10, APerformance:
R2=0.05, B = 0.13).

In sum, the MMSE score was more strongly correlated with the
attentional gait index than with PFC activation or performance. The
association between MMSE scores and attentional gait index had the
largest standardized § magnitude and variance explained across both
DT difficulties. The result is robust to adjustments for covariates and
not sensitive to the removal of participants who did not
follow instructions.

4 Discussion

We combined PFC activation and DT performance measures to
create a monotonic index to quantify gait automaticity. We showed
that the attentional gait index better captured the task difficulty-
related change in automaticity and was more strongly related to
general cognitive function than either PFC activation or DT
performance alone. In summary, the proposed index was effective at
differentiating (1) between tasks and (2) between participants.

4.1 Task performance contributes valuable
information to the attentional gait index
when comparing task difficulties

When comparing task difficulties, we expected the harder task to
show worse automaticity; specifically, the more challenging task will
require increased attentional demand from the PFC and result in
decreased performance due to greater interference between the motor
and cognitive tasks. This expected change would be reflected as an
increase in the attentional gait index, an increase in PFC activation,
and a decrease in performance. We observed that 73% of participants
increased attentional gait index and 71% decreased performance as
expected, but only 57% of participants increased PFC activation from
evenABC to unevenABC. The result confirms that the unevenABC
task was more challenging to the participants, given the majority of
the participants decreased performance. However, this increased
challenge was not always reflected in PFC activation alone.

Multiple reasons could explain why participants did not increase
PFC activation with increasing task demands: inefficient recruitment of
necessary neural resources, the task exceeding capacity (Reuter-Lorenz
and Cappell, 2008), or disengagement from the task such that the
participant did not even try to cope with the difficulty. In addition to
individual differences, the inconsistency in the PFC activity could also
be attributed to measurement noise from fNIRS, such as physiological
changes and skin properties (Vitorio et al., 2017; Menant et al., 2020).
This observation emphasizes the heterogeneity of PFC response despite
consistent behavioral performance and the importance of incorporating
behavioral performance when interpreting PFC activity.

Our finding that DT performance contains crucial information
when assessing automaticity aligns with previous studies showing
that DT performance is related to older adults’ mobility (Montero-
Odasso et al., 2012; Verghese et al., 2012; Rosso et al., 2019a) and
cognitive abilities (Holtzer et al., 2006; Rosso et al., 2019b; Brauner
et al.,, 2021). Nevertheless, performance alone does not quantify
automaticity since automaticity is defined by proficient performance
alongside minimal neural inputs from the attentional and executive
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TABLE 2 Unadjusted regression models of different gait automaticity measures with Mini-Mental State Exam (MMSE) scores (n = 173).

Model R? Model p-value Standardized p_MMSE (Estimates + SE) p_MMSE p-value
evenABC Task
Attentional Gait IndeXe enagsc 0.06 0.002 —0.23+0.07 0.002
PFCActivationeenanc 0.03 0.02 —0.18 £ 0.08 0.02
APerformance,,e,asc 0.005 0.34 0.07 £ 0.08 0.34
unevenABC Task
Attentional Gait IndeX,pevenanc 0.05 0.003 —0.22+0.07 0.003
PFCActivation,pevenasc 0.02 —0.13+0.08
APerformance,evenapc 0.005 0.36 0.07 £ 0.08 0.36

Significant models are highlighted in red and trending (p <0.1) models are shown in yellow.

TABLE 3 Multivariable regression models of different metrics to quantify gait automaticity with Mini-Mental State Exam (MMSE) scores (n = 173)

adjusted for age, sex, race, and highest level of education.

Model p-value

Standardized B_MMSE (Estimates + SE)

B_MMSE p-value

evenABC Task
Attentional Gait IndeX,,epapc 0.09 0.02 —0.20+ 0.08 0.01
PFCActivationenapc 0.07 —0.13£0.08 0.10
APerformance,e,apc 0.02 0.77 0.08 £ 0.08 0.30
unevenABC Task
Attentional Gait IndeX,evensnc 0.07 —0.19+0.08 0.02
PFCActivation,eenapc 0.04 0.40 —0.10+£0.08 0.21
APerformance pevenasc 0.01 0.90 0.07 +0.08 0.41

Significant models are highlighted in red, and trending (p <0.1) models are highlighted in yellow.

control center (Clark, 2015). In other words, the engagement of
attentional resources during a typically automatic task such as
walking is a signature of reduced automaticity (Van Swearingen and
Studenski, 2014; Clark, 2015). Moreover, most theoretical models
emphasize the importance of examining the activation patterns of
PFC to understand cognitive aging (Reuter-Lorenz and Cappell,
2008; Park and Reuter-Lorenz, 2009; Festini et al., 2018). Considering
fNIRS is a relatively new technology with fast-evolving instrument
design and analysis techniques (Perrey, 2014), future studies should
keep considering performance and PFC activity together using the
attentional gait index to improve quantification of gait automaticity.

4.2 Poorer attentional gait index was
related to lower general cognitive function

When comparing across participants, we showed that lower
cognitive function, measured by MMSE score, is related to lower
attentional gait index in both DT difficulties. The results suggest that
the attentional gait index was more sensitive to individual
characteristics that could impact automaticity than PFC activation or
performance, which are existing metrics to quantify automaticity.

However, we noticed that the variance explained by the models
(R?) is relatively low. The fit remains roughly the same with or without
adjusting for age, sex, race, and highest level of education, suggesting
that most of the variance in the attentional gait index and PFC activity
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was not explained by the demographics and cognitive abilities. The
low R* is not unexpected as gait automaticity depends on the
subcortical circuits, which were not measured with fNIRS during
walking (Wu and Hallett, 2005; Rosano et al., 2007; Clark, 2015). Thus,
complementary imaging data about the integrity of the subcortical
circuits, including volume or circuitry connectivity, might account for
the unexplained variance in the model.

In our study, MMSE was not related to APerformance. In
comparison, a prior study (Brauner et al., 2021) has found that the
MMSE score is associated with APerformance. Of note, APerformance
is a component in calculating the attentional gait index, but we were
not able to observe a direct association between MMSE score and
APerformance in our study. Several factors could contribute to this
difference, including (1) a different dual-task paradigm was used and
(2) the population recruited might be different. Specifically, the prior
study had an older cohort than we did (> 85years old vs. mean
73.9 £ 5.6 in our sample).

4.3 Attentional gait index provides a unified
measure of gait automaticity that
combines behavioral performance and PFC
activation

Performance in DT walking is a commonly used metric to
assess gait automaticity, but performance alone does not reflect the
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cortical input required. For instance, the same performance can
be achieved with little effort and low attentional control, i.e.,
automaticity, or with significant effort from the attentional resource
center. Neurophysiological measures, such as PFC activation,
provide more insights into the cortical inputs supporting the
observed performance. However, prior research on PFC signals
during walking has shown inconsistent results (Yeung and Chan,
2021). Both increased (Holtzer et al., 2011; Mirelman et al., 2017)
and decreased (Beurskens et al., 2014) PFC activity during DT
walking have been reported. These findings are hard to reconcile
without considering task performance.

The attentional gait index provides a solution by establishing a
unified axis that combines performance and PFC activation. The
increased PFC activity observed by Holtzer et al. (2011) and Mirelman
etal. (2017) could indicate either increased reliance on the attentional
center to compensate for the loss of automaticity, resulting in
maintained task performance or dedifferentiation in the neural
signals, leading to poor task performance. In the attentional gait index,
the increased PFC activity would be scaled down for maintained
performance to reflect successful compensation and scaled up for
poor task performance to reflect unsuccessful compensation or
dedifferentiation. The decreased PFC activity reported by Beurskens
etal. (2014) could represent either inefficiency of resource utilization,
leading to poor task performance, or maintained automaticity,
resulting in good performance. These differences would be reflected
in the attentional gait index, where the same PFC activity would
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be scaled up for the reduced performance scenario to reflect the
inability to recruit necessary resources.

5 Limitations

One main limitation is that the attentional gait index can only
be computed for study designs with at least two distinct task
difficulties because parameter optimization a requires at least two
difficulties. Additionally, even though the proposed method to
compute the attentional gait index can be applied to any dual-task
paradigm with at least two levels of task difficulties, the datasets
used to test the index here all performed the same dual-task
walking paradigm (i.e., walking and reciting alternating letters of
the alphabet with or without an uneven surface) with no task
prioritization. It has been shown that dual-task modality and
prioritization can impact performance and assessment results
differently (Verghese et al., 2007; Yogev-Seligmann et al., 2010;
Beurskens et al., 2014; Lagué-Beauvais et al., 2015; Tsang et al.,
2022). Therefore, it is important to verify that the index design is
robust to varying experimental protocols, including different
motor and cognitive tasks, prioritization instructions, and
performance metrics, in future studies. Finally, the participants
recruited are relatively healthy in their cognitive abilities (MMSE
mean £SD: 28.42 £ 1.83, min =21), which may not reflect the full
population of community-dwelling older adults (Jacqmin-Gadda
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et al., 1997). Future studies can assess if the findings are
generalizable to populations with a wider range of cognitive
abilities. Future studies should also investigate if the index is
related to clinically relevant measures such as balance confidence
or fall risks.

6 Conclusion

Gait automaticity is crucial for safe community mobility, and
automaticity is an important rehabilitation target to restore
walking function and independence. However, a standard and
robust assessment for gait automaticity is lacking. We addressed
the need to better quantify gait automaticity using a novel
approach to combine both DT performance and PFC activation
into an attentional gait index. We demonstrated the efficacy of the
better-
differentiating automaticity (1) between tasks within participants

index by achieving two objectives, specifically,
and (2) between participants based on overall cognitive function.
The index revealed a decrease in automaticity as task difficulty
increased, which was not evidenced by PFC activation.
Furthermore, the index captured the cognitive ability-related
differences in automaticity better than PFC activation or DT
performance alone. In summary, the attentional gait index
provided a standard metric to characterize gait automaticity in a
dual-task walking paradigm. The standardized metric will allow
better quantification of the effectiveness of interventions aimed at
improving automaticity and facilitate future studies to investigate
the connections between automaticity and other participant-
specific characteristics.
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