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ABSTRACT

Stroke-induced motor impairment often prevents survivors from participating in activities of daily living, ad-
versely impacting their quality of life. Desktop delta robots such as the Novint Falcon have been utilized in
various home-settings to help recover fine-motor skills. They are compact and affordable, and can provide pro-
grammable sensorimotor feedback. In spite of these favorable features, it is presently not possible to directly
measure the user’s wrist angles while interacting with these robots, which undermines their prospective use in
telerehabilitation as patients’ motor performance cannot be reliably assessed. Here, we propose an experimental
set-up where patients strap a smartphone device to their forearm and manipulate a haptic robot. In this setting,
data from inertial sensors embedded in the smartphone will be integrated with data from the robot in a classi-
fication algorithm that infers the wrist angle. To study the viability of this approach, we perform experiments
with one healthy user. We fix two inertial measurement units on their body, one on their forearm and one on the
back of their hand, to measure the true wrist angle as they perform a motor task with a Novint Falcon device.
We train a machine learning algorithm that predicts wrist angles from a single wearable sensor and the Novint
Falcon movements. This effort constitutes a step toward automatic assessment of wrist movements in fine motor
telerehabilitation and could enable real-time feedback in the absence of a therapist.
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1. INTRODUCTION

Stroke is a leading cause of adult disability in the United States, where approximately 795,000 people experience a
new or recurrent stroke every year.1 A significant portion of stroke survivors experience debilitating impairments
in fine motor skills,2 which are essential for tasks involving muscles in the hands and wrists such as writing,
turning pages, eating, and using computer keyboards. Rehabilitation therapy focusing on fine motor skills is
critical for restoring patients’ independence and improving their quality of life.3 However, in order to maximize
recovery, patients must adhere to a therapy regimen consisting of high-intensity, high-frequency exercise routines.
Since standard physical therapy requires the time commitment and physical engagement of both patients and
therapist,4 most patients do not receive sufficient treatment for full recovery.

Telerehabilitation, or the provision of rehabilitation services over telecommunication networks to patients’
homes, presents a promising approach to facilitate frequent and accessible therapy. Several robots were designed
to relay interactive, reprogrammable, and reproducible treatment to patients,5 and for wrist rehabilitation in
particular.6,7 For example, a wrist extension was developed for the MIT Manus, a robot that is considered a
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benchmark for programmed upper limb treatment.8 Similarly, the Rutgers Master II,9,10 IIT Genova,3 UTM,11

Haptic Knob,12 and REHA13 were designed to recover intricate fine motor skills. While robotic devices offer
tailored treatment, their adoption is hindered by several limitations, including their physical size, the need for
specialized knowledge for operation, and prohibitive cost.14

In the search for affordable and user-friendly alternatives, low-cost gaming devices have emerged as potential
tools for wrist rehabilitation.15,16 One such device is the Novint Falcon, a desktop delta robot that is also used
as a game controller (Figure 1a). The Novint Falcon affords translational hand movement within a workspace
of 101.6 mm × 101.6 mm × 101.6 mm (4′′ × 4′′ × 4′′) (Figure 1a). It is capable of measuring the end-effector’s
trajectory with remarkable temporal and spatial resolutions,17,18 and offers remotely programmed force feedback
with the widest range among commercially available devices,19 reaching a maximum force of 8.8N.17,18 The
Novint Falcon’s force field can be applied to assist movement training17 and simultaneously measure the forces
applied by the hand20 or finger-tip,21 thereby providing important information for the assessment of fine motor
performance.15,17,22–24

Despite its many advantages, the Novint Falcon has a significant limitation: it cannot measure movement of
the user’s wrist, which is critical for reliable evaluation by therapists remotely. To address this limitation, we
propose a set-up where patients strap a smartphone device to their forearm and manipulate the Novint Falcon
(Figure 1b). We anticipate that additional information on the forearm’s orientation and velocity (which can
be readily drawn from sensors inherently embedded in the smartphone) could be combined with data from the
Novint Falcon to infer the user’s wrist angles. Since the wrist angle is not directly measured in this set-up, a
machine learning algorithm can be developed to predict the wrist angle.

In this paper, we explore the usability of our proposed approach. We collected data from a single, healthy
individual who interacted with the Novint Falcon. In order to accurately measure the subject’s actual, ground-
truth wrist angle throughout the interaction, two Inertial Measurement Units (IMUs) were attached to her upper
limb. One IMU was placed on her forearm and another was placed on the back of her hand (Figure 1c). Data
from both IMUs is used to calculate the true wrist angle. Data from the IMU that is strapped to the forearm is
also used as a substitute for a phone that would be strapped on her forearm. We train a linear regression model
that integrates data from this IMU with data from the Novint Falcon to predict the wrist angles. Our analysis is
conducted with a specific focus on the wrist pitch, as it constitutes the majority of the degrees of freedom in the
wrist movement.25,26 We present some preliminary results, which constitute a step toward automatic assessment
of wrist movements in fine motor telerehabilitation.
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Figure 1: The Novint Falcon, a compact and affordable desktop delta robot. (A) The game controller with
overlaid global coordinate system {G}, measuring the end-effector’s motion in three dimensions (X, Y , and Z).
(B) Illustration of our proposed telerehabilitation set-up, where a user straps a smartphone to their forearm and
manipulates the end-effector. (C) Illustration of our experimental set-up where the subject wears two IMUs, one
on the forearm and another on the back of the hand, to measure the wrist angle. The local reference frame of
each IMU is overlaid in blue.
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2. METHODS

2.1 Data collection

We gathered data on a single, healthy subject who interacted with the Novint Falcon. Two IMUs (MPU-6050,
InvenSense Inc., Sunnyvale, California) were fixed in 3D-printed housings and strapped onto the first author’s
limb with an elastic drawstring. One IMU was placed on the dorsal side of her forearm and the other was placed
on the dorsum of her hand. She interacted with the Novint Falcon in a citizen science-based game that was
developed for a previous study with the device.27

During this exercise, two datasets were generated. The first dataset recorded the position of the Novint
Falcon’s end effector in three dimensions (X, Y , Z) with respect to global frame G (Table 1). The second
dataset logged the output of the two IMUs. For clarity, the IMU placed on the forearm and its output are
denoted with a subscript of 1, and the IMU placed on the hand and its output will be denoted with a subscript
of 2. From the gyroscope, each IMU recorded its orientation relative to G in Tait–Bryan angles (yaw about the
z-axis of the sensor, α1 and α2; pitch about the y-axis of the sensor, β1 and β2; and roll about the x-axis of
the sensor, γ1 and γ2) and angular velocities about the same axes (ω1,z, ω2,z, ω1,y, ω2,y, ω1,x, and ω2,x). From
the accelerometer, the x-,y-, and z-components of the gravity vector were logged (g1,x, g2,x, g1,y, g2,y, g1,z, and
g2,z). All measurements are summarized in Table 1.

All three datasets were collected simultaneously. Novint Falcon data were collected at a sampling rate of 45
measurements per second whereas IMU data were collected at a sampling rate of 13 measurements per second.

Sensor Variable Notation
Novint Falcon position on the X-axis X

position on the Y-axis Y

position on the Z-axis Z

IMU1 roll angle about x γ1
pitch angle about y β1

yaw angle about z α1

angular velocity about x ω1,x

angular velocity about y ω1,y

angular velocity about z ω1,z

x component of the gravity vector g1,x
y component of the gravity vector g1,y
z component of the gravity vector g1,z

IMU2 roll angle γ2
pitch angle β2

yaw angle α2

angular velocity about x ω2,x

angular velocity about y ω2,y

angular velocity about z ω2,z

x component of the gravity vector g2,x
y component of the gravity vector g2,y
z component of the gravity vector g2,z

Table 1: Summary of the variables collected by the Novint Falcon and IMUs.

2.2 Data processing

Data were processed in MATLAB (MATLAB R2023b, The MathWorks, Inc., Natick, MA, USA). First, the
wrist angles the subject assumed throughout the activity were inferred from IMU data for every measurement
sampled. Specifically, the Tait–Bryan angles in each IMU were organized into quaternion representations. Then,
the quaternion associated with IMU1 was multiplied by the conjugate of the quaternion associated with IMU2

to obtain their relative orientations.
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After computing instantaneous wrist angles, we synchronized the measurements made by the Novint Falcon
and the IMUs in Python using pandas (version 1.4.2). We identified the largest time difference between consec-
utive samples and divided each time series into intervals of that size so that every interval contains at least one
measurement. Since each sensor recorded measurements at a different sampling rate, intervals for one sensor
contained more measurements than the intervals of another. The entire interval was replaced by the average of
measurements it contained to obtain an equal number of observations along all time series.

2.3 Training a machine learning algorithm

A linear regression model was trained in Python using the scikit-learn (version 1.0.2) and statsmodels (version
0.13.2) libraries. We aimed to predict wrist angles a user assumes from measurements made by the Novint Falcon
and IMU1. Therefore, the relative angles we computed between the IMUs were input as the true wrist angle
measurements. The 12 variables recorded from the Novint Falcon and IMU1 (which could be measured by a
phone strapped to the forearm) were included as potential predictors in the model. Training was carried out on
the first 70% of the measurements, reserving the remaining 30% to avoid overfitting.

Since movements trajectories are autoregressive in nature28 (that is, the state of postures informs on future
states of postures), we also considered the predictive value of lagged time series. To determine the number of
lags that would be relevant for training, we embedded the time series of each of the 12 predictive variables by
a number of time steps ranging from zero to ten time steps (corresponding to lags ranging from zero to three
seconds). We trained eleven linear regression models, gradually increasing the number of lagged variables that
are included among the predictive variables. For example, when we trained a model with two lags, the original
12 predictive variables were considered along with their lagged variants such that the training set contained 36
time series in total. Similarly, when all ten lags were considered, the model was trained on a maximum of 132
predictive variables. For each model, we computed the mean squared error (MSE) using the 30% out-of-sample
measurements and Akaike information criterion (AIC) using all measurements.

We selected the model with the number of lags that minimizes MSE and AIC, and further assessed its
performance through the R-squared (R2). To evaluate the importance of each predictor, the model was fitted
with z-standardized time series and the absolute values of coefficients were examined.

3. RESULTS

3.1 Data collection and processing

The subject interacted with the Novint Falcon for a total of 199 seconds. The raw time series contained 8,741
observations for the Novint Falcon and 2,598 observations for both IMUs. After synchronization, the time series
were reduced to 664 observations.

3.2 Training a machine learning algorithm

Comparison of the eleven linear regression models revealed that the MSE is minimized when time series with six
time lags are included in the training set (Figure 2). With respect to the AIC score, the model performs best
when five lags are included in training.

The model trained with 72 time series (five lags) was selected as it minimized both MSE and AIC. The model
demonstrated exceptional goodness-of-fit, with a coefficient of determination R2 = 0.916 (Figure 3). Inspection
of the coefficients of its predictors showed that Y , β1, α1, ω1,x, and ω1,z contributed the most to the model
(Figure 4). In particular, β1 was the most predictive variable, as well as α1, ω1,x, and γ1. A lag of zero was most
informative among those variables, as well as Y . β1 and g1,x contributed to the fit when a lag of four time steps
was imposed on them. In contrast, Z, ω1,z, ω1,y, and X were least informative for the model.
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Figure 2: Evaluation of autoregression in the subject’s motion. Eleven linear regression models were trained on
data sets with lags ranging from zero to ten. Red markers indicate the MSE of each model whereas blue markers
indicate their AIC scores.
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Figure 3: Linear fit of the measured wrist angles against the predicted ones.

4. DISCUSSION

This study explores the possibility of predicting the hand posture of patients undergoing fine motor telerehabili-
tation with haptic devices. Currently, remote assessment of patients who are interacting with haptic devices by
healthcare providers is not feasible, severely undermining their prospective use in home-based rehabilitation. To
overcome this challenge, we propose the integration of haptic devices with smartphones and machine learning
algorithms to quantify patients’ fine motor performance during telerehabilitation exercises. In particular, we en-
vision patients strapping a smartphone to the forearm of their affected limb and interacting with haptic devices.
Within this simple set-up, data from IMUs that are inherently embedded in smart devices could complement
data on the trajectory of the end effector the patient is manipulating to predict their wrist angle throughout a
prescribed physical activity. Highly resolved measurements of wrist movement could not only support remote
assessment of motor performance, but also enable real-time feedback systems that prompt the patient to correct
movements and behaviors.
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Figure 4: Importance of each variable for the model fit from the associated coefficients.

In the present study, we explore the feasibility of the proposed approach with the Novint Falcon, a low
cost delta robot that was studied extensively for its prospective use in fine motor rehabilitation.15,17,20,22–24

We collected data on a single healthy user who interacted with the Novint Falcon while wearing IMU sensors
strategically placed on her hand and forearm. We constructed a linear model that predicts the subject’s wrist
angles with exceptionally high accuracy. Analysis of the model’s coefficients revealed that data from both the
Novint Falcon and IMU sensors had strong predictive value. Intuitively, β1 and Y were highly important to the
model fit. The contribution of ω1,x to the fit likely stemmed from ulnar pronation while the user interacted with
the Novint Falcon, which indirectly led to changes in measured wrist angles.

In spite of the promising results, this work represents the first step in a greater endeavor. First, we will train
the algorithm on data from additional users, to account for physiological and behavioral variability. Next, we
will analyze out-of-sample error to ensure that the model we developed is generalizable to the majority of human
users.29 Finally, since our approach relies on “black box” machine learning, our methodology will greatly benefit
from a physical model that relates the wrist angle to movement of the end-effector. Incorporating a physical
model with biomechanical constraints could ultimately improve the interpretability of our model’s predictions
towards comprehensive, informed assessment by medical professionals.
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