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Correlation functions of hadrons can be accessed in high-energy collisions of atomic nuclei, re-
vealing information about the underlying interaction. This work complements experimental efforts
to study nucleon-deuteron Nd—with N = p (proton) or N = n (neutron)—correlations with theory
evaluations using different techniques. The correlation functions Cnd and Cpd are calculated based
on scattering wave function, extending previous benchmarks for the Nd scattering matrix to this
new observable. We use hyperspherical harmonics and Faddeev techniques with one of the widely
used nucleon-nucleon (NN) interactions, the Argonne v18 potential. Moreover, in the low-energy
region we perform additional calculations in the framework of pionless effective field theory. The
pd correlation function is computed in the large-energy region to make contact with a recent mea-
surement by the ALICE Collaboration. We show that the scattering wave function has the proper
dynamical input to describe an initial rise and subsequent oscillations of Cpd as a function of the en-
ergy. Effects on the observables using different NN and three-nucleon potentials are evaluated with
the conclusion that variations of around 2% are observed. Although these effects are small, future
measurements can go beyond this accuracy allowing for new detailed studies of strong interaction in
light nuclear systems. The present study supports the current efforts devoted to the measurement
of correlation functions in systems dominated by the strong interactions, such as pd, ppp, Λd and
ppΛ.

I. INTRODUCTION

The study and description of the dynamics of few-body
systems comprised of nucleons and atomic nuclei play
a fundamental role in nuclear physics. A comprehen-
sive understanding of the nuclear force between nucleons
inside nuclei and in a denser environment requires an
accurate understanding of the few-body dynamics, and
achieving this has been a long-standing goal of nuclear
physics for many years. In this regard, few- and many-
body systems provide a unique laboratory for studying
nuclear interactions and the equation of the state of
dense nuclear matter [1–3]. In recent decades, modern
many-body nuclear physics advances have opened doors
to study nucleon-nucleus and nucleus-nucleus scattering
and reactions from first principles (see Refs. [4–7] and
references therein). Nucleon-deuteron (Nd) scattering is
a fundamental process in nuclear physics that plays a
crucial role in understanding structure and dynamics of
atomic nuclei. The deuteron, composed of one proton
and one neutron, is the simplest and most abundant nu-
cleus in nature that is bound together by a strong force.
Studying its interaction with another nucleon serves as
a test bed for studying three-nucleon effects. This in-
cludes not only the occurrence of genuine three-nucleon
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forces (3NFs)—i.e., effects arising not merely from pair-
wise two-body interactions—but also the interplay of the
nuclear interaction with the Pauli principle, i.e., the fact
that nucleons as Fermions need to have fully antisym-
metric wave functions at the quantum level. The three-
nucleon system is the simplest system where these effects
can be studied, and several methods exist to investigate
it theoretically with great precision.

Experimentally, the study of the Nd process has a long
history dating back to the early days of nuclear physics,
which includes various techniques, such as scattering ex-
periments, polarization measurements, and reactions in-
duced by electroweak probes [8, 9]. These measurements
have revealed a rich and complex structure that is de-
termined by the interplay between various aspects of the
nuclear force, such as one-pion exchange, repulsive and
attractive components, and the tensor force. Moreover,
in the pd case, the Coulomb force has to be considered
as well as, and its effect is particularly relevant at low
energies [10].

Theoretically, Nd scattering was initially studied based
on potential models. In the 1990s, realistic nuclear po-
tentials describing the NN interactions were constructed
by fitting the NN world database [11–13], consisting of
more than 4000 pp and np data at the time, with a Ç2

per datum close to one. With the development of the ef-
fective field theories (EFTs), potential models appeared
constructed order by order in a series expansion of the
interaction. At present, EFT potentials based on chiral
effective field theory (Chiral EFT) are available going up
to fifth order in the expansion and they reproduce the
NN scattering data up to 350 MeV lab energy with ex-
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tremely good accuracy [14, 15]. Starting with Ref. [16],
focus in the development of Chiral EFT has shifted to-
wards applying the expansion directly to observables, in-
vestigating in particular questions of renormalization and
details of the so-called “power counting,” i.e., the process
of assigning orders to individual components of the in-
teraction. For a review of these efforts and of nuclear
effective field theories in general, see Ref. [17].

Beyond the two-nucleon sector that is for the most
part used to constrain parameters of the interaction, the
three-nucleon system is the simplest scenario in which
highly accurate nuclear potentials can be used to make
predictions. For this reason strong efforts have been
made in the last years to solve the equations that govern
the three-nucleon dynamics in bound states and scatter-
ing processes. The necessity of including 3NFs was known
for a long time, mainly motivated by the fact that highly
accurate two-nucleon potentials would typically predict
the triton binding energy below its experimentally known
value. One of the early successes of nuclear EFTs was
the a priori prediction that such forces are present and
in fact required. The impact of the 3NFs in the three-
and four-nucleon continuum is at present under investiga-
tion. In particular, although the chiral expansion nicely
organizes the importance of different three-nucleon inter-
action terms, only those terms appearing at the lowest
orders have been considered so far. There are indications
that subleading three-nucleon interaction terms, though
small, improve the description of particular polarization
observables [18].

In the present study, we focus on the Nd correlation
function (defined in more detail in the next section). The
primary motivation for this work is that precise measure-
ments of correlations in the momentum space for the pd
system have been made available by the ALICE Collab-
oration using proton-proton (pp) collisions at the Large
Hadron Collider (LHC). For the simpler case of pp cor-
relations, the ALICE Collaboration has previously mea-
sured the correlation function using the so-called fem-
toscopy technique [19–21]. The experimental data can
be compared with theoretical calculations by evaluating
the integral

Cpp(k) =

∫
d3r S(r) |Èk(r)|2 , (1)

where S(r) is a source function that parameterizes the
distance r at which the two protons are emitted after the
high-energy collision, and Èk is the pp scattering wave
function depending on the reduced relative momentum
of the pair (k = |p2 − p1| /2). An extremely accurate
description of this observable was obtained using the Ar-
gonne v18 (AV18) NN interaction [11]. As we discuss
in detail in the following section, the extension of the
formalism to handle the Nd case is not trivial because
the wave function needs to account for the three-nucleon
dynamics mentioned above. We develop in this work a
framework that includes all relevant complexities related
to the correct description of the system, including an-

tisymmetrization effects. Moreover, the concept of the
source function, which for the pp correlation function is
related to the emission of two nucleons and can be pre-
cisely characterized [21], has to be extended to the case
of three emitted nucleons, two of which form a deuteron.

Since this is the first time that this observable is anal-
ysed for a three-nucleon system, we find it useful to em-
ploy two different approaches to solve the three-body dy-
namics, the solution of the Faddeev equations and the
hyperspherical harmonic (HH) technique. Moreover, for
the nuclear interaction we consider both the AV18 po-
tential, supplemented by the Urbana IX (UIX) 3NF [22],
and, to make contact with the modern EFT description
of the nuclear interaction, we additionally use pionless
effective field theory (Pionless EFT) to calculate the cor-
relation function. This EFT has the advantage that its
power counting and renormalization properties are well
understood. However, since by construction this theory
does not explicitly include the physics of pion exchange,
its regime of validity is limited to the low-energy region.
In addition, we also perform a calculation using an two-
and three-nucleon potential model derived within Chiral
EFT, one of the so-called Norfolk interactions [23], the
NVIa+3N in the notation of Ref. [24] In the analysis of
the correlation function with such highly accurate NN
potentials, particular attention will be given to the effects
of the accompanying three-nucleon forces.

The manuscript is organized in the following way: in
the next section, we describe the theoretical formalism
for the calculation of the of Nd correlation functions.
In particular, in Sec. II A we discuss the basic formal-
ism for three-nucleon correlations before we move on to
review the HH (Sec. II B) and Faddeev (Sec. II C) for-
malisms, along with a brief introduction to Pionless EFT.
The main results and benchmarks comparing the differ-
ent techniques used are given in Sec. III. We conclude
with a summary and outlook in Sec. IV.

II. FORMALISM

A. Full three-body calculations of the

nucleon-deuteron correlation function

The two-particle femtoscopic correlation function is de-
fined as the ratio of the Lorentz-invariant yield of a parti-
cle pair to the product of the single-particle yields. Using
pi to denote the momentum of each particle, it can be
written as [25].

C (p1,p2) =
E1E2 dN

12/
(
d3p1 d

3p2
)

(E1 dN1/d3p1) (E2 dN2/d3p2)

=
P (p1,p2)

P (p1)P (p2)
. (2)

As indicated by the final equality in Eq. (2), the corre-
lation function can also be understood as the ratio be-
tween P(p1,p2), the probability of finding a pair of par-
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ticles with momenta p1 and p2, and P(pi), the proba-
bility of finding each particle with momentum pi. In the
absence of any correlations, the two-particle probability
factorizes, P(p1,p2) = P(p1)P(p2), and the correlation
function is equal to unity. In the quantum mechanical
description, the correlation between a pair of particles
(with spins s1 and s2, respectively) can be related to the
particle emission and the subsequent interaction of the
particle pair, as discussed in Ref. [26], as

C (p1,p2) =
1

Γ

∑

m1,m2

∫
d3r1 d

3r2S1 (r1)S1 (r2)

× |Ψm1,m2
(p1,p2, r1, r2)|2 , (3)

where Ψm1,m2
(p1,p2, r1, r2) denotes the two-particle

scattering wave function that asymptotically describes
particle 1 (2) with momentum p1 (p2) and spin projec-
tion m1 (m2), with weights Γ = (2s1 + 1)(2s2 + 1). In
Eq. (3) S1(r) describes the spatial shape of the source
for single-particle emissions. It can be approximated as
a Gaussian probability distribution with a width RM ,
which is defined as follows:

S1(r) =
1

(2ÃR2
M )

3

2

e−r2/2R2

M , (4)

RM is also known as the source size for single particle
emission. Eq. (3) can be simplified by noting that in the
wave functions the dependence on the overall center-of-
mass (CM) coordinate can be trivially factored out. In-
troducing the CM coordinate R ≡ M1r1+M2r2

M1+M2

, where M1

and M2 are the masses of the two particles, the relative
distance r ≡ r1− r2, and rewriting the two-particle wave
function as Ψm1,m2

(p1,p2, r1, r2) = e−iR·PÈm1,m2,k(r)
leads to the Koonin-Pratt relation for two-particle corre-
lation function [27], which we write here as

C(k) =
1

Γ

∑

m1,m2

∫
d3r S(r) |Èm1,m2,k (r)|2 , (5)

where Èm1,m2,k (r) represents the two-particle relative
wave function, with k = (p1 − p2)/2, and S(r) is the
two-particle emission source, given by

S(r) =

(
1

4ÃR2
M

)3/2

e
− r2

4R2
M . (6)

Overall, we have arrived, essentially, at Eq. (1) as stated
in the Introduction. We note that for simplicity we did
not consider spin degrees of freedom in writing Eq. (1),
and moreover the scattering wave function Èk used in the
introduction includes all partial waves. A more detailed
discussion of how the partial-wave expanded form can be
obtained from this will be given for the three-body case
below.

For the extension of the formalism to calculate three-
nucleon correlation functions, we follow the general coa-
lescence model as it has been discussed in Ref. [26]. For

the specific case of nucleon-deuteron correlations, the for-
malism is based on the following expressions:

AdCNd(k) =
1

6

∑

m2,m1

∫
d3r1d

3r2d
3r3 S1(r1)S1(r2)S1(r3)

×
∣∣ΨNd

m2,m1,k

∣∣2 , (7a)

Ad =
1

3

∑

m2

∫
d3r1d

3r2 S1(r1)S1(r2)
∣∣φd

m2

∣∣2 ,

(7b)

where k is the Nd relative momentum and Ad the “prob-
ability of formation of the deuteron”. The subscript N
represents either a proton (p) or a neutron (n), and in the
following we consider both cases. Hereafter m1 (m2) de-
notes the spin projection of the nucleon (deuteron). We
also denote the deuteron bound-state wave function as
φd
m2

, whereas ΨNd
m2,m1,k

represents the nucleon-deuteron
scattering wave function. In the above equations we indi-
cate explicitly sums over angular-momentum components
m1 and m2, but we note that whether or not these ap-
pear explicitly in practical calculations depends on the
method used to solve the equations: we consider both an
approach based on HH, where m1 and m2 are explicitly
summed over, as well as Faddeev equations in momen-
tum space, where these sums are implicit in the choice of
basis.

Eq. (7) can be simplified by introducing the CM and
relative coordinate, as well. For Ad, we change integra-
tion variables, introducing r = r1−r2 and R = 1

2 (r1+r2)
(we disregard the proton-neutron mass difference in this
paper). Writing the product S1(r1)S1(r2) in terms of r
and R and then integrating over R, one obtains

Ad =
1

3

∑

m2

∫
d3r

e−r2/4R2

M

(4ÃR2
M )

3

2

∣∣φd
m2

∣∣2 . (8)

In the integral (7a), we can use the variables

x = r1−r2 , y = r3−
r1 + r2

2
, R3 =

1

3
(r1+r2+r3) .

(9)
Now

d3r1d
3r2d

3r3 = d3R3d
3xd3y , (10)

and

S1(r1)S1(r2)S1(r3) =
e−(3R2

3
+ 2

3
y2+ 1

2
x2)/2R2

M

(2ÃR2
M )

9

2

. (11)

Integrating over d3R3 (the wave function ΨNd
m2,m1,k

does

not depend on R3), we obtain

AdCNd(k) =
1

6

∑

m2,m1

∫
d3xd3y

e−( 4

3
y2+x2)/4R2

M

(3ÃR2
M )

3

2 (4ÃR2
M )

3

2

×
∣∣ΨNd

m2,m1,k

∣∣2 . (12)
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simply given by

Ψ
pd,(free)
m2,m1,k

=
1√
3

even perm.∑

ℓ

φd
m2

(i, j)Çm1
(ℓ)Φc(k,yℓ) ,

(21)
where as before φd

m2
(i, j) is the deuteron wave function

with spin projection m2, k is the relative momentum
between the two clusters, Çm1

(ℓ) is a spinor describing
the proton, and Φc(k,yℓ) is a Coulomb-distorted plane
wave, having the following partial-wave expansion:

Φc(k,y) =
∑

LM

4Ã iL Y ∗
LM (k̂)YLM (ŷ)eiÃL

FL(¸, ky)

ky
.

(22)
Here FL(¸, ky) is the regular Coulomb function and ÃL
the Coulomb phase shift. The neutron-deuteron case can
be recovered just replacing Φc(k,yℓ) → eik·yℓ .

Before we address the full interacting case, it is conve-
nient to expand the free wave function (21) using Eq. (22)
and rewrite it as a sum of terms with definite total an-
gular momentum J . Using one of the possible choice of
the recoupling order, we obtain

Ψ
pd,(free)
m2,m1,k

=
∑

LSJ

√
4ÃiL

√
2L+ 1eiÃL

× (1m2
1

2
m1 | SJz)(L0SJz | JJz)

× 1√
3

even perm.∑

ℓ

{
YL(ŷℓ)

[
φd
m2

(i, j)Çm1
(ℓ)

]

S

}

JJz

× FL(¸, kyℓ)

kyℓ
,

(23)

where we have assumed k̂//ẑ and therefore YLM (k̂) =√
2L+1√
4Ã

¶M,0. Note that Jz = m1 +m2.

2. Fully interacting case

Now, let us consider the fully interacting case. The
total wave function becomes

Ψpd
m2,m1,k

=
∑

LSJ

√
4ÃiL

√
2L+ 1eiÃL(1m2

1

2
m1 | SJz)

× (L0SJz | JJz)ΨLSJJz
,

(24)

where ΨLSJJz
are three-body wave functions satisfying

(H − E)ΨLSJJz
= 0, with

E =
4

3

k2

MN
−Bd , (25)

Bd denoting the deuteron binding energy and MN the
nucleon mass. We compute such wave functions as

ΨLSJJz
=

∑

n,³

un,³(Ä)

Ä5/2
Yn,³(Ω)

+
1√
3

even perm.∑

ℓ

{
YL(ŷℓ)

[
φd(i, j)Ç(ℓ)

]

S

}

JJz

× FL(¸, kyℓ)

kyℓ

+
∑

L′S′

T J
LS,L′S′

1√
3

×
even perm.∑

ℓ

{
YL′(ŷℓ)

[
φd(i, j)Ç(ℓ)

]

S′

}

JJz

× GL′(¸, kyℓ) + iFL′(¸, kyℓ)

kyℓ
.

(26)

Here Yn,³(Ω) is a set of completely antisymmetric basis
functions constructed in terms of HH functions (which
form a complete basis in the Ω Hilbert space) multiplied
by appropriate combinations of spin-isospin states of the
three particles. Explicitly,

Yn,³(Ω) =

even perm.∑

ℓ

f³(xℓ)N³(sinϕℓ)
Ly (cosϕℓ)

Lx

× P
Ly+

1

2
,Lx+

1

2

n (cos 2ϕℓ)

×
{[
YLy

(ŷℓ)YLx
(x̂ℓ)

]

Λ

[
(sisj)S2

sℓ

]

Σ

}

JJz

×
[
(titj)T2

tℓ

]

T,Tz

,

(27)

where ³ ≡ {Lx, Ly,Λ, S2,Σ, T2, T} is a set of quantum
numbers specifying the HH functions, P a,b

n a Jacobi poly-
nomial of degree n, and N suitable normalization factors.
Moreover, to accelerate the convergence of the expansion
over n, we have added the so-called “correlation factors”
f³(xℓ), chosen in order to reproduce the behaviour of the
wave function when the particles i and j are close (and
thus the distance xℓ is small). These functions therefore
describe the two-body correlations of the wave functions,
and clearly they depend on the spin-isospin-angular state
of the pair (i.e., by the quantum numbers ³). The ex-
pansion so organized is called Pair-Correlated HH (PHH)
expansion. For a discussion of the choice of the functions
f³ and a review of the properties of the HH and PHH
states, see, for example, Refs. [28, 29].

The calculation is performed as follows. For a given
choice of the quantum number ³ (called a “channel”), the
functions given in Eq. (27) with increasing values of n
are considered, up to a value N³, chosen so to have a
convergence of the quantities of interest, as the phase-
shifts. Thanks to the presence of the correlation factor,
a very good convergence is obtained already with low val-
ues of N³, typically N³ = 5−10 is sufficient. Then other
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channels are included in the expansion, etc. Note the the
most important channels are those with low values of Lx

and Ly, so we usually start by including in the expansion
channels with Lx + Ly = L = 0 or 1, and then increase
the values of L. Usually it is sufficient to consider chan-
nels up to L = 5 or 6, of a total number ranging from
18 to 30, depending on the value of JÃ. At the end the
expansion over n and ³ includes some hundreds terms.

The expansion in the first row of Eq. (26) describes
the system when the three nucleons are close to each
other. The hyperradial functions un,³(Ä) are obtained by
solving a set of coupled differential equations, obtained
using the Kohn variational principle [30, 31]. They go
asymptotically to zero for energies below the deuteron
breakup threshold, whereas for energies E ≡ Q2/m > 0,
see Eq. (25), the hyperradial functions un,³(Ä) → A³e

iQÄ

when Ä→ ∞.

Moreover, in Eq. (26) T J
LS,L′S′ are the T-matrix ele-

ments, also obtained from the Kohn variational principle,
which describe pd scattering observables. Above we have
introduced

GL′(¸, ky) = GL′(¸, ky)
(
1− e−´y

)(2L′+1)

, (28)

GL′ being the irregular Coulomb function. With this
definition, the regularized irregular Coulomb functions
GL′(¸, ky) are well behaved for all values of y and for
y k ´−1 they reduce to the irregular Coulomb functions.
Typically ´ = 0.25 fm−1 is used as regularization scale.
In Eq. (26), L′S′ are all possible combinations for the
given J and parity (−1)L.

The asymptotic behaviour of the wave functions
ΨLSJJz

is chosen so that if we turn off the nuclear in-
teraction they reduce to

ΨLSJJz
→ 1√

3

even perm.∑

ℓ

{
YL(ŷℓ)

[
φd(i, j)Ç(ℓ)

]

S

}

JJz

×FL(¸, kyℓ)

kyℓ
. (29)

In fact, in such a case, u³ = T J
LS,L′S′ = 0 and Ψpd

m2,m1,k

reduces to Ψ
pd,(free)
m2,m1,k

. Moreover, the asymptotic be-
haviour is such that the part multiplying the T-matrix
has a form of an outgoing wave, since GL′(¸, kyℓ) +
iFL′(¸, kyℓ) ∼ eikyℓ .

In the calculation, we will include the effect of the nu-
clear interaction up to a given J . In fact, for J > J , the
centrifugal barrier should forbid the three particle to be
close, in that case the free wave function given by Eq. (29)
should be appropriate. Accordingly, it is convenient to
resum all the terms proportional to FL(¸, kyℓ) in order

to reproduce the free wave function. Let us define

Ψ̃LSJJz
=

∑

³

u³(Ä)

Ä5/2
Y³(Ω) +

∑

L′S′

T J
LS,L′S′

× 1√
3

even perm.∑

ℓ

{
YL′(ŷℓ)

[
φd(i, j)Ç(ℓ)

]

S′

}

JJz

× GL′(¸, kyℓ) + iFL′(¸, kyℓ)

kyℓ
,

(30)

where namely we have subtracted from the wave function
given in Eq. (26) the “free” part. Then the total wave
function ΨNd

m2,m1,k
can be cast in the form

Ψpd
m2,m1,k

= Ψ
pd,(free)
m2,m1,k

+

JfJ∑

LSJ

√
4ÃiL

√
2L+ 1eiÃL(1m2

1

2
m1 | SJz)

× (L0SJz | JJz)Ψ̃LSJJz
.

(31)

This is the three-nucleon wave function which asymptot-
ically behaves as a pd (distorted) plane-wave, with the
proton (deuteron) in the spin state m1 (m2). The com-

ponents Ψ̃LSJJz
describe configurations where the three

particles are close to each other. Varying the value of
J it is possible to control the waves where the strong
interaction is taken into account.

Great care must be taken in order to include a suffi-
cient number of PHH states Yn,³(Ω), in particular it is
necessary to include a sufficient number of channels ³ in
Eq. (30). This part is essential to describe the configu-
rations where the three particles are close to each other.
Partial waves where the convergence of this expansion
is more critical are those in which the orbital angular
momentum L takes its lowest values, JÃ = 1/2+, 3/2+,
1/2−, 3/2−, and 5/2−. For the JÃ = 1/2+ case, there is
the formation of the 3He bound state and therefore the
scattering wave function must be constructed orthogonal
to it. For the states with relative orbital angular momen-
tum L = 1, the interaction between the three particles
is rather attractive, therefore a large number of terms in
the sum over ³ in Eq. (30) is required.

C. Pionless EFT with momentum-space integral

equations

Pionless effective field theory (EFT) is designed to cap-
ture the universal low-energy features of few-nucleon sys-
tems that arise from the fact that the nucleon-nucleon S-
wave scattering lengths are large compared to the typical
range of the nuclear interaction, set by the inverse pion
mass M−1

Ã ∼ 1.4 fm. The theory is constructed to yield
the most general parametrization of the nuclear force
within its regime of validity (characterized by the EFT
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breakdown scale ∼MÃ), and it has been used to make a
number of highly precise predictions for low-energy pro-
cesses (for a recent review of the theory and applications,
see Ref. [17]).

The strong nuclear interaction in Pionless EFT is de-
scribed by a series of contact (zero-range) interactions,
including an increasing number of derivatives as one goes
to subsequently higher order in the EFT expansion. In
the two-nucleon sector, this series reproduces the well-
known effective range expansion [32], which Pionless EFT
consistently extends to few- and many-nucleon systems.
Pionless EFT in particular captures the universal physics
reflecting the closeness of low-energy nuclear systems to
the unitarity limit (infinite two-nucleon S-wave scatter-
ing lengths). A remarkable feature stemming from this
is the appearance of a three-nucleon contact interaction
at leading order in the theory [33, 34], which one would
naively expect to be subleading.

In order to evaluate the correlation function as de-
fined in Sec. IIA in momentum space, in the following
subsection we consider first the general Faddeev formal-
ism for scattering calculations, which is not limited to
interactions derived from Pionless EFT. Since for the
moment we neglect electromagnetic effects, the result-
ing expressions will be valid for calculations of neutron-
deuteron correlation functions. For the proton-deuteron
system, discussed subsequently in Sec. II C 2, we will in-
stead use equations derived directly from a diagrammatic
approach, which we relate to general formalism.

1. Faddeev approach for neutron-deuteron scattering

We will follow here largely Ref. [35], with some differ-
ences, and begin with an overview of the homogeneous
Faddeev equation that describes bound states. Neglect-
ing three-nucleon forces, the basic Faddeev equation for
the three-nucleon bound-state problem can be written as

|Èð = G0tP |Èð , (32)

where |Èð denotes one of three equivalent Faddeev com-
ponents, G0 is the free three-nucleon Green’s function, t
denotes the two-nucleon T-matrix, and P is a permuta-
tion operator defined as

P = P12P23 + P13P23 . (33)

For definiteness, we use here the convention that |Èð
is the Faddeev components with nucleons 1 and 2 sin-
gled out. Therefore, t acts within the (12) subsystem,
and in order to represent the equations in momentum
space we use Jacobi momenta u1 = 1

2 (k1 − k2) and

u2 = 2
3 [k3 − 1

2 (k1 + k2)], where ki are the individual
nucleon momenta. Note that u1 and u2 are the mo-
menta conjugate to the Jacobi coordinated x and y, rep-
sectively, that were introduced previously. Projecting
the three-dimensional momenta onto partial waves yields

states |u1u2; sð, where

|sð = |
(
l2
(
(l1s1)j1

1
2

)
s2
)
J ;

(
t1

1
2

)
T ð (34)

collects angular momentum, spin, and isospin quantum
numbers. They are coupled such that (l1s1)j1 and t1
describe the two-nucleon subsystem, whereas l2 denotes
the orbital angular momentum associated with the Ja-
cobi momentum u2 and s2 is an intermediate quantum
number. Given a solution |Èð of Eq. (32), the full three-
nucleon wave function can be obtained as

|Ψð = (1 + P ) |Èð . (35)

In order to calculate three-nucleon scattering, we need
to consider an inhomogeneous Faddeev equation. Specif-
ically, we are interested here in neutron-deuteron (nd)
scattering, and to set up that system we define a state

|ϕð = |φdk; sdð (36)

that is a product of a deuteron state |φdð in the (12) sub-
system and a plane wave |kð which describes the relative
motion of the third nucleon with respect to the deuteron.
The sd in Eq. (36) is used to denote a set of three-nucleon
quantum numbers restricted to channels that support the
existence of a deuteron component, i.e., |sdð necessarily
has s1 = 1, t1 = 0, j1 = 1 and l1 = 0 or 2. In the
momentum-space partial-wave representation, we have

ïu1u2; s|ϕð ∼ φ
(l1)
d (u1)

¶(u2 − k)

u22
¶s,sd , (37)

where φ
(l1)
d (u1) is the momentum-space wave function

of the deuteron component with angular momentum l1.
In configuration space, if y denotes the Jacobi coordi-
nate conjugate to u2, the representation of |ϕð involves a
spherical Bessel function jl2(ky).

1

With the help of |ϕð we can now introduce an operator

T̃ that satisfies

|Èk; sdð = |ϕð+ T̃ |ϕð , (38)

where |Èkð is one Faddeev component of the neutron-
deuteron scattering state with relative momentum k.
Note that this definition is analogous to the definition
of the two-body T-matrix as the operator that maps a
plane-wave state to the full scattering state with the same
momentum. The T̃ we use here is related to the operator
called T in Ref. [35] by T̃ = G0T . The inhomogeneous

Faddeev equation used to calculate T̃ has the form

T̃ |ϕð = G0tP |ϕð+G0tP T̃ |ϕð . (39)

For clarity we choose here, unlike most references on the
subject, to explicitly write the dependence on |ϕð, so re-

ally the object that we obtain by solving Eq. (39) is T̃ |ϕð.

1 For pd scattering the Bessel function would be replaced by a

regular Coulomb wave function.
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Note that working with T̃ instead of T is convenient for
our goal of calculating scattering wave functions, but it
is by no means a necessary choice: T and T̃ contain ex-
actly the same physics information and one can easily
be obtained from the other. For a numerical solution we
project Eq. (39) onto the momentum-space partial-wave
states |u1u2; sð introduced before. To that end, note that
only the total spin J and isospin T (and their projections
MJ and MT that we do not specify explicitly) are con-
served quantum numbers for the three-nucleon system.
Therefore, in practice we need to fix J and T and in-
clude all channels |sð for which the intermediate quan-
tum numbers defined in Eq. (34) can couple to the chosen
total J and T . From Eq. (39) one therefore obtains a set
of coupled integral equations, which turn into a set of
coupled matrix equations upon discretization of the Ja-
cobi momenta u1,2 on a quadrature mesh. We omit here
the details of that numerical procedure and instead focus
on how to obtain scattering parameters and wave func-
tions from a solution of the equation system obtained via
Eq. (39).

In order to obtain elastic scattering parameters, one
calculates from T̃ another quantity

U |ϕð = PG−1
0 |ϕð+ PT̃G−1

0 |ϕð , (40)

and then this needs to be contracted with ïϕ′| = ïφdk; s
′
d|

from the left to obtain matrix elements ïϕ′|U |ϕð. The
dimension of the final matrix is determined by the al-
lowed combinations of quantum numbers l2 and s2 for a
given fixed total J , whereas l1 is summed over for each
individual matrix element. If standing-wave boundary
conditions are chosen for the solution of Eq. (39), the
resulting matrix is a K matrix from which it is straight-
forward to obtain phase shifts and mixing angles after
picking a particular representation.

The procedure for calculating scattering wave func-
tions is slightly different. Firstly, Eq. (39) is most con-
veniently solved with outgoing boundary conditions in
order to have direct access to the imaginary part of
the amplitude. Instead of U we are now interested di-
rectly in the Faddeev component |Èk; sdð as defined in
Eq. (38). In order to obtain from this a relative nd
wave function in momentum space, we need to project
onto an outgoing asymptotic state similarly to what we
did to obtain ïϕ′|U |ϕð, except that now we are using
ïϕ′| = ïφdu2; s

′
d|, with an arbitrary momentum u2 and

ïs′d| such that l′2 = l2 and s′2 = s2. Assuming that |φdð
is properly normalized to unity, this yields an expression
of the form

ïφdu2; s
′
d|Èk; sndð =

¶(u2 − k)

k2
+ ïφdu2; s

′
d|T̃ |φdk; sdð .

(41)
At this point we note that the discussion so far is based

only on the single Faddeev component |Èk; sdð and the

corresponding amplitude T̃ . That is sufficient if one is
interested merely in extracting elastic scattering infor-
mation (via U), and a Fourier-Bessel transformation of

Eq. (41) will produce a wave function the (reduced) radial
part of which has the appropriate form ∼ sin(ky+ ¶(k)),
which is used for example in configuration-space formula-
tions of the Faddeev equations [36]. To actually calculate
the full scattering wavefunction, however, we need to use
the analog of Eq. (35) for scattering calculations, i.e.,

|Ψk; sdð = (1 + P ) |Èk; sdð . (42)

Based on this we can then proceed as before and project
onto ïϕ′| = ïφdu2; s

′
d|. The result involves the same dis-

tribution part ¶(u2 − k)/k2 (which can be seen directly),
and its Fourier-Bessel transform will exhibit the same
asymptotic behavior ∼ sin(ky + ¶(k)), but the antisym-
metrization changes the detailed structure at short dis-
tances.

In order to evaluate the correlation function within this
formulation (without Fourier transformation of the wave
functions to coordinate space), we note that the source

function S(r) can be written as an operator Ŝ that is
local in coordinate space:

ïr| Ŝ |r′ð = exp
(
−r2/R2

)

(4ÃR)3/2
¶(3)(r− r′) . (43)

In momentum space, this translates to a non-local repre-
sentation that can be written in closed form [37]:

ïq, ℓ| Ŝ |q′, ℓ′ð = exp
(
−R2(q2 + q′2)

)
iℓ (2Rqq

′) ¶ℓℓ′ (44)

In this expression, ℓ denotes the orbital angular momen-
tum of a particular partial wave, and iℓ is a modified
spherical Bessel function. The scale R is related to the
source radius of Sec. II A via R =

√
3/4RM . Overall, we

can now write Eqs. (7a) and (7b) as

Ad Cnd(k) =
∑

sd

³(sd) ïΨk; sd| Ŝ |Ψk; sdð , (45a)

Ad = ïφd| Ŝ |φdð . (45b)

In Eq. (45a) we include a factor

³(sd) =
1

3

2J + 1

2× 3
, (46)

where the 1/3 in the front is due to the antisymmetriza-
tion in Eq. (42), and the rest covers the spin weights for
each individual contribution to the correlation function.
The factors 2 and 3 in the denominator account for the
spin 1/2 of the neutron and the spin 1 of the deuteron,
respectively.

2. Diagrammatic approach for proton-deuteron scattering

Coulomb effects in Pionless EFT were first studied in
Ref. [38] for two nucleons, and in Ref. [39] for proton-
deuteron scattering in the J = 3/2 channel; Ref. [40] was
the first to extend this work to scattering in the J = 1/2
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channel. Importantly, Ref. [41] established that with
a nonperturbative inclusion of Coulomb effects, which
is mandatory in the very-low-energy regime, an isospin-
breaking correction to LO three-nucleon force enters at
next-to-leading order (NLO) in the EFT power count-
ing. At intermediate energies as well as for the trinucleon
bound states (3H and 3He), however, Coulomb effects are

a perturbative correction [42–44]. In this work we use the
nonperturbative treatment in order to describe pd scat-
tering from zero energy all the way up to the breakdown
scale of the theory, MÃ ∼ 140 MeV, in a single unified
formulation.

The part of the Pionless EFT Lagrangian that is rele-
vant for the present work can be written as

L = N 
(
iD0 +

D2

2MN

)
N − di 

[
Ãd +

(
iD0 +

D2

4MN

)]
di − tA 

[
Ãt +

(
iD0 +

D2

4MN

)]
tA

+ yd
[
di 

(
NTP i

dN
)
+ h.c.

]
+ yt

[
tA (NTPA

t N
)
+ h.c.

]
+ L3 + Lphoton , (47)

with the nucleon field N (with mass MN ), a doublet in
spin and isospin space, and two dibaryon fields di (with
spin 1 and isospin 0) and tA (with spin 0 and isospin
1), corresponding to the deuteron and the spin-singlet
isospin-triplet virtual bound state in S-wave nucleon-
nucleon scattering. Projectors P i

d and PA
t are used to se-

lect the appropriate quantum numbers for nucleon field
bilinears. The formulation in terms of dibaryon fields
that we use here is particularly convenient to discuss
nucleon-deuteron scattering. It is equivalent to Pionless
EFT constructed with only nucleon fields in the strong
sector, and the coupling constants yd/t and Ãd/t can be re-
lated to the standard low-energy constants C0,d/t, C2,d/t

that multiply two-nucleon contact interactions. An im-
portant feature that arises from the closeness of the low-
energy few-nucleon regime to the so-called unitarity (in-
finite S-wave scattering lengths) limit—close enough, in
fact, to permit a perturbative expansion around it [45]—
is the presence of a three-nucleon interaction already
at leading order (LO) in the theory, first derived in
Refs. [34, 46]. We write this interaction in Eq. (47) sim-
ply as L3 and refer to the review [17] and the original
references above for details.

The coupling of nucleons (and dibaryons) to the elec-
tromagnetic (e.m.) field is implemented by the covariant

derivative Dµ = ∂µ + ieAµQ̂ with the charge operator

Q̂, e2 = 4Ã³ the e.m. coupling strength, and the pho-
ton field Aµ. The photon kinetic term is included in
Lphoton. In the nonrelativistic low-energy regime we con-
sider, we need only to keep the contribution of so-called
Coulomb photons, corresponding to a static potential
∼ 4Ã³/(q2 + ¼2) between nucleons, where q denotes the
momentum transfer and ¼ is a small photon mass (in-
frared regulator) necessary for a momentum-space for-
mulation of the theory. More details on the formalism
can be found in previous publications on the subject (see
e.g.. Ref. [40]).

Proton-deuteron scattering in the spin-doublet chan-
nels (J = 1/2) is described by an integral equation
that is shown diagrammatically in Fig. 2. This equa-
tion describes an amplitude T , represented by the blob

with hatched shading, and involves two coupled channels
because in intermediate configurations both spin-triplet
and spin-singlet two-nucleon states can appear. These
are drawn as double lines and thick lines, respectively.
In spin-quartet channels (J = 3/2), the Pauli princi-
ple prohibits intermediate spin-singlet states, and conse-
quently in this channel the scattering amplitude is given
by merely the first row in Fig. 2. For either channel, we
numerically implement the integral equation by project-
ing on a particular spin channel (described by quantum
numbers sd as introduced in the previous section), and by
discretizing all momentum integrals (arising from loops
in the diagrams) to obtain matrix-vector equations. The
full details of this procedure can be found for example in
Refs. [41, 47].

We can relate T to the scattering amplitude T̃ in-
troduced in Sec. II C 1. If we consider the special case
of a separable two-body interaction between nucleons,
V (u, u′) = C0g(u)g(u

′) for momenta u and u′ (where
g(u) in an EFT context implements an ultraviolet cut-
off for a given regularization scheme), then we can write
(neglecting discrete quantum numbers for simplicity):

T̃ (u1, u2) = g(u1)Ä(MNE − 3
4u

2
2)G0(E;u1, u2)T̃ (u2) ,

(48)
where Ä expresses the energy dependence of the separable
two-nucleon T-matrix,

t(E;u, u′) = g(u)Ä(MNE)g(u′) . (49)

For each two-nucleon channel, the T-matrix can be ob-
tained by algebraically solving the Lippmann-Schwinger
equation for the separable potential V [48], or equiva-
lently by solving an equation that follows from a diagram-
matic representation of the “dibaryon propagators” that
appear as intermediate states (double and thick lines) in
Fig. 2 [41, 47].

The relationship between T̃ and T is then just a factor,

T̃ = −MN

4Ã
T , (50)

up to potentially different regularization schemes. Specif-
ically, the diagrammatic approach does in fact not use the



10

= + + + ×

(

+ +

)

+ ×

(

+

)

+ ×

(

+

)

= + + ×

(

+

)

+ ×

(

+ +

)

+ ×

(

+

)

= + + ×

(

+

)

+ ×

(

+

)

FIG. 2. Coupled-channel integral equation for the full (i.e., strong + Coulomb) proton-deuteron scattering amplitude in the
J = 1/2 channel. The diagrams representing the three-nucleon force have been omitted. Notation as in Ref. [40].

separable Gaussian regular, but instead imposes a sharp
cutoff Λ imposed directly on momentum integrals. This
can be interpreted as setting g(u) = Θ(Λ − u), where
Θ denotes the unit step function. Note that the details
of the running coupling C0(Λ) change with the regula-
tor, but the physics does not depend on this arbitrary
choice. Finally, Eqs. (50) and (48) can be combined and
inserted into Eq. (41), which then leads to an expression
for the pd correlation function Cpd(k) via Eqs. (45). To
conclude this part we note that when the momentum k
and therefore the associated energy E is large enough to
break up the deuteron (k >∼ 50 MeV), the Green’s func-
tion G0 in Eq. (48) exhibits an on-shell singularity. We
account for this effect by adding a small imaginary part
i¸ with ¸ j E to the energy.

3. Next-to-leading order calculation

In a rigorously perturbative setup, as we employ it
here, the pd correlation function has an expansion of the
form

Cpd(k) = C
(0)
pd (k) + C

(1)
pd (k) + · · · , (51)

where C
(0)
pd (k) is the leading-order (LO) result, C

(1)
pd (k) is

the next-to-leading-order (NLO) correction, and the el-
lipses represent higher-order corrections that we do not
consider in this work. We emphasize that the LO calcu-
lation is still performed in a nonperturbative manner at
the three-nucleon level, which is necessary at least in the
JÃ = 1/2+ partial wave to generate the 3He bound state,
and for convenience applied to all partial waves at leading

order. Moreover, the formalism naturally includes the
LO two-nucleon interaction nonperturbatively, as man-
dated by the shallow S-matrix poles associated with the
large NN scattering lengths. All corrections applied on
top of LO, however, are included via strict distorted-wave
perturbation theory, and that is what we refer to as the
“rigorously perturbative setup” in this context.

Assuming that the source operator does not have an
expansion by itself, the series in Eq. (51) is generated by
the EFT expansion of the scattering wave function,

|Ψkð = |Ψ(0)
k ð+ |Ψ(1)

k ð+ · · · , (52)

which is, in turn, generated by the expansions for T̃ and
Ä , see Eq. (50). Moreover, the deuteron wave function
has an analogous expansion

|φdð = |φ(0)
d ð+ |φ(1)

d ð+ · · · , (53)

which gives rise to an expansion for Ad. Overall, we have

A
(0)
d C

(0)
pd (k) = ïΨ(0)

k | Ŝ |Ψ(0)
k ð (54)

at leading order, whereas at NLO we need to extract

C
(1)
pd (k) from

A
(0)
d C

(1)
pd (k) +A

(1)
d C

(0)
pd (k) = 2Re ïΨ(0)

k | Ŝ |Ψ(0)
k ð . (55)

This can be achieved by noting that independently we

have A
(1)
d = 2Re ïφ(0)

d | Ŝ |φ(1)
d ð, and from the LO calcu-

lation we already know C
(0)
pd (k). Hence, we can solve

Eq. (55) for C
(1)
pd (k).
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Each component of the wave function ΨLSJJz
gives a

separate contribution and we can define

CJÃ

nd (k) =
∑

LS

CLSJ
nd (k) , (58)

where Ã = ± indicates the parity and the sum is over
all the possible LS combinations for a given J and Ã.
Then we compare the contributions from different partial
waves 2S+1LJ to the nd correlation function Cnd(k). We
use the AV18 interaction and consider the specific cases
of E = 0.3195 MeV (k = 20 MeV) and E = 2 MeV
(k = 50 MeV), with both the PHH method and Faddeev
equations. The results are shown in Table I.

k = 20 MeV k = 50 MeV

Jπ Wave PHH Faddeev PHH Faddeev

1

2

+ 2S 1

2

0.42854 0.42763 0.26003 0.25950
4D 1

2

0.00004 0.00004 0.00075 0.00072

1

2

− 2P 1

2

0.00262 0.00256 0.01662 0.01635
4P 1

2

0.01713 0.01655 0.07336 0.07062

3

2

+ 4S 3

2

0.00931 0.00883 0.01742 0.01651
2D 3

2

0.00007 0.00007 0.00234 0.00222
4D 3

2

0.00004 0.00004 0.00115 0.00110

3

2

− 2P 3

2

0.00514 0.00497 0.03225 0.03146
4P 3

2

0.03588 0.03506 0.13444 0.13118
4F 3

2

0.00000 0.00000 0.00008 0.00007

5

2

− 4P 5

2

0.06214 0.05900 0.25767 0.24525
2F 5

2

0.00000 0.00000 0.00007 0.00007
4F 5

2

0.00000 0.00000 0.00012 0.00010

TABLE I. Contributions from partial waves 2S+1LJ to the
neutron-deuteron correlation function Cnd(k) calculated at
E = 0.3195 MeV (k = 20 MeV) and E = 2 MeV (k = 50
MeV) with the AV18 potential, using two different methods
to perform the calculation. The source radius RM here is
chosen to be 1.5 fm.

As it can be seen in the table, there is a overall good
agreement between the two calculations up to minor
differences. The remaining small discrepancies are re-
flecting differences in the numerical approaches (such as
configuration-space versus momentum-space discretiza-
tions and corresponding truncation schemes), and in part
they are likely also due to the fact that for the Faddeev
calculation isospin breaking components within the AV18
are neglected, i.e., the np and nn interactions are taken
to be exactly degenerate. We also observe that at the en-
ergies we consider the largest contributions are brought
by the 2S 1

2

and 4PJ waves.

C. Proton-deuteron correlation function

In the following we show our results for the proton-
deuteron correlation function Cpd(k), starting with the
PHH calculation. As in the nd case, each component of
the wave function gives a separate contribution, namely

Cpd(k) =
1

Ad

1

6
4Ã

∑

JLS

(2J + 1)

×
∫
Ä5dÄdΩ

e−Ä2/4R2

M

(4ÃR2
M )3

|ΨLSJJz
|2

≡
∑

JLS

CLSJ
pd (k) . (59)

As before, we can define

CJÃ

pd (k) =
∑

LS

CLSJ
pd (k) . (60)

In Fig. 4 the pd correlation function Cpd(k), calculated
using the AV18+UIX interaction, is shown splitted in
the different contribution up to J = 5/2. For higher
values of the angular momentum, the interaction gives
a negligible contribution and the correlation function is
therefore computed considering only the Coulomb force.
In the figure this is indicated by the curve labeled “Rest”,
whereas the curve labeled “TOT” gives the correlation
function including all contributions.

Note that low values of k corresponds to small values of
the pd relative kinetic energy Tpd (as an example, k = 10
MeV corresponds to Tpd = 79 keV). For k → 0, the effect
of the Coulomb repulsion dominates and the correlation
function tends rapidly to zero. In this region, the largest
contribution is given by the pd waves with L = 0, in par-
ticular the L = 0, S = J = 1/2 wave, whereas the L = 0,
S = J = 3/2 wave is suppressed at short inter-particle
distances due to the Pauli principle (for S = 3/2, all three
nucleon spins may be aligned). Around k = 60 to 160
MeV, the L = 1, S = 3/2 components with total angular
momentum and parity JÃ = 1/2−, 3/2−, and 5/2− start
to give sizeable, resonance-like, contributions. In fact, in
those waves the effective pd interaction is rather attrac-
tive and the corresponding phase shifts increase very fast
with energy [50]. Moreover, below k = 200 MeV there
is a moderate splitting of the quartet L = 1 phases [30],
and their relative contributions are nearly related by a
factor (2J + 1), see Eq. (59). The effect from this in
the total correlation function is the appearance of a wide
bump with maximum located approximately at k = 120
MeV. At higher values of k, higher partial waves start to
contribute and the correlation function tends to one.

In addition to the study of the different partial waves
contribution, it is of interest to consider the correlation
function calculated with different interaction models. To
this aim, in Table II we show the values of the corre-
lation function at several energies computed with the
AV18+UIX, the AV18 (without accompanying 3N inter-
action), and with the NVIa/3N interaction. Moreover, in
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sonable agreement, in particular if one keeps in mind that
in this figure we do not indicate EFT uncertainty bands
on top of the source-radius variation. For the nd cor-
relation function, some mild tension between the EFT
result and potential models might exist in the low-k re-
gion. While based on comparing Cpd(k) calculated us-
ing AV18 with and without UIX three-nucleon force we
do not expect including UIX in the calculation of Cnd(k)
would improve the agreement, we note that even at small
k there is a sizeable shift from LO to NLO in the EFT
result. Based on that, we believe that an N2LO calcu-
lation, which would include NN P -wave interactions as
well as effects from the 3S1-

3D1 mixing induced by the
nuclear tensor force, is likely to narrow the discrepancy
between the different interactions.

IV. SUMMARY AND OUTLOOK

Femtoscopic analyses of correlation functions extracted
from high-energy collisions of protons and nuclei have
opened the door to new studies of low-energy scattering
processes in light systems such as pd, Λd, ppp, ppΛ, and
many others. Measurements of correlations in these sys-
tems have recently been performed, or are planned by
the ALICE Collaboration in the near future. Accord-
ingly, methods that have been applied in recent years
to calculate scattering observables can be used to obtain
the above-mentioned correlation functions. The present
study that performs a detailed analysis of the Nd correla-
tion functions is the first step in this direction. Although
the nd correlation function, Cnd, cannot be measured at
present since neutron detectors are not being used in the
relevant experiments, its study serves to compare dif-
ferent methods, as the Faddeev and PHH techniques.
In fact, the nd system does not present the challenge
of treating the long-range Coulomb interaction. In this
work, the AV18 potential has been used to make com-
parisons for Cnd(k), with the conclusion that the PHH
technique and the solution of the Faddeev equations pro-
duce extremely close results. This study, which directly
involves the scattering wave functions, extends to some
extent previous benchmarks done between these tech-
niques [35].

The next step in this work has been to use the PHH
wave functions obtained for AV18 and other nuclear po-
tential models to compute the pd correlation function
Cpd(k) in a broad energy range, in order to enable de-
tailed comparisons to current and upcoming measure-
ments. The ALICE Collaboration has presented pre-
liminary results for the pd correlation function measured
in proton-proton collisions [55] and final results are ex-
pected to be published soon. The correlation function,
as a function of the energy, has some structure produced
by the interplay of contributions from different partial
waves. At low energies the system in relative S-wave is
dominant, whereas a peak around values of k = 120MeV
appears when the relative P -wave starts to dominate.

These are the partial waves in which the short-range
nuclear interaction produces the largest effect. Due to
the centrifugal barrier, higher partial waves are mostly
dominated by the Coulomb interaction. All these con-
siderations have been presented in dedicated figures and
tables. In particular, we have considered the impact of
different interactions, with and without the inclusion of
three-nucleon forces, on the correlation functions. The
conclusion is that within the context of potential mod-
els different interactions give very small variations, not
above 1% effects, whereas the three-nucleon force pro-
duces changes of around 2% in the observable. Since the
correlation function is an integral observable, effects of
this kind are expected to be small. However a 2% effect
is likely within the reach of the next experimental runs
planned by the ALICE Collaboration, and this is one of
the main indications of the present analysis. In addi-
tion to phenomenological potential models, we have also
performed a Pionless EFT calculation of the correlation
function, going up to next-to-leading order in the EFT
expansion in a rigorously perturbative setup. Within the
theoretical uncertainty of the EFT, we find overall good
agreement with the potential-model calculations in the
low-energy regime where the EFT is applicable.

In order to compute the correlation function, two in-
gredients are needed, the source function and the scatter-
ing wave function. The size of the source is determined
by the size of the emitting nucleon source and it is fixed
by the analysis of the transverse mass mT (defined as
mT =

(
k2T +m2

)1/2
, wherem is the average mass and kT

is the transverse momentum of the pair). A precise de-
termination of the dependence of the source size with the
transverse mass mT has been realized in proton-proton
collisions [21]. For the present analysis, the source term
is characterized by the effective nucleon-nucleon distance
and depends on the mT of the emitted pd pairs. The
value of RM = 1.5 fm was used in this paper because
it is close to the value that gives the best description of
the preliminary Cpd(k) data from the ALICE Collabora-
tion [55].

Overall, we can draw two main conclusions: the first is
that the nucleon-deuteron scattering wave function, cal-
culated in the present analysis with a full account of the
three-body dynamics, introduces a complex dynamical
behavior in the correlation function through the relative
importance of different partial waves, in particular the
interplay between S- and P -waves. Secondly, we show
that over the considered range of momenta up to 400
MeV, the correlation function is sensitive to aspects of
the nuclear interaction, in the present work constructed
as a sum of two- and three-nucleon contributions. We
conclude that the present study supports the experimen-
tal efforts devoted to measuring the correlation function
in light nuclear systems dominated by the strong inter-
action.
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