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This study uses a data-driven approach to address the complexities associated with research focused multi-sleeve
Cone Penetration Test (CPT) devices, particularly focusing on the multi-friction attachment (MFA) and multi-
piezo-friction attachment (MPFA) CPT devices. Hindered by time-consuming assembly and susceptibility to
sensor stream losses due to extensive electronic components, these advanced devices demand optimization to
transform from research devices to practice-suitable devices. This study aims at optimizing the design of the
multi-sleeve CPT devices using machine learning, with soil type classification performance as the primary metric
for device configuration effectiveness. The research scope centers not on using machine learning for soil clas-
sification but on refining the design of multi-sleeve CPT devices. A two-phase data-driven approach is adopted,
testing various feature combinations across eight machine learning models. The first phase involves identifying
the most suitable model for the dataset, followed by a refinement of features to balance sensor number mini-
mization and soil classification accuracy. The result is a proposed configuration for a multi-sleeve CPT device,
simplifying the original design while maintaining robustness, thereby enhancing cost-efficiency and operational
effectiveness in geotechnical practice. This work sheds light on how the integration of machine learning can
guide the design optimization of geotechnical instruments.

1. Introduction

The performance of geotechnical structures, such as deep founda-
tions, synthetic liners, and earth retaining systems, hinges on the
behavior of soil-geomaterial interfaces and their ability to transfer loads
(DeJong & Frost, 2002). These interfaces, encompassing contact be-
tween geological and man-made materials or varying geological strata,
play a pivotal role in the behavior of geotechnical systems. Therefore,
precise prediction and assessment of geotechnical interfaces are essen-
tial, directly impacting the structural integrity and cost-effectiveness of
geotechnical design (Hebeler & Frost, 2006). Instrumented cone pene-
tration test (CPT) devices are used in geotechnical engineering to
generate profiles of response data that are subsequently analyzed to
yield reliable indicators of both soil index properties as well as engi-
neering properties for use in designing, constructing and monitoring the
performance of geo-structures. Its ease of implementation, familiarity
within the construction industry, and high classification accuracy make
CPT widely used for research and practice (Hebeler et al., 2018). CPT
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measures the penetration resistance of a conical tip (qt) inserted into the
ground, the frictional force (fs) that the soil exerts on a smooth sleeve
located just above the cone tip, and the pore pressure (u2) recorded close
to the penetrating tip as the probe is inserted into the subsurface
(Begemann, 1965; Douglas, 1981).

A limitation of this tool is that it conventionally measures the fric-
tional response of the soil when sheared against a surface with fixed very
low roughness (smooth sleeve). However, researchers in the past have
shown that a more robust characterization of interface and soil strength
can be achieved when the soil is sheared against surfaces with a range of
different roughness values (DeJong, 2001; DeJong & Frost, 2002; Frost
et al., 2013). These findings have led to the development of more
specialized CPT tools that include multi-sleeve attachments to be used
behind a conventional CPT probe or as stand-alone devices behind an
un-instrumented tip, thereby reflecting a multiple-sensor approach. The
multi-friction attachment (MFA) for the cone penetrometer can record
four individual sleeve friction measurements (fs1, fs2, fs3, and fs4) at
each elevation within a sounding, in addition to the conventional CPT gt,
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Fig. 1. MFA and MPFA configured with conventional CPT module: (a) MFA design detail; (b) MPFA design detail; (c) Sleeves with increasing surface roughness of

fs1, fs2, fs3 and fs4 (Hebeler et al., 2018).

Table 1
Description of CPT sounding tested with multi-sleeve probes.
CPT Sounding Sensor Streams Main site soil type Device
Dataset # type
1 qt, u2, fs, fs1, fs2, fs3, fs4 Sand and some silt CPT-
layers from Vermont, MFA
USA
2 qt, u2, fs, fs1, fs2, fs3, fs4 Sand and some silt CPT-
layers from Vermont, MFA
USA
3 qt, u2, fs, ua0, fs1, ual, Silty sand from South CPT-
f52, ua2, fs3, ua3, fs4, Carolina, USA MPFA
ua4
4 qt, u2, fs, uao, fs2, ua2, Silty sand from South CPT-
£33, fs4 Carolina, USA MPFA
5 qt, u2, fs, uao, fs1, ual, Clay from Western CPT-
f52, fs3, ua3, fs4, ua4 Australia MPFA
6 qt, u2, fs, fs1, fs2, fs3, fs4 ~ Clay from Western CPT-
Australia MFA

fs and u2 measurements, as shown in Fig. 1 (a) (DeJong & Frost, 2002).
The multi-piezo-friction attachment (MPFA) for the cone penetrometer
can obtain four independent measures of interface response (fs1, fs2, fs3,
and fs4) and five independent measures of dynamic pore water pressure
along the shaft (ua0, ual, ua2, ua3, and ua4) of a penetrated probe, in
addition to conventional CPT measurements (gt, fs, and u2), shown in
Fig. 1 (b) (Hebeler & Frost, 2006). These enhancements of the basic CPT
device include the ability to configure the device with multiple sleeves
with different surface textures and multiple pore pressure sensors to
yield 7 to 12 streams of data, respectively, compared to the three streams

from conventional CPT devices. While the enhancements to existing CPT
devices have been shown to provide a much richer data set for strati-
graphic evaluation and soil classification, their current embodiments are
clearly more oriented to research rather than practice because they take
significant time to assemble before each deployment and are subject to
more frequent sensor stream losses due to a large number of electronic
cables and connectors involved and the harsh environment that they are
used in.

Over the past decade, there have been significant advancements in
data-driven approaches within the engineering field (Giustolisi et al.,
2007; Laucelli et al., 2023). These developments have paved the way for
reducing the number of sensors in multi-sensor CPT devices, aided by Al
technologies. This reduction can decrease both fabrication costs and the
risk of sensor failure during use. In addition, recent studies have
demonstrated that incorporating machine learning models to classify
soils from conventional CPT data yields promising results (Moon et al.,
2022; Rauter & Tschuchnigg, 2021; Reale et al., 2018; Tsiaousi et al.,
2018; Wu et al., 2021; Zhang et al., 2021). Compared to these studies,
the basis of the present study is to identify the least number of essential
features for MFA-CPT and MPFA-CPT devices with the help of machine
learning. To be specific, the objective is to reduce the overall number of
sensors while not losing the benefits of additional data streams corre-
sponding to rougher sleeve surfaces and associated different pore pres-
sures. The effectiveness of the reduction is evaluated through machine
learning performance in soil type classification. By optimizing sensor
count without sacrificing the quality, the industry stands to benefit from
reduced operational costs and improved reliability in geotechnical in-
vestigations. This integration of machine learning in the design of multi-
sleeve CPT devices also points out the potential of using Al to guide the
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Fig. 2. Soil type distributions across the six datasets.

Model Selection
Evaluate eight different machine
learning models using the
complete feature set.

v

Feature Optimization
Explore various combinations of
features with the model to
identify the essential set.

Fig. 3. Workflow of determining the minimal essential set of sensor measure-
ment features.

Table 2
Classification results of different machine learning models using conventional
CPT features only with CPT-MFA and CPT-MPFA as input datasets.

Model Precision Recall F1 score Accuracy
Decision Tree 0.80 0.81 0.81 0.83
AdaBoost 0.84 0.78 0.80 0.84
Random Forest 0.87 0.84 0.85 0.88
XGBoost 0.86 0.84 0.85 0.87
Tabnet 0.83 0.81 0.82 0.84
KNN 0.84 0.85 0.84 0.85
SVM 0.75 0.67 0.70 0.77
Conventional neural network 0.71 0.62 0.64 0.71

design optimization of geotechnical instruments.
2. Dataset

The datasets of CPT soundings used in this study, as detailed in
Table 1, were obtained from 3 distinct sites: Vermont, South Carolina,
and Western Australia, collected by DeJong (2001) and Hebeler (2005).
Five different soil types are included, namely gravel and sand mixtures,
sands, sand mixtures, silt mixtures, and clays. A detailed typical soil
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Table 3
Classification results of different machine learning models using conventional
CPT features and MFA features with CPT-MFA and CPT-MPFA as input datasets.

Model Precision Recall F1 score Accuracy
Decision Tree 0.88 0.89 0.88 0.89
AdaBoost 0.93 0.90 0.91 0.92
Random Forest 0.95 0.93 0.94 0.94
XGBoost 0.94 0.93 0.93 0.94
Tabnet 0.92 0.90 0.91 0.92
KNN 0.92 0.93 0.92 0.93
SVM 0.81 0.77 0.78 0.82
Conventional neural network 0.66 0.63 0.63 0.71

Table 4
Classification results of different machine learning models using conventional
CPT only with CPT-MPFA as input datasets.

Model Precision Recall F1 score Accuracy
Decision Tree 0.85 0.84 0.84 0.90
AdaBoost 0.87 0.82 0.83 0.91
Random Forest 0.90 0.84 0.86 0.92
XGBoost 0.89 0.89 0.89 0.92
Tabnet 0.87 0.86 0.87 0.91
KNN 0.85 0.85 0.84 0.90
SVM 0.87 0.75 0.78 0.87
Conventional neural network 0.60 0.53 0.46 0.72
Table 5

Classification results of different machine learning models using conventional
CPT features and MPFA features with CPT-MPFA as input datasets

Model Precision Recall F1 score Accuracy
Decision Tree 0.91 0.89 0.90 0.92
AdaBoost 0.96 0.93 0.94 0.95
Random Forest 0.95 0.93 0.94 0.95
XGBoost 0.95 0.92 0.93 0.95
Tabnet 0.92 0.93 0.92 0.94
KNN 0.92 0.94 0.93 0.95
SVM 0.91 0.88 0.89 0.91
Conventional neural network 0.83 0.70 0.73 0.83

profile for each site can be found in Appendix A.

Datasets #1, #2, and #6 include soundings with a conventional CPT
and an MFA that provides four independent measurements of interface
response, from friction sleeves at different positions behind the cone
penetrometer (fs1, fs2, fs3, and fs4), in addition to the conventional CPT
measurements (qt, fs, and u2 measurements). On the other hand, data-
sets #3, #4, and #5 use MPFA and include soundings which provide four
independent measures of interface response (fs1, fs2, fs3, and fs4) and
five independent measures of dynamic pore water pressure along the
shaft (ua0, ual, ua2, ua3, and ua4), in addition to the conventional CPT
measurements (qt, fs, and u2). However, in dataset #4, fs1, ual, ua3, and
ua4 were damaged, so data was collected only from the qt, fs, u2, ua0,
ua2, fs2, fs3, and fs4 sensors in that dataset. Since the sensors are in-
dependent, the damage only resulted in loss of data from the corre-
sponding sensor. For dataset #5, the ua2 sensor was damaged; hence
data was collected from the gt, fs, u2, ua0, ual, ua3, ua4, fs1, fs2, fs3, and
fs4 sensors, as noted in Table 1. The sensors that are used in all six
datasets are qt, u2, fs, fs2, fs3, fs4, and ua0. The corresponding typical
sensor record streams for each dataset can be found in Appendix B. In
each dataset, the surface roughness of fsi, fs2, fs3, and fs4 varies.
However, for the purposes of this study, specific surface roughness
variations in the different locations have been disregarded to avoid over-
complicating the analysis since in general, roughness increased with
distance behind the CPT (DeJong, 2001). As a result, fs2 in dataset #1
will be treated as equivalent to fs2 in any other dataset, regardless of
differences in surface roughness. This same approach is applied to fs3



D. Zhang et al.

qt

u2

fs

fs2

fs3

fs4

Computers and Geotechnics 169 (2024) 106248

1.0

0.58 0.48 QeKek]

0.8

0.6

0.4

-0.2

-0.0

(b)

Fig. 4. Correlation Matrix: (a) features dependence for soil classification applied to all six datasets, (b) features dependence for soil classification applied to CPT-

MPFA datasets only.

Table 6
Classification Results for different feature combinations using conventional CPT
measurements only with CPT-MFA and CPT-MPFA datasets.

Measurement Type Features Precision Recall F1 Accuracy
score
Conventional CPT qt, fs, u2 0.87 0.84 0.85 0.88
measurements only qt, u2 0.75 0.71 0.73 0.77
qt, fs 0.76 0.71 0.73 0.75
fs, u2 0.78 0.75 0.76 0.80

Table 7
Classification Results for different feature combinations using conventional CPT
measurements and MFA measurements with CPT-MFA and CPT-MPFA datasets.

Measurement Type  Features Precision  Recall F1 Accuracy
score
CPT-MFA qt, fs, u2, fs2, 0.95 0.93 0.94 0.94
measurements 153, fs4
qt, fs, u2, fs3, 0.93 0.92 0.92 0.93
fs4
qt, fs, u2, fs2, 0.94 0.91 0.93 0.93
fs3
qt, fs, u2, fs2, 0.93 0.92 0.93 0.94
fs4
qt, fs, u2, fs4 0.92 0.90 0.91 0.92
qt, fs, u2, fs3 0.92 0.90 0.91 0.92
qt, fs, u2, fs2 0.91 0.89 0.90 0.91

and fs4. It is important to note that while these features are treated as
identical in this work, their actual surface roughness may differ some-
what across the datasets.

2.1. Soil type distribution

The soil types in the above datasets are divided into gravel and sand
mixture, sand, sand mixture, silt mixture, and clay according to their
respective Ic, where Ic is the soil behavior type index (Robertson, 1991).

The six datasets described in Table 1 comprise a total of 3501 unique
data points. The detailed distribution of soil types is shown in Fig. 2. It
can be observed that the data is not uniformly distributed, mainly
comprising sands, sand mixtures, and clays. For example, over 90% of
clay data points are concentrated in two datasets. This issue is further
elaborated on in Section 4.3.

3. Methodology

The primary aim of this study is to employ machine learning tech-
niques to determine the minimal yet essential set of sensors that main-
tain high soil type classification accuracies in MFA and MPFA type
devices. To achieve this, various feature combinations need to be tested
across different machine learning models to ascertain the optimal
configuration. Given the extensive number of potential experiments
when exploring every possible feature combination for each model, a
two-phase approach is adopted, as shown in Fig. 3. Initially, the study
evaluates the performance of eight machine learning models using the
full set of features to identify the model that is most compatible with the
dataset. Once the most suitable model is selected, further exploration is
conducted to refine the feature combinations, focusing on achieving the
best balance of feature minimization and classification accuracy.

Upon determining the optimal model and feature combination, the
study applies these findings to classify soil types in an unseen dataset,
where resampling techniques are employed to enhance the model’s
performance further. The following section introduces the methodology
used in this work, including the machine learning models, hyper-
parameter tuning, model evaluation methods and resampling strategies.

3.1. Machine learning model

The data employed in this study consists of a typical tabular format,
where each data point is represented as a vector comprising various
features. In the analysis of tabular data, deep learning has seen rapid
advancements over the past decade, and certain deep learning models
have shown exceptional performance on specific tabular datasets.
However, despite these advancements, tree-based machine learning
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Fig. 5. Comparative accuracy of the model across various feature combinations with CPT-MFA measurements.

Table 8
Classification Results for different feature combinations using conventional CPT
measurements only with CPT-MPFA datasets.

Measurement Type Features Precision Recall F1 Accuracy
score
Conventional CPT qt, fs, u2 0.90 0.84 0.86 0.92
measurements only qt, u2 0.79 0.76 0.77 0.86
qt, fs 0.81 0.69 0.73 0.82
u2, fs 0.84 0.78 0.80 0.86

Table 9
Classification Results for different feature combinations using conventional CPT
measurements and MPFA measurements with CPT-MPFA datasets.

Measurement Features Precision  Recall F1 Accuracy
Type score
CPT-MPFA qt, fs, u2, fs2, 0.95 0.93 0.94 0.95
measurements f53, fs4, ua0
qt, fs, u2, fs3, 0.96 0.94 0.95 0.96
fs4, ua0
qt, fs, u2, fs2, 0.95 0.93 0.94 0.95
f53, ua0
qt, fs, u2, fs2, 0.94 0.92 0.93 0.94
fs4, ua0
qt, fs, u2, fs4, 0.94 0.92 0.93 0.94
ua0
qt, fs, u2, fs3, 0.94 0.92 0.93 0.94
ua0
qt, fs, u2, fs2, 0.94 0.92 0.93 0.94
ua0
qt, fs, u2, ua0 0.92 0.89 0.90 0.93
qt, u2, ua0 0.90 0.89 0.89 0.91
fs, u2, ua0 0.92 0.88 0.90 0.90
qt, fs, ua0 0.90 0.86 0.87 0.92
qt, fs, u2, fs4 0.92 0.89 0.91 0.93
qt, fs, u2, fs3 0.91 0.85 0.87 0.93
qt, fs, u2, fs2 0.91 0.86 0.88 0.92

models continue to be the leading performers (Gorishniy et al., 2021;
Shwartz-Ziv & Armon, 2022). In light of this, the study extends its
exploration to eight machine learning models, including four tree-based
models: decision tree, adaptive boosting (AdaBoost), random forest, and
extreme gradient boosting (XGBoost); one deep learning model specif-
ically designed for tabular data - TabNet (Arik & Pfister, 2021), along-
side K nearest neighbors (KNN), support vector machine (SVM), and a

conventional neural network. Hyperparameter tuning is facilitated by
the robust capabilities of the scikit-learn library (Pedregosa et al., 2011).
The definition of the hyperparameters for each model and the corre-
sponding search space are detailed in Appendix C.

3.1.1. Decision tree

Decision tree features a tree-like structure with nodes and edges,
where each node represents a feature, and each edge signifies the
outcome of a test. The accuracy of decision trees can be enhanced
through node splitting, which divides nodes into sub-nodes. At each tree
level, one feature is selected and split to ensure a maximum drop in
uncertainty. Decision trees are interpretable and quick to train and test,
but challenges such as overfitting and suboptimal prediction accuracy
for complex tasks may arise.

3.1.2. AdaBoost

AdaBoost applies a sequential learning approach where multiple
base learners are combined to enhance the model performance. In this
work, AdaBoost is utilized with decision trees as the base learners. The
algorithm iteratively adjusts to focus more on the data points that were
previously misclassified, by modifying their weights. This makes them
more influential in the training of subsequent learners. Each decision
tree in AdaBoost contributes to the final model, and the accuracy of each
tree determines its weight in the final decision. AdaBoost is effective in
reducing overfitting, especially in datasets with high variance, by
creating a robust classifier. However, its performance can be affected by
noisy data and outliers.

3.1.3. Random Forest

The Random Forest algorithm is an ensemble technique that com-
bines multiple decision trees to improve prediction performance. Each
tree is trained on a randomly sampled subset of the data with replace-
ment, using a different combination of features. This approach, known
as bootstrap sampling and feature bagging, enhances the diversity and
robustness of the model. The final prediction is determined by a majority
vote from all trees. Random Forests typically outperform single decision
tree by reducing overfitting. However, they require more computational
resources, which can increase training time, and are less interpretable
due to their complexity.

3.1.4. XGBoost
Similar to Random Forest, XGBoost also constructs multiple decision
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Fig. 6. Comparative accuracy of the model across various feature combinations with CPT-MPFA measurements.

Table 10
Model accuracy with and without depth as features.
With/without Dataset Features Accuracy
depth
Without depth CPT-MFA and CPT- qt, fs,u2, fs2, fs3and fs4  0.94
MPFA combined
CPT-MPFA only qt, fs, u2, fs2, fs3, fs4 and 0.95
ua0
With depth CPT-MFA and CPT- Depth, qt, fs, u2, fs2, fs3 ~ 0.97
MPFA combined and fs4
CPT-MPFA only Depth, qt, fs, u2, fs2, fs3  0.97
fs4 and ua0

trees. However, its approach is sequential, where each subsequent tree is
designed to rectify the errors made by the previous ones. This process is
driven by gradient boosting, a method that focuses on minimizing the
loss function. In contrast to AdaBoost, which also builds decision trees
sequentially but typically uses simpler trees, XGBoost employs more
complex, deeper trees for detailed data modeling.

A notable advantage of XGBoost lies in its integration of regulari-
zation methods, which are instrumental in mitigating overfitting.
Despite its strengths, XGBoost presents a more complex tuning process
compared to simpler models like decision trees or random forest. Its
sequential tree-building nature can also result in longer training times,
particularly for extensive datasets.

3.1.5. TabNet

TabNet is an innovative deep learning model specifically designed
for tabular data (Arik & Pfister, 2021). Developed by Google Cloud Al
researchers, it stands out from traditional deep learning models by using
sequential attention to choose which features to reason from at each
decision step, making it highly interpretable. This attention mechanism
allows TabNet to learn both local and global representations of features,
contributing to its robust predictive performance. TabNet also employs a
unique feature masking strategy, enabling it to perform feature selection
dynamically during the training process. This leads to efficient learning
and improved generalization on structured data. TabNet achieves state-
of-the-art performance on several real-world datasets.

3.1.6. KNN

The KNN algorithm is a non-parametric method, which operates by
identifying the 'k’ nearest data points in the feature space to a query
point and making predictions based on the labels of these neighbors.
KNN'’s effectiveness lies in its simplicity and the intuitive nature of its
mechanism, where the outcome is determined by the majority vote or
average from the 'k’ nearest neighbors. Unlike more complex models,
KNN does not build an explicit model but makes decisions based on the
localized pattern of the data. This characteristic makes KNN particularly
useful in scenarios where the data distribution is not well understood.
However, it can be computationally demanding with large datasets, as it
involves calculating the distance between the query point and all points
in the dataset for each prediction.

3.1.7. SVM

SVM seeks to identify an optimal hyperplane within an N-dimen-
sional space to distinctly classify data points. Its primary objective is to
determine a hyperplane that maximizes the margin, defined as the
greatest distance between the hyperplane and the nearest data points on
either side. This focus on only the most critical data points near the
decision boundary makes SVM notably memory efficient. For post-
training, it requires only the storage of these pivotal support vectors.
Despite this efficiency, SVM tends to underperform with noisy datasets,
where the clear margin needed for optimal classification is obscured by
overlapping data points.

3.1.8. Conventional neural network

Neural network typically structures with an input layer, several
hidden layers, and an output layer, and operates through weights and
biases that facilitate data transformation across these layers. These pa-
rameters are refined via forward and backward propagation during the
training process. The effectiveness of neural network generally increases
with the availability of larger training datasets, as they have numerous
weights and biases to learn and optimize. Note that TabNet in Section
3.1.5 is a type of neural network, however, it stands out from traditional
neural network by incorporating attention mechanisms and feature se-
lection that improve interpretability and performance in structured data
analysis.
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Table 11
Classification Results using an entire sounding dataset as the testing set.

Experiment Train Test precision  recall F1 accuracy
ID
1 Dataset Dataset #1 0.39 0.33 0.30 0.55
#2 Sand and
Dataset some silt
#3 layers
Dataset Vermont,
#4 USA
Dataset
#5
Dataset
#6
2 Dataset Dataset #2 0.33 0.29 0.26 0.56
#1 Sand and
Dataset some silt
#3 layers
Dataset Vermont,
#4 USA
Dataset
#5
Dataset
#6
3 Dataset Dataset #3 0.53 0.43 0.45 0.72
#1 Silty sand
Dataset South
#2 Carolina,
Dataset USA
#4
Dataset
#5
Dataset
#6
4 Dataset Dataset #4 0.53 0.53 0.50 0.75
#1 Silty sand
Dataset South
#2 Carolina,
Dataset USA
#3
Dataset
#5
Dataset
#6
5 Dataset Dataset #5 0.45 0.44 0.40 0.63
#1 Clay
Dataset Western
#2 Australia
Dataset
#3
Dataset
#4
Dataset
#6
6 Dataset Dataset #6 0.30 0.44 0.30 0.53
#1 Clay
Dataset Western
#2 Australia
Dataset
#3
Dataset
#4
Dataset
#5

3.2. Pearson correlation coefficient

A correlation matrix maps the Pearson correlation coefficient be-
tween each pair of input features (Cohen et al., 2009). It can show the
statistical relationship between two features. The range of the correla-
tion coefficient is (—1, 1). If two features are closely correlated, the
absolute value of the coefficient will be close to 1; otherwise, it will be
close to 0. Including two highly correlated features when training a
machine learning model is not desirable since correlated features can
lead to overfitting. In this work, the correlation matrix is generated to
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guide the feature selection process.
3.3. Hyperparameter tuning and model evaluation

To optimize model performance, hyperparameter tuning is essential.
In this study, the models undergo tuning through randomized search,
coupled with 10-fold cross-validation on the training set. However, for
TabNet, considering the computational cost, randomized search with 3-
fold cross-validation on the training set is used. The effectiveness of the
different models is assessed using key metrics: recall, precision, F1 score,
and accuracy. This approach ensures a balanced evaluation of model
performance across different aspects of classification effectiveness.

3.3.1. K fold cross validation

Cross-validation is a method that evaluates machine learning models
and works well with limited data. It provides a better estimate of a
model’s generalization capability by evaluating it on multiple subsets of
the data. Usually, the dataset is evenly divided into K groups. Each time
K-1 groups are used to train a model, and one group is used to evaluate
the performance of the trained model. This pattern of training and
evaluating is repeated K times, with choosing a different hold-out
dataset for evaluation each time. The final performance metrics are
computed as the average of the K iterations.

3.3.2. Randomized search

Randomized Search is a method used in hyperparameter optimiza-
tion for machine learning models. It involves randomly selecting a fixed
number of parameter combinations from specified distributions for the
hyperparameters. This technique allows for a more efficient exploration
of the parameter space, as it does not require a systematic examination
of all possible combinations. While it may not guarantee finding the
absolute best parameters, it provides a balance between exploration and
computational efficiency, making it a practical choice in many machine
learning applications.

Due to the higher computational requirements of TabNet, the search
is restricted to 15 iterations. For the rest of the models, 100 iterations of
randomized search are conducted. The best estimator from these ran-
domized searches is determined based on the highest accuracy achieved.

3.3.3. Performance metrics

In multiclass classification problems, evaluating the performance of
a model involves several key metrics: recall, precision, F1 score, and
accuracy. Recall, also known as sensitivity, measures the proportion of
actual positives that are correctly identified. Precision quantifies the
proportion of predicted positives that are true positives. The F1 score
provides a harmonic mean of precision and recall, offering a balance
between the two by considering both false positives and false negatives.
It is particularly useful when there’s an uneven class distribution. Lastly,
accuracy represents the overall correctness of the model, defined as the
ratio of correctly predicted observations to the total observations. It’s a
straightforward metric, however, it can be misleading in imbalanced
class distributions. Therefore, having the combined consideration of
these four metrics is critical for a comprehensive understanding of a
multiclass classifier’s performance.

3.4. Resampling

Resampling, generally used to resolve the imbalanced dataset issue,
includes two methods - up-sampling and down-sampling. Up-sampling
increases the number of data points in the minority classes so that it can
match with the majority class. In contrast, down-sampling decreases the
data points in the majority classes to match with the minority class.

In this work, for up-sampling experiment, the minority classes of the
training set are up-sampled to have the same number as the majority
class (the class with the highest number of data points) by an up-sample
method called the synthetic minority oversampling technique (SMOTE)
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Fig. 7. Confusion matrix for experiment 1 and 2: (a) confusion matrix for experiment 1, (b) confusion matrix for experiment 2.
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Fig. 8. Confusion matrix for experiment 5 and 6: (a) confusion matrix for experiment 5, (b) confusion matrix for experiment 6.

(Chawla et al., 2002). SMOTE first finds K samples that are closest in the
distance to the minority class samples and then gets the difference be-
tween the minority sample (x;) and the nearest neighbor (x;). The syn-
thetic new samples are generated by Xpew = X; + (xj 7xl-) -8, whereas 6 is
a random number between 0 and 1.

For down-sampling experiments, the majority classes of the training
set are down-sampled to have the same number as the minority class
(the class with the least number of data points) by random selection.

A combined resampling experiment is also explored, where the mi-
nority classes are up-sampled and the majority classes are down-
sampled. The objective is to equalize the number of instances across
all classes to match the count of the mid-sized class.

4. Results
4.1. Model selection

This section explores the optimal machine learning model for soil
classification, utilizing shared features across datasets. Four experiments
are conducted, each having 80% of the dataset for training and 20% for
testing. The comparative analysis involves a range of models including
decision tree, AdaBoost, random forest, XGBoost, TabNet, KNN, SVM
and conventional neural network to determine the most effective
approach in accurately classifying soil types.

The randomized search method is implemented for each model to
arrive at the best parameters. The training set is used to fit the ran-
domized search and implement cross-validation to find the best
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Table 12

Classification Results of experiments without resampling, with up-sampling, with down-sampling, and with combined sampling.
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Experiment Train Test Accuracy without
D resampling

Accuracy after up-
sampling

Accuracy after down-
sampling

Accuracy after combined
sampling

1 Dataset Dataset #1 0.55
#2 Sand and some silt
Dataset layers
#3 Vermont, USA
Dataset
#4
Dataset
#5
Dataset
#6
2 Dataset Dataset #2 0.56
#1 Sand and some silt
Dataset layers
#3 Vermont, USA
Dataset
#4
Dataset
#5
Dataset
#6
3 Dataset Dataset #3 0.72
#1 Silty sand
Dataset South Carolina, USA
#2
Dataset
#4
Dataset
#5
Dataset
#6
4 Dataset Dataset #4 0.75
#1 Silty sand
Dataset South Carolina, USA
#2
Dataset
#3
Dataset
#5
Dataset
#6
5 Dataset Dataset #5 0.63
#1 Clay
Dataset Western Australia
#2
Dataset
#3
Dataset
#4
Dataset
#6
6 Dataset Dataset #6 0.53
#1 Clay
Dataset Western Australia
#2
Dataset
#3
Dataset
#4
Dataset
#5

0.47

0.63

0.75

0.70

0.14

0.62

0.42

0.74

0.59

0.63

0.45

0.61

0.75

estimator. With the best estimator of each model, the test set accuracy,
precision, recall, and F1 score are compared and used to identify the
optimal model.

4.1.1. CPT-MFA datasets and CPT-MPFA datasets combined

Two experiments are conducted using CPT-MFA and CPT-MPFA
datasets combined. The first experiment, which functions as the base-
line model, uses conventional CPT features only, namely qt, fs and u2.
The second experiment uses both conventional CPT features and MFA
features, including qt, fs, u2, fs2, fs3, and fs4. The results of eight

different models are shown in Tables 2 and 3, respectively.
With MFA features, the overall model performance is better, with the

highest precision increased by 8%, the highest F1 score and recall
increased by 9% and the highest accuracy increased by 6%, compared to
using conventional CPT features only. This indicates that MFA features
can help machine learning models classify soil better. Random Forest is
the optimal model based on both experiments since it has the highest
precision, F1 score and accuracy.
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Fig. 9. Confusion matrix for experiment 1, 5 and 6 after up-sampling: (a) confusion matrix for experiment 1, (b) confusion matrix for experiment 5, (c) confusion

matrix for experiment 6.

4.1.2. CPT-MPFA datasets only

Two additional experiments are conducted using only CPT-MPFA
datasets. Compared with CPT-MFA, CPT-MPFA datasets share the
feature of pore water along the shaft ua0. The first experiment functions
as the baseline model, using conventional CPT features only, whereas
seven features are considered in the second experiment, including qt, fs,
u2, fs2, fs3, fs4, and ua0. The results of eight different models are shown
in Table 4 and 5, respectively. Again, an increase in model performance
can be observed after using MPFA features, which suggests the impor-
tance of MPFA features in soil type classification.

The results presented in Tables 2, 3, 4, and 5 illustrate that AdaBoost,
Random Forest, XGBoost, TabNet, and KNN are effective when applied
to CPT-MFA and CPT-MPFA datasets. Notably, KNN and tree-based
models like Random Forest, AdaBoost, and XGBoost show higher per-
formance in comparison to TabNet. Among all the models, Random
Forest stands out slightly, affirming its efficacy and reliability in soil
classification tasks. Therefore, Random Forest is chosen as the optimal
machine learning model for predicting soil type and will be used in the
following sections to arrive at the optimal combination of CPT

10

attachment sensors to appropriately classify soils.
4.2. Feature selection

The goal of this section is to minimize the number of sensors required
for accurate soil type classification. Therefore, the focus is on training
the machine learning model with the fewest possible features, while
ensuring that classification accuracy remains uncompromised. In this
section, the correlation between features is first analyzed. Then, two
main experiments are conducted, where the first experiment uses both
CPT-MFA and CPT-MPFA dataset and the second experiment only uses
the CPT-MPFA dataset. In both experiments, 80% of the dataset is used
as the training set and 20% as the test set. Based on the previous
experiment results, Random Forest is used here to compare different
combinations of features. The randomized search method is imple-
mented to arrive at the best parameters where the training set is used to
fit the randomized search and 10-fold cross-validation is implemented to
find the best estimator.
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Fig. 10. Confusion matrix for experiment 1, 5 and 6 after down-sampling: (a) confusion matrix for experiment 1, (b) confusion matrix for experiment 5, (c) confusion

matrix for experiment 6.

4.2.1. Feature correlation

There is a bilinear relationship between interface strength (fs, fs1,
fs2, fs3, and fs4) and surface roughness (Uesugi & Kishida, 1986). Spe-
cifically, the interface strength increases linearly with increasing surface
roughness up to a critical roughness value (Hebeler et al., 2018).
Considering this factor, the relationships between CPT sleeve friction
and multi-sleeve friction, as well as between pore pressure and dynamic
pore pressure along the shaft, are investigated.

The correlation matrix for six features qt, fs, u2, fs2, fs3 and fs4 using
the training set of all six datasets is shown in Fig. 4 (a). The analysis
reveals a high correlation between fs2 and fs, as well as between fs2 and
f53, suggesting a redundancy in including these feature pairs in the
multi-sleeve CPT device configuration. Similarly, the correlation matrix
for six features, qt, fs, u2, fs2, fs3, fs4 and ua0 applied to the training set
of MPFA datasets only is shown in Fig. 4 (b). Fs2 and fs3 are highly
correlated with a correlation value 0.92, and u2 and uaO are highly
correlated with a correlation value 0.98. This indicates that one of the

11

features in each pair could potentially be omitted without significant
loss of information.

4.2.2. Classification results

Tables 6 and 7 present the precision, recall, F1 score, and accuracy
results for classifications using various feature combinations from both
the CPT-MFA and CPT-MPFA datasets. Table 6 shows the results trained
with conventional CPT measurements only, whereas Table 7 shows the
results trained with conventional CPT measurements and MFA mea-
surements. When compared to models trained solely on conventional
CPT measurements, there is a marked improvement in performance
when using the CPT-MFA measurements, as shown in Fig. 5. This notable
improvement underscores the necessity and effectiveness of MFA mea-
surements. Tables 6 and 7 also indicate a decline in performance when
fewer features are employed for model training. In Table 7, by using the
combination of gt, fs, u2, and either fs3 or fs4, the accuracy peaks at 0.92.
This is still relatively close to the maximum accuracy of 0.94, which
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Fig. 11. Proposed design configuration of multi-sleeve cone penetrometer
probe attachments.

demands an additional feature for a mere 2% accuracy boost. Given the
objective of this study—to identify the most efficient feature combina-
tion with the fewest features—the combination of qt, fs, u2, and either
fs3 or fs4 emerges as the optimal choice.

Tables 8 and 9 show the precision, recall, F1 score, and accuracy for
classification using different feature combinations with CPT-MPFA
datasets. Table 8 presents the results trained with conventional CPT
measurements only whereas Table 9 presents the results trained with
conventional CPT measurements and MPFA measurements. In Table 9,
the highest accuracy of 0.96 is reached by the feature combination of qt,
fs, u2, fs3, fs4 and ua0. Therefore, this combination of gt, fs, u2, fs3, fs4
and is considered as the optimal choice for the dataset collected by CPT-
MPFA device. Fig. 6 shows the increase in model accuracy after adding
MPFA measurements into the training, which suggests the importance of
MPFA measurements.

4.2.3. Including depth as a feature

When collecting CPT data, the depth of each data point is also a
feature that can be considered a factor influencing the soil type classi-
fication. Depth not only serves as an indicator of the vertical variability
of the test site, but also offers insight into the vertical stress levels pre-
sent, which is intrinsically linked to gt and fs measurements. Soil sam-
ples at similar depths are often subject to comparable vertical stress
conditions, thereby influencing the gt and fs readings. This relationship
underscores the relevance of depth in the context of CPT data analysis.
Table 10 shows the model performance with and without having depth
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as a training feature. An increase in model performance can be observed
after including depth as a training feature.

However, it is crucial to acknowledge that depth can also introduce a
spatial bias in the model. Sites that are close to each other are likely to
exhibit similar soil distributions at equivalent depths due to higher
spatial correlation. On the other hand, sites that are geographically
distant might display a diverse range of soil types at the same depth,
complicating the inclusion of depth as a training feature.

In conclusion, while depth can be a contentious feature due to po-
tential spatial biases, its relationship with vertical stress and subsequent
impact on gt measurements make it a valuable feature for enhancing
model accuracy in soil type classifications.

4.3. Application - classification of unseen CPT dataset

The final phase of this work is to predict the soil types with a new
CPT-sounding result based on the best-selected model and the optimal
feature combination. To this end, in this section, instead of building the
test set randomly, a complete CPT-sounding dataset will be used as the
test set for the experiments. As shown in Table 11, each of the six
sounding datasets is considered the test set, with the other five datasets
as the training set, respectively. Random forest is used as the training
model per Section 4.1, and the feature combination of gt, fs, u2 and fs3 is
used per Section 4.2. The classification precision, recall, F1 score, and
accuracy metrics achieved in each case are also depicted in Table 11.

The results in Table 11 show a classic example of class imbalance in
machine learning and the spatial variation of soil property (Ching et al.,
2023). The accuracy of the models drops to between 55% and 75% from
the best-case scenario of 94%, as shown in Table 7. The recall, precision,
and F1 score decrease to about 25-55% due to the influence of the
imbalanced dataset. Experiments 1, 2, 5, and 6 in Table 11 get unex-
pectedly poor results. Therefore, confusion matrices are used to inves-
tigate further the frequency and reasons behind those incorrect
predictions.

The confusion matrices for experiments 1 and 2, as depicted in Fig. 7,
reveal a tendency of the models to incorrectly classify numerous data
points as 'Sand’. Notably, out of 829 data points categorized as ’Sand’,
35.7% are from dataset #1, and 34.1% are from dataset #2. When these
datasets are used as the test set, the model’s capacity to differentiate
’Sand’ from other soil types is substantially diminished due to the
limited representation of 'Sand’ in the training set. This imbalance leads
to a disproportionate focus on the 'Sand’ classification during model
training, resulting in a higher rate of misclassification towards the
’Sand’ category in the test sets.

The confusion matrices for experiments 5 and 6, shown in Fig. 8,
indicate a significant misclassification issue, with a notable number of
data points, particularly those labeled as ’Clay’, being incorrectly
identified as *Sand mixture’. Out of 593 data points classified as *Clay’,
28.8% are from dataset #6, and 62.9% are from dataset #5. When these
specific datasets are used as test sets, the model’s proficiency in accu-
rately identifying 'Clay’ is compromised. This is compounded by the fact
that a substantial portion of the test set comprises "Clay’ data points.
Additionally, *Sand mixture’ represents the most prevalent category
across all six datasets (as illustrated in Fig. 2), leading to a bias in the
model’s predictions, where ’Clay’ is frequently misclassified as *Sand
mixture’.

The observed misclassifications in the experiments can be attributed
to the method of manually selecting training and test sets from CPT
soundings at various locations in the United States and Australia, rather
than random selection from a combined dataset. This approach results in
significantly different distributions between the training and test sets,
adversely affecting the accuracy. Typically, enhancing the accuracy in
such scenarios would involve increasing the number of uniformly
distributed data points across all classes. However, due to the limited
availability of data points for multi-sleeve CPT in the literature, this
study has instead explored resampling methods to achieve a more
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balanced distribution of class labels, aiming to improve the model
performance.

4.3.1. Results from up-sampling and down-sampling of the datasets

In this section, three sampling methods are investigated to determine
their impact on the model’s performance for an unseen dataset. Table 12
shows the accuracy of each experiment before and after down-sampling,
up-sampling and combined sampling.

Overall, sampling approaches can improve the model performance
for unseen datasets. In most of the experiments, the highest accuracy is
reached by either up-sampling or down-sampling. The performance of
combined sampling is intermediate between the performance with up-
sampling or down-sampling.

In experiments 1, 4, 5, and 6, the accuracy after up-sampling de-
creases compared with the accuracy without resampling, especially for
experiment 1, 5 and 6. For experiment 5 and 6 where the test set is
mainly ‘Clay’, the accuracy drops to 0.14 and 0.42 respectively. The
models perform worse after up-sampling. From the confusion matrices
shown in Fig. 9, more clay data points are predicted as ‘Sand mixture’
and ‘Silt mixture’. For experiment 1, more data points are mis-predicted
as ‘Sand’ after up-sampling. The result indicates that the synthetic clay
data points generated by SMOTE in experiments 5 and 6 cannot correctly
represent the ‘Clay’ data points in the test set. The same reasoning ap-
plies to the synthetic sand data points generated in experiment 1.
Therefore, whether the synthetic data points can convincingly represent
the real data points using SMOTE on highly imbalanced data should be
taken into consideration.

Experiments 3 and 4 after down-sampling have a similar accuracy as
up-sampling or without any resampling methods. The accuracy of ex-
periments 1, 5, and 6 after down-sampling are higher compared to the
results after oversampling. The confusion matrices of experiments 5 and
6 are shown in Fig. 10. Compared to the confusion matrix after
upsampling, the clay data points are predicted more accurately instead
of being mis-predicted as sand mixtures or silt mixtures. For experiment
1, more sand mixtures data points are correctly predicted, as shown in
Fig. 10a. The result shows that the minority data points (‘Clay’ in ex-
periments 5 and 6; ‘Sand’ in experiment 1) can be more sufficiently
learned by the models after down-sampling.

5. Discussion - proposed design configuration of multi-sleeve
cone penetrometer probe attachments

The analysis presented in Section 4 noted that the optimal feature
combination of CPT-MFA device is qt, fs, u2, fs3 and the optimal feature
combination of CPT-MPFA device is qt, fs, u2, fs3, fs4, ua0. Reflecting
these optimal configurations, Fig. 11 shows the proposed design
configuration of a new multi-sleeve cone penetrometer probe attach-
ment, with two friction sleeves and one independent measure of dy-
namic pore water pressure along the shaft. This proposed configuration
can allow for superior classification of soil type and other engineering
properties during site characterization without the electronic
complexity and potential low robustness associated with the original 7
data stream MFA-CPT or 12 stream MPFA-CPT versions. Specifically, the
proposed design results in a 6 data stream configuration consisting of a
tip resistance measurement (qt), 3 friction sleeve measurements (fs, fs1,
and fs2) using sleeves with increasing roughness and two pore pressure
sensors (12, and ua0), one measuring pore pressure in the tip region and
the other measuring pore pressure generated after shearing against the
most heavily textured sleeve. The additional friction sleeves and pore
pressure sensor can be readily configured into a simpler attachment used
behind a conventional CPT to improve the overall use of the device data
while avoiding challenging operational issues. This can still allow for
full quantification of the interface friction versus surface roughness
relationship for all soils and simultaneously yield two independent
measurements of pore pressure generated, one due to probe tip
advancement and the other due to sleeve induced soil shearing.
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6. Conclusions

The research was primarily centered on identifying the minimal yet
crucial set of sensor measurements for multi-sleeve CPT devices. This
was achieved by utilizing the performance of machine learning models
in soil type classification as a key metric to guide the optimization
process. Through a comprehensive analysis of various machine learning
models and feature combinations, the study revealed that a reduced
number of sensors can achieve comparable classification performance to
more complex configurations. Specifically, for the CPT-MFA device, the
optimal feature combination was identified as qt, fs, u2, and fs3, while
for the CPT-MPFA device, it was gt fs, u2, fs3, fs4, and ua0. Based on the
findings, a new configuration for a multi-sleeve attachment for use in
conjunction with a conventional CPT was identified. It consisted of a
simple attachment with two additional friction sleeves and one pore
pressure sensor. The proposed configuration addressed the challenges of
reducing electronic complexity, time-consuming assembly, and the
susceptibility of the device to sensor stream losses while maintaining
robustness at the same time.

In pursuing the objective of optimizing multi-sleeve CPT devices, this
research also sheds light on the efficacy of various machine learning
techniques in soil type classification. While the deep learning model
TabNet showed promise in predicting soil types using multi-sensor CPT
data, KNN and traditional tree-based models like Random Forest, Ada-
Boost, and XGBoost demonstrated superior performance in this domain.
Additionally, the resampling technique can somewhat improve the
classification accuracy of unseen soil datasets but not fully overcome the
deficiency in an initially imbalanced dataset.

In conclusion, this research marks a significant step forward in the
field of geotechnical engineering, illustrating how the integration of
machine learning can effectively guide the design and optimization of
geotechnical instruments. Reducing sensor complexity while maintain-
ing the performance in soil type classification leads to more cost-
effective and efficient geotechnical practice, potentially benefiting the
geo-infrastructure construction industry. This work not only offers
practical solutions for optimizing geotechnical instrument designs but
also paves the way for more sophisticated and data-driven approaches in
geotechnical practice.
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The CPT data used in this work is collected by DeJong (2001). Fig. A.1a, b and c show the soil profile of Vermont, South Carolina, and Western
Australia respectively. While all three sites encompass the five soil types, there is a noticeable imbalance in the distribution of these soil types across

the different locations, which is also indicated in Fig. 2.
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Appendix B

Fig. B.1 to Fig. B.6 shows the sensor record streams of dataset 1 to dataset 6, respectively. For MFA-CPT device, it shows the sensor record streams
of qt, u2, fs, fs2, fs3, and fs4. For MPFA-CPT device, it shows the sensor record streams of qt, u2, fs, fs2, fs3, fs4, and ua0 (DeJong, 2001). The soundings
reveal notable correlations among sleeve stresses (fs, fs2, fs3, fs4) as well as between pore pressures (u2, ua0), underscoring the critical need for

optimization of MFA and MPFA devices.
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Fig. B6. Sensor record streams for dataset 6

Appendix C

Tables C.1-C.8 detail the definitions of hyperparameters for each machine learning model employed in this study, specifically: decision tree,
AdaBoost, random forest, XGBoost, TabNet, KNN, SVM, and conventional neural network. Tables C.9 further delineates the hyperparameter search
space for each model, eplyancing the credibility and robustness of the model performance.

Definition of decision tree hyperparameters.

Hyperparameter Definition

Max_depth
Min_samples_split
Min_samples_leaf
Criterion

The maximum depth of the tree, controlling overfitting by limiting the complexity.
The minimum number of samples required to split an internal node.

The minimum number of samples a leaf node must have.

The function to measure the quality of a split.
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Table C2
Definition of AdaBoost hyperparameters.
Hyperparameter Definition
n_estimators The number of base estimators (decision trees) in the ensemble.
learning_rate The weight assigned to each classifier during each stage of the boosting process.
Table C3
Definition of random forest hyperparameters.
Hyperparameter Definition
n_estimators The number of trees in the forest.
max _features The number of features when searching for the best split.
max_depth The maximum depth of each tree.
min_samples_split The minimum number of samples to split a node.
min_samples_leaf The minimum number of samples required at each leaf node.
Table C4
Definition of XGBoost hyperparameters.
Hyperparameter Definition
n_estimators The number of boosting rounds.
learning_rate The step size at each iteration while moving towards a minimum of a loss function.
max_depth The maximum depth of each tree.
gamma The minimum loss reduction needed to make partition on a leaf node.
subsample The fraction of the training data to be randomly sampled for each tree.
colsample_bytree The fraction of features to be randomly sampled for each tree.
Table C5
Definition of Tabnet hyperparameters.
Hyperparameter Definition
N.d The dimension of the decision prediction layer, influencing the model complexity.
N.a The dimension of the attention embedding, affecting how the model focuses on input features.
gamma The factor showing the sparsity of feature reusage in the masks.
N_steps The number of steps in the model.
Table C6
Definition of KNN hyperparameters.
Hyperparameter Definition
n_neighbors The number of nearest neighbors to consider in the voting process.
weights The weight each neighbor has in the voting process.
metric The distance metric to calculate the proximity between data points.
Table C7
Definition of SVM hyperparameters.
Hyperparameter Definition
C The regularization parameter controlling the trade-off between achieving a low error on the training data and minimizing the norm of the weights.
gamma The kernel coefficient showing how far the influence of a single training example reaches.

Table C8
Definition of Conventional neural network hyperparameters.
Hyperparameter Definition
Hidden_layer sizes The number of neurons in each hidden layer.
Activation The activation function for the neurons.
Solver The algorithm for weight optimization.
Alpha The L2 regularization term, which helps prevent overfitting by penalizing large weights.
Learning rate The step size at each iteration while moving towards a minimum of the loss function.
Table C9
Hyperparameter search space.
Model Hyperparameters Range
Decision tree Max_depth Integers from 5 to 20 (11 values)
Min_samples_split [2, 5, 10, 15, 20]
Min_samples_leaf [1, 2, 4,6, 8]
Criterion [gini, entropy]
AdaBoost Max_depth for base learner [1, 2,3, 4,5]
n_estimators Integers from 30 to 300 (10 values)
learning_rate [0.01, 0.1, 0.5, 1.0]
Random Forest n_estimators Integers from 30 to 300 (10 values)
max_features [auto, sqrt]
max_depth Integers from 5 to 20 (11 values)

(continued on next page)
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Table C9 (continued)
Model Hyperparameters Range
min_samples_split [2, 5, 10]
min_samples_leaf [1,2, 4]
XGBoost n_estimators Integers from 30 to 300 (10 values)
learning rate [0.01, 0.05, 0.1, 0.2]
max_depth Integers from 5 to 20 (11 values)
gamma [0, 0.1, 0.2, 0.3, 0.4]
subsample [0.6, 0.8, 1.0]
colsample_bytree [0.6, 0.8, 1.0]
TabNet N.d [8, 16, 32]
N.a [8, 16, 32]
gamma [1,1.5]
N_steps [3, 4]
KNN n_neighbors [5,7,9,11]
weights [uniform, distance]
metric [Euclidean, manhattan]
SVM C [0.1, 1, 10, 100, 1000]
gamma [1, 0.1, 0.01, 0.001, 0.0001]
Conventional Neural Network Hidden_layer sizes [(10, 30, 10), (20,)]
Activation [tanh, relu]
Solver [sgd, adam]
Alpha [0.0001, 0.05]
Learning rate [constant, adaptive]
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