

Draelos-Hagerty, L., Paramore, J.D., Butler, B.G., Nandwana, P. and Srivastava, A., 2023. Hydrogen-Aided Microstructural Engineering of Additively Manufactured Ti-6Al-4V. Metallurgical and Materials Transactions B, 54(6), pp.3451-3461.

1 **Hydrogen-Aided Microstructural Engineering of Additively Manufactured Ti-6Al-4V**

2

3 Lara Draelos-Hagerty¹, James D. Paramore^{1,2}, Brady Butler^{1,2}, Peeyush Nandwana³, Ankit
4 Srivastava^{1,*}

5

6 ¹Department of Materials Science & Engineering, Texas A&M University, College Station, TX
7 77843, USA

8 ²DEVCOM Army Research Laboratory, College Station, TX 77843, USA

9 ³Materials Science and Technology Division, Oak Ridge National Laboratory, Knoxville, TN
10 37932, USA

11

12 **Corresponding Author:* ankit.sri@tamu.edu, +1 979 458 9841

13

14 **ABSTRACT:** Electron beam melting (EBM) additive manufacturing of Ti-6Al-4V subjects the
15 material to complex thermal cycles, resulting in a columnar morphology of the prior β grains
16 (PBGs). While the columnar PBGs of EBM-processed Ti-6Al-4V can be transformed to an
17 equiaxed morphology through super-transus (i.e., above the β -transus temperature) heat-
18 treatment, this also leads to the formation of coarse lamellar two-phase microstructure. Such a
19 microstructure is prone to strain localization and premature fracture. Herein, we present a
20 thermohydrogen post-process treatment that achieves equiaxed PBG morphology in EBM-
21 processed Ti-6Al-4V without sacrificing mechanical properties. Our results show that a three-
22 step thermohydrogen post-process treatment can transform the columnar PBG morphology to an
23 equiaxed morphology with fine microstructure and, strength and ductility levels comparable to
24 those of the most optimum as-fabricated samples. This three-step thermohydrogen post-process
25 treatment involves hydrogenation and phase transformation treatment in a hydrogen atmosphere,
26 and subsequent dehydrogenation treatment in vacuum. Notably, all these treatments are carried
27 out at temperatures well below the β -transus temperature of hydrogen-free Ti-6Al-4V.

28

29 **KEYWORDS:** Characterization; Tensile testing; Additive manufacturing; Titanium alloys;
30 Phase transformation; Hydrogen processing

31

32

33 **I. INTRODUCTION**

34

35 Layer-by-layer additive manufacturing, such as electron beam melting (EBM, also known as
36 electron beam powder bed fusion), of Ti-6Al-4V produces unique, process specific
37 microstructures^[1-3]. Specifically, during EBM, the large thermal gradients and complex thermal
38 cycling, which involves preheating, melting, rapid cooling, and partial re-melting of each layer,
39 results in columnar prior β grains (PBGs) along the build direction with a $\langle 001 \rangle$ fiber texture^[4-8].
40 This columnar grain morphology in EBM-processed Ti-6Al-4V as well as in other additive
41 manufacturing processes, such as laser powder bed fusion (LPBF) and directed energy
42 deposition (DED)^[9-10] is in contrast to the conventional manufacturing processes (e.g., wrought
43 processing) that leads to equiaxed grain morphologies^[11]. The columnar microstructure produced
44 during additive manufacturing renders the material mechanically anisotropic, which can
45 adversely affect the mechanical performance. For example, latitudinally oriented tensile
46 specimens (i.e., the tensile axis normal to the build direction) generally exhibit lower tensile
47 strengths for both EBM- and LPBF-processed materials compared to longitudinally orientated
48 tensile specimens (i.e., tensile axis parallel to the build direction)^[12-13]. Similarly, latitudinally
49 oriented specimens exhibit inferior resistance to fatigue compared to the longitudinally oriented
50 specimens^[14]. Thus, the anisotropic microstructure as well as other process-induced defects (e.g.,
51 lack of fusion and keyhole porosity^[3]) predispose additively manufactured Ti-6Al-4V to
52 premature failure^[15-17].

53

54 To reduce the process-induced defects, additively manufactured materials are typically subjected
55 to post-process hot isostatic pressing (HIP) treatments^[18]. During HIP, the pressure at high
56 temperature aids in pore closure, while the associated heat-treatment impacts the
57 microstructure^[18]. It has been shown that a single-stage heat-treatment below the β -transus
58 temperature (i.e., sub-transus) only coarsens the as-fabricated α -phase microstructure, which
59 does not affect the anisotropy but leads to a decrease in the as-fabricated strength^[19-20]. Recently
60 it has been shown that a three-stage sub-transus heat-treatment can improve the mechanical
61 properties of LPBF deposited Ti-6Al-4V but it still maintains the columnar PBG morphology^[21].
62 On the other hand, heat-treatment above the β -transus temperature (i.e., super-transus)
63 transforms the columnar PBG morphology to an equiaxed morphology and eliminates

64 macroscopic anisotropy^[7, 12, 20]. Although the super-transus heat-treatment leads to an equiaxed
65 PBG morphology with strength levels that can be greater than the sub-transus heat-treatment, it
66 also transforms the α -phase morphology from basketweave to lamellar^[7, 12, 20]. The Ti-6Al-4V
67 microstructures with lamellar α -phase are prone to strain localization and result in relatively
68 lower ductility^[20]. More importantly, even though there has been some success in obtaining
69 equiaxed-like PBG morphology by optimizing scanning strategies of LPBF process^[22] or
70 reducing thickness of the columnar PBGs by introducing heat sinks in EBM process^[23]; it is not
71 easy to directly process Ti-6Al-4V with equiaxed PBGs and fine α -phase microstructure using
72 all current additive manufacturing techniques due to their limited constitutional supercooling^[24].
73 Therefore, a post-process super-transus heat-treatment is necessary to form an equiaxed
74 microstructure in additively manufactured Ti-6Al-4V. This leads to a fundamental question of
75 technological relevance: how can the columnar PBG morphology of additively manufactured Ti-
76 6Al-4V be engineered to an equiaxed morphology without sacrificing the mechanical properties?
77

78 To this end, we explore the viability of thermohydrogen post-process treatments to achieve
79 equiaxed PBG morphologies in EBM-processed Ti-6Al-4V while simultaneously maintaining
80 the strength and ductility levels of the optimally oriented as-fabricated material.

81 Thermohydrogen treatments involve subjecting a material to heat-treatments in a hydrogen
82 atmosphere. Similar processing has been previously applied to Ti-6Al-4V fabricated via wrought
83 processing^[25-29], powder metallurgy^[30-31], and LPBF additive manufacturing routes^[32]. These
84 works have shown that thermohydrogen treatments of Ti-6Al-4V can transform a variety of
85 initial microstructure types, such as lamellar, Widmanstätten, bi-modal, and even relatively
86 coarse equiaxed, to a fine equiaxed morphology without any mechanical deformation. During
87 thermohydrogen treatments, hydrogen works as a temporary alloying element in Ti-6Al-4V and
88 enables phase transformations that are not otherwise possible^[25, 28]. As a β stabilizer in titanium
89 alloys, hydrogen lowers the β -transus temperature. Furthermore, the presence of hydrogen
90 allows for homogeneous precipitation of low temperature phases, producing ultrafine α grains
91 that can be engineered into a wide range of microstructures without requiring deformation-based
92 processing^[29-32]. Specifically, Paramore et al.^[30-31] proposed a five-step thermohydrogen
93 treatment procedure for powder metallurgy processing of Ti-6Al-4V that yielded wrought-like
94 microstructures and mechanical properties. The five-step thermohydrogen treatment in those

95 works involved sintering, phase transformation, dehydrogenation, globularization, and aging
96 steps.

97

98 Herein, we modify the five-step thermohydrogen treatment proposed by Paramore et al.^[30-31] to
99 achieve an equiaxed PBG morphology in EBM-processed Ti-6Al-4V. We show that a reduced
100 three-step thermohydrogen post-process treatment is sufficient to transform the as-fabricated
101 PBG morphology from columnar to equiaxed, while producing a fine α -phase microstructure.
102 This three-step thermohydrogen post-process treatment involves hydrogenation, phase
103 transformation, and dehydrogenation steps, wherein all treatments are carried out at temperatures
104 well below the β -transus temperature of hydrogen-free Ti-6Al-4V. The resulting mechanical
105 properties, such as strength and ductility, of the three-step thermohydrogen treated EBM-
106 processed Ti-6Al-4V samples are on par with the strength and ductility levels of optimally
107 oriented as-fabricated samples. This is in contrast to existing heat-treatments, which often lead to
108 reductions in either strength, ductility, or both as compared to the as-fabricated condition for
109 EBM-processed materials.

110

111 The ability to engineer equiaxed PBG morphology in Ti-6Al-4V samples using thermohydrogen
112 treatment is of particular importance for additive manufacturing. Traditional methods, which rely
113 on thermomechanical processing to achieve such microstructure, are not viable for additively
114 manufactured samples as they undermine the intrinsic benefit of additive manufacturing, which
115 is the production of near-net-shaped components. Moreover, the decrease in the β -transus
116 temperature via hydrogenation is crucial, as a lower β -transus temperature facilitates the
117 emergence of finer α -phase laths, which are essential for high strength. This is primarily due to
118 the slower growth kinetics of the α -phase at lower $\beta \rightarrow \alpha$ transformation temperatures.
119 Importantly, the combination of decreased temperature requirements and the elimination of
120 deformation-based processing substantially reduces energy costs and makes this methodology
121 particularly well-suited for optimizing the microstructure of EBM-processed Ti-6Al-4V.

122

123

124 **II. METHODS**

125

126 *A. Material fabrication*

127

128 Ti-6Al-4V material considered in this work was fabricated using an Arcam Q10 EBM system
129 and standard Arcam processing parameters at the Powder Metals & Additive Manufacturing
130 Facility of Oak Ridge National Laboratories. The material was fabricated as cylinders of
131 diameter 0.58" and length 4" using pre-alloyed atomized Ti-6Al-4V powders supplied by
132 Advanced Powders and Coating (AP&C, Quebec, Canada). The powders had a nominal
133 composition of 5.28wt% Al, 4.23wt% V, 0.14wt% O, 0.20wt% Fe and the remainder Ti. The
134 nominal hydrogen content of the powders is extremely low (on the order of 0.0001wt%). More
135 details of the EBM process used in this study can be found in refs.^[12, 19, 33].

136

137 *B. Post-process treatments*

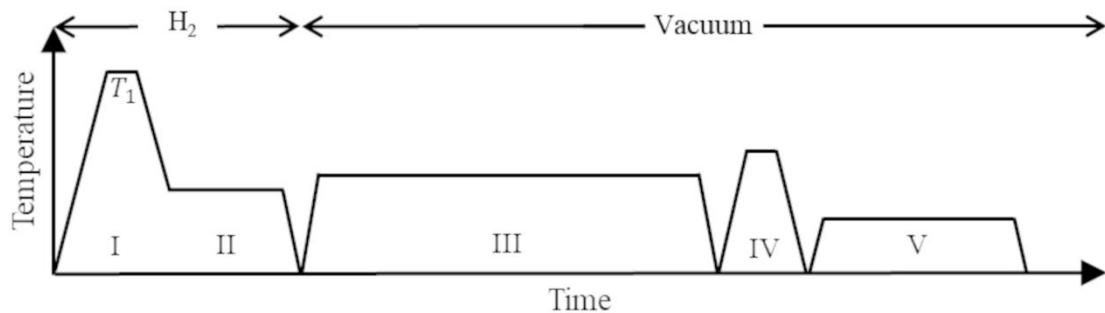
138

139 The EBM-processed Ti-6Al-4V cylindrical samples were subjected to six sets of post-process
140 treatments. The nomenclature and description of all six post-process treatments are given in
141 Table I. For the hydrogen atmosphere, a 50/50 mixture of H₂ and Ar gas was used, with both
142 gases simultaneously maintained at a flow rate of 1L/min using Aalborg GFC-17 mass flow
143 controllers, while the (near) vacuum atmosphere was achieved by maintaining an absolute
144 pressure below 1×10^{-5} torr. The heating and cooling rates for all post-process heat-treatments
145 were approximately 10°C/min.

146

147 The first two sets of post-process treatments, V850 and V1025, served as controls to assess the
148 effect of the thermal profile (as shown schematically in Fig. 1) in the absence of a hydrogen-
149 containing atmosphere. Therefore, all five-steps of the post-process treatments were carried out
150 in vacuum. Step I of this five steps of these post-process treatment were carried out at a
151 temperature/time combination of 850°C/1h for V850 and 1025°C/1h for V1025. For both V850
152 and V1025, steps II-V were carried out at temperature/time combinations of 650°C/4h,
153 750°C/12h, 950°C/1h, and 550°C/6h, respectively. It must be noted that in a hydrogen-free

154 atmosphere, 1025°C is above the β -transus temperature for Ti-6Al-4V while 850°C is below the
155 β -transus temperature.


156

157 **Table I.** Nomenclature and description of the various post-process treatments carried out in this
158 work.

<i>Nomenclature</i>	<i>Post-process treatments</i>
V850	Vacuum atmosphere: 850°C/1hr, 650°C/4h, 750°C/12h, 950°C/1hr, 550°C/6h
V1025	Vacuum atmosphere: 1025°C/1hr, 650°C/4h, 750°C/12h, 950°C/1hr, 550°C/6h
5H850	Hydrogen atmosphere: 850°C/1hr, 650°C/4h Vacuum atmosphere: 750°C/12h, 950°C/1hr, 550°C/6h
5H1025	Hydrogen atmosphere: 1025°C/1hr, 650°C/4h Vacuum atmosphere: 750°C/12h, 950°C/1hr, 550°C/6h
3H850	Hydrogen atmosphere: 850°C/1hr, 650°C/4h Vacuum atmosphere: 750°C/12h
3H1025	Hydrogen atmosphere: 1025°C/1hr, 650°C/4h Vacuum atmosphere: 750°C/12h

159

160

Fig. 1 – A schematic representation of all the steps involved in the post-process thermohydrogen treatment. The steps I-V correspond to hydrogenation, phase transformation, dehydrogenation, globularization and aging, respectively.

161

162 The second two sets of the post-process treatments, 5H850 and 5H1025, involved subjecting the
163 samples to the full five-step thermohydrogen treatment proposed by Paramore et al.^[30-31] and
164 shown schematically in Fig. 1. The five-steps involved in this treatment are, hydrogenation (I),
165 phase transformation (II), dehydrogenation (III), globularization (IV) and aging (V). The first
166 two steps of this five-step treatment were carried out in the hydrogen atmosphere and the last
167 three steps were carried out in vacuum condition. For 5H850, the hydrogenation temperature (T_1)
168 was maintained at 850°C, while for 5H1025, T_1 was 1025°C. The hydrogenation step (I) for both
169 post-process treatments were carried out for 1h. Also, for both 5H850 and 5H1025, the phase
170 transformation, dehydrogenation, globularization and aging steps were carried out at
171 temperature/time combinations of 650°C/4h, 750°C/12h, 950°C/1h, and 550°C/6h, respectively.
172

173 The last two sets, 3H850 and 3H1025, of the post-process treatments aimed at separating the
174 effects of the first three steps of the five-step post-process thermohydrogen treatment. Thus,
175 these samples were only subjected to the first three steps shown in Fig. 1. Step I of the three-step
176 post-process thermohydrogen treatment was carried out at a temperature/time combination of
177 850°C/1h for 3H850 and 1025°C/1h for 3H1025. For both 3H850 and 3H1025, steps II and III
178 were carried out at temperature/time combinations of 650°C/4h and 750°C/12h, respectively.
179

180 C. Hydrogen quantification

181
182 The hydrogen content in the as-fabricated as well as in all post-processed Ti-6Al-4V samples
183 were quantified using a high-performance O, N and H analyzer (G8 Galileo, Bruker Corporation)
184 and following the ASTM E1447-09 standard^[34]. The G8 Galileo works on the principle of inert
185 gas fusion via melt extraction. In this process, the material is melted in a graphite crucible, and
186 hydrogen is evolved from the material as H₂ gas and swept by the carrier gas (N₂) through a
187 thermal conductivity cell to determine the amount of hydrogen in the gas stream. Nitrides will
188 form on the surface of Ti alloys when using N₂ carrier gas, preventing the release of H₂.
189 Therefore, Bruker recommends the inclusion of high-purity Sn pellets to coat the samples and
190 prevent the formation of surface nitrides, which was done with all the specimens in this study.
191

192

193 D. *Tensile testing*

194

195 Cylindrical dog-bone tensile specimens with 6.35mm diameter and 25.4mm gauge length of both
196 as-fabricated and all post-process treated Ti-6Al-4V samples were machined following the
197 ASTM E8/E8M standard^[35] and mechanically tested under uniaxial tensile loading conditions.
198 At least one additional tensile test specimen was machined and tested for each sample type, both
199 as-fabricated and all post-processed, to ascertain the reproducibility of the measured mechanical
200 properties of the samples. All uniaxial tensile tests were carried out using a servo-hydraulic load
201 frame (MTS) equipped with a 50kN load cell and at ambient conditions at an imposed
202 displacement rate of 0.0125mm/s giving a nominal strain rate of $0.5 \times 10^{-3}\text{s}^{-1}$. The extension in
203 the gauge section of all the tensile specimens were measured using a 25.4mm extensometer.

204

205 E. *Microstructure and fracture surface characterization*

206

207 The metallographic specimens of both as-fabricated and all post-processed samples were
208 mechanically polished following a procedure that involved wet grinding using ANSI 320 SiC
209 paper followed by rough polishing using 9 μm diamond paste on a napless cloth for 10mins, and
210 fine polish using a mixture of 1 part 30% H₂O₂ combined with 3 parts 0.02 μm colloidal silica
211 suspension on a final polishing cloth for 10 min. Each step was finished with a 5mins sonication
212 in ethanol. If scratches were present on the polished samples, they were re-polished using 3 μm
213 diamond paste on a napless cloth. This was again followed by a fine polish using the mixture
214 composed of 1 part 30% H₂O₂ and 3 parts 0.02 μm colloidal silica suspension on a final polishing
215 cloth. The polishing step using the mixture of 1 part 30% H₂O₂ and 3 parts 0.02 μm colloidal
216 silica suspension is crucial for achieving a high-quality polished finish on titanium alloys. The
217 polished metallographic specimens were imaged using the backscattered electron (BSE) imaging
218 mode in a Tescan FERA-3 scanning electron microscope (SEM). The unpolished fracture
219 surfaces of all the fractured tensile specimens were also analyzed using the secondary electron
220 (SE) SEM imaging.

221

222

223 **III. RESULTS**

224

225 The hydrogen content in both as-fabricated and all post-processed conditions (defined in Table I)
226 is given in section III.A, the microstructure and mechanical properties of all the samples are
227 described in sections III.B and III.C, respectively, and fracture surface morphology of all the
228 samples are presented in section III.D.

229

230 *A. Hydrogen content*

231

232 The hydrogen content in the as-fabricated and all post-processed samples are given in Table II.
233 In all the samples, the hydrogen content is well below that of the ASTM standard requirement
234 for Ti-6Al-4V, which is 150 ppm for grade 5 and 125 ppm for grade 23^[36]. In general, the
235 residual hydrogen content as well as their standard deviation in the samples hydrogenated at a
236 temperature of 1025°C (step I) is greater than the samples hydrogenated at a temperature of
237 850°C following an otherwise similar procedure. However, being that all conditions were an
238 order of magnitude below the ASTM specification for hydrogen content and there is no clear
239 physical explanation for the discrepancy, this finding is likely of little importance.

240

241 **Table II.** The average values \pm one standard deviation of the final hydrogen content (in ppm) in
242 as-fabricated and all post-process treated Ti-6Al-4V samples.

As-fabricated	V850	V1025	5H850	5H1025	3H850	3H1025
4.7 \pm 1.9	6.2 \pm 0.9	7.5 \pm 1.0	5.9 \pm 0.5	15.1 \pm 5.4	2.4 \pm 0.2	4.8 \pm 1.6

243

244 *B. Material microstructure*

245

246 Relatively low-magnification, panoramic BSE-SEM images of the microstructure of as-
247 fabricated and all six post-processed conditions are shown in Fig. 2. Also, representative high
248 magnification BSE-SEM images of the microstructures of all these conditions are shown in Fig.
249 3. In all the BSE-SEM images, the light-contrast phase is the vanadium-rich β -phase while the
250 darker-contrast phase is the aluminum-rich α -phase. Multiple BSE-SEM images of the
251 microstructures of all the conditions were also used to quantify sizes of all relevant features in

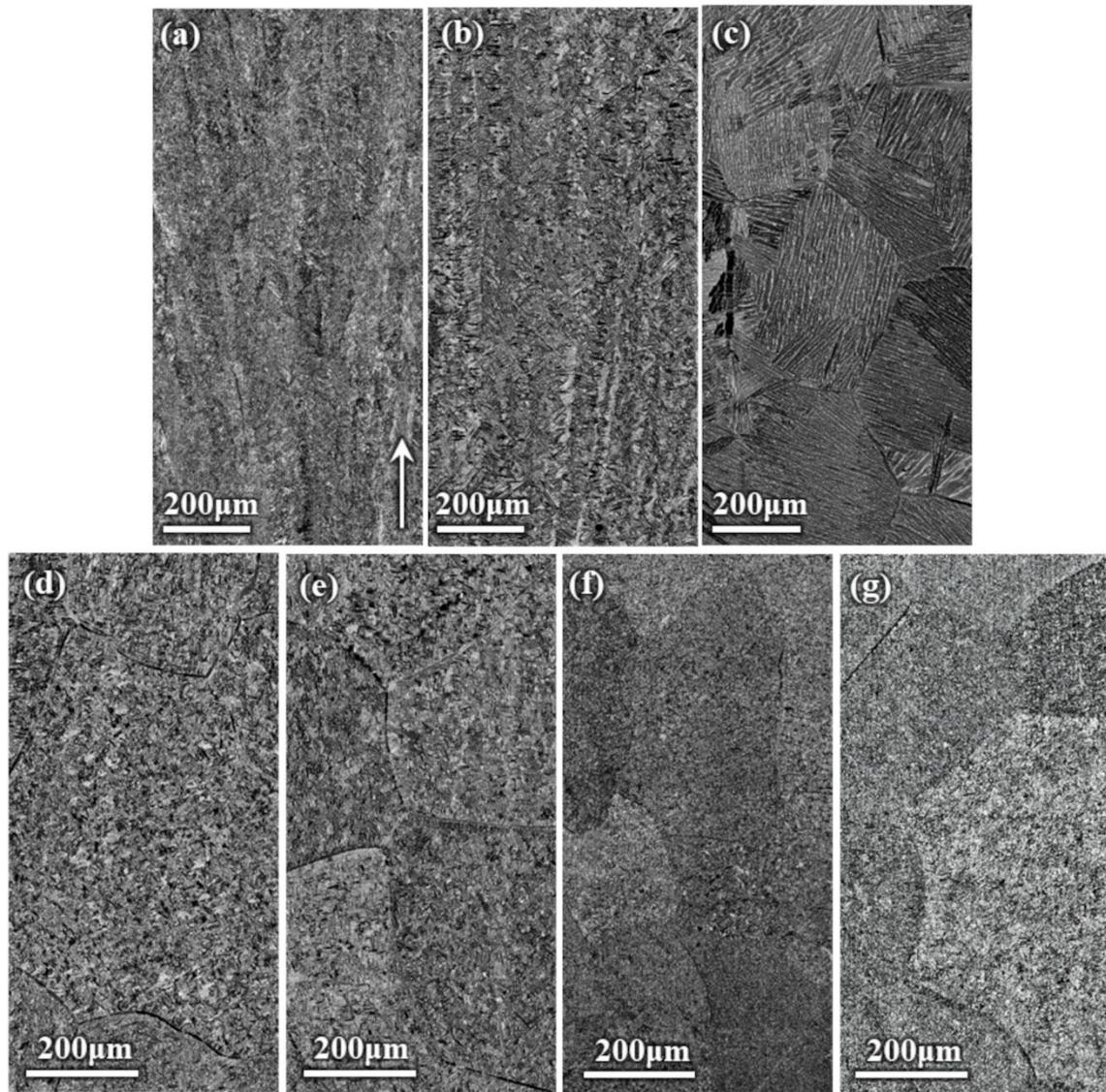
252 the microstructures using a method analogous to the line intercept method (originally developed
253 to measure grain sizes as outlined in ASTM E112-13^[37]), and are given in Table III.

254

255 **Table III.** The average values \pm one standard deviation of sizes of all relevant features in the
256 microstructures of as-fabricated and all post-process treated Ti-6Al-4V samples.

	Prior β grains	α colonies	α laths	Grain boundary α
As-fabricated	$162.5 \pm 55.7 \mu\text{m}^*$	-	$0.8 \pm 0.2 \mu\text{m}$	$2.5 \pm 1.1 \mu\text{m}$
V850	$161.9 \pm 56.6 \mu\text{m}^*$	-	$3.2 \pm 0.8 \mu\text{m}$	$5.4 \pm 0.9 \mu\text{m}$
V1025	$616.8 \pm 169.0 \mu\text{m}$	$285 \pm 89 \mu\text{m}$	$5.2 \pm 1.1 \mu\text{m}$	$8.4 \pm 1.7 \mu\text{m}$
5H850	$536.0 \pm 159.6 \mu\text{m}$	-	$3.8 \pm 1.3 \mu\text{m}$	$8.0 \pm 1.5 \mu\text{m}$
5H1025	$713.2 \pm 127.9 \mu\text{m}$	-	$4.1 \pm 0.9 \mu\text{m}$	$8.0 \pm 1.7 \mu\text{m}$
3H850	$353.4 \pm 115.8 \mu\text{m}$	-	$1.3 \pm 0.3 \mu\text{m}$	$2.5 \pm 0.6 \mu\text{m}$
3H1025	$462.6 \pm 165.7 \mu\text{m}$	-	$1.3 \pm 0.5 \mu\text{m}$	$4.0 \pm 1.6 \mu\text{m}$

*Quantities reported are the width of the prior β grains; the length (dimension along the build direction) of the grains is approximately over 1mm.


257

258 As shown in Figs. 2(a) and 3(a), the microstructure of the as-fabricated samples comprises
259 columnar PBGs. Within the PBGs are ribs of retained β -phase that separate fine α -phase laths,
260 producing a basketweave morphology. This microstructure is typical of EBM-processed Ti-6Al-
261 4V samples. The five-step heat-treatment of the as-fabricated samples in vacuum at $T_1 = 850^\circ\text{C}$
262 which is below the β -transus temperature, mainly led to coarsening of the as-fabricated α -phase
263 laths while maintaining the columnar PBG and basketweave α morphology, as shown in Figs.
264 2(b) and 3(b) for V850 condition. The sizes of all relevant features in the microstructures of as-
265 fabricated and V850 samples are compared in Table III.

266

267 A five-step heat-treatment of the as-fabricated samples in vacuum at $T_1 = 1025^\circ\text{C}$ which is above
268 the β -transus temperature, resulted in the transformation of the initial columnar PBG
269 morphology to an equiaxed morphology, as shown in Fig. 2(c) for V1025 sample. The
270 transformation of the PBG morphology in V1025 sample was also accompanied by the
271 transformation of the α -phase morphology from basketweave to coarse lamellar as well as
272 formation of relatively coarse grain boundary α (i.e., continuous α -phase along the PBG

273 boundaries), as can be seen in the higher magnification image in Fig. 3(c). The sizes of all
274 relevant features in the microstructure of V1025 samples are given in Table III.

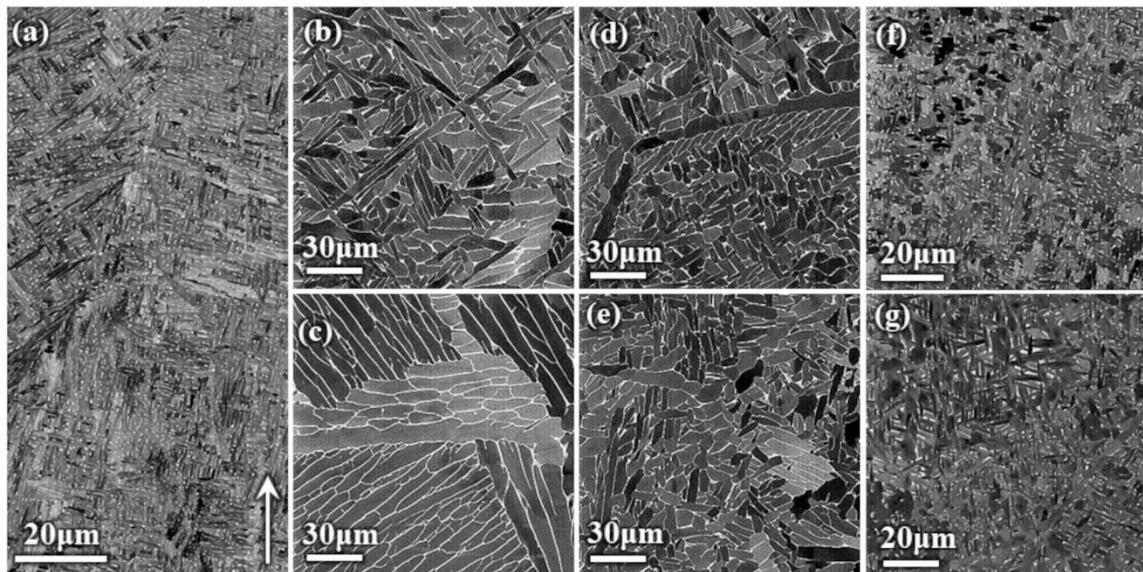


Fig. 2 – Panoramic BSE-SEM images of the microstructure of (a) as-fabricated, (b) V850, (c) V1025, (d) 5H850, (e) 5H1025, (f) 3H850, and (g) 3H1025 samples. The build direction of the EBM-processed material is marked with an arrow in (a) and is same in (b)-(g). The scale-bar shown in (a) is the same in (b)-(g). In the images, the dark phase is α and the light phase is β . A detailed description of all the post-process treatments performed is given in Table I.

275
276 The five-step thermohydrogen treatment of the as-fabricated samples with $T_1 = 850^\circ\text{C}$ and
277 1025°C (i.e., 5H850 and 5H1025), also resulted in equiaxed PBGs with continuous grain

278 boundary α , as in V1025 samples (Fig. 2). However, unlike the lamellar α -phase morphology in
279 V1025 samples, these prior- β grains contain globularized α -phase surrounded by β -phase ribs as
280 seen in the BSE-SEM images in Figs. 2(d) and 3(d) for 5H850 samples and Figs. 2(e) and 3(e)
281 for 5H1025 samples. The main difference between 5H850 and 5H1025 samples is that the
282 thermohydrogen treatment at higher hydrogenation temperature increased the PBG size. The
283 sizes of all relevant features in the microstructures of 5H850 and 5H1025 samples are compared
284 in Table III.

285

286
287 **Fig. 3** – High magnification BSE-SEM images of the microstructure of (a) as-fabricated, (b)
288 V850, (c) V1025, (d) 5H850, (e) 5H1025, (f) 3H850, and (g) 3H1025 samples. The build
289 direction of the EBM-processed material is marked with an arrow in (a) and is same in (b)-(g).
290 In the images, the dark phase is α and the light phase is β . A detailed description of all the
291 post-process treatments performed is given in Table I.

292

293 The BSE-SEM images of the microstructures of the samples subjected to a reduced three-step
294 thermohydrogen treatment are shown in Figs. 2(f) and 3(f) for 3H850 samples and Figs. 2(g) and
295 3(g) for 3H1025 samples. Like V1025, 5H850 and 5H1025 samples, these microstructures also
296 contain equiaxed PBGs with continuous grain boundary α . However, the PBG in 3H850 and
297 3H1025 samples contain ultrafine α surrounded by discontinuous β phase. Also, as in the five-
298 step thermohydrogen treatment process, three-step thermohydrogen treatment at higher

293 hydrogenation temperature resulted in larger PBGs. The sizes of all relevant features in the
294 microstructures of 3H850 and 3H1025 samples are compared in Table III.

295

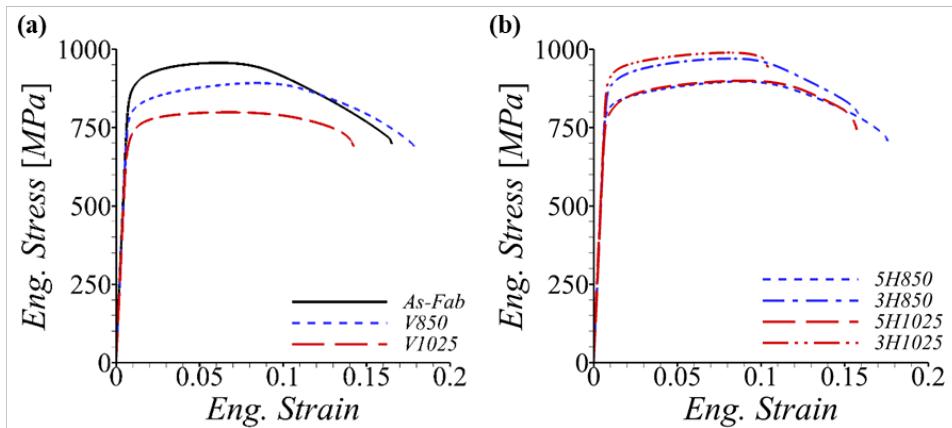
296 *C. Uniaxial tensile response*

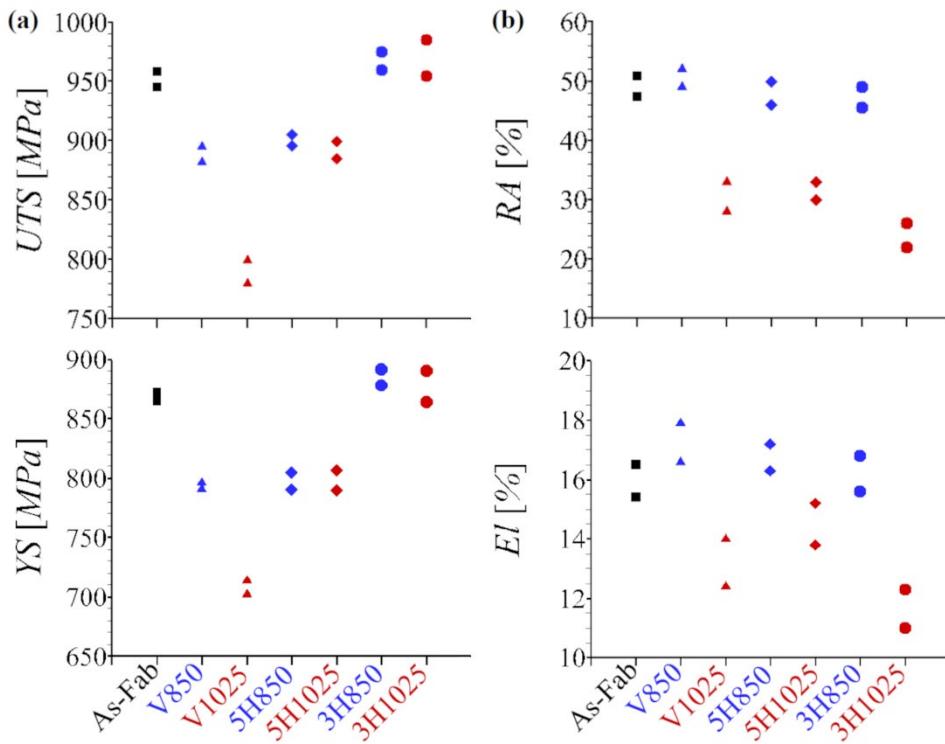
297

298 Representative engineering tensile stress-strain curves for as-fabricated, V850, and V1025
299 samples are shown in Fig. 4(a) and those for 5H850, 5H1025, 3H850, and 3H1025 are shown in
300 Fig. 4(b). The mechanical properties such as yield strength, ultimate tensile strength, and
301 elongation obtained from the stress-strain curves in Fig. 4 as well as the reduction in area
302 estimated from the fractured specimens are shown in Fig. 5 for all conditions. To measure the
303 reduction in area, the minimum cross-section of the fractured specimens was measured using a
304 Vernier caliper. This value was then subtracted from the initial nominal cross-section area of the
305 cylindrical dog-bone specimen.

306

307




Fig. 4 – Representative engineering (Eng.) tensile stress-strain curves of (a) as-fabricated (As-Fab), V850 and V1025 samples, and those of (b) 5H850, 5H1025, 3H850 and 3H1025 samples. A detailed description of all post-process treatments performed is given in Table I.

308

309 As can be inferred from Fig. 4, all conditions exhibited rather low but appreciable work-
310 hardening up until the ultimate tensile strength was reached, at which point necking ensued.
311 Post-necking and before final fracture, the as-fabricated and all the samples treated at a
312 temperature of 850°C underwent a significant amount of tensile deformation with monotonically

313 decreasing load carrying capacity. However, except for the 5H1025, the other two samples
 314 hydrogenated at 1025°C exhibited a small degree of post-necking deformation.

315

Fig. 5 – The (a) ultimate tensile strength (UTS) and yield strength (YS), and (b) percentage reduction in area (%RA) and percentage elongation (%El) of both as-fabricated and all post-process treated Ti-6Al-4V samples. A detailed description of all post-process treatments performed is given in Table I.

316

317 The vacuum heat-treatments (i.e., V850 and V1025) resulted in a decrease in the yield and
 318 ultimate tensile strengths of the material as compared to the as-fabricated material, Fig. 5(a). The
 319 decrease in the strength was greater for the V1025 samples compared to the V850 samples.
 320 Similarly, the five-step thermohydrogen treatments at $T_1=850^\circ\text{C}$ and 1025°C (i.e., 5H850 and
 321 5H1025), also resulted in a decrease in the yield and ultimate tensile strengths as compared to the
 322 as-fabricated material. Furthermore, the strength levels of the 5H850 and 5H1025 samples are
 323 comparable to that of the V850 samples. The reduced three-step thermohydrogen treatment (i.e.,
 324 3H850 and 3H1025), did not result in any appreciable change in the yield and ultimate tensile

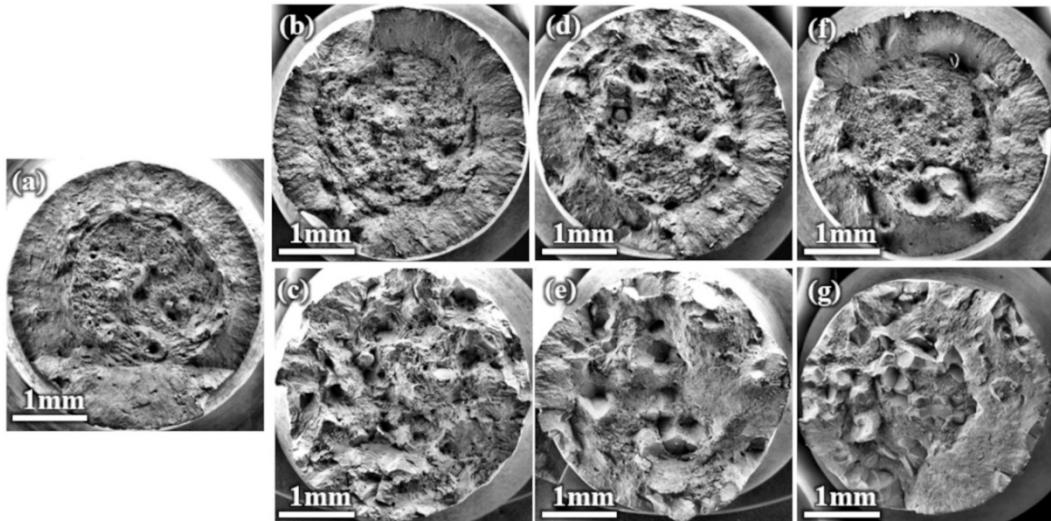
325 strengths as compared to the as-fabricated material despite the large differences in the
326 microstructures.

327

328 As can be seen in Fig. 5(b), the percentage elongation and the percentage reduction in area are
329 roughly the same for the as-fabricated and all treatments (vacuum or thermohydrogen) done at
330 $T_1=850^\circ\text{C}$. However, the ductility of the samples subjected to vacuum or thermohydrogen
331 treatments at $T_1=1025^\circ\text{C}$ are lower than that of the as-fabricated samples, with the ductility
332 values being lowest for the 3H1025 condition.

333

334 *D. Fracture surface morphology*


335

336 Representative SE-SEM images of fracture surfaces obtained after tensile testing of as-fabricated
337 and all post-processed samples are shown in Fig. 6. Additionally, higher magnification
338 micrographs from the center of the fracture surfaces of all the samples are shown in Fig. 7.

339

340 As can be seen in Figs. 6(a), 6(b), 6(d), and 6(f), the as-fabricated and all the samples treated at
341 $T_1=850^\circ\text{C}$ undergo typical cup-cone ductile fracture. At higher magnifications, a dimpled
342 morphology is observed due to micro-void nucleation, growth and coalescence in the center
343 region of the fracture surfaces (Figs. 7(a), 7(b), 7(d), and 7(f)) and a shear-lip along the periphery
344 of the fracture surfaces (Figs. 6(a), 6(b), 6(d), and 6(f)). The cup-cone fracture is, however, not
345 evident from the fracture surfaces of the samples treated at $T_1=1025^\circ\text{C}$, with or without hydrogen
346 (Figs. 6(c), 6(e), and 6(g)). Instead, the fracture surfaces of these samples are mostly faceted
347 (Figs. 7(c), 7(e), and 7(g)). Furthermore, the length-scale of these facets are rather comparable to
348 the PBG size in these conditions. Nevertheless, the faceted intergranular fracture surfaces of the
349 V1025 and 5H1025 samples are rough and contain signatures of extensive plastic deformation
350 (Figs. 7(c) and 7(e)). However, those of 3H1025 samples are relatively smooth (Fig. 7(g)). This
351 difference in the features of the fracture surfaces of V1025 and 5H1025 samples versus 3H1025
352 samples are in line with the differences in their ductility shown in Fig. 5(b).

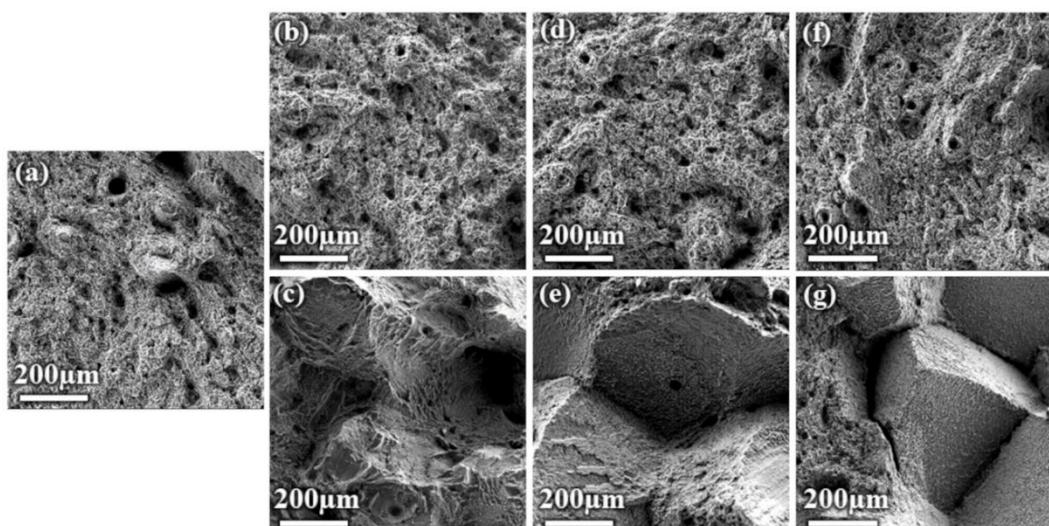

353

Fig. 6 – Representative SE-SEM micrographs showing the fracture surface morphology of (a) as-fabricated, (b) V850, (c) V1025, (d) 5H850, (e) 5H1025, (f) 3H850, and (g) 3H1025 samples. The scale-bar is the same for all images. A detailed description of all post-process treatments performed is given in Table I.

354

355

Fig. 7 – Representative high magnification SE-SEM micrographs from the center of the fracture surface of (a) as-fabricated, (b) V850, (c) V1025, (d) 5H850, (e) 5H1025, (f) 3H850, and (g) 3H1025 samples. The scale-bar is the same for all images. A detailed description of all post-process treatments performed is given in Table I.

356

357 **IV. DISCUSSION**

358

359 Herein, we explore the viability of thermohydrogen post-process treatments to achieve equiaxed
360 PBG morphologies in EBM-processed Ti-6Al-4V without sacrificing the strength and ductility
361 levels of the optimally-oriented, as-fabricated material. The optimal orientation that yields the
362 best mechanical properties for the as-fabricated EBM-processed Ti-6Al-4V is commonly
363 reported for samples tested along the build direction^[12, 14]. To this end, we adapted a
364 thermohydrogen treatment proposed by Paramore et al.^[30-31]. The previous work was focused on
365 producing Ti-6Al-4V with wrought-like mechanical properties via a powder metallurgy route
366 and found that the best strength/ductility combinations (i.e., toughness) were obtained through a
367 five-step thermohydrogen treatment. In the current work, we show that a three-step
368 thermohydrogen treatment involving hydrogenation, phase transformation and dehydrogenation
369 steps with an 850°C hydrogenation temperature (i.e., step I in Fig. I) is sufficient to transform the
370 columnar PBGs of EBM-processed Ti-6Al-4V to equiaxed PBGs containing an ultrafine-grained
371 α -phase morphology. Furthermore, this post-processed material had mechanical properties on
372 par with those of the optimally-oriented as-fabricated Ti-6Al-4V samples. That is, the
373 thermohydrogen heat-treatment improved the isotropy of the microstructure without sacrificing
374 the mechanical properties. The maximum temperature used in the most-successful heat-
375 treatments in this study (i.e., 850°C) is also well below the typical β -transus temperature of
376 hydrogen-free Ti-6Al-4V (i.e., ~990°C^[38]).

377

378 The microstructure of the EBM-processed Ti-6Al-4V contains anisotropic columnar PBGs along
379 the build direction with a basketweave α -phase morphology within the PBGs. The
380 transformation of these anisotropic columnar grains to isotropic equiaxed PBGs typically
381 requires a post-process super-transus (i.e., above β -transus temperature) heat-treatment since a
382 post-process sub-transus heat-treatment, only results in coarsening of the as-fabricated α -phase
383 microstructure with a corresponding decrease in strength^[5, 19-20]. Although a typical super-
384 transus, post-process heat-treatment results in equiaxed PBG morphology, it also transforms the
385 α -phase morphology from basketweave to a coarse lamellar structure which is prone to strain
386 localization and premature fracture^[20]. The coarser lamellar α -phase morphology typically found
387 in super-transus heat-treated (i.e., β -annealed) Ti-6Al-4V results due to the preferential

388 nucleation of the α -phase along the PBG boundaries, which then grow into the β -grains. This
389 results in relatively large colonies of parallel α laths with shared slip systems, allowing large slip
390 bands to form during deformation^[39]. Therefore, while typical super-transus heat-treatments
391 address the anisotropy of EBM-processed Ti-6Al-4V, the overall mechanical performance is
392 sacrificed.

393

394 The hydrogen introduced during the thermohydrogen treatment results in metastable β -alloy due
395 to hydrogen's strong β -stabilizing character^[40-41]. The corresponding decrease in the β -transus
396 temperature allows engineering of the β grains from columnar to equiaxed at temperatures much
397 lower than what is required for hydrogen-free Ti-6Al-4V. Furthermore, following hydrogenation
398 (i.e., step I in Fig. 1) and during phase transformation (i.e., step II in Fig. 1) the material
399 undergoes homogeneous nucleation of α_2 (Ti₃Al) and α phases, which results in orders of
400 magnitude finer α -phase colonies than what would be produced without dissolved hydrogen
401 present^[31]. As the material continues to cool from the phase transformation heat-treatment step, it
402 undergoes eutectoid decomposition during which a fraction of retained β -phase transforms into
403 α and δ (TiH₂) phases.

404

405 During the dehydrogenation step (i.e., step III in Fig. 1), which involves heat-treatment at a
406 lower temperature in a hydrogen-free atmosphere (i.e., vacuum in this study), the hydrogen is
407 removed from the material to avoid hydrogen-induced embrittlement. The removal of hydrogen
408 during this step also causes all the δ -phase and α_2 -phase as well as some of the β -phase to
409 transform into α -phase^[30-31]. This results in an ultrafine-grained microstructure that is composed
410 of predominantly α -phase with a small fraction of dispersed retained β -phase. Post
411 dehydrogenation step, the material can also be subjected to globularization (i.e., step IV in Fig.
412 1) and aging (i.e., step V in Fig. 1)^[30-32]. The globularization step is similar to a typical sub-
413 transus heat-treatment used in the wrought processing to produce a more equiaxed
414 microstructure, while aging is typically designed to enhance the strength of the material^[39].

415

416 Our results show that post-process thermohydrogen treatments of the EBM-processed Ti-6Al-
417 4V, at hydrogenation temperatures of 850°C or 1025°C, with or without globularization and
418 aging, results in equiaxed PBGs with continuous grain boundary α along the PBG boundaries.

419 The thermohydrogen treatments with globularization and aging steps (i.e., five-step treatment)
420 resulted in PBGs containing globularized α -phase surrounded by β -phase ribs, while treatments
421 without globularization and ageing (i.e., three-step treatment) resulted in relatively smaller PBGs
422 containing ultrafine-grained α -phase surrounded by dispersed retained β -phase. The effects of
423 the hydrogenation temperature are similar in both five-step and three-step thermohydrogen
424 treatments (i.e., increasing the hydrogenation temperature resulted in coarsening of all the
425 microstructural features). Therefore, the thermohydrogen treatment carried out at a
426 hydrogenation temperature of 850°C without globularization and aging resulted in relatively
427 smaller PBGs and finer α -phase both within the PBGs and along the PBG boundaries.

428

429 The relatively coarser microstructure of all the samples that were subjected to a five-step
430 thermohydrogen treatment as well as five-step heat-treatment entirely in vacuum resulted in
431 lower strength levels compared to the as-fabricated material. On the other hand, due to their
432 relatively finer microstructure, all the samples that were subjected to a three-step
433 thermohydrogen treatment have strength levels comparable to the as-fabricated material.
434 Furthermore, all the samples that were subjected to a maximum post-process temperature of
435 850°C, irrespective of the post-process treatment atmosphere, exhibited post-necking cup-cone
436 ductile fracture and corresponding ductility levels above or comparable to the as-fabricated
437 material. However, all the samples that were subjected to a maximum temperature of 1025°C
438 exhibited fracture along the PBG boundaries, thereby resulting in inferior ductility levels
439 compared to the as-fabricated material.

440

441 **V. CONCLUDING REMARKS**

442

443 We have demonstrated the viability of a thermohydrogen post-process treatment to achieve
444 equiaxed PBG morphologies in EBM-processed Ti-6Al-4V without sacrificing the mechanical
445 properties of optimally-oriented, as-fabricated material. Specifically, our results show that a
446 three-step thermohydrogen post-process treatment effectively transforms the columnar PBGs of
447 EBM-processed Ti-6Al-4V into equiaxed PBGs with ultrafine α -phase. Importantly, this
448 microstructural transformation retains the strength and ductility levels comparable to the most
449 optimally-oriented as-fabricated samples. This three-step thermohydrogen post-process treatment

450 involved hydrogenation and phase transformation treatment in a hydrogen atmosphere and
451 dehydrogenation treatment in vacuum, wherein all treatments were carried out at temperatures
452 well below the β -transus temperature of hydrogen-free Ti-6Al-4V. Also, contrary to the
453 previously-reported thermohydrogen-based powder metallurgy processing of Ti-6Al-4V, where
454 adding two additional steps (globularization and ageing) resulted in further improvements in
455 overall mechanical properties, these two additional steps for EBM-processed Ti-6Al-4V resulted
456 in a decrease in either strength, ductility, or both. Moreover, the combination of reduced
457 temperature requirements and the elimination of deformation-based processing substantially
458 lowers energy costs, making this approach especially suitable for optimizing the microstructure
459 of EBM-processed Ti-6Al-4V.

460

461 The best three-step thermohydrogen post-process treatment demonstrated herein can be further
462 optimized. In particular, the dehydrogenation treatment in this work is carried out for 12h, which
463 yielded residual hydrogen concentrations well below 5 ppm. This is significantly lower than the
464 ASTM B348 standard requirement of 150 ppm for grade 5 and 125 ppm for grade 23 Ti-6Al-4V.
465 Therefore, the processing times used herein could be reduced substantially. We hope that our
466 results will instigate future technological development in this direction.

467

468 **ACKNOWLEDGEMENTS**

469

470 LDH is thankful to Michael Taylor Hurst and Daniel Oliver Lewis of Texas A&M University for
471 their technical assistance with the hydrogenation experiments. AS gratefully acknowledges the
472 financial support provided by the Haythornthwaite Foundation through the ASME/AMD –
473 Haythornthwaite Research Initiation Grant and the U.S. National Science Foundation grant
474 CMMI-1944496.

475

476 **CONFLICT OF INTEREST**

477

478 The authors declare that they have no conflict of interest.

479

480

481 **REFERENCES**

482

- 483 1. L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez, K. N. Amato, P. W. Shindo, F. R. Medina and R. B. Wicker, *Journal of Materials Science & Technology*, 2012, vol. 28, pp. 1-14.
- 484 2. W. E. Frazier, *Journal of Materials Engineering and Performance*, 2014, vol. 23, pp. 1917-1928.
- 485 3. S. Liu and Y. C. Shin, *Materials & Design*, 2019, vol. 164.
- 486 4. L. Facchini, E. Magalini, P. Robotti and A. Molinari, *Rapid Prototyping Journal*, 2009, vol. 15, pp. 171-178.
- 487 5. S. S. Al-Bermani, M. L. Blackmore, W. Zhang and I. Todd, *Metallurgical and Materials Transactions A*, 2010, vol. 41, pp. 3422-3434.
- 488 6. A. A. Antonysamy, J. Meyer and P. B. Prangnell, *Materials Characterization*, 2013, vol. 84, pp. 153-168.
- 489 7. C. De Formanoir, S. Michotte, O. Rigo, L. Germain and S. Godet, *Materials Science and Engineering: A*, 2016, vol. 652, pp. 105-119.
- 490 8. Y. Kok, X. P. Tan, P. Wang, M. L. S. Nai, N. H. Loh, E. Liu and S. B. Tor, *Materials & Design*, 2018, vol. 139, pp. 565-586.
- 491 9. H. K. Rafi, N. V. Karthik, H. Gong, T. L. Starr and B. E. Stucker, *Journal of Materials Engineering and Performance*, 2013, vol. 22, pp. 3872-3883.
- 492 10. Z. Liu, B. He, T. Lyu and Y. Zou, *JOM*, 2021, vol. 73, pp. 1804-1818.
- 493 11. L. G. and W. J. C.: *Titanium*. Second ed. (Springer Science & Business Media, 2007).
- 494 12. P. Nandwana, Y. Lee, C. Ranger, A. D. Rollett, R. R. Dehoff and S. S. Babu, *Metallurgical and Materials Transactions A*, 2019, vol. 50, pp. 3429-3439.
- 495 13. M. Fang, F. Hu, Y. Han, J. Le, J. Xi, J. Song, L. Ke, M. Xiao and W. Lu, *Materials Science and Engineering: A*, 2021, vol. 827, p. 142031.
- 496 14. M. Seifi, A. Salem, D. Satko, J. Shaffer and J. J. Lewandowski, *International Journal of Fatigue*, 2017, vol. 94, pp. 263-287.
- 497 15. H. Gong, K. Rafi, H. Gu, G. D. Janaki Ram, T. Starr and B. Stucker, *Materials & Design*, 2015, vol. 86, pp. 545-554.
- 498 16. T. Montalbano, B. N. Briggs, J. L. Waterman, S. Nimer, C. Peitsch, J. Sopcsak, D. Trigg and S. Storck, *Journal of Materials Processing Technology*, 2021, vol. 294, p. 117113.
- 499 17. S. P. Narra, A. D. Rollett, A. Ngo, D. Scannapieco, M. Shahabi, T. Reddy, J. Pauza, H. Taylor, C. Gobert and E. Diewald, *Journal of Materials Processing Technology*, 2022, p. 117775.
- 500 18. R. Cunningham, A. Nicolas, J. Madsen, E. Fodran, E. Anagnostou, M. D. Sangid and A. D. Rollett, *Materials Research Letters*, 2017, vol. 5, pp. 516-525.
- 501 19. H. Galarraga, R. J. Warren, D. A. Lados, R. R. Dehoff, M. M. Kirka and P. Nandwana, *Materials Science and Engineering: A*, 2017, vol. 685, pp. 417-428.
- 502 20. L. Draelos, P. Nandwana and A. Srivastava, *Materials Science and Engineering: A*, 2020, p. 139986.
- 503 21. Y. Zhou, K. Wang, Z. Sun and R. Xin, *Journal of Materials Processing Technology*, 2022, vol. 306, p. 117607.
- 504 22. J. Liu, G. Li, Q. Sun, H. Li, J. Sun and X. Wang, *Journal of Materials Processing Technology*, 2022, vol. 299, p. 117366.

525 23. M. Jamshidinia, M. M. Atabaki, M. Zahiri, S. Kelly, A. Sadek and R. Kovacevic, *Journal*
526 *of Materials Processing Technology*, 2015, vol. 226, pp. 264-271.

527 24. M. J. Bermingham, D. Kent, H. Zhan, D. H. Stjohn and M. S. Dargusch, *Acta Materialia*,
528 2015, vol. 91, pp. 289-303.

529 25. O. N. Senkov and F. H. Froes, *International Journal of Hydrogen Energy*, 1999, vol. 24,
530 pp. 565-576.

531 26. D. H. Kohn and P. Ducheyne, *Journal of Materials Science*, 1991, vol. 26, pp. 328-334.

532 27. M. Niinomi, B. Gong, T. Kobayashi, Y. Ohyabu and O. Toriyama, *Metallurgical and*
533 *Materials Transactions A*, 1995, vol. 26, pp. 1141-1151.

534 28. F. H. Froes, O. N. Senkov and J. I. Qazi, *International Materials Reviews*, 2004, vol. 49,
535 pp. 227-245.

536 29. Z. Sun, W. Zhou and H. Hou, *International Journal of Hydrogen Energy*, 2009, vol. 34,
537 pp. 1971-1976.

538 30. J. D. Paramore, Z. Z. Fang, P. Sun, M. Koopman, K. S. R. Chandran and M. Dunstan,
539 *Scripta Materialia*, 2015, vol. 107, pp. 103-106.

540 31. J. D. Paramore, Z. Z. Fang, M. Dunstan, P. Sun and B. G. Butler, *Sci Rep*, 2017, vol. 7, p.
541 41444.

542 32. M. Knezevic, S. Ghorbanpour, N. C. Ferreri, I. A. Riyad, A. D. Kudzal, J. D. Paramore, S.
543 C. Vogel and B. A. Mcwilliams, *Materials Science and Engineering: A*, 2021, vol. 809, p. 140980.

544 33. H. Galarraga, D. A. Lados, R. R. Dehoff, M. M. Kirka and P. Nandwana, *Additive*
545 *Manufacturing*, 2016, vol. 10, pp. 47-57.

546 34. *ASTM E1447-09: Standard Test Method for Determination of Hydrogen in Titanium and*
547 *Titanium Alloys by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method* (ASTM
548 International

549 2016).

550 35. *ASTM E8/E8M-21: Standard Test Methods for Tension Testing of Metallic Materials*
551 (ASTM International, 2021).

552 36. *ASTM B348-10: Standard Specification for Titanium and Titanium Alloy Bars and Billets*
553 (ASTM International, 2010).

554 37. *ASTM E112-13: Standard Test Methods for Determining Average Grain Size* (ASTM
555 International, 2021).

556 38. G. C. Obasi, S. Biroscă, J. Q. Da Fonseca and M. Preuss, *Acta Materialia*, 2012, vol. 60,
557 pp. 1048-1058.

558 39. L. G. and W. J.C.: *Titanium*. Second ed. (Springer Science & Business Media, 2007).

559 40. P. Sun, Z. Z. Fang, M. Koopman, J. Paramore, K. R. Chandran, Y. Ren and J. Lu, *Acta*
560 *Materialia*, 2015, vol. 84, pp. 29-41.

561 41. P. Sun, Z. Z. Fang, M. Koopman, Y. Xia, J. Paramore, K. Ravi Chandran, Y. Ren and J.
562 Lu, *Metallurgical and Materials Transactions A*, 2015, vol. 46, pp. 5546-5560.

563