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A B S T R A C T   

This study uses a data-driven approach to address the complexities associated with research focused multi-sleeve 
Cone Penetration Test (CPT) devices, particularly focusing on the multi-friction attachment (MFA) and multi- 
piezo-friction attachment (MPFA) CPT devices. Hindered by time-consuming assembly and susceptibility to 
sensor stream losses due to extensive electronic components, these advanced devices demand optimization to 
transform from research devices to practice-suitable devices. This study aims at optimizing the design of the 
multi-sleeve CPT devices using machine learning, with soil type classification performance as the primary metric 
for device configuration effectiveness. The research scope centers not on using machine learning for soil clas
sification but on refining the design of multi-sleeve CPT devices. A two-phase data-driven approach is adopted, 
testing various feature combinations across eight machine learning models. The first phase involves identifying 
the most suitable model for the dataset, followed by a refinement of features to balance sensor number mini
mization and soil classification accuracy. The result is a proposed configuration for a multi-sleeve CPT device, 
simplifying the original design while maintaining robustness, thereby enhancing cost-efficiency and operational 
effectiveness in geotechnical practice. This work sheds light on how the integration of machine learning can 
guide the design optimization of geotechnical instruments.   

1. Introduction 

The performance of geotechnical structures, such as deep founda
tions, synthetic liners, and earth retaining systems, hinges on the 
behavior of soil-geomaterial interfaces and their ability to transfer loads 
(DeJong & Frost, 2002). These interfaces, encompassing contact be
tween geological and man-made materials or varying geological strata, 
play a pivotal role in the behavior of geotechnical systems. Therefore, 
precise prediction and assessment of geotechnical interfaces are essen
tial, directly impacting the structural integrity and cost-effectiveness of 
geotechnical design (Hebeler & Frost, 2006). Instrumented cone pene
tration test (CPT) devices are used in geotechnical engineering to 
generate profiles of response data that are subsequently analyzed to 
yield reliable indicators of both soil index properties as well as engi
neering properties for use in designing, constructing and monitoring the 
performance of geo-structures. Its ease of implementation, familiarity 
within the construction industry, and high classification accuracy make 
CPT widely used for research and practice (Hebeler et al., 2018). CPT 

measures the penetration resistance of a conical tip (qt) inserted into the 
ground, the frictional force (fs) that the soil exerts on a smooth sleeve 
located just above the cone tip, and the pore pressure (u2) recorded close 
to the penetrating tip as the probe is inserted into the subsurface 
(Begemann, 1965; Douglas, 1981). 

A limitation of this tool is that it conventionally measures the fric
tional response of the soil when sheared against a surface with fixed very 
low roughness (smooth sleeve). However, researchers in the past have 
shown that a more robust characterization of interface and soil strength 
can be achieved when the soil is sheared against surfaces with a range of 
different roughness values (DeJong, 2001; DeJong & Frost, 2002; Frost 
et al., 2013). These findings have led to the development of more 
specialized CPT tools that include multi-sleeve attachments to be used 
behind a conventional CPT probe or as stand-alone devices behind an 
un-instrumented tip, thereby reflecting a multiple-sensor approach. The 
multi-friction attachment (MFA) for the cone penetrometer can record 
four individual sleeve friction measurements (fs1, fs2, fs3, and fs4) at 
each elevation within a sounding, in addition to the conventional CPT qt, 
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fs and u2 measurements, as shown in Fig. 1 (a) (DeJong & Frost, 2002). 
The multi-piezo-friction attachment (MPFA) for the cone penetrometer 
can obtain four independent measures of interface response (fs1, fs2, fs3, 
and fs4) and five independent measures of dynamic pore water pressure 
along the shaft (ua0, ua1, ua2, ua3, and ua4) of a penetrated probe, in 
addition to conventional CPT measurements (qt, fs, and u2), shown in 
Fig. 1 (b) (Hebeler & Frost, 2006). These enhancements of the basic CPT 
device include the ability to configure the device with multiple sleeves 
with different surface textures and multiple pore pressure sensors to 
yield 7 to 12 streams of data, respectively, compared to the three streams 

from conventional CPT devices. While the enhancements to existing CPT 
devices have been shown to provide a much richer data set for strati
graphic evaluation and soil classification, their current embodiments are 
clearly more oriented to research rather than practice because they take 
significant time to assemble before each deployment and are subject to 
more frequent sensor stream losses due to a large number of electronic 
cables and connectors involved and the harsh environment that they are 
used in. 

Over the past decade, there have been significant advancements in 
data-driven approaches within the engineering field (Giustolisi et al., 
2007; Laucelli et al., 2023). These developments have paved the way for 
reducing the number of sensors in multi-sensor CPT devices, aided by AI 
technologies. This reduction can decrease both fabrication costs and the 
risk of sensor failure during use. In addition, recent studies have 
demonstrated that incorporating machine learning models to classify 
soils from conventional CPT data yields promising results (Moon et al., 
2022; Rauter & Tschuchnigg, 2021; Reale et al., 2018; Tsiaousi et al., 
2018; Wu et al., 2021; Zhang et al., 2021). Compared to these studies, 
the basis of the present study is to identify the least number of essential 
features for MFA-CPT and MPFA-CPT devices with the help of machine 
learning. To be specific, the objective is to reduce the overall number of 
sensors while not losing the benefits of additional data streams corre
sponding to rougher sleeve surfaces and associated different pore pres
sures. The effectiveness of the reduction is evaluated through machine 
learning performance in soil type classification. By optimizing sensor 
count without sacrificing the quality, the industry stands to benefit from 
reduced operational costs and improved reliability in geotechnical in
vestigations. This integration of machine learning in the design of multi- 
sleeve CPT devices also points out the potential of using AI to guide the 

Fig. 1. MFA and MPFA configured with conventional CPT module: (a) MFA design detail; (b) MPFA design detail; (c) Sleeves with increasing surface roughness of 
fs1, fs2, fs3 and fs4 (Hebeler et al., 2018). 

Table 1 
Description of CPT sounding tested with multi-sleeve probes.  

CPT Sounding 
Dataset # 

Sensor Streams Main site soil type Device 
type 

1 qt, u2, fs, fs1, fs2, fs3, fs4 Sand and some silt 
layers from Vermont, 
USA 

CPT- 
MFA 

2 qt, u2, fs, fs1, fs2, fs3, fs4 Sand and some silt 
layers from Vermont, 
USA 

CPT- 
MFA 

3 qt, u2, fs, ua0, fs1, ua1, 
fs2, ua2, fs3, ua3, fs4, 
ua4 

Silty sand from South 
Carolina, USA 

CPT- 
MPFA 

4 qt, u2, fs, ua0, fs2, ua2, 
fs3, fs4 

Silty sand from South 
Carolina, USA 

CPT- 
MPFA 

5 qt, u2, fs, ua0, fs1, ua1, 
fs2, fs3, ua3, fs4, ua4 

Clay from Western 
Australia 

CPT- 
MPFA 

6 qt, u2, fs, fs1, fs2, fs3, fs4 Clay from Western 
Australia 

CPT- 
MFA  
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design optimization of geotechnical instruments. 

2. Dataset 

The datasets of CPT soundings used in this study, as detailed in 
Table 1, were obtained from 3 distinct sites: Vermont, South Carolina, 
and Western Australia, collected by DeJong (2001) and Hebeler (2005). 
Five different soil types are included, namely gravel and sand mixtures, 
sands, sand mixtures, silt mixtures, and clays. A detailed typical soil 

profile for each site can be found in Appendix A. 
Datasets #1, #2, and #6 include soundings with a conventional CPT 

and an MFA that provides four independent measurements of interface 
response, from friction sleeves at different positions behind the cone 
penetrometer (fs1, fs2, fs3, and fs4), in addition to the conventional CPT 
measurements (qt, fs, and u2 measurements). On the other hand, data
sets #3, #4, and #5 use MPFA and include soundings which provide four 
independent measures of interface response (fs1, fs2, fs3, and fs4) and 
five independent measures of dynamic pore water pressure along the 
shaft (ua0, ua1, ua2, ua3, and ua4), in addition to the conventional CPT 
measurements (qt, fs, and u2). However, in dataset #4, fs1, ua1, ua3, and 
ua4 were damaged, so data was collected only from the qt, fs, u2, ua0, 
ua2, fs2, fs3, and fs4 sensors in that dataset. Since the sensors are in
dependent, the damage only resulted in loss of data from the corre
sponding sensor. For dataset #5, the ua2 sensor was damaged; hence 
data was collected from the qt, fs, u2, ua0, ua1, ua3, ua4, fs1, fs2, fs3, and 
fs4 sensors, as noted in Table 1. The sensors that are used in all six 
datasets are qt, u2, fs, fs2, fs3, fs4, and ua0. The corresponding typical 
sensor record streams for each dataset can be found in Appendix B. In 
each dataset, the surface roughness of fs1, fs2, fs3, and fs4 varies. 
However, for the purposes of this study, specific surface roughness 
variations in the different locations have been disregarded to avoid over- 
complicating the analysis since in general, roughness increased with 
distance behind the CPT (DeJong, 2001). As a result, fs2 in dataset #1 
will be treated as equivalent to fs2 in any other dataset, regardless of 
differences in surface roughness. This same approach is applied to fs3 

Fig. 2. Soil type distributions across the six datasets.  

Fig. 3. Workflow of determining the minimal essential set of sensor measure
ment features. 

Table 2 
Classification results of different machine learning models using conventional 
CPT features only with CPT-MFA and CPT-MPFA as input datasets.  

Model Precision Recall F1 score Accuracy 

Decision Tree  0.80  0.81  0.81  0.83 
AdaBoost  0.84  0.78  0.80  0.84 
Random Forest  0.87  0.84  0.85  0.88 
XGBoost  0.86  0.84  0.85  0.87 
Tabnet  0.83  0.81  0.82  0.84 
KNN  0.84  0.85  0.84  0.85 
SVM  0.75  0.67  0.70  0.77 
Conventional neural network  0.71  0.62  0.64  0.71  

Table 3 
Classification results of different machine learning models using conventional 
CPT features and MFA features with CPT-MFA and CPT-MPFA as input datasets.  

Model Precision Recall F1 score Accuracy 

Decision Tree  0.88  0.89  0.88  0.89 
AdaBoost  0.93  0.90  0.91  0.92 
Random Forest  0.95  0.93  0.94  0.94 
XGBoost  0.94  0.93  0.93  0.94 
Tabnet  0.92  0.90  0.91  0.92 
KNN  0.92  0.93  0.92  0.93 
SVM  0.81  0.77  0.78  0.82 
Conventional neural network  0.66  0.63  0.63  0.71  

Table 4 
Classification results of different machine learning models using conventional 
CPT only with CPT-MPFA as input datasets.  

Model Precision Recall F1 score Accuracy 

Decision Tree 0.85 0.84 0.84 0.90 
AdaBoost 0.87 0.82 0.83 0.91 
Random Forest 0.90 0.84 0.86 0.92 
XGBoost 0.89 0.89 0.89 0.92 
Tabnet 0.87 0.86 0.87 0.91 
KNN 0.85 0.85 0.84 0.90 
SVM 0.87 0.75 0.78 0.87 
Conventional neural network 0.60 0.53 0.46 0.72  

Table 5 
Classification results of different machine learning models using conventional 
CPT features and MPFA features with CPT-MPFA as input datasets  

Model Precision Recall F1 score Accuracy 

Decision Tree 0.91 0.89 0.90 0.92 
AdaBoost 0.96 0.93 0.94 0.95 
Random Forest 0.95 0.93 0.94 0.95 
XGBoost 0.95 0.92 0.93 0.95 
Tabnet 0.92 0.93 0.92 0.94 
KNN 0.92 0.94 0.93 0.95 
SVM 0.91 0.88 0.89 0.91 
Conventional neural network 0.83 0.70 0.73 0.83  
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and fs4. It is important to note that while these features are treated as 
identical in this work, their actual surface roughness may differ some
what across the datasets. 

2.1. Soil type distribution 

The soil types in the above datasets are divided into gravel and sand 
mixture, sand, sand mixture, silt mixture, and clay according to their 
respective Ic, where Ic is the soil behavior type index (Robertson, 1991). 

The six datasets described in Table 1 comprise a total of 3501 unique 
data points. The detailed distribution of soil types is shown in Fig. 2. It 
can be observed that the data is not uniformly distributed, mainly 
comprising sands, sand mixtures, and clays. For example, over 90% of 
clay data points are concentrated in two datasets. This issue is further 
elaborated on in Section 4.3. 

3. Methodology 

The primary aim of this study is to employ machine learning tech
niques to determine the minimal yet essential set of sensors that main
tain high soil type classification accuracies in MFA and MPFA type 
devices. To achieve this, various feature combinations need to be tested 
across different machine learning models to ascertain the optimal 
configuration. Given the extensive number of potential experiments 
when exploring every possible feature combination for each model, a 
two-phase approach is adopted, as shown in Fig. 3. Initially, the study 
evaluates the performance of eight machine learning models using the 
full set of features to identify the model that is most compatible with the 
dataset. Once the most suitable model is selected, further exploration is 
conducted to refine the feature combinations, focusing on achieving the 
best balance of feature minimization and classification accuracy. 

Upon determining the optimal model and feature combination, the 
study applies these findings to classify soil types in an unseen dataset, 
where resampling techniques are employed to enhance the model’s 
performance further. The following section introduces the methodology 
used in this work, including the machine learning models, hyper
parameter tuning, model evaluation methods and resampling strategies. 

3.1. Machine learning model 

The data employed in this study consists of a typical tabular format, 
where each data point is represented as a vector comprising various 
features. In the analysis of tabular data, deep learning has seen rapid 
advancements over the past decade, and certain deep learning models 
have shown exceptional performance on specific tabular datasets. 
However, despite these advancements, tree-based machine learning 

Fig. 4. Correlation Matrix: (a) features dependence for soil classification applied to all six datasets, (b) features dependence for soil classification applied to CPT- 
MPFA datasets only. 

Table 6 
Classification Results for different feature combinations using conventional CPT 
measurements only with CPT-MFA and CPT-MPFA datasets.  

Measurement Type Features Precision Recall F1 
score 

Accuracy 

Conventional CPT 
measurements only 

qt, fs, u2  0.87  0.84  0.85  0.88 
qt, u2  0.75  0.71  0.73  0.77 
qt, fs  0.76  0.71  0.73  0.75 
fs, u2  0.78  0.75  0.76  0.80  

Table 7 
Classification Results for different feature combinations using conventional CPT 
measurements and MFA measurements with CPT-MFA and CPT-MPFA datasets.  

Measurement Type Features Precision Recall F1 
score 

Accuracy 

CPT-MFA 
measurements 

qt, fs, u2, fs2, 
fs3, fs4  

0.95  0.93  0.94  0.94 

qt, fs, u2, fs3, 
fs4  

0.93  0.92  0.92  0.93 

qt, fs, u2, fs2, 
fs3  

0.94  0.91  0.93  0.93 

qt, fs, u2, fs2, 
fs4  

0.93  0.92  0.93  0.94 

qt, fs, u2, fs4  0.92  0.90  0.91  0.92 
qt, fs, u2, fs3  0.92  0.90  0.91  0.92 
qt, fs, u2, fs2  0.91  0.89  0.90  0.91  
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models continue to be the leading performers (Gorishniy et al., 2021; 
Shwartz-Ziv & Armon, 2022). In light of this, the study extends its 
exploration to eight machine learning models, including four tree-based 
models: decision tree, adaptive boosting (AdaBoost), random forest, and 
extreme gradient boosting (XGBoost); one deep learning model specif
ically designed for tabular data - TabNet (Arik & Pfister, 2021), along
side K nearest neighbors (KNN), support vector machine (SVM), and a 

conventional neural network. Hyperparameter tuning is facilitated by 
the robust capabilities of the scikit-learn library (Pedregosa et al., 2011). 
The definition of the hyperparameters for each model and the corre
sponding search space are detailed in Appendix C. 

3.1.1. Decision tree 
Decision tree features a tree-like structure with nodes and edges, 

where each node represents a feature, and each edge signifies the 
outcome of a test. The accuracy of decision trees can be enhanced 
through node splitting, which divides nodes into sub-nodes. At each tree 
level, one feature is selected and split to ensure a maximum drop in 
uncertainty. Decision trees are interpretable and quick to train and test, 
but challenges such as overfitting and suboptimal prediction accuracy 
for complex tasks may arise. 

3.1.2. AdaBoost 
AdaBoost applies a sequential learning approach where multiple 

base learners are combined to enhance the model performance. In this 
work, AdaBoost is utilized with decision trees as the base learners. The 
algorithm iteratively adjusts to focus more on the data points that were 
previously misclassified, by modifying their weights. This makes them 
more influential in the training of subsequent learners. Each decision 
tree in AdaBoost contributes to the final model, and the accuracy of each 
tree determines its weight in the final decision. AdaBoost is effective in 
reducing overfitting, especially in datasets with high variance, by 
creating a robust classifier. However, its performance can be affected by 
noisy data and outliers. 

3.1.3. Random Forest 
The Random Forest algorithm is an ensemble technique that com

bines multiple decision trees to improve prediction performance. Each 
tree is trained on a randomly sampled subset of the data with replace
ment, using a different combination of features. This approach, known 
as bootstrap sampling and feature bagging, enhances the diversity and 
robustness of the model. The final prediction is determined by a majority 
vote from all trees. Random Forests typically outperform single decision 
tree by reducing overfitting. However, they require more computational 
resources, which can increase training time, and are less interpretable 
due to their complexity. 

3.1.4. XGBoost 
Similar to Random Forest, XGBoost also constructs multiple decision 

Fig. 5. Comparative accuracy of the model across various feature combinations with CPT-MFA measurements.  

Table 8 
Classification Results for different feature combinations using conventional CPT 
measurements only with CPT-MPFA datasets.  

Measurement Type Features Precision Recall F1 
score 

Accuracy 

Conventional CPT 
measurements only 

qt, fs, u2  0.90  0.84  0.86  0.92 
qt, u2  0.79  0.76  0.77  0.86 
qt, fs  0.81  0.69  0.73  0.82 
u2, fs  0.84  0.78  0.80  0.86  

Table 9 
Classification Results for different feature combinations using conventional CPT 
measurements and MPFA measurements with CPT-MPFA datasets.  

Measurement 
Type 

Features Precision Recall F1 
score 

Accuracy 

CPT-MPFA 
measurements 

qt, fs, u2, fs2, 
fs3, fs4, ua0  

0.95  0.93  0.94  0.95 

qt, fs, u2, fs3, 
fs4, ua0  

0.96  0.94  0.95  0.96 

qt, fs, u2, fs2, 
fs3, ua0  

0.95  0.93  0.94  0.95 

qt, fs, u2, fs2, 
fs4, ua0  

0.94  0.92  0.93  0.94 

qt, fs, u2, fs4, 
ua0  

0.94  0.92  0.93  0.94 

qt, fs, u2, fs3, 
ua0  

0.94  0.92  0.93  0.94 

qt, fs, u2, fs2, 
ua0  

0.94  0.92  0.93  0.94 

qt, fs, u2, ua0  0.92  0.89  0.90  0.93 
qt, u2, ua0  0.90  0.89  0.89  0.91 
fs, u2, ua0  0.92  0.88  0.90  0.90 
qt, fs, ua0  0.90  0.86  0.87  0.92 
qt, fs, u2, fs4  0.92  0.89  0.91  0.93 
qt, fs, u2, fs3  0.91  0.85  0.87  0.93 
qt, fs, u2, fs2  0.91  0.86  0.88  0.92  
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trees. However, its approach is sequential, where each subsequent tree is 
designed to rectify the errors made by the previous ones. This process is 
driven by gradient boosting, a method that focuses on minimizing the 
loss function. In contrast to AdaBoost, which also builds decision trees 
sequentially but typically uses simpler trees, XGBoost employs more 
complex, deeper trees for detailed data modeling. 

A notable advantage of XGBoost lies in its integration of regulari
zation methods, which are instrumental in mitigating overfitting. 
Despite its strengths, XGBoost presents a more complex tuning process 
compared to simpler models like decision trees or random forest. Its 
sequential tree-building nature can also result in longer training times, 
particularly for extensive datasets. 

3.1.5. TabNet 
TabNet is an innovative deep learning model specifically designed 

for tabular data (Arik & Pfister, 2021). Developed by Google Cloud AI 
researchers, it stands out from traditional deep learning models by using 
sequential attention to choose which features to reason from at each 
decision step, making it highly interpretable. This attention mechanism 
allows TabNet to learn both local and global representations of features, 
contributing to its robust predictive performance. TabNet also employs a 
unique feature masking strategy, enabling it to perform feature selection 
dynamically during the training process. This leads to efficient learning 
and improved generalization on structured data. TabNet achieves state- 
of-the-art performance on several real-world datasets. 

3.1.6. KNN 
The KNN algorithm is a non-parametric method, which operates by 

identifying the ’k’ nearest data points in the feature space to a query 
point and making predictions based on the labels of these neighbors. 
KNN’s effectiveness lies in its simplicity and the intuitive nature of its 
mechanism, where the outcome is determined by the majority vote or 
average from the ’k’ nearest neighbors. Unlike more complex models, 
KNN does not build an explicit model but makes decisions based on the 
localized pattern of the data. This characteristic makes KNN particularly 
useful in scenarios where the data distribution is not well understood. 
However, it can be computationally demanding with large datasets, as it 
involves calculating the distance between the query point and all points 
in the dataset for each prediction. 

3.1.7. SVM 
SVM seeks to identify an optimal hyperplane within an N-dimen

sional space to distinctly classify data points. Its primary objective is to 
determine a hyperplane that maximizes the margin, defined as the 
greatest distance between the hyperplane and the nearest data points on 
either side. This focus on only the most critical data points near the 
decision boundary makes SVM notably memory efficient. For post- 
training, it requires only the storage of these pivotal support vectors. 
Despite this efficiency, SVM tends to underperform with noisy datasets, 
where the clear margin needed for optimal classification is obscured by 
overlapping data points. 

3.1.8. Conventional neural network 
Neural network typically structures with an input layer, several 

hidden layers, and an output layer, and operates through weights and 
biases that facilitate data transformation across these layers. These pa
rameters are refined via forward and backward propagation during the 
training process. The effectiveness of neural network generally increases 
with the availability of larger training datasets, as they have numerous 
weights and biases to learn and optimize. Note that TabNet in Section 
3.1.5 is a type of neural network, however, it stands out from traditional 
neural network by incorporating attention mechanisms and feature se
lection that improve interpretability and performance in structured data 
analysis. 

Fig. 6. Comparative accuracy of the model across various feature combinations with CPT-MPFA measurements.  

Table 10 
Model accuracy with and without depth as features.  

With/without 
depth 

Dataset Features Accuracy 

Without depth CPT-MFA and CPT- 
MPFA combined 

qt, fs, u2, fs2, fs3 and fs4  0.94 

CPT-MPFA only qt, fs, u2, fs2, fs3, fs4 and 
ua0  

0.95 

With depth CPT-MFA and CPT- 
MPFA combined 

Depth, qt, fs, u2, fs2, fs3 
and fs4  

0.97 

CPT-MPFA only Depth, qt, fs, u2, fs2, fs3 
fs4 and ua0  

0.97  
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3.2. Pearson correlation coefficient 

A correlation matrix maps the Pearson correlation coefficient be
tween each pair of input features (Cohen et al., 2009). It can show the 
statistical relationship between two features. The range of the correla
tion coefficient is (−1, 1). If two features are closely correlated, the 
absolute value of the coefficient will be close to 1; otherwise, it will be 
close to 0. Including two highly correlated features when training a 
machine learning model is not desirable since correlated features can 
lead to overfitting. In this work, the correlation matrix is generated to 

guide the feature selection process. 

3.3. Hyperparameter tuning and model evaluation 

To optimize model performance, hyperparameter tuning is essential. 
In this study, the models undergo tuning through randomized search, 
coupled with 10-fold cross-validation on the training set. However, for 
TabNet, considering the computational cost, randomized search with 3- 
fold cross-validation on the training set is used. The effectiveness of the 
different models is assessed using key metrics: recall, precision, F1 score, 
and accuracy. This approach ensures a balanced evaluation of model 
performance across different aspects of classification effectiveness. 

3.3.1. K fold cross validation 
Cross-validation is a method that evaluates machine learning models 

and works well with limited data. It provides a better estimate of a 
model’s generalization capability by evaluating it on multiple subsets of 
the data. Usually, the dataset is evenly divided into K groups. Each time 
K-1 groups are used to train a model, and one group is used to evaluate 
the performance of the trained model. This pattern of training and 
evaluating is repeated K times, with choosing a different hold-out 
dataset for evaluation each time. The final performance metrics are 
computed as the average of the K iterations. 

3.3.2. Randomized search 
Randomized Search is a method used in hyperparameter optimiza

tion for machine learning models. It involves randomly selecting a fixed 
number of parameter combinations from specified distributions for the 
hyperparameters. This technique allows for a more efficient exploration 
of the parameter space, as it does not require a systematic examination 
of all possible combinations. While it may not guarantee finding the 
absolute best parameters, it provides a balance between exploration and 
computational efficiency, making it a practical choice in many machine 
learning applications. 

Due to the higher computational requirements of TabNet, the search 
is restricted to 15 iterations. For the rest of the models, 100 iterations of 
randomized search are conducted. The best estimator from these ran
domized searches is determined based on the highest accuracy achieved. 

3.3.3. Performance metrics 
In multiclass classification problems, evaluating the performance of 

a model involves several key metrics: recall, precision, F1 score, and 
accuracy. Recall, also known as sensitivity, measures the proportion of 
actual positives that are correctly identified. Precision quantifies the 
proportion of predicted positives that are true positives. The F1 score 
provides a harmonic mean of precision and recall, offering a balance 
between the two by considering both false positives and false negatives. 
It is particularly useful when there’s an uneven class distribution. Lastly, 
accuracy represents the overall correctness of the model, defined as the 
ratio of correctly predicted observations to the total observations. It’s a 
straightforward metric, however, it can be misleading in imbalanced 
class distributions. Therefore, having the combined consideration of 
these four metrics is critical for a comprehensive understanding of a 
multiclass classifier’s performance. 

3.4. Resampling 

Resampling, generally used to resolve the imbalanced dataset issue, 
includes two methods - up-sampling and down-sampling. Up-sampling 
increases the number of data points in the minority classes so that it can 
match with the majority class. In contrast, down-sampling decreases the 
data points in the majority classes to match with the minority class. 

In this work, for up-sampling experiment, the minority classes of the 
training set are up-sampled to have the same number as the majority 
class (the class with the highest number of data points) by an up-sample 
method called the synthetic minority oversampling technique (SMOTE) 

Table 11 
Classification Results using an entire sounding dataset as the testing set.  

Experiment 
ID 

Train Test precision recall F1 accuracy 

1 Dataset 
#2 
Dataset 
#3 
Dataset 
#4 
Dataset 
#5 
Dataset 
#6 

Dataset #1 
Sand and 
some silt 
layers 
Vermont, 
USA  

0.39  0.33  0.30  0.55 

2 Dataset 
#1 
Dataset 
#3 
Dataset 
#4 
Dataset 
#5 
Dataset 
#6 

Dataset #2 
Sand and 
some silt 
layers 
Vermont, 
USA  

0.33  0.29  0.26  0.56 

3 Dataset 
#1 
Dataset 
#2 
Dataset 
#4 
Dataset 
#5 
Dataset 
#6 

Dataset #3 
Silty sand 
South 
Carolina, 
USA  

0.53  0.43  0.45  0.72 

4 Dataset 
#1 
Dataset 
#2 
Dataset 
#3 
Dataset 
#5 
Dataset 
#6 

Dataset #4 
Silty sand 
South 
Carolina, 
USA  

0.53  0.53  0.50  0.75 

5 Dataset 
#1 
Dataset 
#2 
Dataset 
#3 
Dataset 
#4 
Dataset 
#6 

Dataset #5 
Clay 
Western 
Australia  

0.45  0.44  0.40  0.63 

6 Dataset 
#1 
Dataset 
#2 
Dataset 
#3 
Dataset 
#4 
Dataset 
#5 

Dataset #6 
Clay 
Western 
Australia  

0.30  0.44  0.30  0.53  
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(Chawla et al., 2002). SMOTE first finds K samples that are closest in the 
distance to the minority class samples and then gets the difference be
tween the minority sample (xi) and the nearest neighbor (xj). The syn
thetic new samples are generated by xnew = xi +

(
xj −xi

)
⋅δ, whereas δ is 

a random number between 0 and 1. 
For down-sampling experiments, the majority classes of the training 

set are down-sampled to have the same number as the minority class 
(the class with the least number of data points) by random selection. 

A combined resampling experiment is also explored, where the mi
nority classes are up-sampled and the majority classes are down- 
sampled. The objective is to equalize the number of instances across 
all classes to match the count of the mid-sized class. 

4. Results 

4.1. Model selection 

This section explores the optimal machine learning model for soil 
classification, utilizing shared features across datasets. Four experiments 
are conducted, each having 80% of the dataset for training and 20% for 
testing. The comparative analysis involves a range of models including 
decision tree, AdaBoost, random forest, XGBoost, TabNet, KNN, SVM 
and conventional neural network to determine the most effective 
approach in accurately classifying soil types. 

The randomized search method is implemented for each model to 
arrive at the best parameters. The training set is used to fit the ran
domized search and implement cross-validation to find the best 

Fig. 7. Confusion matrix for experiment 1 and 2: (a) confusion matrix for experiment 1, (b) confusion matrix for experiment 2.  

Fig. 8. Confusion matrix for experiment 5 and 6: (a) confusion matrix for experiment 5, (b) confusion matrix for experiment 6.  
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estimator. With the best estimator of each model, the test set accuracy, 
precision, recall, and F1 score are compared and used to identify the 
optimal model. 

4.1.1. CPT-MFA datasets and CPT-MPFA datasets combined 
Two experiments are conducted using CPT-MFA and CPT-MPFA 

datasets combined. The first experiment, which functions as the base
line model, uses conventional CPT features only, namely qt, fs and u2. 
The second experiment uses both conventional CPT features and MFA 
features, including qt, fs, u2, fs2, fs3, and fs4. The results of eight 

different models are shown in Tables 2 and 3, respectively. 
With MFA features, the overall model performance is better, with the 

highest precision increased by 8%, the highest F1 score and recall 
increased by 9% and the highest accuracy increased by 6%, compared to 
using conventional CPT features only. This indicates that MFA features 
can help machine learning models classify soil better. Random Forest is 
the optimal model based on both experiments since it has the highest 
precision, F1 score and accuracy. 

Table 12 
Classification Results of experiments without resampling, with up-sampling, with down-sampling, and with combined sampling.  

Experiment 
ID 

Train Test Accuracy without 
resampling 

Accuracy after up- 
sampling 

Accuracy after down- 
sampling 

Accuracy after combined 
sampling 

1 Dataset 
#2 
Dataset 
#3 
Dataset 
#4 
Dataset 
#5 
Dataset 
#6 

Dataset #1 
Sand and some silt 
layers 
Vermont, USA  

0.55  0.47  0.62  0.45 

2 Dataset 
#1 
Dataset 
#3 
Dataset 
#4 
Dataset 
#5 
Dataset 
#6 

Dataset #2 
Sand and some silt 
layers 
Vermont, USA  

0.56  0.63  0.42  0.61 

3 Dataset 
#1 
Dataset 
#2 
Dataset 
#4 
Dataset 
#5 
Dataset 
#6 

Dataset #3 
Silty sand 
South Carolina, USA  

0.72  0.75  0.74  0.75 

4 Dataset 
#1 
Dataset 
#2 
Dataset 
#3 
Dataset 
#5 
Dataset 
#6 

Dataset #4 
Silty sand 
South Carolina, USA  

0.75  0.70  0.72  0.75 

5 Dataset 
#1 
Dataset 
#2 
Dataset 
#3 
Dataset 
#4 
Dataset 
#6 

Dataset #5 
Clay 
Western Australia  

0.63  0.14  0.59  0.30 

6 Dataset 
#1 
Dataset 
#2 
Dataset 
#3 
Dataset 
#4 
Dataset 
#5 

Dataset #6 
Clay 
Western Australia  

0.53  0.42  0.63  0.54  
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4.1.2. CPT-MPFA datasets only 
Two additional experiments are conducted using only CPT-MPFA 

datasets. Compared with CPT-MFA, CPT-MPFA datasets share the 
feature of pore water along the shaft ua0. The first experiment functions 
as the baseline model, using conventional CPT features only, whereas 
seven features are considered in the second experiment, including qt, fs, 
u2, fs2, fs3, fs4, and ua0. The results of eight different models are shown 
in Table 4 and 5, respectively. Again, an increase in model performance 
can be observed after using MPFA features, which suggests the impor
tance of MPFA features in soil type classification. 

The results presented in Tables 2, 3, 4, and 5 illustrate that AdaBoost, 
Random Forest, XGBoost, TabNet, and KNN are effective when applied 
to CPT-MFA and CPT-MPFA datasets. Notably, KNN and tree-based 
models like Random Forest, AdaBoost, and XGBoost show higher per
formance in comparison to TabNet. Among all the models, Random 
Forest stands out slightly, affirming its efficacy and reliability in soil 
classification tasks. Therefore, Random Forest is chosen as the optimal 
machine learning model for predicting soil type and will be used in the 
following sections to arrive at the optimal combination of CPT 

attachment sensors to appropriately classify soils. 

4.2. Feature selection 

The goal of this section is to minimize the number of sensors required 
for accurate soil type classification. Therefore, the focus is on training 
the machine learning model with the fewest possible features, while 
ensuring that classification accuracy remains uncompromised. In this 
section, the correlation between features is first analyzed. Then, two 
main experiments are conducted, where the first experiment uses both 
CPT-MFA and CPT-MPFA dataset and the second experiment only uses 
the CPT-MPFA dataset. In both experiments, 80% of the dataset is used 
as the training set and 20% as the test set. Based on the previous 
experiment results, Random Forest is used here to compare different 
combinations of features. The randomized search method is imple
mented to arrive at the best parameters where the training set is used to 
fit the randomized search and 10-fold cross-validation is implemented to 
find the best estimator. 

Fig. 9. Confusion matrix for experiment 1, 5 and 6 after up-sampling: (a) confusion matrix for experiment 1, (b) confusion matrix for experiment 5, (c) confusion 
matrix for experiment 6. 
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4.2.1. Feature correlation 
There is a bilinear relationship between interface strength (fs, fs1, 

fs2, fs3, and fs4) and surface roughness (Uesugi & Kishida, 1986). Spe
cifically, the interface strength increases linearly with increasing surface 
roughness up to a critical roughness value (Hebeler et al., 2018). 
Considering this factor, the relationships between CPT sleeve friction 
and multi-sleeve friction, as well as between pore pressure and dynamic 
pore pressure along the shaft, are investigated. 

The correlation matrix for six features qt, fs, u2, fs2, fs3 and fs4 using 
the training set of all six datasets is shown in Fig. 4 (a). The analysis 
reveals a high correlation between fs2 and fs, as well as between fs2 and 
fs3, suggesting a redundancy in including these feature pairs in the 
multi-sleeve CPT device configuration. Similarly, the correlation matrix 
for six features, qt, fs, u2, fs2, fs3, fs4 and ua0 applied to the training set 
of MPFA datasets only is shown in Fig. 4 (b). Fs2 and fs3 are highly 
correlated with a correlation value 0.92, and u2 and ua0 are highly 
correlated with a correlation value 0.98. This indicates that one of the 

features in each pair could potentially be omitted without significant 
loss of information. 

4.2.2. Classification results 
Tables 6 and 7 present the precision, recall, F1 score, and accuracy 

results for classifications using various feature combinations from both 
the CPT-MFA and CPT-MPFA datasets. Table 6 shows the results trained 
with conventional CPT measurements only, whereas Table 7 shows the 
results trained with conventional CPT measurements and MFA mea
surements. When compared to models trained solely on conventional 
CPT measurements, there is a marked improvement in performance 
when using the CPT-MFA measurements, as shown in Fig. 5. This notable 
improvement underscores the necessity and effectiveness of MFA mea
surements. Tables 6 and 7 also indicate a decline in performance when 
fewer features are employed for model training. In Table 7, by using the 
combination of qt, fs, u2, and either fs3 or fs4, the accuracy peaks at 0.92. 
This is still relatively close to the maximum accuracy of 0.94, which 

Fig. 10. Confusion matrix for experiment 1, 5 and 6 after down-sampling: (a) confusion matrix for experiment 1, (b) confusion matrix for experiment 5, (c) confusion 
matrix for experiment 6. 
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demands an additional feature for a mere 2% accuracy boost. Given the 
objective of this study—to identify the most efficient feature combina
tion with the fewest features—the combination of qt, fs, u2, and either 
fs3 or fs4 emerges as the optimal choice. 

Tables 8 and 9 show the precision, recall, F1 score, and accuracy for 
classification using different feature combinations with CPT-MPFA 
datasets. Table 8 presents the results trained with conventional CPT 
measurements only whereas Table 9 presents the results trained with 
conventional CPT measurements and MPFA measurements. In Table 9, 
the highest accuracy of 0.96 is reached by the feature combination of qt, 
fs, u2, fs3, fs4 and ua0. Therefore, this combination of qt, fs, u2, fs3, fs4 
and is considered as the optimal choice for the dataset collected by CPT- 
MPFA device. Fig. 6 shows the increase in model accuracy after adding 
MPFA measurements into the training, which suggests the importance of 
MPFA measurements. 

4.2.3. Including depth as a feature 
When collecting CPT data, the depth of each data point is also a 

feature that can be considered a factor influencing the soil type classi
fication. Depth not only serves as an indicator of the vertical variability 
of the test site, but also offers insight into the vertical stress levels pre
sent, which is intrinsically linked to qt and fs measurements. Soil sam
ples at similar depths are often subject to comparable vertical stress 
conditions, thereby influencing the qt and fs readings. This relationship 
underscores the relevance of depth in the context of CPT data analysis. 
Table 10 shows the model performance with and without having depth 

as a training feature. An increase in model performance can be observed 
after including depth as a training feature. 

However, it is crucial to acknowledge that depth can also introduce a 
spatial bias in the model. Sites that are close to each other are likely to 
exhibit similar soil distributions at equivalent depths due to higher 
spatial correlation. On the other hand, sites that are geographically 
distant might display a diverse range of soil types at the same depth, 
complicating the inclusion of depth as a training feature. 

In conclusion, while depth can be a contentious feature due to po
tential spatial biases, its relationship with vertical stress and subsequent 
impact on qt measurements make it a valuable feature for enhancing 
model accuracy in soil type classifications. 

4.3. Application – classification of unseen CPT dataset 

The final phase of this work is to predict the soil types with a new 
CPT-sounding result based on the best-selected model and the optimal 
feature combination. To this end, in this section, instead of building the 
test set randomly, a complete CPT-sounding dataset will be used as the 
test set for the experiments. As shown in Table 11, each of the six 
sounding datasets is considered the test set, with the other five datasets 
as the training set, respectively. Random forest is used as the training 
model per Section 4.1, and the feature combination of qt, fs, u2 and fs3 is 
used per Section 4.2. The classification precision, recall, F1 score, and 
accuracy metrics achieved in each case are also depicted in Table 11. 

The results in Table 11 show a classic example of class imbalance in 
machine learning and the spatial variation of soil property (Ching et al., 
2023). The accuracy of the models drops to between 55% and 75% from 
the best-case scenario of 94%, as shown in Table 7. The recall, precision, 
and F1 score decrease to about 25–55% due to the influence of the 
imbalanced dataset. Experiments 1, 2, 5, and 6 in Table 11 get unex
pectedly poor results. Therefore, confusion matrices are used to inves
tigate further the frequency and reasons behind those incorrect 
predictions. 

The confusion matrices for experiments 1 and 2, as depicted in Fig. 7, 
reveal a tendency of the models to incorrectly classify numerous data 
points as ’Sand’. Notably, out of 829 data points categorized as ’Sand’, 
35.7% are from dataset #1, and 34.1% are from dataset #2. When these 
datasets are used as the test set, the model’s capacity to differentiate 
’Sand’ from other soil types is substantially diminished due to the 
limited representation of ’Sand’ in the training set. This imbalance leads 
to a disproportionate focus on the ’Sand’ classification during model 
training, resulting in a higher rate of misclassification towards the 
’Sand’ category in the test sets. 

The confusion matrices for experiments 5 and 6, shown in Fig. 8, 
indicate a significant misclassification issue, with a notable number of 
data points, particularly those labeled as ’Clay’, being incorrectly 
identified as ’Sand mixture’. Out of 593 data points classified as ’Clay’, 
28.8% are from dataset #6, and 62.9% are from dataset #5. When these 
specific datasets are used as test sets, the model’s proficiency in accu
rately identifying ’Clay’ is compromised. This is compounded by the fact 
that a substantial portion of the test set comprises ’Clay’ data points. 
Additionally, ’Sand mixture’ represents the most prevalent category 
across all six datasets (as illustrated in Fig. 2), leading to a bias in the 
model’s predictions, where ’Clay’ is frequently misclassified as ’Sand 
mixture’. 

The observed misclassifications in the experiments can be attributed 
to the method of manually selecting training and test sets from CPT 
soundings at various locations in the United States and Australia, rather 
than random selection from a combined dataset. This approach results in 
significantly different distributions between the training and test sets, 
adversely affecting the accuracy. Typically, enhancing the accuracy in 
such scenarios would involve increasing the number of uniformly 
distributed data points across all classes. However, due to the limited 
availability of data points for multi-sleeve CPT in the literature, this 
study has instead explored resampling methods to achieve a more 

Fig. 11. Proposed design configuration of multi-sleeve cone penetrometer 
probe attachments. 
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balanced distribution of class labels, aiming to improve the model 
performance. 

4.3.1. Results from up-sampling and down-sampling of the datasets 
In this section, three sampling methods are investigated to determine 

their impact on the model’s performance for an unseen dataset. Table 12 
shows the accuracy of each experiment before and after down-sampling, 
up-sampling and combined sampling. 

Overall, sampling approaches can improve the model performance 
for unseen datasets. In most of the experiments, the highest accuracy is 
reached by either up-sampling or down-sampling. The performance of 
combined sampling is intermediate between the performance with up- 
sampling or down-sampling. 

In experiments 1, 4, 5, and 6, the accuracy after up-sampling de
creases compared with the accuracy without resampling, especially for 
experiment 1, 5 and 6. For experiment 5 and 6 where the test set is 
mainly ‘Clay’, the accuracy drops to 0.14 and 0.42 respectively. The 
models perform worse after up-sampling. From the confusion matrices 
shown in Fig. 9, more clay data points are predicted as ‘Sand mixture’ 
and ‘Silt mixture’. For experiment 1, more data points are mis-predicted 
as ‘Sand’ after up-sampling. The result indicates that the synthetic clay 
data points generated by SMOTE in experiments 5 and 6 cannot correctly 
represent the ‘Clay’ data points in the test set. The same reasoning ap
plies to the synthetic sand data points generated in experiment 1. 
Therefore, whether the synthetic data points can convincingly represent 
the real data points using SMOTE on highly imbalanced data should be 
taken into consideration. 

Experiments 3 and 4 after down-sampling have a similar accuracy as 
up-sampling or without any resampling methods. The accuracy of ex
periments 1, 5, and 6 after down-sampling are higher compared to the 
results after oversampling. The confusion matrices of experiments 5 and 
6 are shown in Fig. 10. Compared to the confusion matrix after 
upsampling, the clay data points are predicted more accurately instead 
of being mis-predicted as sand mixtures or silt mixtures. For experiment 
1, more sand mixtures data points are correctly predicted, as shown in 
Fig. 10a. The result shows that the minority data points (‘Clay’ in ex
periments 5 and 6; ‘Sand’ in experiment 1) can be more sufficiently 
learned by the models after down-sampling. 

5. Discussion - proposed design configuration of multi-sleeve 
cone penetrometer probe attachments 

The analysis presented in Section 4 noted that the optimal feature 
combination of CPT-MFA device is qt, fs, u2, fs3 and the optimal feature 
combination of CPT-MPFA device is qt, fs, u2, fs3, fs4, ua0. Reflecting 
these optimal configurations, Fig. 11 shows the proposed design 
configuration of a new multi-sleeve cone penetrometer probe attach
ment, with two friction sleeves and one independent measure of dy
namic pore water pressure along the shaft. This proposed configuration 
can allow for superior classification of soil type and other engineering 
properties during site characterization without the electronic 
complexity and potential low robustness associated with the original 7 
data stream MFA-CPT or 12 stream MPFA-CPT versions. Specifically, the 
proposed design results in a 6 data stream configuration consisting of a 
tip resistance measurement (qt), 3 friction sleeve measurements (fs, fs1, 
and fs2) using sleeves with increasing roughness and two pore pressure 
sensors (u2, and ua0), one measuring pore pressure in the tip region and 
the other measuring pore pressure generated after shearing against the 
most heavily textured sleeve. The additional friction sleeves and pore 
pressure sensor can be readily configured into a simpler attachment used 
behind a conventional CPT to improve the overall use of the device data 
while avoiding challenging operational issues. This can still allow for 
full quantification of the interface friction versus surface roughness 
relationship for all soils and simultaneously yield two independent 
measurements of pore pressure generated, one due to probe tip 
advancement and the other due to sleeve induced soil shearing. 

6. Conclusions 

The research was primarily centered on identifying the minimal yet 
crucial set of sensor measurements for multi-sleeve CPT devices. This 
was achieved by utilizing the performance of machine learning models 
in soil type classification as a key metric to guide the optimization 
process. Through a comprehensive analysis of various machine learning 
models and feature combinations, the study revealed that a reduced 
number of sensors can achieve comparable classification performance to 
more complex configurations. Specifically, for the CPT-MFA device, the 
optimal feature combination was identified as qt, fs, u2, and fs3, while 
for the CPT-MPFA device, it was qt, fs, u2, fs3, fs4, and ua0. Based on the 
findings, a new configuration for a multi-sleeve attachment for use in 
conjunction with a conventional CPT was identified. It consisted of a 
simple attachment with two additional friction sleeves and one pore 
pressure sensor. The proposed configuration addressed the challenges of 
reducing electronic complexity, time-consuming assembly, and the 
susceptibility of the device to sensor stream losses while maintaining 
robustness at the same time. 

In pursuing the objective of optimizing multi-sleeve CPT devices, this 
research also sheds light on the efficacy of various machine learning 
techniques in soil type classification. While the deep learning model 
TabNet showed promise in predicting soil types using multi-sensor CPT 
data, KNN and traditional tree-based models like Random Forest, Ada
Boost, and XGBoost demonstrated superior performance in this domain. 
Additionally, the resampling technique can somewhat improve the 
classification accuracy of unseen soil datasets but not fully overcome the 
deficiency in an initially imbalanced dataset. 

In conclusion, this research marks a significant step forward in the 
field of geotechnical engineering, illustrating how the integration of 
machine learning can effectively guide the design and optimization of 
geotechnical instruments. Reducing sensor complexity while maintain
ing the performance in soil type classification leads to more cost- 
effective and efficient geotechnical practice, potentially benefiting the 
geo-infrastructure construction industry. This work not only offers 
practical solutions for optimizing geotechnical instrument designs but 
also paves the way for more sophisticated and data-driven approaches in 
geotechnical practice. 
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Appendix A 

The CPT data used in this work is collected by DeJong (2001). Fig. A.1a, b and c show the soil profile of Vermont, South Carolina, and Western 
Australia respectively. While all three sites encompass the five soil types, there is a noticeable imbalance in the distribution of these soil types across 
the different locations, which is also indicated in Fig. 2.

Fig. A1. Soil profile for the sites in this work: (a) Vermont; (b) South Carolina; (c) West Australia.  

Appendix B 

Fig. B.1 to Fig. B.6 shows the sensor record streams of dataset 1 to dataset 6, respectively. For MFA-CPT device, it shows the sensor record streams 
of qt, u2, fs, fs2, fs3, and fs4. For MPFA-CPT device, it shows the sensor record streams of qt, u2, fs, fs2, fs3, fs4, and ua0 (DeJong, 2001). The soundings 
reveal notable correlations among sleeve stresses (fs, fs2, fs3, fs4) as well as between pore pressures (u2, ua0), underscoring the critical need for 
optimization of MFA and MPFA devices. 
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Fig. B1. Sensor record streams for dataset 1 

Fig. B2. Sensor record streams for dataset 2  
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Fig. B3. Sensor record streams for dataset 3 

Fig. B4. Sensor record streams for dataset 4  
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Fig. B5. Sensor record streams for dataset 5 

Fig. B6. Sensor record streams for dataset 6  

Appendix C 

Tables C.1–C.8 detail the definitions of hyperparameters for each machine learning model employed in this study, specifically: decision tree, 
AdaBoost, random forest, XGBoost, TabNet, KNN, SVM, and conventional neural network. Tables C.9 further delineates the hyperparameter search 
space for each model, enhancing the credibility and robustness of the model performance.  Table C1 

Definition of decision tree hyperparameters.  

Hyperparameter Definition 

Max_depth The maximum depth of the tree, controlling overfitting by limiting the complexity. 
Min_samples_split The minimum number of samples required to split an internal node. 
Min_samples_leaf The minimum number of samples a leaf node must have. 
Criterion The function to measure the quality of a split. 
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Table C2 
Definition of AdaBoost hyperparameters.  

Hyperparameter Definition 

n_estimators The number of base estimators (decision trees) in the ensemble. 
learning_rate The weight assigned to each classifier during each stage of the boosting process.   

Table C3 
Definition of random forest hyperparameters.  

Hyperparameter Definition 

n_estimators The number of trees in the forest. 
max_features The number of features when searching for the best split. 
max_depth The maximum depth of each tree. 
min_samples_split The minimum number of samples to split a node. 
min_samples_leaf The minimum number of samples required at each leaf node.   

Table C4 
Definition of XGBoost hyperparameters.  

Hyperparameter Definition 

n_estimators The number of boosting rounds. 
learning_rate The step size at each iteration while moving towards a minimum of a loss function. 
max_depth The maximum depth of each tree. 
gamma The minimum loss reduction needed to make partition on a leaf node. 
subsample The fraction of the training data to be randomly sampled for each tree. 
colsample_bytree The fraction of features to be randomly sampled for each tree.   

Table C5 
Definition of Tabnet hyperparameters.  

Hyperparameter Definition 

N_d The dimension of the decision prediction layer, influencing the model complexity. 
N_a The dimension of the attention embedding, affecting how the model focuses on input features. 
gamma The factor showing the sparsity of feature reusage in the masks. 
N_steps The number of steps in the model.   

Table C6 
Definition of KNN hyperparameters.  

Hyperparameter Definition 

n_neighbors The number of nearest neighbors to consider in the voting process. 
weights The weight each neighbor has in the voting process. 
metric The distance metric to calculate the proximity between data points.   

Table C7 
Definition of SVM hyperparameters.  

Hyperparameter Definition 

C The regularization parameter controlling the trade-off between achieving a low error on the training data and minimizing the norm of the weights. 
gamma The kernel coefficient showing how far the influence of a single training example reaches.   

Table C8 
Definition of Conventional neural network hyperparameters.  

Hyperparameter Definition 

Hidden_layer_sizes The number of neurons in each hidden layer. 
Activation The activation function for the neurons. 
Solver The algorithm for weight optimization. 
Alpha The L2 regularization term, which helps prevent overfitting by penalizing large weights. 
Learning_rate The step size at each iteration while moving towards a minimum of the loss function.   

Table C9 
Hyperparameter search space.  

Model Hyperparameters Range 

Decision tree Max_depth Integers from 5 to 20 (11 values) 
Min_samples_split [2, 5, 10, 15, 20] 
Min_samples_leaf [1, 2, 4, 6, 8] 
Criterion [gini, entropy] 

AdaBoost Max_depth for base learner [1, 2, 3, 4, 5] 
n_estimators Integers from 30 to 300 (10 values) 
learning_rate [0.01, 0.1, 0.5, 1.0] 

Random Forest n_estimators Integers from 30 to 300 (10 values) 
max_features [auto, sqrt] 
max_depth Integers from 5 to 20 (11 values) 

(continued on next page) 

D. Zhang et al.                                                                                                                                                                                                                                   



Computers and Geotechnics 169 (2024) 106248

19

Table C9 (continued ) 

Model Hyperparameters Range 

min_samples_split [2, 5, 10] 
min_samples_leaf [1, 2, 4] 

XGBoost n_estimators Integers from 30 to 300 (10 values) 
learning_rate [0.01, 0.05, 0.1, 0.2] 
max_depth Integers from 5 to 20 (11 values) 
gamma [0, 0.1, 0.2, 0.3, 0.4] 
subsample [0.6, 0.8, 1.0] 
colsample_bytree [0.6, 0.8, 1.0] 

TabNet N_d [8, 16, 32] 
N_a [8, 16, 32] 
gamma [1, 1.5] 
N_steps [3, 4] 

KNN n_neighbors [5, 7, 9, 11] 
weights [uniform, distance] 
metric [Euclidean, manhattan] 

SVM C [0.1, 1, 10, 100, 1000] 
gamma [1, 0.1, 0.01, 0.001, 0.0001] 

Conventional Neural Network Hidden_layer_sizes [(10, 30, 10), (20,)] 
Activation [tanh, relu] 
Solver [sgd, adam] 
Alpha [0.0001, 0.05] 
Learning_rate [constant, adaptive]  
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