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Introduction: Gait automaticity refers to the ability to walk with minimal 
recruitment of attentional networks typically mediated through the prefrontal 
cortex (PFC). Reduced gait automaticity (i.e., greater use of attentional resources 
during walking) is common with aging, contributing to an increased risk of 
falls and reduced quality of life. A common assessment of gait automaticity 
involves examining PFC activation using near-infrared spectroscopy (fNIRS) 
during dual-task (DT) paradigms, such as walking while performing a cognitive 
task. However, neither PFC activity nor task performance in isolation measures 
automaticity accurately. For example, greater PFC activation could be interpreted 
as worse gait automaticity when accompanied by poorer DT performance, but 
when accompanied by better DT performance, it could be seen as successful 
compensation. Thus, there is a need to incorporate behavioral performance and 
PFC measurements for a more comprehensive evaluation of gait automaticity. 
To address this need, we propose a novel attentional gait index as an analytical 
approach that combines changes in PFC activity with changes in DT performance 
to quantify automaticity, where a reduction in automaticity will be reflected as 
an increased need for attentional gait control (i.e., larger index).

Methods: The index was validated in 173 participants (≥65 y/o) who completed 
DTs with two levels of difficulty while PFC activation was recorded with fNIRS. 
The two DTs consisted of reciting every other letter of the alphabet while walking 
over either an even or uneven surface.

Results: As DT difficulty increases, more participants showed the anticipated 
increase in the attentional control of gait (i.e., less automaticity) as measured 
by the novel index compared to PFC activation. Furthermore, when comparing 
across individuals, lower cognitive function was related to higher attentional gait 
index, but not PFC activation or DT performance.

Conclusion: The proposed index better quantified the differences in attentional 
control of gait between tasks and individuals by providing a unified measure 
that includes both brain activation and performance. This new approach 
opens exciting possibilities to assess participant-specific deficits and compare 
rehabilitation outcomes from gait automaticity interventions.
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1 Introduction

The ability to move around in the community is essential for 
independent living (Patla and Shumway-Cook, 1999; Rosso et al., 
2013; Sheppard et  al., 2013; Rantakokko et  al., 2016). Successful 
community mobility requires gait automaticity (Van Swearingen and 
Studenski, 2014; Clark et al., 2014b; Brustio et al., 2018), which refers 
to the automatic control of walking with minimal recruitment of 
attentional networks primarily residing in the prefrontal cortex (PFC) 
(Van Swearingen and Studenski, 2014; Clark, 2015). Gait automaticity 
declines with age (Gschwind et al., 2010; Montero-Odasso et al., 2011; 
Van Swearingen and Studenski, 2014; Clark, 2015) and may contribute 
to an increased risk of falls (Gschwind et al., 2010; Montero-Odasso 
et al., 2011). Therefore, it is important to have a standardized way to 
quantify gait automaticity to help evaluate fall risks and promote 
mobility in older adults.

Gait automaticity can be  evaluated by behavioral or 
neurophysiological assessments. The behavioral assessment uses dual-
task walking (DT, i.e., walking and performing a cognitive task 
simultaneously) and compares the performance in DT relative to 
single-task (ST, i.e., either walking or performing a cognitive task) 
(Paul et al., 2005). High automaticity is reflected by similar walking 
(e.g., gait speed or task completion time) and cognitive performance 
in DT and ST (Paul et al., 2005; Brauner et al., 2021; Longhurst et al., 
2022). When walking is automatic, it is assumed to require minimal 
attentional resources, resulting in no impact on the participant’s 
performance on the cognitive task (Clark, 2015). The 
neurophysiological approach more directly measures the attentional 
resources required to complete the task. The attentional resources are 
usually quantified by the cortical activation of the PFC (Holtzer et al., 
2011; Clark, 2015; Herold et  al., 2017; Menant et  al., 2020) using 
non-invasive brain imaging technologies such as functional near-
infrared spectroscopy (fNIRS).

DT paradigms integrated with fNIRS-based PFC measurements 
provide a useful avenue to assess gait automaticity. However, it is 
challenging to interpret PFC measurements and task performance 
independently during automaticity assessments. Specifically, a small 
change in PFC activation from ST to DT has opposing interpretations 
depending on task performance. Namely, a small increase in PFC 
activation alongside good task performance may indicate high 
automaticity (Beurskens et al., 2014; Clark, 2015; Mirelman et al., 
2017). In contrast, when a small increase in PFC activation is coupled 
with poor task performance, it could indicate inefficiency in recruiting 
neural resources or the task is beyond capacity (Holtzer et al., 2011; 
Beurskens et al., 2014), as suggested by the CRUNCH model (Reuter-
Lorenz and Cappell, 2008). Similarly, a large increase in PFC activation 
from ST to DT yields different interpretations contingent on task 
performance. A larger increase in PFC activation paired with 
maintained task performance could imply successful compensation 
(Clark et al., 2014b; Holtzer et al., 2015; Mirelman et al., 2017) from 
PFC for other brain regions whose structures and integrities have 
declined with aging, as suggested by several theories such as the 
HAROLD and STAC models (Cabeza, 2002; Reuter-Lorenz and 
Cappell, 2008; Park and Reuter-Lorenz, 2009; Maillet and Rajah, 2013; 
Fettrow et  al., 2021). Conversely, when a large increase in PFC 
activation is paired with poor task performance, it could represent 
unsuccessful compensation (Clark et al., 2014a; Fraser et al., 2016; 

Osofundiya et al., 2016; Mirelman et al., 2017) or dedifferentiation, 
i.e., non-task-specific overactivation (Cabeza, 2002; Cabeza and 
Dennis, 2012; Festini et al., 2018; Fettrow et al., 2021). Therefore, there 
is a need to consider PFC activation and task performance 
simultaneously to characterize gait automaticity more accurately.

Given the interrelation of PFC activation and behavioral 
performance, analyzing them together may provide a more 
comprehensive measure of an individual’s gait automaticity than 
examining either alone. To address this need, we propose a novel 
attentional gait index that combines PFC activity and DT performance 
to quantify gait automaticity. Specifically, a large index represents a 
greater need for attentional control during walking when automaticity 
is comprised. The objective of the study was to test the ability of the 
index to differentiate the change in automaticity (1) between tasks 
within the same participants and (2) between participants. For 
objective 1, to compare between tasks, we computed the attentional 
gait index in older participants (≥65 years of age, n = 173) who 
completed two difficulty levels of DT. We expected a higher attentional 
gait index, indicating worse automaticity, at greater levels of task 
difficulty. For objective 2, to compare between participants, we tested 
if an individual’s cognitive abilities, measured by Mini-Mental State 
Exam scores, were related to automaticity. We anticipated that better 
cognitive ability would be correlated with a lower attentional gait 
index (i.e., better automaticity) and that associations would be stronger 
for the attentional gait index compared to either behavioral or 
neurophysiological measures alone.

2 Materials and methods

2.1 Participants

The data included participants from three previously published 
studies: Program to Improve Mobility in Aging, n = 42 (Brach et al., 
2020); Neural Mechanisms of Community Mobility, n = 29 (Aizenstein 
et al., 2008); and Move Monongahela-Youghiogheny Healthy Aging 
Team, n = 102 (Ganguli et  al., 2010). The three datasets, although 
collected for different purposes with different experimenters, included 
similar protocols. Two studies were collected in the same lab with the 
same fNIRS system, while the other study was collected in a different 
laboratory with different fNIRS equipment (same model). All data 
collection was overseen by the same investigator. There was no 
statistical difference by study of PFC activation or change in 
performance from ST to DT. Therefore, all datasets were combined 
for analysis.

All study participants were at least 65 years old, able to walk 
unassisted, fluent English speakers, had no dementia, had no severe 
vision or hearing impairment, and had no major neurological or 
psychiatric diseases. More study-specific inclusion criteria and 
medical conditions were reported in the published studies (Aizenstein 
et al., 2008; Ganguli et al., 2010; Brach et al., 2020). The Institutional 
Review Board at the University of Pittsburgh approved the studies, 
and all participants gave written informed consent.

2.1.1 Participant characteristics
In all studies, age, sex, race, and highest level of education were 

self-reported. General cognitive ability was assessed using the 
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Mini-Mental State Exam (MMSE), a commonly used screening 
instrument for cognitive impairments (Folstein et  al., 1975). The 
Program to Improve Mobility in Aging study administered the 
Modified Mini-Mental State (3MS) Examination (Teng and Chui, 
1987), which is an expanded version of the MMSE and includes all 
items of MMSE (Van Patten et  al., 2019). For consistency across 
studies, MMSE scores were derived from the 3MS in this study by 
extracting only items equivalent to the MMSE.

2.2 Experimental paradigm

Participants performed single or dual tasks on an oval track with 
a 15-meter straight walkway on each side. One side had a standard 
surface (even), and the other side had wood prisms underneath 
carpets (uneven; Thies et  al., 2005; Hoppes et  al., 2020). All 
participants performed four experimental trials, and each trial 
included a pseudo-randomized sequence of four conditions outlined 
here: two single tasks (ST) and two dual tasks (DT) (Figure 1). The 
order was pseudo-randomized such that walking continued along 
the oval track. Single tasks included a motor single-task, walking at 
a comfortable pace on an even surface (walk), and a cognitive single-
task, standing while reciting every other letter of the alphabet 
starting from B (standABC; Holtzer et al., 2011; Brandler et al., 2012; 
Verghese et al., 2012). The single tasks were used as a reference to 
compute the change in performance during DT to account for the 
different baseline abilities of each participant. The DT conditions 
required performing the cognitive task while walking on even 
(evenABC) or uneven surfaces (unevenABC). No instruction was 
given about which task to prioritize. The unevenABC condition was 
considered a harder DT condition than the evenABC because of the 
increased challenge of balancing and walking on the uneven 
floor surface.

The task duration was 20 s for standABC. The duration for the 
motor ST (walk) and both DTs (evenABC and unevenABC) varied 
depending on the time the participant took to walk over the 15 m 
straightway. Every condition was preceded by a quiet standing for 20 s 
where participants were simply instructed to stand still and not do 
anything. The quiet standing allowed the hemodynamic response to 
return to rest level such that relative changes in oxygenation of the 
blood could be  computed for each task condition compared to 
quiet standing.

2.3 Data collection

Motor performance was quantified by gait speed (m/s). Gait speed 
is computed as the distance (15 m) divided by the time it took to walk 
the 15-meter walkway, where time was measured by a stopwatch. 
Cognitive performance was quantified by the rate of correct letters of 
the alphabet generated per trial duration (correct letters/s). Average 
motor and cognitive performance for each condition across the four 
trials is reported.

PFC activation was measured using fNIRS, which measures 
changes in blood oxygenation based on the distinct light absorption 
properties of oxygenated (Hbo) and deoxygenated (Hbr) hemoglobin 
(Miyai et al., 2001; Perrey, 2014; Hoppes et al., 2020). Participants 

wore an eight-channel continuous wave fNIRS headband (Octamon, 
Artinis Medical Systems, Netherlands) over their forehead during the 
entire experiment. The headband contained two detectors and eight 
sources with a source and detector pair distance of 35 mm covering 
both the left and right PFC regions, specifically Brodmann areas 9, 44, 
45, and 46 (Hoppes et al., 2020). The center of the headband was 
aligned with the center of the participant’s nose, and the bottom of the 
headband was just above the eyebrow (Bohlke et al., 2023). No short 
separation channel was available in the equipment, and physiological 
and extracortical noises were addressed statistically (See 2.4 fNIRS 
Data Analysis). Near-infrared light transmitted at 850 nm and 760 nm 
was used to detect changes in Hbo and Hbr. Data were sampled at 
10 Hz and collected by the OxySoft software (Artinis Medical Systems, 
Netherlands).

FIGURE 1

Experiment Protocol. (A) Overall protocol. Participants performed 
four trials of dual-task (DT) assessments. (B) Each trial includes four 
task conditions presented in pseudo-random order. The four tasks 
are a motor single-task (ST): walking on an even surface; a cognitive 
ST: standing and reciting every other letter of the alphabet 
(standABC); and two DTs: reciting every other letter of the alphabet 
while walking on an even (evenABC) or uneven (unevenABC) surface. 
Motor performance is measured by gait speed (m/s), and cognitive 
performance is measured by the rate of correct letters generated. 
Prefrontal cortex activation was measured by functional near-
infrared spectroscopy throughout the trial.
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2.4 fNIRS data analysis

fNIRS data were processed using the NIRS Brain AnalyzIR 
toolbox (Santosa et al., 2018) in MATLAB 2021b (Mathworks, Natick, 
Massachusetts). Data for a given task were excluded from processing 
and analysis (1.51% of the tasks) if there were experimental errors or 
if the participant clearly violated the protocol (e.g., walking during a 
standing task). During processing, the fNIRS recording for each trial 
was first trimmed to keep only 2 s of the data before and after the first 
and last task of a trial to reduce global baseline noise. Data channels 
with flat signals due to data saturation or equipment malfunction 
were identified by flagging channels with small variance (less than 
10−9 in a 5-s moving variance window). The flat channels (0.97% of 
data) were then visually inspected and removed from analysis. Light 
intensity was converted to optical density and then converted to Hbo 
and Hbr measurements using the modified Beer–Lambert law with a 
partial path length factor of 0.1 (Hoppes et al., 2020). The time series 
data for each source–detector pair was used to fit a general linear 
model (GLM). The design matrix of the GLM was the convolution of 
stimulus timing, duration, and a canonical hemodynamic response 
function (Hoppes et al., 2020). To minimize motion and physiological 
artifacts, the model was solved with an autoregressive pre-whitening 
iteratively reweighted least square approach (Santosa et al., 2018). In 
brief, the autoregressive filter is a statistical method to alleviate 
physiological noise and motion artifacts. The iterative reweighted 
least square approach further downweights large motion artifacts 
(Barker et  al., 2013; Santosa et  al., 2018; Bohlke et  al., 2023). A 
Student’s t-test was then performed on the regression coefficients, and 

the t-score represents the changes in Hbo or Hbr in each task 
compared to the quiet standing before the task. The results across four 
trials for the eight channels covering the whole PFC were combined, 
taking into account the covariance using the toolbox to generate one 
ΔHbo and one ΔHbr for each participant for each task relative to 
quiet standing. Typically, an increase in PFC activity will 
be  represented by an increase in oxygenated hemoglobin (i.e., a 
positive ΔHbo value) and a decrease in deoxygenated hemoglobin 
(i.e., a negative ΔHbr value).

ΔHbo often has a stronger signal-to-noise ratio (Menant et al., 
2020) and, therefore, was used as the main measure of PFC activation 
for the remainder of the article. However, the same approach applies 
to both Δbo and ΔHbr measurements. The results of calculating the 
index using Hbr are included in Supplementary materials.

2.5 Attentional gait index

The goal of the attentional gait index is to create a single 
monotonic axis that combines performance and PFC activation, 
where a larger index will always represent a greater need for attentional 
control during walking, indicating worse automaticity. Worse 
automaticity is reflected by more interference between dual tasks 
where they compete for the same attentional resources (Paul et al., 
2005), leading to decreased task performance and increased 
recruitment of attentional resources (i.e., higher PFC activation).

The attentional gait index combining cortical activation and 
performance is defined as the following:

	 Attentional Gait Index Gain= ∗ PFCActivation	 (1)

	 where Gain = ∆( ) = − ∗∆f Performance e Performanceα

α =  hyperparameter regulating the impact of Performance∆  on the Attentional Gait Index

		
∆

∆ ∆Performance Motor
Motor

C
Cognitive

Speed S
ST ST

DT= + =
−ognitive ppeed

Speed
Rate Rate

Rate
ST

ST

DT ST

ST
+

−

	

	 ST = single-task conditions (walk or standABC)
	 DT = dual-task conditions (evenABC or unevenABC)
	 Speed = gait speed (m/s), measures motor performance

Rate = rate of correct letters of alphabet generated (letters/s), measures cognitive performance.

The attentional gait index is generated by scaling PFCActivation with 
a gain that is a function of the hyperparameter, α , and performance 
change, ΔPerformance (Eq. 1). Figure 2 demonstrates the process of 
computing the attentional gait index using one of the datasets with 
three example participants highlighted to visualize the transformation 
of the data.

The performance change, denoted as ΔPerformance (Figure 2A), 
is computed as the combined changes in cognitive and motor 
performances from ST to DT, normalized to performance in domain-
specific ST (standABC and walk, respectively, Eq.  1). The 
normalization accounts for individual differences in walking speed 
and alphabet performance at baseline. Cognitive and motor 
performances are weighted equally in ΔPerformance to account for 

the different strategies employed by the participants during dual 
tasking since no specific prioritization instruction was given 
(Verghese et al., 2007; Yogev-Seligmann et al., 2010; Laguë-Beauvais 
et al., 2015). Studies with prioritization in the instruction should 
consider weighting the motor and cognitive performance differently. 
The definition of ΔPerformance is similar to dual-task cost in existing 
literature (Brauner et al., 2021; Longhurst et al., 2022). A more 
negative ΔPerformance value indicates performance was worse (i.e., 
participants walked slower and/or generated fewer correct alphabet 
letters) during DT compared to ST. Conversely, a positive 
ΔPerformance represents better performance in DT compared to ST.

A negative sign was added before ΔPerformance (Eq. 1) because 
we expected performance to decrease during DT (i.e., ΔPerformance 
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≤ 0; Figure 2A, majority of data points < 0). The negative ΔPerformance 
reflects cognitive–motor interference during DT, which is expected in 
populations where gait automaticity is reduced, such as older adults.

The exponential weighting in the gain (Eq. 1) is chosen such that 
(1) performance decreases (ΔPerformance < 0) scale the attentional 
gait index up, with a large decrease weighted much more than a small 
decrease (Figure 2B), (2) performance improvements (ΔPerformance 
> 0, less common occurrences; Figure 2B) scale the attentional gait 
index down, but to a much smaller extent, and (3) unchanged 
performance will result in an index that is equal to the PFC activation. 
We  weighted the gain in this way so that the index would more 

sensitively discriminate between participants with decreased rather 
than increased DT performance, as decreased performance with 
increasing task challenge is expected and is particularly relevant in 
the participant populations where gait automaticity is most 
often studied.

The hyperparameter α  in the gain equation regulates the impact 
of ΔPerformance on the attentional gait index (Eq.  1). α was 
optimized to minimize outliers while maximizing the sensitivity to 
the increase in attentional control of gait (i.e., reduction in gait 
automaticity) as the task difficulty increased from the evenABC to 
the unevenABC task. Specifically, the objective function is defined as:

FIGURE 2

Schematics and flowchart illustrating the process of computing the attentional gait index. The displayed example is one of the included datasets 
(n = 29) with three example participants highlighted (yellow, red, and blue). The evenABC (easier dual task, DT) task is represented by hollow circles, 
and the unevenABC task is marked with filled circles. (A) Normalized performance change from single-task (ST) baseline to each DT. The 
performance combines both motor and cognitive performances. A positive value indicates performance is better in DT than in ST. (B) Calculation of 
the gain from ΔPerformance. A large decrease in performance is mapped to a large gain (e.g., yellow empty circle). (C) The raw measure of the 
prefrontal cortex (PFC) activity, which are t-scores representing changes in oxygenated hemoglobin (ΔHbo) concentration from rest to each DT. A 
positive value indicates increased Hbo concentration in DT compared to quiet standing. A negative value indicates a decrease in Hbo 
concentrations in DT from rest. (D) The second term in the attentional gait index equation, PFCActivation, simply shifts raw PFC activity values to 
be above or equal to 1. (E) The computed attentional gait index, which is the multiplication of the gain (B) and the PFC Activation (D).

	

Objective function Attentional Gait Index AttentionahardDT= >% ll Gait Index outlier

Attentional Gait Index

easyDT

evenun

( ) −
=

%

% AABC evenABCAttentional Gait Index outlier>( ) −% 	 (2)

Outliers were defined as values more than three scaled median 
absolute deviations from the median, which is a robust measure of 
dispersion and outliers (Leys et al., 2013). The objective function 
value was evaluated for α ∈[ ]0 5,  with 0.1 increments. The optimal α  
was chosen as the smallest α  that maximizes the objective function. 

At the start of the search range (α = 0), the gain from ΔPerformance 
is equal to 1 and the attentional gait index is equal to the PFC 
activation, which is the current standard in the field. The upper 
bound of the search range α =5 was chosen heuristically for the 
combined dataset. Notice that the search range and optimal α  value 
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found are specific to the current dataset, but the objective function 
(Eq.  2) and the optimization procedure can be  applied to any 
experimental design with two levels of DT difficulties.

To maintain the monotonic property of the attentional gait index 
and the relative differences across people and conditions, we turned 
all PFCActivation values positive by shifting all PFC activity data, i.e., 
ΔHbo at DT compared to ST, by an offset (Figures 2C,D), specifically:

	

PFC f Raw PFC Activities
f

activation = ( )
= ( ) = + ( ) +∆ ∆ ∆Hbo Hbo Hbomin ε ,,

                        where ε > 0 	 (3)

We shifted all PFC activation values by the minimum value 
across participants and tasks and then included an offset (ε =1) such 
that the minimum PFC activation would be  different than zero 
(Eq. 3). This was done to keep the attentional gait index (the scaled 
PFC activation) monotonic while maintaining the relative difference 
in PFC activation across participants. Notice that Eq. 3 is a linear 
operation. Thus, the specific value of ε  does not impact the results. 
In this case, we chose ε  = 1 for simplicity (Figure 2D). Since the shift 
eliminates the sign of Hbo changes, our measure cannot determine 
how the attentional gait index changes with respect to rest. However, 
it maintains the relative differences between tasks within a participant 
and across participants. In other words, the linear operation does not 
impact the goal of the attentional gait index, which is to compare 
attentional control of gait (i.e., a proxy for gait automaticity) across 
tasks and individuals. A higher value before or after the shifting will 
always represent more PFC activation during the task.

If we were to use Hbr to represent the PFC activation, Hbr is 
the first sign flipped to maintain the convention where higher 
PFCActivation  always represents more PFC activity (see 
Supplementary materials).

Figure 2 demonstrates the flowchart for computing the attentional 
gait index using one of the three included datasets. The blue participant 
is a typical example that behaves as we expected from the task design. 
As task difficulty increased, the blue participant’s performance 
decreased (Figure 2A, negative slope) and PFC activation increased 
(Figures 2C,D, positive slope), suggesting the harder task had more 
interference between walking and the alphabet tasks and required more 
attentional resources. In other words, the harder task was performed 
with higher attentional control, i.e., less automaticity. As a result, the 
harder task had a larger attentional gait index (Figure 2E, positive slope). 
In contrast, the yellow participant increased performance (Figure 2A) 
and decreased PFC activation (Figures 2C,D) as the task became harder, 
suggesting the harder task was performed with improved automaticity 
(Figure 2E, lower value in attentional gait index for the harder task). 
This could result from the participant not being fully engaged in the 
easy task or the overall task design not being challenging enough.

The attentional gait index is also effective in differentiating 
between participants. The red and blue participants had similar 
patterns of performance change (Figure 2A, negative slopes for both) 
and PFC activation (Figures  2C,D, positive slopes), but the red 
participant achieved better performance than the blue participant 
(ΔPerformance red > blue in both tasks). This observation suggests 
that with similar PFC resources, the red participant utilized the 
resources more effectively to achieve better performance. 
Consequently, the red participant should be considered to have better 

automaticity than the blue participant, i.e., lower attentional gait index 
values (Figure 2E, red much smaller than blue).

2.6 Statistical analysis

For objective 1, to assess how each metric captured the anticipated 
task-difficulty changes in gait automaticity, we descriptively compared 
the attentional gait index, PFC activation, and ΔPerformance by 
reporting the percentage of participants following the expected trend 
for each metric as task difficulty increases.

For objective 2, linear regressions were performed to test if the 
independent variable, MMSE scores, is related to the dependent 
variables, attentional gait index, PFC activation, and performance, 
while adjusting for demographics: age, sex, race, and highest level of 
education. Since the variables are on different scales, all variables were 
first standardized as Z-scores before the model fitting. The variance 
inflation factor (VIF) was computed to assess the multicollinearity 
among the independent variables in the adjusted models. Variables 
with VIF < 10 would be kept in the multiple regression models. Model 
significance was determined by an F-test comparing the regression 
model with a constant model. To compare the impact of MMSE 
across the models, the standardized β  is reported. In brief, the 
standardized β  represents in standard deviation unit how much a unit 
increase in MMSE will impact the dependent variable. We reported 
the ordinary R2 values, the p-values for the models, and standardized 
coefficient estimates with their respective standard errors and 
p-values. A one-sample Kolmogorov–Smirnov test was performed to 
check the normality of the standardized residuals.

Two participants did not follow the instructions to recite every other 
letter of the alphabet. A sensitivity analysis was included to test the impact 
of removing these two participants on the fitting of the models adjusted 
for demographics and our conclusions. All analyses were performed in 
MATLAB 2020a, and a statistical significance of α = 0 05.  was used.

3 Results

Demographics, cognitive test results, cognitive and motor task 
performances, and fNIRS measurements of PFC activation in dual 
tasks are shown for the full sample in Table 1. Among the 22 non-white 
participants, one participant identified as Asian, one identified as 
American Indian or Alaskan Native, 19 identified as Black, and one 
identified as mixed or other race. Among the participants with 
education less than or equal to high school, only one participant’s 
highest level of education was less than high school.

3.1 Attentional gait index increases as task 
difficulty increases

By experimental design, a harder task should require more 
attentional resources, i.e., increased PFC activation (Figure 3A top left 
panel) and have poorer performance (Figure  3B top left panel), 
resulting in worse automaticity, i.e., increased attentional gait index 
(Figures 3A,B bottom left panels).

Only 57% of participants increased PFC activation as the task 
became harder (Figure  3A top middle panel), showing no clear 
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evidence of increased attentional control as task difficulty increased by 
this measure alone. However, 73% of participants increased attentional 
gait index (i.e., had worse automaticity) as task difficulty increased 
(Figure 3A bottom middle panel), matching our anticipated result that 
more challenging tasks would be performed with lower automaticity. 
Notice that the increase from 57 to 73% of participants following our 
expectation was primarily due to the gray participants whose PFC 
activation unexpectedly decreased with increased task difficulty 
(Figure 3A top right). These gray participants recruited less PFC as the 
task became harder, but their performance declined, suggesting that 
PFC resources were not being used as effectively as needed by the task 
demand, which indicates reduced automaticity in the harder task.

In comparison, a larger percentage of participants (71%) decreased 
their performance (combined cognitive and motor performance) as 
the task became harder (Figure  3B top middle panel), which was 
expected. A smaller percentage had better task performance during the 
more difficult task (29%, Figure 3B top right panel). Some of these 
participants with improved task performance moved in the expected 
direction when using the attentional gait index (gray in Figure 3B 
bottom middle panel), perhaps identifying individuals who improved 
their performance at a cost of greater PFC recruitment. The increased 
PFC recruitment could represent a compensatory strategy to cope with 
the task demand, which corresponds to reduced automaticity.

In summary, as task difficulty increases, more participants showed 
the expected decrease in automaticity as measured by the attentional 
gait index and ΔPerformance compared to PFC activation, suggesting 
that attentional gait index and ΔPerformance are more sensitive to the 
between task differences within the participants.

3.2 Greater attentional gait index is related 
to worse cognitive function

All independent variables (MMSE score, age, sex, race, and 
highest level of education) had VIF less than 10 and were all kept in 
the multiple regression models.

As expected, higher MMSE was associated with lower attentional 
gait index at both tasks (Table  2; evenABC: R2 = 0.06, p = 0.002; 
unevenABC: R2 = 0.05, p = 0.003), and this association at the easier 
task was robust to adjustment by age, sex, race, and highest level 
of education (Table  3; Figure  4; evenABC: R2 = 0.09, p = 0.02). 
The association between MMSE and attentional gait index was 
slightly weaker in the adjusted model at the harder task (Table 3; 
Figure 4; unevenABC: R2 = 0.07, p = 0.06). Higher MMSE was also 
associated with lower PFC activation at the easier task (Table  2; 
evenABC: R2 = 0.03, p = 0.02, β = − ±0 18 0 08. . ), but this relation was 
weaker (Table 3; evenABC: R2 = 0.07, p = 0.06, β = − ±0 13 0 08. . ) after 
adjusting for covariates.

The association between MMSE and attentional gait index had 
the largest variance accounted for and largest standardized β  
magnitude across both tasks in the unadjusted (Table 2; even ABC: 
β = − ± =0 23 0 07 0 002. . , .p ; unevenABC: β = − ± =0 22 0 07 0 003. . , .p ) 
and adjusted (Table  3; even ABC: β = − ± =0 20 0 08 0 01. . , .p ; 
unevenABC: β = − ± =0 19 0 08 0 02. . , .p ) models.

The result remains robust after removing the two participants 
who did not follow instructions to recite every other letter of the 
alphabet. The models between MMSE and attentional gait index still 
had the largest variance accounted for and largest standardized β  

TABLE 1  Demographic, clinical assessment results, task performances, and prefrontal cortical (PFC) activation (ΔHbo) of the study participants.

Variables Mean (SD) or n (%)

Sample size 173

Age (years) 73.9 ± 5.6

Female, n (%) 108 (62.4%)

Race, n (%)

White 151 (87.3%)

Non-white 22 (12.7%)

Highest level of education, n (%)

Less than or equal to high school/equivalent 43 (24.9%)

College 87 (50.3%)

Postgraduate 43 (24.9%)

Mini-Mental State Exam (MMSE) score (max 30) 28.4 ± 1.8

Gait speed at walk (motor single-task, m/s) 1.01 ± 0.17

Gait speed at evenABC (m/s) 0.90 ± 0.19

Gait speed at unevenABC (m/s) 0.84 ± 0.19

Rate of correct alphabet letters at standABC (cognitive single-task, letters/s) 0.56 ± 0.15

Rate of correct alphabet letters at evenABC (letters/s) 0.59 ± 0.16

Rate of correct alphabet letters at unevenABC (letters/s) 0.58 ± 0.16

Change in oxygenated hemoglobin (ΔHbo) from rest to evenABC (t-stats) 1.64 ± 2.85

ΔHbo from rest to unevenABC (t-stats) 1.99 ± 3.24

All data are shown as mean ± SD except for sex, which is binary, and race and highest level of education, which are categorical.
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magnitude across both tasks (Task evenABC: Attentional Gait Index 
R2 = 0.10, β = −0 21. , PFCActivation: R2 = 0.07, β = −0 14. , ΔPerformance: 
R2 = 0.03, β = 0.13. Task unevenABC: Attentional Gait Index 

R2 = 0.08, β = −0 20. , PFCActivation: R2 = 0.04, β = −0 10. , ΔPerformance: 
R2 = 0.05, β  = 0.13).

In sum, the MMSE score was more strongly correlated with the 
attentional gait index than with PFC activation or performance. The 
association between MMSE scores and attentional gait index had the 
largest standardized β  magnitude and variance explained across both 
DT difficulties. The result is robust to adjustments for covariates and 
not sensitive to the removal of participants who did not 
follow instructions.

4 Discussion

We combined PFC activation and DT performance measures to 
create a monotonic index to quantify gait automaticity. We showed 
that the attentional gait index better captured the task difficulty-
related change in automaticity and was more strongly related to 
general cognitive function than either PFC activation or DT 
performance alone. In summary, the proposed index was effective at 
differentiating (1) between tasks and (2) between participants.

4.1 Task performance contributes valuable 
information to the attentional gait index 
when comparing task difficulties

When comparing task difficulties, we expected the harder task to 
show worse automaticity; specifically, the more challenging task will 
require increased attentional demand from the PFC and result in 
decreased performance due to greater interference between the motor 
and cognitive tasks. This expected change would be reflected as an 
increase in the attentional gait index, an increase in PFC activation, 
and a decrease in performance. We observed that 73% of participants 
increased attentional gait index and 71% decreased performance as 
expected, but only 57% of participants increased PFC activation from 
evenABC to unevenABC. The result confirms that the unevenABC 
task was more challenging to the participants, given the majority of 
the participants decreased performance. However, this increased 
challenge was not always reflected in PFC activation alone.

Multiple reasons could explain why participants did not increase 
PFC activation with increasing task demands: inefficient recruitment of 
necessary neural resources, the task exceeding capacity (Reuter-Lorenz 
and Cappell, 2008), or disengagement from the task such that the 
participant did not even try to cope with the difficulty. In addition to 
individual differences, the inconsistency in the PFC activity could also 
be attributed to measurement noise from fNIRS, such as physiological 
changes and skin properties (Vitorio et al., 2017; Menant et al., 2020). 
This observation emphasizes the heterogeneity of PFC response despite 
consistent behavioral performance and the importance of incorporating 
behavioral performance when interpreting PFC activity.

Our finding that DT performance contains crucial information 
when assessing automaticity aligns with previous studies showing 
that DT performance is related to older adults’ mobility (Montero-
Odasso et al., 2012; Verghese et al., 2012; Rosso et al., 2019a) and 
cognitive abilities (Holtzer et al., 2006; Rosso et al., 2019b; Brauner 
et  al., 2021). Nevertheless, performance alone does not quantify 
automaticity since automaticity is defined by proficient performance 
alongside minimal neural inputs from the attentional and executive 

FIGURE 3

Descriptive comparison between attentional gait index, prefrontal 
cortical (PFC) activation, and ΔPerformance as task difficulty 
increases. (A) Comparison between attentional gait index and PFC 
activation at each dual-task (DT) relative to rest. Blue always 
represents participants who showed an expected increase in PFC 
activation (top middle panel) and gray always represents participants 
who decreased PFC activation (top right) as the task became more 
difficult. Colors in the bottom panel represent how participants from 
different groups at the top panel moved into different categories 
(increase or decrease) in attentional gait index. Notice that some 
participants with an unexpected decrease in PFC activation will now 
have an expected increase in attentional gait index after considering 
performance (gray in the top right moved to the bottom middle panel). 
(B) Comparison between attentional gait index and ΔPerformance. Blue 
always represents participants who showed an expected decrease in 
ΔPerformance as the task becomes harder (top middle panel) and gray 
always represents the ones who increased ΔPerformance (top right). 
Colors in the bottom panel represent how participants from different 
ΔPerformance at the top panel moved into different categories 
(increase or decrease) in attentional gait index (bottom panel).
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control center (Clark, 2015). In other words, the engagement of 
attentional resources during a typically automatic task such as 
walking is a signature of reduced automaticity (Van Swearingen and 
Studenski, 2014; Clark, 2015). Moreover, most theoretical models 
emphasize the importance of examining the activation patterns of 
PFC to understand cognitive aging (Reuter-Lorenz and Cappell, 
2008; Park and Reuter-Lorenz, 2009; Festini et al., 2018). Considering 
fNIRS is a relatively new technology with fast-evolving instrument 
design and analysis techniques (Perrey, 2014), future studies should 
keep considering performance and PFC activity together using the 
attentional gait index to improve quantification of gait automaticity.

4.2 Poorer attentional gait index was 
related to lower general cognitive function

When comparing across participants, we  showed that lower 
cognitive function, measured by MMSE score, is related to lower 
attentional gait index in both DT difficulties. The results suggest that 
the attentional gait index was more sensitive to individual 
characteristics that could impact automaticity than PFC activation or 
performance, which are existing metrics to quantify automaticity.

However, we noticed that the variance explained by the models 
(R2) is relatively low. The fit remains roughly the same with or without 
adjusting for age, sex, race, and highest level of education, suggesting 
that most of the variance in the attentional gait index and PFC activity 

was not explained by the demographics and cognitive abilities. The 
low R2 is not unexpected as gait automaticity depends on the 
subcortical circuits, which were not measured with fNIRS during 
walking (Wu and Hallett, 2005; Rosano et al., 2007; Clark, 2015). Thus, 
complementary imaging data about the integrity of the subcortical 
circuits, including volume or circuitry connectivity, might account for 
the unexplained variance in the model.

In our study, MMSE was not related to ΔPerformance. In 
comparison, a prior study (Brauner et al., 2021) has found that the 
MMSE score is associated with ΔPerformance. Of note, ΔPerformance 
is a component in calculating the attentional gait index, but we were 
not able to observe a direct association between MMSE score and 
ΔPerformance in our study. Several factors could contribute to this 
difference, including (1) a different dual-task paradigm was used and 
(2) the population recruited might be different. Specifically, the prior 
study had an older cohort than we  did (≥ 85 years old vs. mean 
73.9 ± 5.6 in our sample).

4.3 Attentional gait index provides a unified 
measure of gait automaticity that 
combines behavioral performance and PFC 
activation

Performance in DT walking is a commonly used metric to 
assess gait automaticity, but performance alone does not reflect the 

TABLE 2  Unadjusted regression models of different gait automaticity measures with Mini-Mental State Exam (MMSE) scores (n = 173).

Model R2 Model p-value Standardized β_MMSE (Estimates ± SE) β_MMSE p-value

evenABC Task

Attentional Gait IndexevenABC 0.06 0.002 −0.23 ± 0.07 0.002

PFCActivationevenABC 0.03 0.02 −0.18 ± 0.08 0.02

ΔPerformanceevenABC 0.005 0.34 0.07 ± 0.08 0.34

unevenABC Task

Attentional Gait IndexunevenABC 0.05 0.003 −0.22 ± 0.07 0.003

PFCActivationunevenABC 0.02 0.08 −0.13 ± 0.08 0.08

ΔPerformanceunevenABC 0.005 0.36 0.07 ± 0.08 0.36

Significant models are highlighted in red and trending (p < 0.1) models are shown in yellow.

TABLE 3  Multivariable regression models of different metrics to quantify gait automaticity with Mini-Mental State Exam (MMSE) scores (n  =  173) 
adjusted for age, sex, race, and highest level of education.

Model R2 Model p-value Standardized β_MMSE (Estimates ± SE) β_MMSE p-value

evenABC Task

Attentional Gait IndexevenABC 0.09 0.02 −0.20 ± 0.08 0.01

PFCActivationevenABC 0.07 0.06 −0.13 ± 0.08 0.10

ΔPerformanceevenABC 0.02 0.77 0.08 ± 0.08 0.30

unevenABC Task

Attentional Gait IndexunevenABC 0.07 0.06 −0.19 ± 0.08 0.02

PFCActivationunevenABC 0.04 0.40 −0.10 ± 0.08 0.21

ΔPerformanceunevenABC 0.01 0.90 0.07 ± 0.08 0.41

Significant models are highlighted in red, and trending (p < 0.1) models are highlighted in yellow.
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cortical input required. For instance, the same performance can 
be  achieved with little effort and low attentional control, i.e., 
automaticity, or with significant effort from the attentional resource 
center. Neurophysiological measures, such as PFC activation, 
provide more insights into the cortical inputs supporting the 
observed performance. However, prior research on PFC signals 
during walking has shown inconsistent results (Yeung and Chan, 
2021). Both increased (Holtzer et al., 2011; Mirelman et al., 2017) 
and decreased (Beurskens et  al., 2014) PFC activity during DT 
walking have been reported. These findings are hard to reconcile 
without considering task performance.

The attentional gait index provides a solution by establishing a 
unified axis that combines performance and PFC activation. The 
increased PFC activity observed by Holtzer et al. (2011) and Mirelman 
et al. (2017) could indicate either increased reliance on the attentional 
center to compensate for the loss of automaticity, resulting in 
maintained task performance or dedifferentiation in the neural 
signals, leading to poor task performance. In the attentional gait index, 
the increased PFC activity would be  scaled down for maintained 
performance to reflect successful compensation and scaled up for 
poor task performance to reflect unsuccessful compensation or 
dedifferentiation. The decreased PFC activity reported by Beurskens 
et al. (2014) could represent either inefficiency of resource utilization, 
leading to poor task performance, or maintained automaticity, 
resulting in good performance. These differences would be reflected 
in the attentional gait index, where the same PFC activity would 

be  scaled up for the reduced performance scenario to reflect the 
inability to recruit necessary resources.

5 Limitations

One main limitation is that the attentional gait index can only 
be  computed for study designs with at least two distinct task 
difficulties because parameter optimization α  requires at least two 
difficulties. Additionally, even though the proposed method to 
compute the attentional gait index can be applied to any dual-task 
paradigm with at least two levels of task difficulties, the datasets 
used to test the index here all performed the same dual-task 
walking paradigm (i.e., walking and reciting alternating letters of 
the alphabet with or without an uneven surface) with no task 
prioritization. It has been shown that dual-task modality and 
prioritization can impact performance and assessment results 
differently (Verghese et al., 2007; Yogev-Seligmann et al., 2010; 
Beurskens et al., 2014; Laguë-Beauvais et al., 2015; Tsang et al., 
2022). Therefore, it is important to verify that the index design is 
robust to varying experimental protocols, including different 
motor and cognitive tasks, prioritization instructions, and 
performance metrics, in future studies. Finally, the participants 
recruited are relatively healthy in their cognitive abilities (MMSE 
mean ±SD: 28.42 ± 1.83, min = 21), which may not reflect the full 
population of community-dwelling older adults (Jacqmin-Gadda 

FIGURE 4

Model fitting between Mini-Mental State Exam (MMSE) scores and attentional gait index, PFCActivation, and ΔPerformance after adjusting for age, sex, 
race, and highest level of education. Actual vs. fitted values for each model in the evenABC task (A) and unevenABC task (B) are shown. Significant 
models are shown with a red line for y= ŷ. Trending models are shown in yellow text. A perfect-fitting model would have actual and fitted values 
following the y= ŷ line. Only the association between MMSE and attentional gait index in the easy task difficulty was significant.
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et  al., 1997). Future studies can assess if the findings are 
generalizable to populations with a wider range of cognitive 
abilities. Future studies should also investigate if the index is 
related to clinically relevant measures such as balance confidence 
or fall risks.

6 Conclusion

Gait automaticity is crucial for safe community mobility, and 
automaticity is an important rehabilitation target to restore 
walking function and independence. However, a standard and 
robust assessment for gait automaticity is lacking. We addressed 
the need to better quantify gait automaticity using a novel 
approach to combine both DT performance and PFC activation 
into an attentional gait index. We demonstrated the efficacy of the 
index by achieving two objectives, specifically, better-
differentiating automaticity (1) between tasks within participants 
and (2) between participants based on overall cognitive function. 
The index revealed a decrease in automaticity as task difficulty 
increased, which was not evidenced by PFC activation. 
Furthermore, the index captured the cognitive ability-related 
differences in automaticity better than PFC activation or DT 
performance alone. In summary, the attentional gait index 
provided a standard metric to characterize gait automaticity in a 
dual-task walking paradigm. The standardized metric will allow 
better quantification of the effectiveness of interventions aimed at 
improving automaticity and facilitate future studies to investigate 
the connections between automaticity and other participant-
specific characteristics.
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