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Abstract: This research explores the utilization of the Black Marble nighttime light (NTL) product to
detect and assess damage caused by hurricanes, tornadoes, and earthquakes. The study first examines
average regional NTL trends before and after each disaster, demonstrating that NTL patterns for
hurricanes closely align with the features of a resilience curve, unlike those for earthquakes and
tornadoes. The relative NTL change ratio is computed using monthly and daily NTL data, effectively
reducing variance due to daily fluctuations. Results indicate the robustness of the NTL change ratio
in detecting hurricane damage, whereas its performance in earthquake and tornado assessment was
inconsistent and inadequate. Furthermore, NTL demonstrates a high performance in identifying
hurricane damage in well-lit areas and the potential to detect damage along tornado paths. However,
a low correlation between the NTL change ratio and the degree of damage highlights the method’s
limitation in quantifying damage. Overall, the study offers a promising, prompt approach for
detecting damaged/undamaged areas, with specific relevance to hurricane reconnaissance, and
points to avenues for further refinement and investigation.

Keywords: nighttime light; disaster reconnaissance; damage degree; damage detection; Black Marble;
hurricane

1. Introduction

Real-time damage assessment in the aftermath of a natural disaster is critical for effective
disaster reconnaissance. However, current damage assessment methods rely heavily on field
surveys, which can be time-consuming and difficult for first responders to conduct in disaster-
affected areas [1]. Remote sensing data can provide a solution to this challenge, as it can be
accessed quickly and covers large areas of interest. Optical remote sensing data, which offer
daytime information about the Earth, are typically used in structural damage assessment [2].
Nighttime light (NTL) remote sensing data can also offer a unique perspective of Earth. NTL is
a composite of illumination from multiple sources, including moonlight, direct light emissions,
and ground reflections [3]. Because of the destruction of infrastructure and electric systems, and
the reduction in human activity following a disaster, NTL is often reduced, and has, therefore,
been widely utilized in disaster reconnaissance [4]. NTL data are typically classified into
three types based on the time stamp: yearly, monthly, and daily. Yearly and monthly NTL
data are often used to monitor the economic changes resulting from disasters and the disaster
recovery process [5–8]. On the other hand, daily NTL data can provide more detailed temporal
information, such as detecting damage and power outages in a neighborhood [4,9–11].

NTL data can be significantly impacted by cloud cover, which may affect its perfor-
mance in damage and recovery detection [4,12]. Skoufias et al. (2021) reported that after
analyzing five cases of earthquakes, floods, and typhoons in Southeast Asian countries,
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they did not find a causal relationship between monthly nightlight values and natural
hazard events because NTL data are contaminated by noise from cloud cover, seasonality,
and volatility [12]. Zhao et al. (2018) conducted case studies of earthquakes, hurricanes,
and floods to evaluate the application of daily NTL data in natural disaster assessment.
They suggested that daily NTL data is useful in detecting the damage and power outages
caused by earthquakes, hurricanes, and floods; however, the NTL data is still limited by
cloud coverage [4].

In 2018, NASA released the Black Marble product, which offers cloud-free NTL
data [13]. This has enabled researchers to evaluate the impact of various disaster events
using NTL data more accurately [14–16]. By studying Hurricane Sandy and Hurricane
Maria, Wang et al. (2018) indicated that the Black Marble NTL product can be used to
monitor power outages and recovery status at a community level and can be a good source
to locate the areas that need disaster relief [14]. Roman et al. (2019) studied Hurricane
Maria and showed the potential to use NTL-based estimates to improve real-time disaster
impact monitoring [15]. Xu et al. (2021) elucidated that the Black Marble product can be
a low-cost instrument to collect near-real-time, large-scale, and high-resolution disaster
data [17].

The effectiveness of Black Marble nighttime light (NTL) data in detecting the extent
and degree of damage resulting from various disasters has received limited attention in the
literature. This study aims to fill this gap by examining the utility of Black Marble NTL
data for identifying damaged and undamaged areas caused by hurricanes, earthquakes,
and tornados. Moreover, this research explores the potential of Black Marble NTL data in
determining the degree of damage in the identified affected areas.

This research builds upon the work of Zhao et al. (2018) [4], which analyzed the
usefulness and limitations of daily NTL data from the Visible Infrared Imaging Radiometer
Suite (VIIRS) Day-Night Band (DNB) aboard the Suomi National Polar-orbiting Partnership
(S-NPP) satellite for disaster reconnaissance of earthquakes, floods, and storms. While
Zhao et al. (2018) highlighted cloud cover as a significant challenge in using daily NTL data
for damage detection, the Black Marble NTL daily data offer a cloud-free, atmospheric-,
terrain-, vegetation-, snow-, lunar-, and stray-light-corrected VIIRS DNB radiance [13],
potentially offering a solution for disaster reconnaissance studies. This research extends
the work of Zhao et al. (2018) by exploring the ability of Black Marble NTL data to detect
damage caused by five hurricanes, two tornados, and four earthquakes. Additionally, this
research examines the capacity of NTL data to determine the degree of damage, providing
deeper insights and a more consolidated conclusion.

2. Materials
2.1. Black Marble NTL Data

This study leverages the VNP46A2 and VNP46A3 data from the DNB sensor of the
S-NPP VIIRS to evaluate the pre- and post-disaster NTL change ratio. The current state of
the art in NTL applications is NASA’s Black Marble product suite (VNP46), which is based
on the advanced VIIRS DNB time series record [13]. VNP46A2 provides daily DNB NTL
radiances at 500 m resolution that are cloud-free, atmospheric-, seasonal-, and moonlight
bidirectional reflectance distribution function (BRDF)-corrected [13]. VNP46A3, generated
based on VNP46A2, provides monthly NTL composites [16]. VNP46A2 has seven layers:
DNB BRDF-corrected NTL, gap-filled BRDF-corrected NTL, lunar irradiance, mandatory
quality flag, latest high-quality retrieval (number of days), snow flag, and cloud mask flag.
Specifically, the gap-filled BRDF-corrected NTL layer fills the area masked out by the cloud
based on the latest high-quality observations in previous days. The mandatory quality flag
layer shows the retrieval performance of the pixel-based estimates of NTL, whereas the
latest high-quality retrieval layer shows the number of days between the latest high-quality
retrieval and the current date of interest. With these layers, users can decide if the gap-filled
NTL value depends on the current date of interest or not. In this work, it is critical that
the post-disaster NTL has high quality and can accurately represent the current date of
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interest. This data should not be generated through gap-filling procedures. As such, when
determining the area of interest for each disaster, the quality flag was factored into the
decision-making process. The VNP46A2 and VNP46A3 data are applied in the following
section as daily and monthly NTL data, respectively, and are available through the LAADS
DAAS on EARTHDATA webpage [18]. Figure 1 illustrates the changes in the nighttime
light (NTL) from the VNP46A2 dataset before and after Hurricane Maria. It is clear that the
area becomes dimmer following the disaster.
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Figure 1. NTL of San Juan before and after Hurricane Maria. (a) VNP46A2 data before disaster.
(b) VNP46A2 data after disaster.

2.2. Damage Proxy Maps (DPM) Data

The color-coded DPM data from NASA Advanced Rapid Imaging and Analysis (ARIA)
were used as the ground truth damage degree for the affected area detected by nighttime
light (NTL). The DPMs were generated using pre- and post-disaster interferometric syn-
thetic aperture radar (InSAR) data, which depict alterations in the land surface. Notably,
these changes in surface provide a quantifiable measure of the damage degree [17]. A
DPM provides detailed visualization of a specific geographic area, pinpointing the location
and severity of the damage with a 30m resolution. The vegetated area increases the false
positive points for DPM [17]. Therefore, this study focused on evaluating urban areas. The
DPMs are available on ARIA Share on the Jet Propulsion Laboratory (JPL) webpage [19].
Figure 2 shows the DPM of Hurricane Maria within San Juan.
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Figure 2. Hurricane Maria DPM (San Juan).

2.3. Disaster Information

This study delves into three categories of natural disasters: hurricanes, tornadoes, and
earthquakes. Comprehensive details of these disasters can be found in Table 1. Table 2 lists
the specifics of the study area, and the time stamps for the satellite images are shown in
Figures 3–5. Figures 3–5 illustrate the study area, with pre-disaster satellite images for each
disaster. These pre-disaster satellite imageries were collected from Google Earth View [20].
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Table 1. Disaster information.

Event Type Event Name and
Location Study Area Event Degree Date

Hurricane

Hurricane Maria San Juan Category 5 09/2017
Hurricane Maria Ponce Category 5 09/2017

Hurricane Michael Panama City Category 5 10/2018
Hurricane Florence Jacksonville Category 1 09/2018

Hurricane Iota Providencia Category 4 11/2020
Hurricane Dorian West Grand Bahama Category 5 08/2019

Tornado
Kentucky Tornado Bowling Green EF4 12/2021
Nashville Tornado Nashville EF3 03/2020

Earthquake

Nepal Earthquake Kathmandu 7.8 Mw 05/2015
Mexico Earthquake Texcoco 7.1 Mw 09/2017

Puerto Rico Earthquake San Juan 6.4 Mw 01/2020
Puerto Rico Earthquake Ponce 6.4 Mw 01/2020

Salt Lake City Earthquake Salt Lake City 5.7 Mw 03/2020

Table 2. Information on study area and pre-disaster satellite images from Google Earth View [20].
The “Top Right” and “Bottom Left” columns specify the coordinates of the respective corners for the
study area in each image.

Event Type Event Name Study Area Top Right Bottom Left Satellite Image
Time Stamp

Julian Date
(Pre-Disaster,
Post-Disaster)

Hurricane

Hurricane Maria San Juan 18◦27′60′′N,
66◦0′45′′W

18◦19′60′′N,
66◦13′0′′W 12/2016 (255, 270)

Hurricane Maria Ponce 17◦58′45′′N,
66◦40′45′′W

18◦3′15′′N,
66◦34′45′′W 12/2016 (255, 270)

Hurricane Michael Panama City 30◦15′59.76′′N,
85◦33′15′′W

30◦ 6′60′′N,
85◦44′30′′W 12/2017 (270, 285)

Hurricane Florence Jacksonville 34◦48′30′′N,
77◦21′30′′W

34◦41′30′′N,
77◦31′60′′W 12/2017 (248, 263)

Hurricane Iota Providencia 13◦24′30′′N,
81◦20′15′′W

13◦18′30′′N,
81◦25′15′′W 12/2019 (310, 325)

Hurricane Dorian West Grand Bahama 37◦ 2′45′′N,
86◦18′15′′W

36◦54′60′′N,
86◦34′30′′W 12/2018 (229, 244)

Tornado
Kentucky Tornado Bowling Green 37◦ 2′45′′N,

86◦18′15′′W
36◦54′60′′N,
86◦34′30′′W 03/2021 (331, 346)

Nashville Tornado Nashville 36◦13′30′′N,
86◦39′15′′W

36◦6′30′′N,
86◦55′45′′W 12/2019 (051, 066)

Earthquake

Nepal Earthquake Kathmandu 27◦47′45′′N,
85◦30′0′′E

27◦37′0′′N,
85◦18′15′′E 12/2014 (101, 116)

Mexico Earthquake Texcoco 19◦33′45′′N,
98◦47′45′′W

19◦30′15′′N,
98◦54′30′′W 12/2016 (247, 262)

Puerto Rico Earthquake San Juan 18◦28′30′′N,
65◦57′0′′W

18◦20′30′′N,
66◦15′30′′W 12/2019 (358(2019),

008(2020))

Puerto Rico Earthquake Ponce 18◦ 2′45′′N,
66◦34′30′′W

17◦59′0′′N,
66◦40′30′′W 12/2019 (357(2019),

007(2020))
Salt Lake

City Earthquake Salt Lake City 40◦50′0′′N,
111◦58′60′′W

40◦42′30′′N,
112◦ 8′0′′W 12/2019 (063, 078)

In September 2017, Hurricane Maria struck Puerto Rico as one of the strongest storms
on record. It was a Category 5 hurricane with maximum sustained winds of 280 km/h. It
resulted in 29,875 deaths [21] and caused at least USD 90 billion in damage [22]. Maria also
caused a large-scale power outage across the island, with the entire area losing power on
21 September 2017 [23].
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Hurricane Michael made landfall as an unprecedented Category 5 hurricane in Florida,
with sustained wind speeds of 224 km/h in October 2018. The storm caused damage from
wind in Central America, with an estimated USD 25.1 billion and at least 74 deaths [24].
Power outages affected approximately 1.7 million customers across Florida, Georgia, South
Carolina, and other affected areas [25].

Hurricane Florence made landfall near Wrightsville Beach, North Carolina. Its in-
tensity dwindled as it migrated inland, being classified as a Category 1 hurricane by the
time it struck Jacksonville. The storm caused USD 24.23 billion in damage and 54 deaths
in total [26]. More than 65,000 outages were reported in Jacksonville on 15 September
2018 [27].

Hurricane Dorian was a Category 5 hurricane that struck the Bahamas with maximum
sustained winds of 295 km/h in September 2019. Heavy rainfall, high winds, and storm
surge caused at least 70,000 people to become homeless and 77 direct deaths [28]. The
estimated cost of Dorian is USD 3.4 billion [29].

Hurricane Iota was a devastating Category 4 hurricane that caused severe damage to
Central America. The maximum sustained wind speed was 250 km/h. At least 67 people
were killed, and 41 people were reported missing [30]. The storm generated an estimated
USD 1.4 billion in damages [31].

The Nashville Tornado, a violent EF3 tornado with a maximum wind speed of
266 km/h, struck west of Cookeville on 3 March 2020. The tornado killed 25 in total, with
an additional 309 injured. Total damage reached USD 1.607 billion, and was the 6th costliest
tornado in the US [32]. More than 15,000 outages were reported across Nashville [33].

The Kentucky Tornado was a violent EF4 tornado that moved across western Ken-
tucky with wind speeds up to 310 km/h in December 2021. This long-tracked tornado
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moved across Mayfield, Princeton, Dawson Spring, and Bremen. At least 74 deaths and
515 injuries were reported in this disaster [34]. Over 23,600 outages were reported during
the tornado [35].

The Nepal Earthquake occurred on 25 April 2015, with a magnitude of Mw 7.1. It is
the worst natural disaster that has struck Nepal since 1934. This earthquake triggered an
avalanche on Mount Everest, resulting in the deaths of 22 people [36]. The damage inflicted
on the country cost Nepal an estimated USD 10 billion, with large-scale power outages and
the destruction of 446 public health facilities being reported [37].

The Mexico Earthquake struck on 19 September 2017, with an estimated magnitude of
Mw 7.1. The earthquake caused buildings to collapse and killed more than 370 people. The
total damage cost USD 8 billion [38].

Puerto Rico was struck by a Mw 6.4 earthquake on 7 January 2020. This disaster cost
USD 3.1 billion. Approximately two-thirds of Puerto Rico was out of power following the
earthquake [39].

A Mw 5.7 earthquake hit Salt Lake City on 18 March 2020, causing damage estimated
to be at least USD 629 million [40]. More than 50,000 power outages were reported in
northern Utah after the earthquake [41].

3. Methods
3.1. Resilience Curve

Before, during, and after a disaster occurs, the performance of a system is represented
by the resilience curve, as depicted in Figure 6 [42]. At the time of disruption, the system’s
performance experiences a sudden drop. As time progresses, the performance gradually
increases, leading to either partial or full recovery, depending on the recovery efforts made.
NTL can serve as one of the indicators of a system’s performance. If NTL is capable of
illustrating damage, the NTL versus time curve before and after a disaster should align
with the resilience curve to a certain extent.
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To generate the resilience curve from the perspective of NTL, the average regional NTL
value is calculated using Equation (1), representing the brightness of the area of interest:

Average region NTL =
Sum o f NTL value within the area o f interest

# o f pixels within the area o f interest
(1)

To create the average regional NTL versus day graph, daily NTL data is utilized.
Twenty pre-disaster dates are selected, ranging from the 15th to the 34th day before the
post-disaster date. The post-disaster date is identified as the first day after the event when
the area of interest is primarily flagged as high quality in the quality flag layer. The post-
disaster dates in this study included the first post-disaster date up to five days thereafter.
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3.2. Pre-Disaster Daily NTL Fluctuations

NTL values can vary among days even in the absence of a disaster. To correctly depict
the damage detected by NTL change, one must control for or eliminate the influence from
pre-disaster daily NTL fluctuations.

For each disaster event, the pre-disaster daily NTL fluctuations were calculated based
on average regional NTL (AR NTL) using Equation (2).

Predisaster daily NTL f luctuation =
∑i=34,...,16

|AR NTL i−AR NTLi−1|
AR NTLi

20
(2)

3.3. Relative NTL Change Ratio

This study uses a relative NTL change ratio layer to compare the pre- and post-disaster
NTL values, which is calculated by Equation (3):

relative NTL change ratio =

(
Radpre − Radpost

)
Radpre

(3)

where Radpre is the pre-disaster NTL radiance and Radpost is the post-disaster NTL radiance.
The study explores and compares two ways for generating the relative NTL change ratio:

• Using monthly NTL as Radpre: in this method, Radpost is collected from the VNP46A2
data of the first post-disaster date. Radpre utilizes the VNP46A3 monthly data from the
month before the disaster.

• Using daily NTL as Radpre: this method also uses VNP46A2 data for Radpost but
takes the VNP46A2 data 15 days prior to the first post-disaster date for Radpre. It is
important to note that the 15th day before the post-disaster date is assuredly within
the pre-disaster period in this work.

In both approaches, only two files need to be downloaded to obtain the NTL radiance:
one for pre-disaster and the other for post-disaster. This contrasts with previous work,
which required downloading multiple files and calculating the mean value to acquire pre-
and post-disaster NTL radiance [4]. Both methods streamline the disaster reconnaissance
process and enhance efficiency.

After a disaster, the affected area experiences changes in brightness, which can be
quantified by the relative NTL change ratio. A negative relative change ratio indicates an
increase in brightness, whereas a zero ratio suggests no change. Conversely, a positive
ratio indicates a decrease in brightness, thereby indicating a disaster-affected area [4]. The
degree of effect caused by the disaster is proportional to the size of the change ratio. In this
study, the scenarios where recovery work may involve deploying temporary lights, which
could yield increased brightness in the post-disaster date, are not considered. Pre-disaster
daily NTL fluctuation needs to be considered and controlled to make sure the NTL change
is mostly caused by the disaster.

The determination of the area of interest in this study relied on both the DPM and the
quality flag layer. It should be noted that the DPM is less reliable in vegetated areas [43], and
NTL change is commonly used to evaluate the impact of disasters on cities with electricity
systems [11]. As such, this study primarily focuses on analyzing the nightlight change
within the city limits. In certain cases, it may be challenging to identify a post-disaster date
with uniformly high-quality NTL coverage for the entire city area. Therefore, only the area
with a high-quality flag layer is considered for analysis.

The DPM is applied as the ground truth map for the damage degree. The DPM is first
up-sampled to match the 500m resolution of the NTL change ratio layer. Within each NTL
change ratio pixel, the ground truth damage degree is represented by the pixel with the
highest damage degree from the DPM. In cases where no DPM pixel is included within the
NTL pixel, the NTL pixel is marked as having no damage. The term DD will be used to
refer to the ground truth damage degree from the DPM in the latter part of this study.
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3.4. Confusion Matrix and F1 Score

A confusion matrix and F1 score are used to evaluate if the disaster-affected area
detected by the NTL change ratio layer matches with the DD. Confusion matrices with true
positive (TP), false positive (FP), false negative (FN), and true negative (TN) values are
used to present the consistency, where TP refers to the number of pixels that are detected
as damage from NTL change ratio and includes at least one damage degree point from
the ground truth map (damaged); FP refers to the number of pixels that are detected as
damage from the NTL change ratio but with no damage degree point from the ground truth
map (undamaged); FN represents the number of pixels that are detected as undamaged
from the NTL change ratio and includes at least one damage degree point from the ground
truth map (damaged); TN represents the number of pixels that are detected as undamaged
from the NTL change ratio and with no damage degree point from the ground truth map
(undamaged). Given the imbalanced distribution between damaged and undamaged pixels,
both accuracy and F1 score are used to analyze the result. The F1 score is the harmonic
mean of precision and recall, wherein precision is the proportion of positive predictions
that were actually correct, and recall is the proportion of actual positive classes that were
identified. The F1 score can be calculated by Equation (4):

F1 =
TP

TP + 1
2 (FP + FN)

(4)

3.5. Pearson Correlation Coefficient (PCC)

PCC is used to assess whether the NTL change ratio can reflect the damage degree
in affected areas. Specifically, the PCC aims to determine whether there exists a linear
relationship between the NTL change ratio and the DD. PCC is calculated by Equation (5):

PCC =
cov(NTL, DD)

σNTLσDD
(5)

where cov is the covariance, σNTL is the standard deviation of the NTL change ratio, and
σDD is the standard deviation of the DD. The PCC has the range of −1 to 1. If there is a
linear relationship between the NTL change ratio and DD, the absolute value of the PCC
will be close to 1. In cases where no such relationship exists, the PCC will be close to 0.
Ideally, an increase in the degree of damage should correspond to a larger relative change
in NTL.

Given that ARIA [19] only permits the retrieval of color-coded Damage Proxy Maps
(DPMs), it is crucial to digitize the DPM to discern color alterations indicative of DD
variations more effectively. The color-coded DPM employs a progression from yellow to
dark red as a visual indication of escalating damage across the map, with the representation
of DD achieved through four color bands: Red (R), Green (G), Blue (B), and transparency.
For detailed analysis, it becomes necessary to isolate the shift from yellow to red using a
single band rather than multiple. With this in mind, the RGB channels are transformed into
the Hue, Saturation, Value (HSV) channel, as the hue component can effectively capture
color proportions. Consequently, the value derived from the hue channel is employed to
interpret the DD value. The spectrum of DD values ranges from 0 to 0.167, mirroring the
values of the hue channel spanning from dark red to yellow. Therefore, a smaller DD value
indicates higher damage. The range of the NTL change ratio is from 0.1 to 1.

The analysis is carried out on pixels that exhibit a positive NTL change ratio and
contain at least one damage degree point from the DPM.
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4. Results
4.1. NTL Resilience

Figures 7–9 depict the NTL resilience trend for hurricanes, tornadoes, and earthquakes,
respectively. In each subplot, the x-axis represents the Julian day, while the y-axis displays
the NTL radiance (nWatts cm−2sr−1).
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For hurricane events, as shown in Figure 7, a clear drop of NTL can be observed in
the first post-disaster date, and the recovery trend can be observed as well, which fits
the resilience curve in Figure 6. A partial recovery can be observed for Hurricane Maria,
Hurricane Michael, and Hurricane Iota. For Hurricane Florence and Hurricane Dorian, an
almost full recovery from the perspective of NTL can be observed. These trends confirm
that NTL can be a good indicator of the damage caused by hurricanes.

The resilience trend in tornado events (Figure 8) is less pronounced than in hurricane
events. For example, in the case of the Kentucky Tornado, there is no noticeable drop in
NTL following the disaster. As for the Nashville Tornado, an initial drop in NTL is observed
on the first chosen day after the disaster. However, the NTL returns to above-average levels
on the second post-disaster day, indicating that there was no discernible recovery process.
This contrasts with the typical resilience curve (Figure 6), which could indicate that NTL is
a less robust factor when representing the damage caused by tornados.

In the resilience curve presented in Figure 6, certain features, such as the initial drop
in system performance when a disaster occurs, followed by a gradual recovery process,
are typically observed. However, these features are not evident in the earthquake events,
with the exception of the Mexico Earthquake (Figure 9). This inconsistency between the
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observed NTL resilience trend and the resilience curve in Figure 6 may suggest that NTL is
not a reliable factor for depicting the damage caused by earthquakes.

4.2. Pre-Disaster NTL Daily Fluctuations

Pre-disaster daily fluctuations in NTL values can be observed in Figures 7–9. These
fluctuations before the disaster suggest that factors other than disasters themselves can
contribute to changes in NTL values. Table 3 details the pre-disaster daily NTL fluctuations
for each disaster event, calculated using Equation 2, with variations ranging from 3.64% to
15.21%. The average daily NTL fluctuation across all disasters is 9.36%.

Table 3. Pre-disaster daily NTL fluctuations.

Event Type Event Name Study Area
Daily NTL

Fluctuations
(Pre-Disaster)

Hurricane

Hurricane Maria San Juan 9.59%
Hurricane Maria Ponce 8.02%

Hurricane Michael Panama City 9.54%
Hurricane Florence Jacksonville 7.04%

Hurricane Iota Providencia 9.39%
Hurricane Dorian West Grand Bahama 8.11%

Tornado
Kentucky Tornado Bowling Green 10.97%
Nashville Tornado Nashville 3.64%

Earthquake

Nepal Earthquake Kathmandu 13.72%
Mexico Earthquake Texcoco 4.95%

Puerto Rico Earthquake San Juan 14.09%
Puerto Rico Earthquake Ponce 15.21%

Salt Lake City Earthquake Salt Lake City 7.41%

When examining the black dashed line in Figures 7–9, which represents a level 10%
below the average for each disaster event, it is found that most of the NTL values for the
first post-disaster date fall below this line. Consequently, in this study, pixels showing
a relative change ratio lower than 10% are classified as non-disaster-affected areas. This
threshold helps to differentiate between regular fluctuations and those specifically caused
by disasters, providing more accurate insights into the areas genuinely affected.

4.3. Damaged/Undamaged Area Detection from NTL Change Ratio

The relative NTL change ratio is calculated to detect the damaged area after disasters.
F1 and accuracy are used to evaluate the consistency between DD and NTL-detected
damage. The study compares two distinct methods for calculating the NTL change ratio.
The first approach uses daily NTL data as Radpre, whereas the second leverages monthly
NTL data. This comparison aims to analyze the nuances of both methods and their
effectiveness in providing accurate insights into disaster-affected areas.

4.3.1. Damaged/Undamaged Area Detection from NTL Change Ratio Using Daily NTL
Data as Radpre

Table 4 shows the confusion matrices, accuracy, and F1 scores calculated from the
DD and NTL maps of different disasters. The analysis utilizes daily NTL data as Radpre,
specifically selecting the data from the 15th day before the post-disaster date.

The performance across different disaster event types exhibits variations. Hurricane
events show the highest F1 score, followed by earthquake and tornado events. Specifically,
the average F1 scores for hurricanes, earthquakes, and tornadoes are 0.735, 0.668, and
0.558, respectively. Among hurricanes, Hurricane Maria (San Juan and Ponce), Hurricane
Michael, and Hurricane Dorian achieve F1 scores over 75%, whereas Hurricane Iota and
Hurricane Florence demonstrate relatively weaker performances, with F1 scores of 0.459
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and 0.609, respectively. Regarding earthquakes, most cases attain F1 scores around 60%,
except for the Mexico Earthquake, which shows superior performance with an F1 score of
84.2%. Nevertheless, the accuracy of most earthquake cases is only around 55%, indicating
that the NTL layer only slightly outperforms a random guess. The performance of tornado
events is worse than that of earthquakes, exhibiting an average F1 score of 56% and an
average accuracy of 48%.

Table 4. The confusion matrices, accuracy, and F1 scores of different disasters in damaged/undamaged
detection using daily NTL data as Radpre.

Event Type Event Name and Location DD
NTL Detected Accuracy F1Damaged Undamaged

Hurricane

Hurricane Maria (San Juan) Damaged 1193 161
0.839 0.904Undamaged 91 123

Hurricane Maria (Ponce) Damaged 291 107
0.685 0.811Undamaged 29 5

Hurricane Michael (Panama City) Damaged 1196 20
0.756 0.859Undamaged 374 30

Hurricane Florence (Jacksonville) Damaged 441 225
0.551 0.609Undamaged 303 237

Hurricane Iota
Damaged 61 57

0.700 0.459Undamaged 87 275

Hurricane Dorian
Damaged 353 8

0.641 0.768Undamaged 208 33

Tornado
Kentucky Tornado (Bowling Green) Damaged 640 502

0.494 0.557Undamaged 518 355

Nashville Tornado
Damaged 634 229

0.464 0.561Undamaged 761 224

Earthquake

Nepal Earthquake Damaged 956 74
0.510 0.659Undamaged 916 75

Mexico Earthquake (2017, Texcoco) Damaged 259 71
0.704 0.863Undamaged 41 7

Puerto Rico Earthquake (San Juan) Damaged 756 619
0.563 0.593Undamaged 417 576

Puerto Rico Earthquake (Ponce) Damaged 154 83
0.558 0.660Undamaged 76 47

Salt Lake City Earthquake Damaged 309 248
0.560 0.565Undamaged 227 296

However, it is worth considering that daily fluctuations among pre-disaster days may
introduce variability. Consequently, selecting daily NTL from different pre-disaster dates
to calculate the relative NTL change ratio could lead to disparate results and conclusions.
To investigate this further, two additional experiments were conducted using the 16th and
18th days before the post-disaster date as Radpre, respectively. Figures 10–12 display the
comparison of the F1 score when using the 15th, 16th, and 18th day before the post-disaster
date as Radpre for hurricane, tornado, and earthquake events. This comparative analysis
aims to shed light on the influence of these pre-disaster time frames on the consistency of
NTL damage detection.

For the majority of disaster events, the F1 score remains consistent regardless of
the pre-disaster date selected. However, a few outliers show variability in the F1 score,
including Hurricane Dorian, the Kentucky Tornado, and the Nepal Earthquake. In the
case of Hurricane Dorian, the F1 score can decrease from 0.768 to 0.466 when choosing
a different pre-disaster date, leading to a significantly different conclusion in detecting
the damaged area. This indicated that while using daily data can yield stable results to a
certain extent, future events may still demonstrate variations depending on the specific
daily pre-disaster NTL data chosen. Therefore, it underscores the importance of seeking a
more stable representation of Radpre, to ensure that the detection method remains reliable
across different disasters.
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4.3.2. Damaged/Undamaged Area Detection from NTL Change Ratio Using Monthly NTL
Data as Radpre

Monthly NTL data provide an effective pre-disaster measurement, as the daily fluctu-
ations are smoothed out. This aggregation over a longer time frame provides a more stable
and consistent representation, reducing the risk of variability from daily changes.

Table 5 shows the confusion matrices, accuracy, and F1 scores calculated from the DD
and NTL maps of different disasters, which utilize monthly NTL data as Radpre, specifically
selecting the data from the one month prior to the post-disaster date.

Table 5. The confusion matrices, accuracy, and F1 scores of different disasters in damaged/undamaged
detection using monthly NTL data as Radpre.

Event Type Event Name and Location DD
NTL Detected Accuracy F1Damaged Undamaged

Hurricane

Hurricane Maria (San Juan)
Damaged 1201 165

0.842 0.906Undamaged 83 119

Hurricane Maria (Ponce)
Damaged 296 107

0.697 0.819Undamaged 24 5

Hurricane Michael (Panama City) Damaged 1280 25
0.806 0.890Undamaged 290 25

Hurricane Florence (Jacksonville)
Damaged 478 299

0.545 0.641Undamaged 236 163

Hurricane Iota
Damaged 59 40

0.732 0.477Undamaged 89 292

Hurricane Dorian
Damaged 302 8

0.556 0.693Undamaged 259 33

Tornado

Kentucky Tornado
(Bowling Green)

Damaged 374 227
0.498 0.425Undamaged 784 630

Nashville Tornado
Damaged 727 239

0.509 0.616Undamaged 668 214

Earthquake

Nepal Earthquake Damaged 910 25
0.511 0.648Undamaged 962 124

Mexico Earthquake
(2017, Texcoco)

Damaged 223 64
0.627 0.760Undamaged 77 14

Puerto Rico Earthquake (San Juan) Damaged 297 240
0.529 0.347Undamaged 876 955

Puerto Rico Earthquake (Ponce) Damaged 48 43
0.375 0.299Undamaged 182 87

Salt Lake City Earthquake Damaged 207 144
0.562 0.467Undamaged 329 400

It is evident that NTL-detected damage aligns most consistently with the DD in
hurricane events, yielding an average F1 score of 0.738. This is followed by tornados, with
an average F1 score of 0.521, and earthquakes, with an average F1 score of 0.504. Within
hurricane events, the performance is not uniform. Hurricane Michael and both instances
of Hurricane Maria achieve an F1 score above 0.8. In contrast, Hurricane Florence and
Hurricane Dorian only achieve an F1 score above 0.6, and the F1 score for Hurricane Iota is
just 0.477.

For tornadoes and earthquakes, the results suggest that the damage detected by the
NTL change ratio is roughly equivalent to, or even worse than, a random guess. The
Mexico Earthquake is the only exception, with an F1 score of 0.76.

This variation in NTL performance when detecting damage across different disaster
types aligns with the NTL resilience trends depicted in Figures 7–9. The NTL resilience
trend for hurricane events conforms to the features of a resilience curve (Figure 6): a sharp
decline when the disaster occurs, followed by a slow recovery process, which explains
the higher F1 scores achieved when using NTL to detect damage caused by hurricanes.
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Conversely, the NTL resilience trends for tornadoes and earthquakes do not exhibit the
characteristics of a resilience curve (Figure 6), which lead to a lower F1 score. The NTL
resilience trend for the Mexico Earthquake aptly captures the characteristic features of
a resilience curve compared with other earthquake events. This distinctive pattern may
explain the high F1 score for the Mexico Earthquake case, as the NTL data effectively
captures the disaster resilience features specific to this event. Overall, the lack of alignment
contributes to the lower average F1 scores. Therefore, the effectiveness of NTL in detecting
disaster-related damage appears to be closely related to the underlying resilience trends
specific to different disasters.

4.4. Damage Degree Detection from NTL Change Ratio Layer

Section 4.3 elucidates the performance of the NTL change ratio in detecting damaged
and undamaged areas. Building on that analysis, this section explores whether the NTL
change ratio can further illustrate the degree of damage, employing the method described in
Section 3.5. Specifically, the PCC is calculated to characterize the linear relationship between
the DD and the NTL change ratio. Table 6 presents the PCC values for the disaster events.

Table 6. The PCC of different disasters.

Event Type Event Name and Location PCC

Hurricane

Hurricane Maria (San Juan) −0.068
Hurricane Maria (Ponce) −0.152

Hurricane Michael (Panama City) −0.269
Hurricane Florence (Jacksonville) 0.049

Hurricane Iota −0.081
Hurricane Dorian 0.146

Tornado
Kentucky Tornado (Bowling Green) −0.121

Nashville Tornado −0.041

Earthquake

Nepal Earthquake −0.193
Mexico Earthquake (2017, Texcoco) 0.064
Puerto Rico Earthquake (San Juan) −0.001

Puerto Rico Earthquake (Ponce) 0.061
Salt Lake City Earthquake −0.077

In every case, the absolute value of the PCC is close to zero, indicating that there is
no discernible linear relationship between the NTL change ratio and DD. Specifically, the
NTL relative change ratio does not increase as the severity of damage goes up. This finding
suggests that the NTL change ratio is unable to effectively capture or represent the varying
degrees of damage.

5. Discussion
5.1. Variation in NTL Damage Detection Performance among Different Types of Disasters

The results shown in Section 4.3 indicate the variation in NTL damage detection
performance among hurricanes, tornados, and earthquakes. The variations are attributed to
the impact of disasters on the electric system, which may be more vulnerable to hurricanes
and tornados than to earthquakes [44].

Hurricanes have the potential to inflict widespread damage on a given area, including
substantial harm to the power system. Figure 13 shows the damage detected by the NTL
change ratio and the corresponding DPM of Hurricane Maria. The coherence between the
large-scale damage and widespread power outage leads to a high performance in detecting
damage using the NTL relative change ratio.
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Despite also involving intense winds, tornadoes tend to affect areas directly along
their paths, rather than causing widespread, evenly distributed damage. Consequently,
the performance of the NTL change ratio model in detecting regional damage does not
match the effectiveness observed for hurricane events. This will be further discussed in
Section 5.3.

While earthquakes can damage distribution systems and transmission towers in areas
with unstable soil, the major cause of power outages is abnormally high wind, which is
more prevalent in hurricane and tornado events [44]. Additionally, the damage wrought by
earthquakes is often influenced by local site effects, making it more variable [45]. As a result,
the effectiveness of using the NTL change ratio to detect damage caused by earthquakes
tends to be both poor and inconsistent. This highlights the importance of understanding
the specific nature and impact patterns of each disaster type when utilizing NTL data for
damage assessment.

5.2. The Influence Factors of Damaged/Undamaged Area Detection Using NTL Change Ratio
in Hurricanes

Based on the experiments in Section 4.3, the nighttime change ratio layer has been
shown to be effective in detecting damaged/undamaged areas resulting from hurricane
events. However, a performance difference still exists among the different cases. Specifically,
in both cases, Hurricane Maria and Hurricane Michael have F1 scores of over 0.8, whereas
the F1 scores for Hurricane Iota, Hurricane Florence, and Hurricane Dorian are relatively
low. The performance of the nighttime change ratio layer in detecting damage caused by
hurricanes may be influenced by other factors, which are discussed in this study from two
perspectives: hurricane category and the average NTL value on the pre-disaster day.

Figure 14a reveals a general pattern wherein the F1 score increases as the average
NTL value in the pre-disaster day increases. This phenomenon can be explained by the
fact that when the average NTL on the pre-disaster day is low (indicating an area that is
generally dimly lit at night), it becomes challenging to accurately discern relative NTL
changes. This difficulty contrasts with areas with higher NTL values, where changes are
more readily observable.

Figure 14b points to the absence of a linear relationship between the hurricane cate-
gory and the F1 score. This means that the efficiency of NTL damage detection does not
necessarily improve with an increase in the hurricane category, even when more damage
is caused. However, this conclusion might be influenced by the imbalanced distribution
of hurricane categories in this study. Investigating a broader range of hurricanes could
potentially alter this finding.
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Figure 14c illustrates the relationship between the F1 score, average NTL, and hurri-
cane category. A notable gap can be observed between Hurricane Florence and Hurricane
Dorian. By examining more hurricanes, there may be an opportunity to create a predictive
surface to determine the optimal conditions for utilizing the NTL relative change ratio to
detect damage caused by hurricanes, which could be done in future work.

5.3. Damaged/Undamaged Area Detection Using NTL Change Ratio along Tornado Path

As discussed in Section 5.1, the damage caused by tornados can be concentrated along
the tornado path; therefore, the performance using NTL to detect regional damage in both
tornado cases is not ideal. It is worth investigating if the performance will increase if the
study area is limited to the tornado path, instead of focusing on the whole region. Figure 15
shows the study areas, DPMs, tornado paths, and NTL-detected damaged areas of the
Nashville Tornado and Kentucky Tornado. The new study area along the tornado path was
created by generating a buffer zone along the path with a distance the same as the tornado
width. Note that the information about the tornado width and tornado path was gathered
from the NOAA storm prediction center [46].
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The NTL trends before and after the disaster were generated, as shown in Figure 16.
For the Kentucky Tornado, the NTL trend fails to show the features of the resilience curve.
However, for the Nashville Tornado, a clear drop in NTL after the disaster followed by a
gradual recovery can be observed.

The NTL damage detection results for both tornadoes using the new study area are
shown in Table 7. Monthly data are used as Radpre.

Table 7. The confusion matrices, accuracy, and F1 scores of tornados in damaged/undamaged
detection along the tornado path.

Event Type Event Name and Location DD
NTL Detected Accuracy F1Damaged Undamaged

Tornado

Kentucky Tornado
(Bowling Green)

Damaged 27 47
0.367 0.466Undamaged 15 9

Nashville Tornado
Damaged 439 85

0.706 0.819Undamaged 109 27
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The Nashville and Kentucky tornado cases present contrasting results with the utiliza-
tion of the NTL relative change ratio for damage detection, which is consistent with the
corresponding NTL trend. In the Nashville Tornado, a commendable F1 score of 0.819 il-
lustrates a marked improvement in the accuracy of damage detection compared to the
wider region’s score of 0.616. However, the performance in the Kentucky Tornado case is
still poor, which may be attributed to the specific construction of the study area. Given
the tornado width of 402 m in Kentucky [46], the corresponding buffer zone’s width of
804 m, coupled with the 500m resolution of NTL data, results in a study area covering only
a sparse number of NTL pixels. This limited coverage can lead to less-reliable results. On
the other hand, the greater width of the Nashville Tornado, 1463 m, ensures adequate NTL
pixel coverage, enabling a more robust and credible conclusion [46].

While promising in some instances, the application of the NTL relative change ratio to
detect damage along a tornado’s path still requires careful consideration. Future research
and experiments could provide further insight for more consistent outcomes across different
tornado events.

6. Conclusions

This study explored the potential of the Black Marble NTL product in identifying
damaged and undamaged areas, as well as assessing the degree of damage inflicted
by hurricanes, tornadoes, and earthquakes. Initially, the research established average
regional NTL trends before and after each disaster, assessing whether NTL serves as a
viable indicator for damage across different disaster types. The results showed that the
NTL trend for hurricanes more closely mirrors the characteristics of a resilience curve, in
contrast to earthquakes and tornadoes. The study further examined pre-disaster NTL daily
fluctuations to ensure that future experiments focus solely on NTL changes instigated by
the disaster. This led to the calculation of the relative NTL change ratio using pre- and
post-disaster NTL data, with the employment of VNP46A3 monthly NTL data effectively
mitigating the variance introduced by daily fluctuations.

Key findings of the study include the relative strength of the NTL change ratio in
detecting damage caused by hurricanes, with its performance in assessing earthquake and
tornado damage being inconsistent or even below random guessing levels. The alignment
of NTL change ratio performance with the NTL resilience trend adds credibility to the
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method. Furthermore, NTL proved particularly adept at identifying hurricane damage in
well-lit areas and showed potential in delineating damage along tornado paths.

However, the low PCC value between the NTL change ratio and DD indicated that the
current approach is insufficient to quantify the degree of damage in hurricane, earthquake,
and tornado events.

Overall, this study advances a timely and streamlined approach for detecting damaged
and undamaged areas, particularly valuable for hurricane reconnaissance. It also illumi-
nates areas for further refinement and potential expansion, underscoring the importance of
continued exploration and methodological refinement in leveraging NTL data for disaster
assessment and response. This study has some limitations that should be acknowledged.
Firstly, the DPM provided by NASA was used as the ground truth damage degree map in
this work, but it was generated by InSAR, which primarily reflects changes in landforms
rather than the electricity system. This may lead to errors in generating the confusion
matrices when compared to NTL data, which captures more changes in the electricity
system. Additionally, the resolution of the damage detected by NTL is relatively coarse
at 500m, which is lower than the 30m resolution provided by the DPM. Although NASA
currently offers the Black Marble HD product, which provides daily NTL data with 30m
resolution, this product is currently limited to collaborators on funded projects. However,
the tools to produce the HD products will be available through Google Earth Engine in the
future [47], enabling researchers to generate higher-resolution damage degree maps using
NTL with the Black Marble HD product.
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