Eigenvector continuation for emulating and extrapolating two-body resonances
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The study of open quantum systems (OQSs), i.e., systems interacting with an environment, im-
pacts our understanding of exotic nuclei in low-energy nuclear physics, hadrons, cold-atom systems,
or even noisy intermediate-scale quantum computers. Such systems often exhibit resonance states
characterized by energy positions and dispersions (or decay widths), the properties of which can be
difficult to predict theoretically due to their coupling to the continuum of scattering states. Deal-
ing with this phenomenon poses challenges both conceptually and numerically. For that reason,
we investigate how the reduced basis method known as eigenvector continuation (EC), which has
emerged as a powerful tool to emulate bound and scattering states in closed quantum systems, can
be used to study resonance properties. In particular, we present a generalization of EC that we
call conjugate-augmented eigenvector continuation, which is based on the complex-scaling method
and designed to predict Gamow-Siegert states, and thus resonant properties of OQSs, using only

bound-state wave functions as input.

I. INTRODUCTION

Resonances are a ubiquitous phenomenon in physics
and are found, for example, in materials, acoustic de-
vices, or even in planetary motion. Generally, they ap-
pear as amplitude enhancements at the so-called natural
frequencies of the system considered. As early as 1884,
Thomson used complex frequencies to describe the “de-
cay” of transient states in specific electric systems [1]. In
quantum mechanics, i.e., the appropriate physical the-
ory at microscopic scales, natural frequencies of a system
are associated with “eigenstates.” However, the inher-
ently time-dependent nature of resonances makes their
formal description as proper eigenstates delicate. Indeed,
while in scattering theory resonances appear as poles of
the scattering (S) matrix and are manifest as peaks in
the cross section characterized by an energy position Er
and a dispersion (or decay width) T, it is only in the
quasistationary formalism [2] that resonances can actu-
ally be treated as eigenstates; this was first realized by
Gamow [3] and Siegert [4] in the context of quantum
decay. In this formalism, the momentum k associated
with an eigenstate can be complex, leading to complex
eigenenergies £ = Er — il'/2.

Mathematically, quantum states can be divided into
three categories depending on their properties as sin-
gularities of the resolvent operator (full Green’s func-
tion) [5, 6]

G(z)=(z—H)", (1)

where H is the Hamiltonian describing the physical sys-
tem of interest. Poles of G(z) located on the negative real
axis correspond to bound states, and those located in the
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1st and 4th quadrants of the second Riemann sheet corre-
spond to so-called resonant states (see details in the next
section). The branch cut of G(z) running along the posi-
tive real axis is associated with scattering states. In con-
tradistinction to bound states, wave functions describing
resonant and scattering states are not square-integrable.
Although for that reason such states do not belong in
a Hilbert space, it is possible to construct a so-called
rigged Hilbert space [7] in which quantum mechanics for
all types of states listed above can be formulated rigor-
ously. The study of quantum resonances thus presents
profound conceptual questions and is directly connected
to the fundamental problems of quantum decay [8, 9]
and irreversibility [10-14], as well as to the collapse of
the wave functions, all of which lead naturally to the
open quantum system (OQS) framework [15-19] describ-
ing quantum systems coupled to a classical or quantum
environment.

Despite their broad relevance, resonances in quantum
systems are still challenging to describe theoretically—
and in particular to treat computationally—in many
common instances. The few-body dynamics of reso-
nances involving no more than a handful of particles
coupled to the continuum of scattering states can be de-
scribed exactly, with state-of-the-art calculations, based
on the Faddeev-Yakubovsky formalism extended to the
complex-energy plane using the uniform complex-scaling
method, with the record currently standing at five parti-
cles [20-22]. However, difficulties remain in many-body
systems composed of ten or more particles that can fea-
ture resonances involving a few or more particles coupled
to the continuum. For such systems, the options are often
limited to quasiexact many-body techniques generalized
in the quasistationary formalism, which, in principle, can
deal with broad resonances, but are often plagued by an
intractable increase of the computational cost, due to the
discretization of the continuum, or fail to identify physi-
cal states in the complex-energy plane; or they are limited
to lattice and quantum Monte Carlo methods that dis-



cretize systems in coordinate space but tend to be limited
to narrow resonances, i.e., resonances with I' < Eg, be-
having similarly to bound states and exhibiting effective
few-body dynamics.

In this work, as a first step towards addressing the
need for stable and scalable calculations of many-body
resonances, we explore the possibility of applying a re-
duced basis method known as eigenvector continuation
(EC) to two-body resonances. In particular, we con-
struct a technique to perform robust bound-state-to-
resonance extrapolations in two-body systems. The ver-
satile EC method was originally introduced in Ref. [23]
and quickly found many applications in low-energy nu-
clear physics [24-29]. Its impressive convergence prop-
erties were analyzed in Ref. [30]. In particular, EC has
been used to build emulators [31-33] in the context of
two-body scattering [34-38], but so far it has not been
applied directly to resonance states.

In this work, we close this gap. We start by introduc-
ing the general formalism in Sec. IT to show how S-matrix
poles can be extracted using the uniform complex-scaling
technique. In Sec. III we then present the implementa-
tion and generalization of EC to perform resonance-to-
resonance and bound-state-to-resonance extrapolations.
We demonstrate all developments with concrete numer-
ical examples. Finally, we summarize our results in
Sec. IV.

II. FORMALISM

Because in this work we are interested primarily in a
new conceptual development, we study a quantum sys-
tem of two particles with masses m = 24 and interacting
via a spherically symmetric local potential V. We only
require the potential to be short ranged or, more specifi-
cally, that the interaction between the two particles falls
off quicker than O(r=3) [39, p. 27] with the relative dis-
tance r as r — o0.

A. Basic scattering theory

We start by collecting relevant results from basic scat-
tering theory. Throughout the discussion, we use natural
units with & = ¢ = 1. Any eigenstate of the quantum sys-
tem considered has to satisfy the Schrédinger equation

[Ho+V — E]|4p) =0, (2)

where Hj is the free Hamiltonian, which in momentum
space is given by p?/(2u) in terms of the momentum op-
erator p. By the assumption of spherical symmetry, the
equation can be decomposed into partial waves and each
state |¢) will have definite angular momentum /. The en-
ergy F in Eq. (2) will be negative real for a bound state
(of which there can be at most a finite set), positive real
for a scattering state, and complex with a positive real

part and a negative imaginary part for a decaying res-
onance. We come back to these different cases, and in
particular to the treatment of resonances as eigenstates,
in more detail below.

Introducing the “wave number” k by setting F =
k?/(2u), we obtain from Eq. (2) the radial Schrédinger
equation

{dQ_l(l—&-l)

2 _
i - o ) 1 e 0. @
where 9y 1,(r) is the reduced radial wave function that we
define here via

) = 2y [ Loy 220 0

with the standard spherical harmonics ¥, (7) and assum-
ing |¢) has quantum numbers (I, m).

By our assumption of a short-range potential, 1 . (r)
takes the following simple form for asymptotically large
T

Gur(r) —— = by (kr) = si®)AF (k)] - (5)
r—oo 2

Here ﬁli(z) are the Riccati-Hankel (RH) functions and
si(k) is the partial-wave S matrix, defined implicitly
through Eq. (5). For more details, we refer to Ref. [39],
from which we have adopted the conventions used here.
Equation (5) implies that wherever s;(k) has a pole, we
have

YLi(r) —— Nbf (kr), (6)

where N is a normalization constant. An illustration of
the analytic structure of the S matrix in terms of k is
shown in Fig. 1.

For bound states, the S-matrix s;(k) has corresponding
poles on the positive imaginary axis, and it is customary
to define the binding momentum x by writing k = ik,
with k > 0. At such poles, bound-state wave functions
are uniquely defined [40] by x and we can write

Vii(r) —— N b (ixr), (7)
which for an S-wave bound state reduces to
Yo, (r) —— N exp(—kr). (8)
r—00

For all [ it is apparent from the behavior of the Riccati-
Hankel functions for positive imaginary arguments that
bound-state wave functions tend to zero exponentially
for large 7. If a bound state exists close to the scattering
threshold, k£ = 0, it follows from the analyticity of the
partial-wave S matrix as a function of E ~ k? that the
scattering cross section gets enhanced at small k.
Resonances are another phenomenon that can cause
enhancement of the scattering cross section. While the
physically intuitive interpretation of resonances describes
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Figure 1. The analytic structure of the S matrix indicat-
ing its poles in the p plane corresponding to bound states,
virtual states, resonances, and antiresonances (capturing res-
onances). Note especially how bound states lie on the positive
imaginary axis while resonances are located in the 4th quad-
rant.

them as short-lived “metastable” states, formal scatter-
ing theory associates resonances with complex S-matrix
poles, leading to an enhancement of the scattering cross
section if they are located near the positive real axis (in
either momentum or energy representation). These poles
are known as “Gamow” or “Gamow-Siegert” states. It
is clear that they are not ordinary eigenstates of the
Hamiltonian H = Hy + V, which, as a Hermitian opera-
tor, can only have real eigenvalues. There is, however,
a well-defined extension of scattering theory to incor-
porate resonances as eigenstates in a generalized sense
by introducing the concept of so-called “rigged Hilbert
spaces (RHSs).” In fact, already scattering states are not
normalizable in the sense of possessing square-integrable
wave functions, and therefore they do not reside within
the ordinary Hilbert space. From this perspective, they
should strictly be considered within the RHS framework.
For practical applications, however, the mathematical
complexity associated with this is rarely necessary and
can be avoided by, for example, restricting the discus-
sion to the radial Schrodinger equation and the prop-
erties of wave functions that solve this ordinary differ-
ential equation.! In the same spirit, we can character-
ize decaying Gamow states as solutions of Eq. (3) that
satisfy the asymptotic boundary condition specified in
Eq. (6), albeit with a complex k satisfying Re(k) > 0
and Im(k) < 0, i.e., located in the 4th quadrant of the
complex-momentum plane.

1 In momentum space, one can obtain a full description of scatter-
ing observables by solving the Lippmann-Schwinger equation for
the T matrix.

B. S-matrix pole trajectories

If the potential supports a bound state, it is possible,
as a theoretical exercise, to gradually weaken its strength
to move the associated pole into the complex-momentum
plane. The trajectory of the pole depends on the angu-
lar momentum of the state and the details of the poten-
tial. For example, the pole associated with an S-wave
bound state generated by a purely attractive potential
will simply move down the imaginary axis in the complex-
momentum plane and become a virtual state after cross-
ing through the k = 0 threshold. In the complex-energy
plane, the bound-state pole, located on the negative real
axis, first moves towards the origin at £ = 0 and then
moves backward as a virtual state on the second Riemann
sheet of the S matrix. The two sheets of the S matrix as
a function of E are determined by the double-branched
nature of the square-root function, k¥ = £+/2ukF. The
standard convention, which we also adopt here, is to at-
tach the two sheets along the positive real axis, the so-
called “unitarity cut.”

If instead the potential has a barrier, either from the
actual shape of V(r) or effectively due to the nonzero cen-
trifugal term in Eq. (3) for [ > 0, the pole may also move
through the threshold into the 4th quadrant (in both the
momentum and the energy planes) so that the state be-
comes a (decaying) resonance. This is the scenario that
is of primary interest to us in this work. In particular,
in Sec. III B we develop a strategy to extrapolate along
such a trajectory, as illustrated in Fig. 2.

bound state

.

unitarity cut
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Figure 2. An illustration of a bound state moving through
the complex-energy plane as the potential is made gradually
weaker. In this case, it crosses the threshold and moves into
the second Riemann sheet to become a resonance (Gamow
state) with a complex energy.



C. Complex-scaling method (CSM)

As described above, bound states have associated
imaginary momenta k = ik with real x > 0, whereas
resonances are described by complex k& with Im(k) < 0.
This means that asymptotically, resonance wave func-
tions grow exponentially with r and are therefore—like
scattering states but in some sense even more so—not
square-integrable; i.e., they do not correspond to nor-
malizable states in the ordinary Hilbert space. While the
rigged Hilbert space construction offers a rigorous math-
ematical formalism to deal with this difficulty (see, for
example, Ref. [41] for an introduction), for practical cal-
culations there exists a much simpler alternative. The so-
called (uniform) complex-scaling method [17, 42] enables
a description of resonances with, essentially, bound-state
techniques. This is achieved by expressing the wave func-
tion not as usual along the real r axis, but on a contour
rotated into the complex-r plane. This can be achieved
by applying the transformation

r—re? (9)

to Eq. (3), with some angle ¢. The proper choice of ¢
in general depends on the position of the resonance one
wishes to study. If the state of interest has a complex
energy F, then it is necessary to ensure that ¢ > 7%.
As F is usually not known beforehand, one might repeat
the calculation while increasing ¢ until a resonance is
found.?

With the convention in Eq. (9), r is still a real parame-
ter but no longer describes the physical radial coordinate
of the system. The overall argument krel? of the Riccati-
Hankel function in Eq. (6) satisfies Im(kre'?) > 0, and
therefore square-integrability of the wave function as a
function of r is recovered. An example of such a scaled
wave function is illustrated in Fig. 3.

It was shown in Ref. [43] that the scaling of the radial
coordinate r is equivalent to a rotation in momentum
representation that goes in the opposite (clockwise) di-
rection with the same angle ¢. That is, if we consider the
wave function of the state as a function of a momentum
coordinate ¢, then complex scaling is implemented via

q— qe . (10)

This procedure then makes it possible to alternatively
calculate resonance wave functions in momentum space.
Note furthermore that scaling in momentum space can
also be understood as a rotation of the branch cut in the
complex-energy plane by an angle 2¢ clockwise, thereby
exposing a section of the second Riemann sheet where
resonances are located.

2 One might think of simply setting ¢ = 7/4 to accommodate all
possible resonances. However, in most cases, large ¢ angles lead
to potentials and wave functions not vanishing fast enough along
the contour, thereby demanding more expensive calculations.
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Figure 3. Illustration of the reduced radial wave function of a
typical S-wave resonance (Gamow state), on a complex-scaled
r contour. The solid (dotted) line corresponds to the real
(imaginary) part. It asymptotically converges to the Riccati-
Hankel function hi (kre'®) = hf (kr) = exp(ikr), where we
define k = ke'?, the effective wave number with Im(k) > 0, so
that it is normalizable just like bound-state wave functions.

After this transformation, we can absorb the !¢ phase
into the wave number k and define the effective wave
number as k = ke'?, so that the asymptotic form in
Eq. (6) is preserved as

Yii(re'?) —— Nhf (kr). (11)

The scaling technique can thus be interpreted as map-
ping resonances from the 4th quadrant in the complex-k
plane to the 1st quadrant in the k plane (see Fig. 4). For
future reference, we note that, at the same time, it will
effectively map bound states from the positive imaginary
k axis to the 2nd quadrant in the complex £ plane.

D. Non-Hermiticity and the c-product

In traditional quantum mechanics, one requires the
Hamiltonian H to be Hermitian (HT = H) to ensure
that the energy spectrum, being a physical observable, is
real and that time evolution is strictly unitary, i.e., the
norm of quantum states are preserved under the time
evolution operator e *#t/"  However, when considering
decay, an inherently time-dependent phenomenon, in a
time-independent framework such as the complex-scaling
method, the Hamiltonian is no longer Hermitian. In-
stead, in the present case, it becomes complex symmet-
ric (HT = H) [17]. This permits the energy spectrum
to include complex eigenvalues, which, as discussed in
Sec. ITA, is precisely what is needed to describe reso-
nances. In fact, the non-Hermiticity and the correspond-
ing nonunitary time evolution of Gamow states are well
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Figure 4. Trajectory of an S-matrix pole in the k plane be-
fore (a) and after (b) complex scaling. Thanks to the CSM,
resonance solutions have Im(l~c) > 0 and thus are square-
integrable. Also note how complex-scaled bound states come
with “negative” wave numbers [Re(k) < 0] while resonances
come with “positive” wave numbers [Re(k) > 0]. Indicated
by asterisks are the CA-EC vectors discussed in Sec. IIIB.
They are obtained by complex conjugation of bound-state
wave functions and will have asymptotic wave numbers —k* =
ke=21? placing them in the 1st quadrant and closer to the res-
onance regime.

aligned with the physical interpretation of resonances as
metastable systems that ultimately decay.

Similarly to how nondegenerate eigenvectors of a Her-
mitian operator are orthogonal under the inner product
defined on the Hilbert space, the nondegenerate eigen-
vectors of a complex symmetric operator are orthogonal
under the so-called “c-product” [44, 45]. For eigenstates
[1) and |¢9) with equal angular-momentum quantum
numbers (I,m), we define the c-product in coordinate
representation as

(1) = / dr oy (r)a(r) (12)

and similarly in momentum space. Note that ¢ (r) ap-
pears without complex conjugation under the integral.
This is precisely the c-product introduced in Ref. [44]
with the notation (1|t)2). In this paper, we use the
standard notation (1 [t)2) with the implicit understand-

ing that for complex-scaled systems this is meant to de-
note the c-product.

Equivalently, one can change the definition of bra
states so that no complex conjugation is involved when
they are associated with a complex-scaled system. This
is so even for bound states calculated with complex scal-
ing. Although the energies of such states remain real,
wave functions become complex when defined along the
rotated contour and the orthogonality of states with dif-
ferent binding energies is ensured only if no complex
conjugation is performed for bras, leading again to the
c-product [45]. Ultimately, these concepts can be un-
derstood by properly distinguishing bra and ket states
as, respectively, left and right eigenvectors of the non-
Hermitian complex-scaled Hamiltonian [43]. Even more
rigorously, a comprehensive theory for Gamow bras and
kets can be developed within the RHS formalism men-
tioned previously [41]. However, in practice we find it
convenient and sufficient to employ complex scaling along
with the c-product.

III. RESONANCE CONTINUATION

We now discuss the extension of eigenvector continua-
tion to resonance states. Generally, EC works by obtain-
ing eigenstates of a Hamiltonian H(c) with a parametric
dependence on a parameter ¢ for several values of that
parameter.® The set of parameters {c; } used for this step
is referred to as “training points,” and the correspond-
ing “training vectors” [ (c;)) are used to construct an
effective basis within which the problem is subsequently
solved for one or more target values of the parameter c.
For typical applications of EC, this procedure reduces
the dimension of the problem from a large Hilbert space
to the small subspace spanned by the training vectors,
thereby leading to a vast reduction of the computational
cost for each target evaluation. Specifically, if we denote
the target point as ¢, EC involves solving the generalized
eigenvalue problem

Hgc [Y(c))gc = E(ex)ec Nec [¥(ex))ge (13)

with the following Hamiltonian and norm matrices:

(HEC)Z-]- = W(Cz)\H(C*)W(CJ)) ) (14)
(NEC)ij = <¢(Cz)\¢(0a)> . (15)

The key to making this remarkably simple prescription
useful is that typically EC is able to construct highly
effective variational bases, with rapid convergence as the
number of training data is increased [30].

3 For simplicity, we assume here that there is only one scalar pa-
rameter and note that the extension to multiple parameters is
straightforward [25].



Eigenvector continuation involving resonance states
can be defined by prescribing that the matrix elements
in Egs. (14) and (15) are to be evaluated using the c-
product. Importantly, this is to be used in connection
with the complex-scaling technique described in Sec. II C,
so that for evaluating the c-product one integrates along
the rotated contour in either r space or g space. This
procedure ensures in particular that all matrix elements
remain well defined and finite, which would not be the
case without complex scaling because, as previously men-
tioned, Gamow states would then not be normalizable
and their wave functions would exhibit, in coordinate
representation, an exponentially growing amplitude. The
Hamiltonian and norm matrices, Hgc and Ngg, obtained
with the c-product will not be Hermitian but complex
symmetric, and therefore they may have complex eigen-
values, as is required to describe resonances.

Numerical tests. We can show with explicit examples
that indeed this procedure works nicely in practice. All of
the calculations shown in the following sections were per-
formed using a discrete momentum basis with a cutoff of
A = 8.0 (in the dimensionless units explained above) and
consisting of N = 256 mesh points distributed accord-
ing to a 256-point Gauss—Legendre quadrature to ensure
convergence. In general, the proper choice of A and N
depends on the properties of V', and we have checked that
the above is sufficient to ensure numerical convergence for
the particular examples we describe below. Furthermore,
the momentum basis is complex-scaled as discussed pre-
viously, by an angle ¢ = 7/6. As a crude way to estimate
the uncertainty of the EC extrapolations, we repeat ev-
ery calculation 128 times while randomizing the training
points within the given interval. Finally, the distribu-
tions of the extrapolation results are indicated in figures
by their 68.2% and 95.4% percentile intervals, the ap-
proximate intervals corresponding to 1 and 2 standard
deviations, respectively.

All of the potentials we use for numerical tests are
based on a local Gaussian form, which in configuration
space reads

F(a,r) =exp (—ar?) . (16)

For momentum-space calculations, we take the Hankel
transform of the above. This is given by

Flaad) =2 [ aritaryexp (<ar?) ian) . (7

where J;(z) are the Riccati-Bessel functions (see Ref. [39,
p. 182]). For I = 0, this reduces to

1 q2 +q/2 ) qq/
- h{=—1]. (1
Jar P ( o) sy, ) (18

Fo(Ol, q, q/) =

For [ =1, we have

Fi(a,q,q) = \/E Ki + q2q,> exp <(qzo‘j/)2)
(23 ()

(19)

Because there is no centrifugal term in the S-wave radial
equation, we include in the [ = 0 potential a repulsive
barrier to support resonances:

V(e,q,q") = c[-5Fy (1/3,4,¢") + 2F, (1/10,4,¢")] . (20)

For a P-wave example, the following simple Gaussian
potential is considered:

Vie,q,q') = —cFy (Ya,q,q) . (21)

Although not exploited here, we note that Hamiltonians
H(c) with a simple linear dependence on ¢ (like the ones
we consider), or more generally, an affine dependence on
a vector of parameters ¢, permit further optimization of
the EC calculation via decomposition into off-line and
on-line tasks, see for example Ref. [33].

As Supplemental Material, we provide the code for
our calculations as downloadable files [46]. The setup
is split into a PYTHON library, twobodyEC.py, that im-
plements the basic numerical techniques discussed above,
and a JUPYTER notebook, calculations.ipynb, that re-
produces the exact numerical examples presented in the
following.

A. Resonance-to-resonance extrapolation

We now consider a Hamiltonian H(c¢) that supports
a resonance for some range of ¢ and we implement the
standard EC prescription by first constructing H(c;) on
a complex-scaled basis for several training points {c;}.
In our calculation, this amounts to calculating the ma-
trix elements (g,e~'?|H (c;)|gme %) using a ¢ momentum
mesh as described previously (with ¢ > —argQEﬁ where
E,. is the complex energy associated with the resonance
for all ¢ within the region of interest). Then we pro-
ceed to solve the system to obtain the exact eigenvectors
|t(c;)) for each ¢;. This is the part that takes the bulk
of the computational time.

We now want to determine E(c,) at some target point
c = c, via extrapolation. To that end, we construct
H(c,), but instead of determining its eigenvalues directly,
we project H(c.) onto the “EC subspace” spanned by
{|®¥(c;))}. In practice, this is done by calculating the pro-
jected matrix elements (Hgc)i; = (¥(ci)|H (ci)|¥(c;))
and the norm matrix elements (Ngc);; = (¥(ci)|¥(c;)).
The latter accounts for the nonorthogonality of the basis
vectors. The c-product prescription has to be followed in
this step. Finally, we diagonalize the much smaller pro-
jected matrix Hgc by solving the generalized eigenvalue




problem?

Hec [Y(ci))ge = E(cs)ec Nec [¥(c))pe - (22)

Equation (22) yields a spectrum of complex eigenvalues
that includes the approximation E(c.)gc corresponding
to the exact energy eigenvalue E(c.) of the particular
state we are interested in. Identification of the relevant
E(cs)rc for non-Hermitian systems cannot be based on
the variational principle, and so, unlike EC applied to
bound states, it is not sufficient here to simply pick ex-
tremal eigenvalues from the EC spectrum. Because for
the benchmark presented here the exact value E(c,) is
calculated alongside the extrapolated spectrum, we em-
ploy the criterion min|E(c.)pc — E(cs)| to identify the
proper state within the complex spectrum. For practi-
cal applications of the technique, the exact E(c.) will
typically be unknown. To deal with this situation, one
might manually follow the extrapolated pole as it gradu-
ally crosses the threshold from being a bound state (for
which the identification is straightforward) to becoming
a resonance. More generally, one may employ a system-
atic overlap-based technique as is common practice in the
calculation of resonances within the Berggren basis [47].

To exemplify resonance-to-resonance continuation, the
system described by Eq. (20) is considered. Results are
shown in Fig. 5.

0.000
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Figure 5. Application of EC for resonance-to-resonance ex-
trapolation. Five training points were randomly drawn from
the region ¢ € (0.45,0.78) per dataset. Apart from using the
c-product formalism, the calculation proceeds similar to ordi-
nary EC, yielding accurate approximations for the complex-
energy eigenvalues of resonances (Gamow states). See text
for details.

4 Alternatively, one could orthonormalize {|i(c;))} beforehand,
again following the c-product formalism, and then solve an ordi-
nary eigenvalue problem.

B. Bound-state-to-resonance extrapolation

While applying EC solely within the resonant regime
is interesting and certainly useful in practice (e.g. to
produce EC-based emulators for uncertainty quantifica-
tion [25]), it is a more fascinating question whether we
can set up an extrapolation scheme that uses training
vectors at ¢ values corresponding only to bound states,
but which then extrapolates to ¢, where the state is a
resonance. In other words, we would like to use EC
to extrapolate along the S-matrix pole trajectories de-
scribed in Sec. II B from the regime of bound states into
the resonance domain. We note that, in general, not all
bound states transition into resonances as illustrated in
Sec. II B, but in order to illustrate the method we con-
sider here only cases where it is known a priori that this
is the case.

Clearly, a naive approach without appropriate complex
scaling of the basis will not be successful in predicting
resonance energies because Hgc and Ngc will be trivially
Hermitian with that prescription. However, even with
complex scaling and the matrix elements defined in terms
of the c-product, it is not possible to obtain complex
energies via EC because Hgc and Ngc will, in fact, be
real and symmetric. This can be seen as follows. If we
use the notation t(c;;r) for the (reduced) radial wave
function corresponding to the state [¢(¢;)), then for the
norm matrix it holds that

(Nec)ij = ((ei)l(cy))
= [ arvteiyitesn 3

- /Oo dr (e r)b(e;ir) € R,
0

where fc denotes integration along the complex-scaled
contour. We have used the fact that the contour can
be rotated back to the real axis without changing the
value of the integral because no singularities are swept
over and for bound states the contribution of the arc at
infinity that closes the curve between the real axis and the
rotated contour vanishes.® Then, we have made use of
the fact that “c-normalized” bound-state wave functions
are real along the real axis. This is so because any bound-
state wave function ¢(r) can be chosen to be real and any
arbitrary global factor N will be constrained to N € R
by the c-normalization condition

/0 S dr N = 1, (24)

resulting in a real normalized wave function ¥(r) =
No(r). Ngc is also trivially symmetric due to the prop-
erties of the c-product.

5 The bound-state wave functions remain strictly normalizable
even with the r contour rotated into the upper half-plane.



By the same token, for the projected Hamiltonian ma-
trix, we see that

(Hec)ij = () [H( C*)Iw(cg»

/ dT/ d’l“ 1/1 CiyT ((’*;7’, T/)Q/)(Cj;’r‘/)
=/ dr/ dr’ Y(ci; ) H (cas 7" )0(cj317)
0 0

(25)

noting that everything under the final integral is real.
This shows that Hgc has only real entries. Because
H(ey) is complex only due to the contour rotation, by
the “turn over rule” [17] it follows moreover that Hyc is
symmetric, which concludes the proof.

The same S-wave potential given in Eq. (20) is con-
sidered for demonstrating the failure of a naive bound-
state-to-resonance extrapolation. As shown in Fig. 6, the
extrapolated energies do not extend beyond the real axis,
as one would expect for resonance states.

0.1
0.0 ¥+ %‘:w?)(
°
Lg —0-11 training region ..
= _pod © exact .
X extrapolated (median)
—0.34  extrapolated (68.2% int.)
1 extrapolated (95.4% int.)
—0.4 T T T
—0.6 —0.4 —0.2 0.0 0.2

Re E

Figure 6. Attempt to extrapolate from bound states to reso-
nances using ordinary EC without augmentation. Five train-
ing points were randomly drawn from the region ¢ € (0.9,1.3)
per dataset. See text for details.

Conjugate-augmented EC. Fortunately, it turns out
that there is a way to accomplish bound-state-to-
resonance extrapolations with an extension of the EC
prescription. The appropriate strategy, which we refer to
as “conjugate-augmented eigenvector continuation (CA-
EC)” and which we elucidate further below, is to enlarge
the subspace spanned by the bound-state training vectors
by including, in addition, complex-conjugate versions of
the existing wave functions. This can be easily imple-
mented numerically (in any concrete representation of
the wave functions) by duplicating training vectors stored
in memory with elementwise complex conjugation.®

6 Note that the extra memory cost for storing the additional vec-
tors can be avoided if one performs the complex conjugation for
the extra states on the fly during the construction of Hgc and
NEC.

As we show with concrete examples below, CA-EC
works nicely in practice. To understand why that is so,
note that after complex scaling the asymptotic wave func-
tions (as functions of r along the rotated contour) will
have decaying wave numbers for both bound states and
resonances, i.e., Im(k) > 0, as illustrated in Fig. 4. How-
ever, Re(l%) is negative for bound states and positive for
resonances. EC is ineffective at extrapolating complex
“plane waves” of the form i)f(l;r) with rapidly changing
wave numbers, especially when the sign of the real part is
supposed to change upon extrapolating from the training
regime to the target point. This systematic deficiency of
the basis can be remedied by including additional vec-
tors that have “positive” asymptotic wave numbers, i.e.,
Re(k) > 0. Exactly this is achieved with CA-EC be-
cause the complex-conjugated wave functions have such
asymptotic wave numbers. Specifically, the asymptotic
wave number of a complex-conjugated bound state will
be —k* = ke 2% if k denotes the wave number of the
bound state (cf. Fig. 4).

The systems described by Egs. (20) and (21) are con-
sidered to illustrate the CA-EC bound-state-to-resonance
extrapolation method. Asshown in Figs. 7 and 8, CA-EC
can reproduce resonance states, and the extrapolated en-
ergies agree nicely with exact calculations performed for
comparison.

0.1
0.0 > 8
x x
Q —0.14 o . x
training region x
é _0.24 ¢ eaa *
X extrapolated (median)
—0.3- 4+  extrapolated (68.2% int.)
= extrapolated (95.4% int.)
_0.4 T T T
—0.6 —0.4 —0.2 0.0 0.2

Re E

Figure 7. Bound-state-to-resonance extrapolation performed
with CA-EC for the system given by Eq. (20). Five training
points were randomly drawn from the region ¢ € (0.9,1.3) per
dataset. See text for details.

The key to understanding why CA-EC works is the
insight that in the interior region (i.e., r sufficiently
small), resonance wave functions look similar to those
of bound states. As shown in Fig. 3, the oscillating
and exponentially growing behavior only sets in at larger
r. Therefore, in the interior region, an EC basis com-
prised of bound states can properly express the behav-
ior of the resonance wave function at the target point,
and it is only the asymptotic behavior that needs an en-
larged basis to be properly represented. To further elu-
cidate this explanation, we can consider an alternative
approach where we augment the original EC basis not
with complex-conjugated versions of the training bound-
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—0.20 T T T
—0.3 —0.2 —0.1 0.0 0.1

Re

Figure 8. Bound-state-to-resonance extrapolation with CA-
EC for the Gaussian potential shown in Eq. (21) in the P
wave. Five training points were randomly drawn from the
region ¢ € (3.1,4.0) per dataset. See text for details.

state wave functions, but with Riccati-Hankel functions
h; (kr) that have the same wave numbers k that are oth-

[/ dq ji(qr) l[%] - 2?k/ooo daider ¢
— %/OOO dg {h

where we have used the relation [50, Egs. 10.47.10,15]
iitar) = o [Bif (ar) = i (ar)
5 [ (@) = (<10 (=am)]

in the second step and used the residue theorem to eval-
uate the final integral.”

The same potential as given in Eq. (20) in the S wave
is used to test augmenting the basis with RH functions.
As shown in Fig. 9, RH augmentation, like CA-EC, is

(29)

7 Note that the residue theorem is applied for the Im(k) > 0 case.
This is because we only construct RH functions that are square-
integrable, and fzr(kr) is square-integrable if and only if k is in
the upper half-plane.

dg hyf (ar) 5~

erwise provided by the complex-conjugated bound states
with CA-EC (i.e. asterisks in Fig. 4). This approach
is somewhat similar to the construction of the so-called
Berggren basis [48, 49].

This basis augmentation with Riccati-Hankel functions
can be performed in configuration space as well as in
momentum space. In configuration space, we can use the
explicit representation [50, Eq. 10.49.6]

Looon—1—1
A (kr) = exp(ikr : (l Jrn) g
h)" (kr) p(ik )nz:% 27 pl(l—n)! (kr)?

(26)

for a state with angular momentum [. In momentum
space, we need the Hankel transform of h;" (kr), which is

given by
1
o(a) = \/?f](q%’;) . (27)

This can be verified by explicitly carrying out the inverse
Hankel transform as follows:

(a/k)'

— k2

(a/k)'

)
qr) — (—1)%7(—(17’)} e

kQ

o l oo
_k /O dq hf 617‘)61(261/_1€> —/0 dq by (- qr)(q alk )] (28)

k o
-5 /.

/
(
(

able to provide bound-state-to-resonance extrapolations,
in contradistinction to the naive EC approach. Note that
we use RH augmentation here only to explain why CA-
EC works as well as it does. Beyond the simple two-
body systems we consider here as proofs of concept, RH
augmentation would be difficult to implement due to the
more complicated structure of few- and many-body wave
functions. CA-EC, on the other hand, is straightforward
to implement even for such systems.

Convergence of basis augmentation with RH functions.
To quantify the contribution of RH functions to bound-
state-to-resonance extrapolations, we show in Fig. 10 the
convergence of extrapolated energies as a function of the
number of RH functions added. For each subplot (in de-
scending vertical order), we have added one, two, three,
and four RH functions picked randomly following the
same prescription as in the previous calculation. This
calculation was performed for the same system as con-
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Figure 9. Bound-state-to-resonance extrapolation for the sys-
tem given by Eq. (20), performed by augmenting the basis
with RH functions with wave numbers the same as those of
CA-EC vectors. Five training points were randomly drawn
from the region ¢ € (0.9, 1.3) per dataset. See text for details.

sidered before, given by Eq. (20). The rapid convergence
with the number of vectors clearly supports the argument
that CA-EC provides the asymptotic parts necessary to
describe the long-distance structure of resonance wave
functions.

IV. DISCUSSION AND OUTLOOK

In this work, we have studied the application of eigen-
vector continuation to decaying resonance states. Specif-
ically, we considered a two-body system with a Hamil-
tonian controlled by a single parameter, which can be
tuned to map out resonance trajectories in the complex
plane. Using the uniform complex-scaling technique we
showed that eigenvector continuation can be set up with
resonance states as training data to produce an emulator
that predicts resonance properties outside the training
domain, provided that the appropriate c-product is used
to construct the EC Hamiltonian and norm matrices.

We demonstrated that a naive implementation of EC
trained with only bound states cannot reliably predict
resonance properties, even if the bound-state wave func-
tions are defined along a contour rotated into the complex
plane. We identified this failure to be caused by the lack
of outgoing asymptotic behavior in the naive EC basis.
However, we subsequently showed that this problem can
be overcome by adding to the EC basis the complex con-
jugates of the rotated bound-state wave functions, pro-
ducing an approach that we call conjugate-augmented
eigenvector continuation (CA-EC). Adding the complex-
conjugated wave functions provides basis vectors that ef-
fectively give contributions in the 1st quadrant of the
complex-momentum plane, which is where the decaying
resonances “exposed” by the complex-scaling procedure
are situated.

We showed with numerical examples that CA-EC pro-
vides accurate predictions for decaying resonances at a
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Figure 10. Bound-state-to-resonance extrapolation for the

system given by Eq. (20), performed using bases constructed
with five training points and increasing number of RH vec-
tors. The training points were randomly drawn from the re-
gion ¢ € (0.9,1.3). From top to bottom, bases are augmented
with one, two, three, and four RH vectors, respectively. See
text for details.

relatively moderate increase in computational cost com-
pared to standard eigenvector continuation. We also con-
firmed the mechanism at play behind the success of the
method by replacing the complex-conjugated eigenvec-
tors with Riccati-Hankel functions that provide the same
outgoing asymptotic behavior that in CA-EC is provided
by the complex-conjugated bound-state wave functions.



The findings presented in this work provide an impor-
tant step towards understanding robust bound-state-to-
resonance extrapolations, a new tool for the study of open
quantum systems in the context of few-body physics, and
they open interesting avenues for more efficient many-
body applications in the complex-energy plane. In fu-
ture work, we will investigate how to leverage the CA-EC
method in many-body techniques based on the Berggren
basis to emulate multiparticle resonances, with partic-
ular applications to exotic atomic nuclei. We will also
consider using more sophisticated methods to optimize
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the number and the quality of training eigenvectors.
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