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ABSTRACT

We present a general, hyperelastic, stretch-based potential that shows promise for modeling the mechanics of brain tissue. A specific four-parameter model derived
from this general potential outperforms alternative models, such as the modified Ogden model, the Gent model, Demiray model, and machine-learning models, in
capturing brain tissue elasticity. Specifically, the stretch-based model achieved R? values of 0.997, 0.992, and 0.993 (tension, compression, and shear) for the cortex,
0.995, 0.983, and 0.983 for the basal ganglia, 0.994, 0.929, and 0.970 for the corona radiata, and 0.990, 0.896, and 0.969 for the corpus callosum. This work has the
potential to advance our understanding of brain tissue mechanics and provides a valuable tool to improve finite element models for the investigation of brain

development, injuries, and disease.

1. Introduction

In recent years, the study of the interplay between brain mechanics
and brain diseases, injuries, and development has gained significant
prominence within the scientific community. The World Health Orga-
nization considers neurological disorders a matter of utmost concern for
public health. Every year, millions of people are subject to traumatic
brain injury (MacManus et al., 2018), with ~50,000 fatalities recorded
in the United States (Faul et al., 2010) and ~56,000 fatalities recorded
in Europe (Majdan et al., 2016) per annum. Additionally, alterations in
the mechanics of the brain have been shown to result in cortical mal-
formations (Budday et al., 2014, 2015) linked to various disorders
including schizophrenia (Harrison, 1999), autism (Nordahl et al., 2007),
and epilepsy (Bliimcke et al., 2009), as well as to cell death in patients
with Alzheimer’s disease correlated to progression of dementia (Blu-
menthal et al., 2014) (See the review (Budday et al., 2020)).

Furthermore, mechanics have been demonstrated to play a vital role
in both neuronal function and dysfunction (Goriely et al., 2015; Barnes
et al., 2017), as stresses may regulate the developmental processes
(Barnes et al., 2017; Tallinen et al., 2016; Razavi et al., 2015) and the
progression of neurological disease (Barnes et al., 2017; Jalil Razavi
et al., 2015). Thus, it is imperative to accurately characterize the me-
chanical properties of brain tissue in the field of biomechanics.

The study of brain tissue mechanics is a vital pursuit in compre-
hending the intricacies of the mechanobiological processes of the brain.

* Corresponding author.
E-mail address: xqwang@uga.edu (X. Wang).

https://doi.org/10.1016/j.jmbbm.2023.106271

The use of computational models and personalized simulations grants a
deeper understanding and lessens the reliance upon animal and human
experiments. Yet, a precise understanding of these processes demands
models of great accuracy, capable of encapsulating the complexity of
brain tissue’s elastic and viscoelastic properties.

The time-independent behavior of brain tissue is the primary concern
of this paper. Many strain-energy functions have been investigated for
their ability to describe brain tissue elasticity, such as the neo-Hookean
(Budday et al., 2020; Linka et al., 2022; Mihai et al., 2015; Pierre et al.,
2023), Mooney-Rivlin (Mihai et al., 2015; Pierre et al., 2023), Ogden
(Budday et al., 2020; Mihai et al., 2015; Pierre et al., 2023; Rashid et al.,
2014), Fung (Mihai et al., 2015; Rashid et al., 2014), Blatz-Ko (Linka
et al., 2022; Pierre et al., 2023), Holzapfel (Linka et al., 2022), Gent
(Budday et al., 2020; Mihai et al., 2015; Rashid et al., 2014), and
Demiray (Budday et al., 2020; Linka et al., 2022) models. However,
when tasked with describing the behavior of tension, compression, and
shear simultaneously, the limitations of these models become apparent
(Budday et al., 2020; Linka et al., 2022; Pierre et al., 2023). To this end,
recent efforts have turned to machine learning in the pursuit of
comprehensive elasticity potentials, offering not only a promising means
of identifying material models, but also a promising approach to
describing the elasticity of brain tissue (Linka et al., 2022; Pierre et al.,
2023; Linka and Kuhl, 2023). Regardless of the approach or form, an
increasing accuracy of comprehensive material models for brain tissue is
required.
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In this work, we present a general, n-term, hyperelastic, stretch-
based strain energy function. Through close examination, a specific
four-parameter constitutive model was isolated, demonstrating great
efficacy in modeling the time-independent properties of the brain. This
model was found to possess an exceptional ability to describe the tensile,
compressive, and shear stresses experimentally recorded for human
brain tissue from the cortex, basal ganglia, corona radiata, and corpus
callosum. This work may contribute to a better phenomenological
treatment of brain tissue elasticity, providing a valuable instrument for
improving finite element simulations to study morphological changes,
malformations, and injuries of brain tissues. Furthermore, the integra-
tion of this potential into automated material model discovery may serve
to increase the accuracy of future machine-learned models, further
advancing our comprehension of the brain’s mechanics.

2. Theoretical foundation and developments
2.1. Principal-stretch-based strain energy density function

This inquiry was initiated after considering strain energy density as a
polynomial expansion of the Biot strain measure,

y=>3" A6 &)
k=2

where y denotes the strain energy density, 4; denotes the principal
stretches, f, represents a scalar coefficient, and k is an integer that
exponentiates the Biot strain. The stress due to simple tension or
compression may be written as,

Py = Zkﬁk <(/11)k] */PIT (%*1) . > (2)
=

where 1 is the stretch in the tensile direction, while the stress due to
simple shear can be written as,

n ( 2 - 2172 1 k-1
Po=> kp|5—(-1)" f,—<~1> ®3)
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where 1 = \/%(2 +72+yy/4+7?) and y is the amount of shear. The

derivations of engineering stresses, P;; and P;p, are presented in
Appendices A and B. These appendices provide an examination of the
fundamental continuum mechanics required to derive Equations (2) and
(3), starting from Equation (1). Appendix A encompasses an examina-
tion of the kinematic definitions necessary for this study, while Ap-
pendix B delves into the intricacies of deriving stress in simple tension/
compression and shear from a hyperelastic potential.

Lastly, to be consistent with linear elasticity the term resulting from
k=1 is skipped and the shear modulus is equal to f3,. For this reason, the
term resulting from k= 2 must be present in the strain energy function
and f, must be strictly greater than zero. The equations used for iden-
tifying the consistency conditions of this model are presented in Ap-
pendix C.

2.2. Polyconvexity

It is important to consider the convexity of strain energy functions for
the set of all admissible deformations i.e. A;> 0, Ax> 0, and A3> 0. To
ensure polyconvexity, the strain Hessian matrix of the strain energy
function with respect to its independent variables,
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must be a positive definite matrix, i.e., it should be symmetric and all of
its eigenvalues are strictly greater than zero. The mixed partial de-
rivatives of Equation (1) are uniquely zero and therefore the Hessian is a

2 2
symmetric, diagonal matrix H = diag [" y Py Py

s ﬁ] Consequently, its ei-

12
genvalues, ‘;7‘;’, are used to evaluate the polyconvexity of particular strain
i

energy density functions from Equation (1): as long as the eigenvalues
are not complex or negative, the strain energy density will be
polyconvex.

2.3. Brain tissue data and analysis

This study will use the tension, compression, and shear data of
human brain tissue from various regions, i.e., the cortex, basal ganglia,
corona radiata, and corpus callosum, as reported in the reference
(Budday et al., 2017a) and tabulated in reference (Linka et al., 2022).
Our models were concurrently fitted against these aforementioned data,
yielding R? values for each of the deformation modes, namely R? for
tension, RZ for compression, and R for shear. The parameters for each
model regressed here were found by minimizing the relative squared
residuals as suggested by Destrade et al. since the relative residuals are
non-dimensional and identical for all stress measures while absolute
residuals are dependent on the choice of stress measure and may lead to
stress-measure-specific parameter sets and accuracy (Destrade et al.,
2017). The calculation of the coefficients of determination, R?, was
performed through, 1 — 255 with RSS being the residual sum of squared
errors and TSS the total sum of squares. In determining the appropriate
model, Akaike’s information criteria (AIC) was employed to evaluate the
models’ ability to fit the brain tissue data while avoiding overfitting. The
calculation of AIC was performed through Nin(85) + 2n, where N rep-
resents the total number of data points and n represents the number of
adjustable parameters in the model.

3. Results and discussions
3.1. Effect of terms in model selection

To identify the precise model for brain tissue from Equation (1), the
method of multiple linear regression was employed. The powers 2
through 10 of the strain energy density function (first nine terms) were
taken into consideration, and all possible combinations of these terms
were assessed for their proficiency in forecasting the stresses generated
in brain tissue from the cortex under tension, compression, and shear. It
was noted that the accuracy of the model did not significantly improve
upon the inclusion of five terms. The outcomes of the most precise
models, ranging from one to five terms, are depicted in Fig. 1 and
Table 1.

Through examination, the AIC derived from the regression showed
no improvement when terms exceeded four from the subset of terms
with powers ranging from 2 to 10 (see Table 1). The likelihood that the
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Fig. 1. The best 1, 2, 3, 4, and 5 term strain energy density functions (solid lines) identified from multiple linear regression against tension, compression, and shear
data from the cortex (black circles). Three terms were required to reach appreciable accuracy. Four terms achieve great accuracy, and the fifth term only slightly

improves the model.

four-term model minimizes information loss was inconclusive when
compared to the five-term model, as indicated by the relative likelihood
of the five-term model, e2ACnnmm—AIC) — 093, which serves as a pro-
portional representation of the probability of the i, model minimizing
information loss. Although the increase in R? values was not deemed
significant, and the information criteria is somewhat inconclusive for
discriminating between the four and five-term model, the five-term
model was not viable, as it was not thermodynamically admissible,
due to the negative leading coefficient of its highest power term.
Therefore, the four-term model,

W= Be(—1)" +pi(hi=1)" + f3(i—1)" + (k1) with i= 1,2,3  (5)

was deemed appropriate for further study of the brain tissue dataset (see
Table 1).

Table 1

Coefficients and accuracy of the strain energy density functions fitted using the
cortex data. RZ, R, and R? are the R? values for tension, compression, and shear,
respectively.

Parameters One-term Two-term Three- Four- Five-term
term term
Po 1.388 1.577 1.504 1.370 1.371
P - —8.760 —12.93 —14.34 —14.36
Pa - - - 43.33 47.67
b - - - - -
Pe - - - 3113 -
by - - - - -
Ps - - 472,338 - 535,184
B - - - - -
P10 - - - - —26,336,688
R%,R%,R2
0.884, 0.706, 0.968, 0.995, 0.996, 0.995,
0.251, 0.718, 0.947, 0.994, 0.992
0.658 0.634 0.986 0.992
AIC
-172.16 —208.88 —323.34 —407.23 —407.09
Strain energy function’s polyconvexity
Yes No No Yes No

3.2. Model performance calibration

A modest, four-parameter material model was established through
the regression of tension, compression, and shear data from the brain
cortex leading to the polynomial strain energy function given by Equa-
tion (5). The proposed material model is now adjusted to the well-known
benchmark data for the elastic response of human brain tissue (Budday
etal., 2017a, 2017b, 2020; Linka et al., 2022; Pierre et al., 2023), fitting
simultaneously to tension, compression, and shear data obtained from
various regions of the brain, including the cortex, basal ganglia, corona
radiata, and corpus callosum. The results are displayed in Fig. 2, with the
model coefficients and regression accuracy for each brain region,
measured by R2, summarized in Table 2.

The combined illustration of Fig. 2 and Table 2 make clear that the
four-parameter model expressed by Equation (5) is capable of accurately
modeling the four brain tissues under examination, as evidenced by the
R? values (no less than 0.984 for tension, 0.905 for compression, and
0.973 for shear) (see Table 2). Additionally, these results demonstrate
that Equation (5) is well-equipped to handle the modeling of brain tissue
undergoing multiple modes of deformation.

It is evident that the model under consideration, although displaying
a certain degree of accuracy, is not flaw-free and the deviations it incurs
are systematic in nature instead of random. The residuals from the re-
gressions presented in Fig. 2 are depicted in Fig. 3. The systematic de-
viations show that the model is likely an underfitting of real brain tissue
deformation data. For a well-fit model (neither under- nor overfitting)
the residuals (Ygarq — Ymoder) are expected to be randomly distributed
around zero and show no trend with the independent variable. As it
manifests, the model tends to undervalue or overvalue stresses from
individual deformations over large ranges of strain creating a trend in

Table 2

Parameters for Equation (5) used in Fig. 2 to describe stress-strain behavior of
four brain regions. R?, R, and R? are the R? values tension, compression, and
shear respectively.

Region P Ps Pa 3

R}, R%.R3

Cortex 1.370 —14.34 43.33 3113 0.995, 0.994, 0.992
Basal ganglia 0.693 —6.877 23.13 745.7 0.991, 0.983, 0.982
Corona radiata 0.731 —9.544 26.43 1268 0.984, 0.942, 0.977

Corpus callosum 0.374 -5.165 24.48 0 0.986, 0.905, 0.973
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Fig. 2. Results from fitting Equation (5) (solid lines) against stress-strain data of brain tissue (scattered data). Each column of subfigures represent data from different
regions of the brain: cortex (purple), basal ganglia (green), corona radiata (blue), and corpus callosum (red). Each row represents data from different deformation
modes: tension (first row), compression (second row), shear (third row). For each brain region, Equation (5) is fitted using compression, tension, and shear data

simultaneously.

the residuals. From the nature of underfitting, when calibrating this
model, it is important to include different modes of deformation in the
training process. Otherwise, the model will adjust to more accurately
describe the deformation mode used for fitting at the expense of its
ability to describe other deformation modes as evidenced in Fig. 4. In
Fig. 4, because the model is underfitting, the deformation data used for
fitting is well described with the model achieving R?-values greater than
0.999 but the accuracy of the model drops when describing other
deformation modes (see the description of compression when only shear
data is regressed).

3.3. Accuracy and simplicity

The assessment of the proposed model continues with a comparison
to competing models, as depicted in Fig. 5 These include the incom-
pressible, isotropic four-parameter Ogden model, represented by %8¢ =
%(/1;” + A58 + 23 — 3)+ %(i‘l”z + 232 + 132 — 3), the two-parameter

Gent model represented by y"= —1uJp, In {1 - %} , and the

two-parameter Demiray model represented by y’™ = % u(exp[ﬁ’(ﬂ% +
J2 + 22— 3)] — 1)/p. We note that a successive combination of either
multiple Gent or Demiray terms proves to be inconsequential as neither
model effectively scales the stretches. Therefore, a like-to-like compar-
ison with respect to the number of tunable model parameters cannot be
conducted for these models in contrast to the Ogden model.

The four-parameter Ogden model proves to be superior in all
deformation modes compared to the two-parameter Gent and Demiray
models. Although both the proposed strain-energy function and the four-
parameter Ogden model possess an equal number of adjustable param-
eters, the proposed model (Equation (5)) demonstrates greater accuracy

in each individual deformation mode, as evidenced by R? values in
Table 3. The average R? value for the four-parameter Ogden model is
0.9907 which is marginally less accurate than Equation (5) with an
average R? value of 0.9937. However, the AIC of the four-parameter
Ogden model is —382.69 vs the AIC of Equation (5) which is —407.23
giving a relative likelihood for the four-parameter Ogden model of
5(-407:23+382.69)— 4 69105 which serves as a proportional represen-
tation of the probability of the four-parameter Ogden model minimizes
information loss. The Demiray and Gent models perform excellently in

Table 3

Results for regression of modified Ogden model, Gent model, and Demiray. As in
Tables 1 and 2, R, R%, and R? are the R? values tension, compression, and shear
respectively.

Equation (5), y

Pa Ps Pa 3 RZ,R% R?

1.370 —14.34 43.33 3113 0.995, 0.994, 0.992
Modified Ogden, y°8d

Hh Ha a1 az R%,R%,R?

—0.128 4.8x 10°° —20.41 106.4 0.992, 0.991, 0.989
Machine Learning, y"*

- - - - R% RZ R?

- - - - 0.937, 0.985, 0.987
Gent, o

H Jm - - R% RZ R2

1.200 0.0761 - - 0.739, 0.572, 0.989
Demiray, y°™

p . - - R2. R R2

1.187 15.58 - - 0.743, 0.552, 0.959

Machine Learning, yM!

R%.RZ.RE
0.356, 0.897, 0.985
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Fig. 3. Residual plots from the regressions
deformation data.

shear but fall short in capturing the nonlinearity of tensile and
compressive deformations.

Recently, Linka et al. have developed a thermodynamics-based
artificial network for constitutive equation discovery, which enforces,
a priori, isotropy, incompressibility, the second law of thermodynamics,
material objectivity, and strain energy polyconvexity (Linka and Kuhl,
2023). They have subsequently used the methodology to find constitu-
tive equations for brain tissue elasticity (Linka et al., 2022; Pierre et al.,
2023). The first of two neural networks considered strain energy den-
sities as power functions of invariants (I; —3)¥, (I,—3)¥, strain energy
densities as exponential functions of invariants e” 1-3" —1 and e#2(2-3)",
and the logarithmic functions invariants —In(1 — (I; —3)¥) and —In(1 —
(I,—3)¥) (MU in Fig. 5 and Table 3). For the brain cortex, this machine
learning model found a four-parameter equation achieving R? values of
0.897, 0.356, and 0.985 for compression, tension, and shear respec-
tively. The results for basal ganglia, corona radiata, and corpus callosum
were of lower quality, yielding less favorable R? values.

Their second neural network considered strain energy functions as a
product of Ogden terms Y ;5 (A7 +25° +43* =3) (™ in Fig. 5 and
Table 3). The stretch-based machine learning models provided much
higher accuracy fits at the cost of including more terms. The machine
learning algorithm identified a 20-parameter, 16-parameter, 14-param-
eter, and 14-parameter model for the cortex, basal ganglia, corona
radiata, and corpus callosum, respectively. The machine learned,
multiparameter Ogden models perform with a similar accuracy as the
model proposed here (within hundredths of the R? values achieved by
Equation (5)). However, the large number of Ogden terms are needed to
achieve this accuracy may have resulted to constraints placed on the

in Fig. 2. The residuals are systematic
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instead of random showing the model is likely underfitting the brain tissue

neural network. In conclusion, the machine learning model performed
with great accuracy, but the cost of this accuracy was an increased
number of terms, and a different model for each region of the brain. The
model proposed here describes each region of the brain accurately and
outperforms the multiple term Ogden models found by the artificial
neural network. A comparison of these results is included in Fig. 3 and
Table 3; the strain energy density found by the network searching for
power, exponential, and logarithmic functions is denoted ™% and the
strain energy density found by the Ogden network is denoted y™:*. We
would also like to note that the stretch-based formulations of strain
energy density (Equation (5), four-parameter Ogden, and Ogden
network) as a group outperformed the invariant based formulations of
strain energy density (Gent, Demiray, and invariant network).

In continuation of the discussion, it is clear that the future of material
modeling will be dominated in part by machine learning methods,
particularly for the swift identification of phenomenological constitutive
equations possessing remarkable accuracy. Our proposed model, as
demonstrated in Equation (5), may serve as a high-quality constitutive
model for brain tissue elasticity in the short term and Equation (1) may
serve as a contribution to machine learning toolkits in the future.

We note that we assumed homogeneous deformation states during
testing in this work. As the specimens were glued to the specimen
holders during the actual experiments, this may lead to a certain devi-
ation in the material parameters due to inhomogeneous deformation
(Budday et al., 2020). Therefore, in the future, an inverse parameter
identification based on finite element simulations could be performed to
identify even more accurate parameters for the new strain energy den-
sity function proposed here.
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N. Filla et al.

4. Conclusions

In this paper, a general, hyperelastic, stretch-based potential was
introduced, from which a specific four-parameter model was derived
showing remarkable accuracy in modeling the mechanics of brain tissue.
This model was calibrated to capture the time-independent behavior of
four regions in the brain, namely the cortex, basal ganglia, corona
radiata, and corpus callosum, encompassing their properties in
compression, tension, and shear with a single model. Upon comparison
to alternative models, such as the Ogden model, the Gent model, the
Demiray model, as well as invariant and stretch-based machine learned
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Appendix A

Kinematics - During deformation, a point with an original position X in the undeformed reference configuration moves to a new position x in the
deformed configuration, a progression that may be represented by the deformation gradient, F = 3—; + I, where the displacement vector u is equal to
x — X and [ is the identity tensor. In evaluating the relationship between deformation and energy change, it is often beneficial to employ the right
Cauchy-Green strain tensor C = FTF and the left Cauchy-Green strain tensor b = FF', as they eliminate the translational and rotational components
present in the deformation gradient. Additionally, it is advantageous to consider the principal stretches, 4;, which can be obtained from the left
Cauchy-Green strain, b = Zizliina ® ng, or from the right Cauchy-Green strain, C = 22:1/151\’(1 ® Ng, where ® represents the tensor product. These
tensors possess the same eigenvalues, /lz, but different eigenvectors, the normalized principal directions N, and nr, in undeformed and deformed
configurations, respectively.

Appendix B

Stress - The stresses in a hyperelastic material are found by considering the change in energy density due to deformation. Strain energy density, v,
is a scalar quantity defined at every point in a material and its derivative with respect to various strain measures yields various stress measures. For an

incompressible hyperelastic material model, the principal 1st Piola Kirchhoff stresses (engineering stresses) can be written as, P; = g—A’f — % withi=1,2
3, where p is an unknown hydrostatic pressure that represents a workless reaction to the incompressibility constraint place on the deformation field.

The scalar p is determined from the boundary conditions of a specific deformation mode. This definition of the 1st Piola Kirchhoff stress is convenient
for the case of simple tension or compression. The 1st Piola Kirchhoff stress may also be written as a spectral decomposition, P = Zzzlpaﬁa®ﬁa -

~ ~ -T o . ~ . . < . .
(Zgzl DAaia@N,) whereP, = 37":, Aq are the principal stretches, 7, are the normalized eigenvectors of b, and N, are the normalized eigenvectors of

C. This definition of 1st Piola Kirchhoff stress is convenient for deriving shear stress.

In the occurrence of uniaxial tension or compression, the deformation gradient may be written as, F = diag[4,, A2, 3] where 1;,42,43 are the principal
stretches (square root of the eigenvalues of b or C) and the eigenvectors of b or C happen to coincide with the experimental reference frame. The
hydrostatic pressure due to the incompressibility assumption, p, can be deduced from either of the zero stress boundary conditions P, = P3= 0.

Solving for 0 = P = ;"—; - % givesp = /12[‘,)7";. From the incompressibility condition det[F|]= 1 =A; 4243 and isotropy A, = A3 we see that 4y = 13 =1/ /4;.
Therefore, the first principal stress, which is equivalent to the normal stress in the direction of loading, is P; = P13 = % — ﬁﬂ %’; Finally, inserting

the expressions for (‘;—"’1 and 37“; yields Equation (2) in the main text.

1 y O
For simple shear the deformation gradient is expressed in matrix representationas, F = |0 1 0 |. The left Cauchy Green tensor for simple shear
0 01
P+1 7y 0
is, b = FFT = Y 1 0| and has the following normalized eigenvectors,
0 01
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r+HVA+Y - VA+7
1 2 2
2\/1+1<y+\/4+y2) 2\/1+ 4+y> 0
n = 1 Ty = 3= |0 (B1)
1 2 2
\/1+Z<}/+\/4+y2) \/1+ 4+y2) !
0
V4 0
The right Cauchy Green tensor for simple shear is, C = F'F = | y y*4+1 0| and has the following normalized eigenvectors,
0 0 1
v+ V447 7= VA+7
1 2 1 2
2\/1+Z(—y+\/4+y2) 2\/1+Z(77ﬂ/4+y2) 0
Ny = 1 ,1/\72: 1 7ﬁ3: 0 (B2)
1 2 1 2
\/1-&-—(—7/-&-\/4-&-)/2) \/1-&-—(—}/—\/4-&-}'2) !
4 4
0 0
By definition P, = % so the shear stress, P;,, is given by,
P Y+ V4+7 1 0y/+
12 — EY
1 2 1 2 | o4
2\/1+Z(y+\/4+72> \/1-&-1(—}'—&—\/4-&-72) l
(B3)
4+ 1 oy o
4 3 PPN
w- (2 maev.)

1 2 1 2
2\/1+Z(yﬂ/4+y2) \/1+Z(fyﬂ/4+y2)
The 12-component of the penalty function $>_, p(/laﬁa®ﬁ o) " evaluates to zero. The principal stretches are the square root of the eigenvalues of

either C or b and were found to be 1; = \/%(2 Fr24+y/4+72), A = 11 = \/1 (2472 —y/4+7y?), and A3= 1. Upon careful examination and

2
substitution, the equation for shear stress simplifies to P1, = 12+1 % - AZ’% P Finally, inserting the expressions for J ‘”” and § ‘”” and substltutmg L for all

instances of A, yields Equation (3) in the main text.
Appendix C

Consistency with Linear Elasticity - In isotropic linear elasticity the relationship between stress ¢ and strain ¢ is, 6;; = Aex 6 + 2ue;, where 2 and p
are Lame’s constants and §; is Kronecker’s delta. For shear stress at small strains we can write, 6 = 2uy, and this gives the condition that, ”i =2u.

Replacing o with the nonlinear, hyperelastic shear stress and taking the limit of § "” = 2y as y approaches zero provides a condition for the hyperelastlc

potential to be consistent with linear elasticity. Note: at small strains, especially at zero strain, the distinction between stress measures vanishes so we
can replace ¢ with the first Piola-Kirchoff shear stress given in equation (3) of the main text. Therefore,

2 P k-1
le{ay (kﬂk</12+l(l <! I (171) ))}—2/4 1

and this limit evaluates to, £8, (0=2(k — 1) -+ 0k~1) = 2;1. The indeterminate form 0° is a controversial topic, and there’s no universally accepted value
for it. However, in some contexts, it’s convenient to define 0° = 1. It is left to the reader to accept or decline this definition. From this it follows if k= 1
then the expression evaluates to 16, (2+0°) and is therefore undefined. If k= 2 then the expression evaluates to (0% + 0') = . If k> 2 then the
expression is zero. Therefore, the shear modulus of this model is % and the model should no include the term for k= 1.
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