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The study of open quantum systems (OQSs), i.e., systems interacting with an environment, im-
pacts our understanding of exotic nuclei in low-energy nuclear physics, hadrons, cold-atom systems,
or even noisy intermediate-scale quantum computers. Such systems often exhibit resonance states
characterized by energy positions and dispersions (or decay widths), the properties of which can be
difficult to predict theoretically due to their coupling to the continuum of scattering states. Deal-
ing with this phenomenon poses challenges both conceptually and numerically. For that reason,
we investigate how the reduced basis method known as eigenvector continuation (EC), which has
emerged as a powerful tool to emulate bound and scattering states in closed quantum systems, can
be used to study resonance properties. In particular, we present a generalization of EC that we
call conjugate-augmented eigenvector continuation, which is based on the complex-scaling method
and designed to predict Gamow-Siegert states, and thus resonant properties of OQSs, using only
bound-state wave functions as input.

I. INTRODUCTION

Resonances are a ubiquitous phenomenon in physics
and are found, for example, in materials, acoustic de-
vices, or even in planetary motion. Generally, they ap-
pear as amplitude enhancements at the so-called natural
frequencies of the system considered. As early as 1884,
Thomson used complex frequencies to describe the “de-
cay” of transient states in specific electric systems [1]. In
quantum mechanics, i.e., the appropriate physical the-
ory at microscopic scales, natural frequencies of a system
are associated with “eigenstates.” However, the inher-
ently time-dependent nature of resonances makes their
formal description as proper eigenstates delicate. Indeed,
while in scattering theory resonances appear as poles of
the scattering (S) matrix and are manifest as peaks in
the cross section characterized by an energy position ER

and a dispersion (or decay width) Γ, it is only in the
quasistationary formalism [2] that resonances can actu-
ally be treated as eigenstates; this was first realized by
Gamow [3] and Siegert [4] in the context of quantum
decay. In this formalism, the momentum k associated
with an eigenstate can be complex, leading to complex
eigenenergies E = ER − iΓ/2.
Mathematically, quantum states can be divided into

three categories depending on their properties as sin-
gularities of the resolvent operator (full Green’s func-
tion) [5, 6]

G(z) = (z −H)
−1
, (1)

where H is the Hamiltonian describing the physical sys-
tem of interest. Poles of G(z) located on the negative real
axis correspond to bound states, and those located in the
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1st and 4th quadrants of the second Riemann sheet corre-
spond to so-called resonant states (see details in the next
section). The branch cut of G(z) running along the posi-
tive real axis is associated with scattering states. In con-
tradistinction to bound states, wave functions describing
resonant and scattering states are not square-integrable.
Although for that reason such states do not belong in
a Hilbert space, it is possible to construct a so-called
rigged Hilbert space [7] in which quantum mechanics for
all types of states listed above can be formulated rigor-
ously. The study of quantum resonances thus presents
profound conceptual questions and is directly connected
to the fundamental problems of quantum decay [8, 9]
and irreversibility [10–14], as well as to the collapse of
the wave functions, all of which lead naturally to the
open quantum system (OQS) framework [15–19] describ-
ing quantum systems coupled to a classical or quantum
environment.

Despite their broad relevance, resonances in quantum
systems are still challenging to describe theoretically—
and in particular to treat computationally—in many
common instances. The few-body dynamics of reso-
nances involving no more than a handful of particles
coupled to the continuum of scattering states can be de-
scribed exactly, with state-of-the-art calculations, based
on the Faddeev-Yakubovsky formalism extended to the
complex-energy plane using the uniform complex-scaling
method, with the record currently standing at five parti-
cles [20–22]. However, difficulties remain in many-body
systems composed of ten or more particles that can fea-
ture resonances involving a few or more particles coupled
to the continuum. For such systems, the options are often
limited to quasiexact many-body techniques generalized
in the quasistationary formalism, which, in principle, can
deal with broad resonances, but are often plagued by an
intractable increase of the computational cost, due to the
discretization of the continuum, or fail to identify physi-
cal states in the complex-energy plane; or they are limited
to lattice and quantum Monte Carlo methods that dis-
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cretize systems in coordinate space but tend to be limited
to narrow resonances, i.e., resonances with Γ j ER, be-
having similarly to bound states and exhibiting effective
few-body dynamics.
In this work, as a first step towards addressing the

need for stable and scalable calculations of many-body
resonances, we explore the possibility of applying a re-
duced basis method known as eigenvector continuation
(EC) to two-body resonances. In particular, we con-
struct a technique to perform robust bound-state-to-
resonance extrapolations in two-body systems. The ver-
satile EC method was originally introduced in Ref. [23]
and quickly found many applications in low-energy nu-
clear physics [24–29]. Its impressive convergence prop-
erties were analyzed in Ref. [30]. In particular, EC has
been used to build emulators [31–33] in the context of
two-body scattering [34–38], but so far it has not been
applied directly to resonance states.
In this work, we close this gap. We start by introduc-

ing the general formalism in Sec. II to show how S-matrix
poles can be extracted using the uniform complex-scaling
technique. In Sec. III we then present the implementa-
tion and generalization of EC to perform resonance-to-
resonance and bound-state-to-resonance extrapolations.
We demonstrate all developments with concrete numer-
ical examples. Finally, we summarize our results in
Sec. IV.

II. FORMALISM

Because in this work we are interested primarily in a
new conceptual development, we study a quantum sys-
tem of two particles with masses m = 2µ and interacting
via a spherically symmetric local potential V . We only
require the potential to be short ranged or, more specifi-
cally, that the interaction between the two particles falls
off quicker than O(r−3) [39, p. 27] with the relative dis-
tance r as r → ∞.

A. Basic scattering theory

We start by collecting relevant results from basic scat-
tering theory. Throughout the discussion, we use natural
units with ℏ = c = 1. Any eigenstate of the quantum sys-
tem considered has to satisfy the Schrödinger equation

[H0 + V − E] |ψð = 0 , (2)

where H0 is the free Hamiltonian, which in momentum
space is given by p2/(2µ) in terms of the momentum op-
erator p. By the assumption of spherical symmetry, the
equation can be decomposed into partial waves and each
state |ψð will have definite angular momentum l. The en-
ergy E in Eq. (2) will be negative real for a bound state
(of which there can be at most a finite set), positive real
for a scattering state, and complex with a positive real

part and a negative imaginary part for a decaying res-
onance. We come back to these different cases, and in
particular to the treatment of resonances as eigenstates,
in more detail below.
Introducing the “wave number” k by setting E =

k2/(2µ), we obtain from Eq. (2) the radial Schrödinger
equation

[

d2

dr2
− l(l + 1)

r2
− 2µV (r) + k2

]

ψl,k(r) = 0 , (3)

where ψl,k(r) is the reduced radial wave function that we
define here via

ïr|ψð = 2il
√

µ

πk
Y m
l (r̂)

ψl,k(r)

r
, (4)

with the standard spherical harmonics Y m
l (r̂) and assum-

ing |ψð has quantum numbers (l,m).
By our assumption of a short-range potential, ψl,k(r)

takes the following simple form for asymptotically large
r:

ψl,k(r) −−−→
r→∞

i

2

[

ĥ−l (kr)− sl(k)ĥ
+
l (kr)

]

. (5)

Here ĥ±l (z) are the Riccati-Hankel (RH) functions and
sl(k) is the partial-wave S matrix, defined implicitly
through Eq. (5). For more details, we refer to Ref. [39],
from which we have adopted the conventions used here.
Equation (5) implies that wherever sl(k) has a pole, we
have

ψl,k(r) −−−→
r→∞

N ĥ+l (kr) , (6)

where N is a normalization constant. An illustration of
the analytic structure of the S matrix in terms of k is
shown in Fig. 1.
For bound states, the S-matrix sl(k) has corresponding

poles on the positive imaginary axis, and it is customary
to define the binding momentum κ by writing k = iκ,
with κ > 0. At such poles, bound-state wave functions
are uniquely defined [40] by κ and we can write

ψl,k(r) −−−→
r→∞

N ĥ+l (iκr) , (7)

which for an S-wave bound state reduces to

ψ0,k(r) −−−→
r→∞

N exp(−κr) . (8)

For all l it is apparent from the behavior of the Riccati-
Hankel functions for positive imaginary arguments that
bound-state wave functions tend to zero exponentially
for large r. If a bound state exists close to the scattering
threshold, k = 0, it follows from the analyticity of the
partial-wave S matrix as a function of E ∼ k2 that the
scattering cross section gets enhanced at small k.
Resonances are another phenomenon that can cause

enhancement of the scattering cross section. While the
physically intuitive interpretation of resonances describes
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Eigenvector continuation involving resonance states
can be defined by prescribing that the matrix elements
in Eqs. (14) and (15) are to be evaluated using the c-
product. Importantly, this is to be used in connection
with the complex-scaling technique described in Sec. II C,
so that for evaluating the c-product one integrates along
the rotated contour in either r space or q space. This
procedure ensures in particular that all matrix elements
remain well defined and finite, which would not be the
case without complex scaling because, as previously men-
tioned, Gamow states would then not be normalizable
and their wave functions would exhibit, in coordinate
representation, an exponentially growing amplitude. The
Hamiltonian and norm matrices, HEC and NEC, obtained
with the c-product will not be Hermitian but complex
symmetric, and therefore they may have complex eigen-
values, as is required to describe resonances.

Numerical tests. We can show with explicit examples
that indeed this procedure works nicely in practice. All of
the calculations shown in the following sections were per-
formed using a discrete momentum basis with a cutoff of
Λ = 8.0 (in the dimensionless units explained above) and
consisting of N = 256 mesh points distributed accord-
ing to a 256-point Gauss–Legendre quadrature to ensure
convergence. In general, the proper choice of Λ and N
depends on the properties of V , and we have checked that
the above is sufficient to ensure numerical convergence for
the particular examples we describe below. Furthermore,
the momentum basis is complex-scaled as discussed pre-
viously, by an angle φ = π/6. As a crude way to estimate
the uncertainty of the EC extrapolations, we repeat ev-
ery calculation 128 times while randomizing the training
points within the given interval. Finally, the distribu-
tions of the extrapolation results are indicated in figures
by their 68.2% and 95.4% percentile intervals, the ap-
proximate intervals corresponding to 1 and 2 standard
deviations, respectively.

All of the potentials we use for numerical tests are
based on a local Gaussian form, which in configuration
space reads

F (α, r) = exp
(

−αr2
)

. (16)

For momentum-space calculations, we take the Hankel
transform of the above. This is given by

Fl(α, q, q
′) =

2

π

∫ ∞

0

dr ĵl(qr) exp
(

−αr2
)

ĵl(q
′r) , (17)

where ĵl(z) are the Riccati-Bessel functions (see Ref. [39,
p. 182]). For l = 0, this reduces to

F0(α, q, q
′) =

1√
απ

exp

(

−q
2 + q′2

4α

)

sinh

(

qq′

2α

)

. (18)

For l = 1, we have

F1(α, q, q
′) =

√

α

4π

[(

1

α
+

2

qq′

)

exp

(

− (q + q′)2

4α

)

+

(

1

α
− 2

qq′

)

exp

(

− (q − q′)2

4α

)]

.

(19)

Because there is no centrifugal term in the S-wave radial
equation, we include in the l = 0 potential a repulsive
barrier to support resonances:

V (c, q, q′) = c [−5F0 (1/3, q, q
′) + 2F0 (1/10, q, q

′)] . (20)

For a P -wave example, the following simple Gaussian
potential is considered:

V (c, q, q′) = −cF1 (1/4, q, q
′) . (21)

Although not exploited here, we note that Hamiltonians
H(c) with a simple linear dependence on c (like the ones
we consider), or more generally, an affine dependence on
a vector of parameters c, permit further optimization of
the EC calculation via decomposition into off-line and
on-line tasks, see for example Ref. [33].
As Supplemental Material, we provide the code for

our calculations as downloadable files [46]. The setup
is split into a python library, twobodyEC.py, that im-
plements the basic numerical techniques discussed above,
and a jupyter notebook, calculations.ipynb, that re-
produces the exact numerical examples presented in the
following.

A. Resonance-to-resonance extrapolation

We now consider a Hamiltonian H(c) that supports
a resonance for some range of c and we implement the
standard EC prescription by first constructing H(ci) on
a complex-scaled basis for several training points {ci}.
In our calculation, this amounts to calculating the ma-
trix elements ïqne−iφ|H(ci)|qme−iφð using a q momentum

mesh as described previously (with φ > − argEr

2
, where

Er is the complex energy associated with the resonance
for all c within the region of interest). Then we pro-
ceed to solve the system to obtain the exact eigenvectors
|ψ(ci)ð for each ci. This is the part that takes the bulk
of the computational time.
We now want to determine E(c∗) at some target point

c = c∗ via extrapolation. To that end, we construct
H(c∗), but instead of determining its eigenvalues directly,
we project H(c∗) onto the “EC subspace” spanned by
{|ψ(ci)ð}. In practice, this is done by calculating the pro-
jected matrix elements (HEC)i,j = ïψ(ci)|H(c∗)|ψ(cj)ð
and the norm matrix elements (NEC)i,j = ïψ(ci)|ψ(cj)ð.
The latter accounts for the nonorthogonality of the basis
vectors. The c-product prescription has to be followed in
this step. Finally, we diagonalize the much smaller pro-
jected matrix HEC by solving the generalized eigenvalue











11

The findings presented in this work provide an impor-
tant step towards understanding robust bound-state-to-
resonance extrapolations, a new tool for the study of open
quantum systems in the context of few-body physics, and
they open interesting avenues for more efficient many-
body applications in the complex-energy plane. In fu-
ture work, we will investigate how to leverage the CA-EC
method in many-body techniques based on the Berggren
basis to emulate multiparticle resonances, with partic-
ular applications to exotic atomic nuclei. We will also
consider using more sophisticated methods to optimize

the number and the quality of training eigenvectors.
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