Role of three-body dynamics in nucleon-deuteron correlation functions
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Correlation functions of hadrons can be accessed in high-energy collisions of atomic nuclei, re-
vealing information about the underlying interaction. This work complements experimental efforts
to study nucleon-deuteron Nd—with N = p (proton) or N = n (neutron)—correlations with theory
evaluations using different techniques. The correlation functions Cpq and Cpq are calculated based
on scattering wave function, extending previous benchmarks for the Nd scattering matrix to this
new observable. We use hyperspherical harmonics and Faddeev techniques with one of the widely
used nucleon-nucleon (NN) interactions, the Argonne vig potential. Moreover, in the low-energy
region we perform additional calculations in the framework of pionless effective field theory. The
pd correlation function is computed in the large-energy region to make contact with a recent mea-
surement by the ALICE Collaboration. We show that the scattering wave function has the proper
dynamical input to describe an initial rise and subsequent oscillations of Cp4 as a function of the en-
ergy. Effects on the observables using different NN and three-nucleon potentials are evaluated with
the conclusion that variations of around 2% are observed. Although these effects are small, future
measurements can go beyond this accuracy allowing for new detailed studies of strong interaction in
light nuclear systems. The present study supports the current efforts devoted to the measurement
of correlation functions in systems dominated by the strong interactions, such as pd, ppp, Ad and

ppA.

I. INTRODUCTION

The study and description of the dynamics of few-body
systems comprised of nucleons and atomic nuclei play
a fundamental role in nuclear physics. A comprehen-
sive understanding of the nuclear force between nucleons
inside nuclei and in a denser environment requires an
accurate understanding of the few-body dynamics, and
achieving this has been a long-standing goal of nuclear
physics for many years. In this regard, few- and many-
body systems provide a unique laboratory for studying
nuclear interactions and the equation of the state of
dense nuclear matter [1-3]. In recent decades, modern
many-body nuclear physics advances have opened doors
to study nucleon-nucleus and nucleus-nucleus scattering
and reactions from first principles (see Refs. [4-7] and
references therein). Nucleon-deuteron (Nd) scattering is
a fundamental process in nuclear physics that plays a
crucial role in understanding structure and dynamics of
atomic nuclei. The deuteron, composed of one proton
and one neutron, is the simplest and most abundant nu-
cleus in nature that is bound together by a strong force.
Studying its interaction with another nucleon serves as
a test bed for studying three-nucleon effects. This in-
cludes not only the occurrence of genuine three-nucleon
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forces (3NFs)—i.e., effects arising not merely from pair-
wise two-body interactions—but also the interplay of the
nuclear interaction with the Pauli principle, i.e., the fact
that nucleons as Fermions need to have fully antisym-
metric wave functions at the quantum level. The three-
nucleon system is the simplest system where these effects
can be studied, and several methods exist to investigate
it theoretically with great precision.

Experimentally, the study of the Nd process has a long
history dating back to the early days of nuclear physics,
which includes various techniques, such as scattering ex-
periments, polarization measurements, and reactions in-
duced by electroweak probes [8, 9]. These measurements
have revealed a rich and complex structure that is de-
termined by the interplay between various aspects of the
nuclear force, such as one-pion exchange, repulsive and
attractive components, and the tensor force. Moreover,
in the pd case, the Coulomb force has to be considered
as well as, and its effect is particularly relevant at low
energies [10].

Theoretically, Nd scattering was initially studied based
on potential models. In the 1990s, realistic nuclear po-
tentials describing the NN interactions were constructed
by fitting the NN world database [11-13|, consisting of
more than 4000 pp and np data at the time, with a x?
per datum close to one. With the development of the ef-
fective field theories (EFTs), potential models appeared
constructed order by order in a series expansion of the
interaction. At present, EFT potentials based on chiral
effective field theory (Chiral EFT) are available going up
to fifth order in the expansion and they reproduce the
NN scattering data up to 350 MeV lab energy with ex-



tremely good accuracy [14, 15|. Starting with Ref. [16],
focus in the development of Chiral EFT has shifted to-
wards applying the expansion directly to observables, in-
vestigating in particular questions of renormalization and
details of the so-called “power counting,” i.e., the process
of assigning orders to individual components of the in-
teraction. For a review of these efforts and of nuclear
effective field theories in general, see Ref. [17].

Beyond the two-nucleon sector that is for the most
part used to constrain parameters of the interaction, the
three-nucleon system is the simplest scenario in which
highly accurate nuclear potentials can be used to make
predictions. For this reason strong efforts have been
made in the last years to solve the equations that govern
the three-nucleon dynamics in bound states and scatter-
ing processes. The necessity of including 3NFs was known
for a long time, mainly motivated by the fact that highly
accurate two-nucleon potentials would typically predict
the triton binding energy below its experimentally known
value. One of the early successes of nuclear EFTs was
the a priori prediction that such forces are present and
in fact required. The impact of the 3NFs in the three-
and four-nucleon continuum is at present under investiga-
tion. In particular, although the chiral expansion nicely
organizes the importance of different three-nucleon inter-
action terms, only those terms appearing at the lowest
orders have been considered so far. There are indications
that subleading three-nucleon interaction terms, though
small, improve the description of particular polarization
observables [18].

In the present study, we focus on the Nd correlation
function (defined in more detail in the next section). The
primary motivation for this work is that precise measure-
ments of correlations in the momentum space for the pd
system have been made available by the ALICE Collab-
oration using proton-proton (pp) collisions at the Large
Hadron Collider (LHC). For the simpler case of pp cor-
relations, the ALICE Collaboration has previously mea-
sured the correlation function using the so-called fem-
toscopy technique [19-21]. The experimental data can
be compared with theoretical calculations by evaluating
the integral
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where S(r) is a source function that parameterizes the
distance r at which the two protons are emitted after the
high-energy collision, and 1y, is the pp scattering wave
function depending on the reduced relative momentum
of the pair (k = |p2 — p1|/2). An extremely accurate
description of this observable was obtained using the Ar-
gonne vig (AV18) NN interaction [11]. As we discuss
in detail in the following section, the extension of the
formalism to handle the Nd case is not trivial because
the wave function needs to account for the three-nucleon
dynamics mentioned above. We develop in this work a
framework that includes all relevant complexities related
to the correct description of the system, including an-

tisymmetrization effects. Moreover, the concept of the
source function, which for the pp correlation function is
related to the emission of two nucleons and can be pre-
cisely characterized [21], has to be extended to the case
of three emitted nucleons, two of which form a deuteron.

Since this is the first time that this observable is anal-
ysed for a three-nucleon system, we find it useful to em-
ploy two different approaches to solve the three-body dy-
namics, the solution of the Faddeev equations and the
hyperspherical harmonic (HH) technique. Moreover, for
the nuclear interaction we consider both the AV18 po-
tential, supplemented by the Urbana IX (UIX) 3NF [22],
and, to make contact with the modern EFT description
of the nuclear interaction, we additionally use pionless
effective field theory (Pionless EFT) to calculate the cor-
relation function. This EFT has the advantage that its
power counting and renormalization properties are well
understood. However, since by construction this theory
does not explicitly include the physics of pion exchange,
its regime of validity is limited to the low-energy region.
In addition, we also perform a calculation using an two-
and three-nucleon potential model derived within Chiral
EFT, one of the so-called Norfolk interactions [23], the
NVIa+3N in the notation of Ref. [24] In the analysis of
the correlation function with such highly accurate NN
potentials, particular attention will be given to the effects
of the accompanying three-nucleon forces.

The manuscript is organized in the following way: in
the next section, we describe the theoretical formalism
for the calculation of the of Nd correlation functions.
In particular, in Sec. IIA we discuss the basic formal-
ism for three-nucleon correlations before we move on to
review the HH (Sec. IIB) and Faddeev (Sec. IIC) for-
malisms, along with a brief introduction to Pionless EFT.
The main results and benchmarks comparing the differ-
ent techniques used are given in Sec. III. We conclude
with a summary and outlook in Sec. IV.

II. FORMALISM

A. Full three-body calculations of the
nucleon-deuteron correlation function

The two-particle femtoscopic correlation function is de-
fined as the ratio of the Lorentz-invariant yield of a parti-
cle pair to the product of the single-particle yields. Using
p: to denote the momentum of each particle, it can be
written as [25].

EyEy dAN*2/ (d%py d3p2)
(E1dN1/d3py) (B2 dN?/d3ps)
_ P (p1,P2) . (2)
P (p1) P (p2)

As indicated by the final equality in Eq. (2), the corre-
lation function can also be understood as the ratio be-
tween P(p1,Pp2), the probability of finding a pair of par-
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ticles with momenta p; and ps, and P(p;), the proba-
bility of finding each particle with momentum p;. In the
absence of any correlations, the two-particle probability
factorizes, P(p1,p2) = P(p1)P(p2), and the correlation
function is equal to unity. In the quantum mechanical
description, the correlation between a pair of particles
(with spins s and s, respectively) can be related to the
particle emission and the subsequent interaction of the
particle pair, as discussed in Ref. [26], as

C(p1,p2) = F > /dgrld 7281 (r1) 51 (r2)

my,m2
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where WU, m,(P1,P2,r1,r2) denotes the two-particle
scattering wave function that asymptotically describes
particle 1 (2) with momentum p; (p2) and spin projec-
tion my (mg), with weights T' = (257 + 1)(2s9 + 1). In
Eq. (3) Si1(r) describes the spatial shape of the source
for single-particle emissions. It can be approximated as
a Gaussian probability distribution with a width Ry,
which is defined as follows:

_ # —r% /2R3,
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Ry is also known as the source size for single particle
emission. Eq. (3) can be simplified by noting that in the
wave functions the dependence on the overall center-of-
mass (CM) coordinate can be trivially factored out. In-
troducing the CM coordinate R = % where M;
and M, are the masses of the two particles, the relative
distance r = r; —ro, and rewriting the two-particle wave
function as \Ilml,mg (pla p2,r1, 1‘2) = eiiR.Pd}ml,mg,k(r)
leads to the Koonin-Pratt relation for two-particle corre-
lation function [27], which we write here as
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where ¥y, m, k () represents the two-particle relative
wave function, with k = (p; — p2)/2, and S(r) is the
two-particle emission source, given by

1 3/2 _%
S(T) = (47‘(‘_R§/[> e Fm | (6)

Overall, we have arrived, essentially, at Eq. (1) as stated
in the Introduction. We note that for simplicity we did
not consider spin degrees of freedom in writing Eq. (1),
and moreover the scattering wave function ¢ used in the
introduction includes all partial waves. A more detailed
discussion of how the partial-wave expanded form can be
obtained from this will be given for the three-body case
below.

For the extension of the formalism to calculate three-
nucleon correlation functions, we follow the general coa-
lescence model as it has been discussed in Ref. [26]. For

the specific case of nucleon-deuteron correlations, the for-
malism is based on the following expressions:
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where k is the Nd relative momentum and A, the “prob-
ability of formation of the deuteron”. The subscript N
represents either a proton (p) or a neutron (n), and in the
following we consider both cases. Hereafter m (ms) de-
notes the spin projection of the nucleon (deuteron). We
also denote the deuteron bound-state wave function as
@%2, whereas \I'fyl;l m, k represents the nucleon-deuteron
scattering wave function. In the above equations we indi-
cate explicitly sums over angular-momentum components
my and mo, but we note that whether or not these ap-
pear explicitly in practical calculations depends on the
method used to solve the equations: we consider both an
approach based on HH, where m; and ms are explicitly
summed over, as well as Faddeev equations in momen-
tum space, where these sums are implicit in the choice of
basis.

Eq. (7) can be simplified by introducing the CM and
relative coordinate, as well. For Ay, we change integra-
tion variables, introducing r = r1—72 and R = (1"1 +73)
(we disregard the proton-neutron mass dlﬁerence in this
paper). Writing the product Si(r1)S1(r2) in terms of r
and R and then integrating over R, one obtains

sz /o

In the integral (7a), we can use the variables

e~ /ARY,
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Integrating over d®R3 (the wave function e.my k dO€S

not depend on Rj3), we obtain

=55, /o

77L2,m1

e—(3y°+a2%)/4R3,

AqiCnalk 3
37TR2 2 )2 (4nR2,)2

x [ ky . (12)

ma,my,



Introducing the vectors & = \/gy and & = «, this
integral can be rewritten as

;2 (5) [race
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Let us now introduce the so-called hyperradius, defined

as p = /& + &5, and the hyperangles variables () [2§]
(see below), such that d?¢;d%¢, = p°dpd€2. Finally, we

obtain

e—P?/AR
4 RQ 3’ mg,mlk’

(14)
As a check of this formula, let us approximate the
Nd wave function by the following asymptotic structure
properly anti-symmetrized

AqCna(k
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(15)

where y, are defined below in Eq. (18) (see also Fig. 1,
note that x3 = x and y3 = y). We work here with the
form given in Eq. (12). For k — oo, we can disregard the

\I/Nd

mo,mq,k|

terms coming from different permutations in ‘

as e~ Us x Y2 a5 their contribution becomes vanish-
ing. We have three terms left. However, it results

. . . 4 . .
v+ 2% = p* = —yi + 1} £=1,2,3. (16)

3

Therefore, each of the three terms gives the same contri-
bution cancelling the factor (1/4/3)2, and one obtains

Z / dPzd’y

m2 miy
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Therefore, in this case Cnq(k — o0) = 1 as expected.

B. Hyperspherical harmonics description of the
proton-deuteron wave function

We discuss the calculation of the proton-deuteron cor-
relation function by taking into account the full dynamics

Yo

Xy
J
FIG. 1. Definition of the Jacobi vector x, and y,.

of the three particles. Initially, we include only the ef-
fect of the long-range Coulomb interaction between the
proton and the deuteron. However, we still take into ac-
count the antisymmetrization of the wave function. This
simple scenario will allow us to subsequently address the
full case including the short-range nuclear interaction.
In the following, for a given permutation 7j¢ of the three
nucleons, we define the Jacobi coordinates (see Fig. 1)

Tp=7;—T;, yg:rg—m—;—r]. (18)
To construct an antisymmetric wave function it is suf-
ficient to consider the three “even” permutations of the
three particles, namely ij¢ = 123, 231 and 312. For this
reason, we can specify the permutation (and the various
quantities) just giving the value of £ = 1,2, 3.

We introduce here also the hyperangular coordinates.
The hyperradius p and hyperangles ¢, are defined in
terms of the moduli of the Jacobi vectors, explicitly

4 4 ye
p=\ai+3yi,  tanpr= 5o, (19

The hyperradius p turns out to be independent on the
permutatlon ¢. In fact, it can be shown that p? = 2 2(ris+
%5 4+ 135), where r;; is the distance between p(utlcles i
and j. The set of hyperangular and angular variables is
denoted with €,, namely

Qo = {pe, &0, Yo} (20)
where &, (g¢) denotes the polar angles of vector x; (y;).

When the permutation index is not indicated the refer-
ence order of the particles ¢5¢ = 123 is understood.

1. Free case

Let us consider the free case, i.e., no nuclear interaction
between the p and d clusters. The wave function is then



simply given by

even perm.

Z <P?n2(ivj)Xm1 (g)éc(kayl) )
L

(21)
where as before ¢ (i, j) is the deuteron wave function
with spin projection ms, k is the relative momentum
between the two clusters, X, (£) is a spinor describing
the proton, and ®.(k,y,) is a Coulomb-distorted plane
wave, having the following partial-wave expansion:

pd,(free) 1

mg,my1k ﬁ

) * L ~\ 10 F 7k
Ok, y) = 247”L Y (k)Y (9)e LL(IZyy) )

LM

(22)

Here Fp(n,ky) is the regular Coulomb function and oy,

the Coulomb phase shift. The neutron-deuteron case can
be recovered just replacing ®.(k,y,) — e’¥e.

Before we address the full interacting case, it is conve-
nient to expand the free wave function (21) using Eq. (22)
and rewrite it as a sum of terms with definite total an-
gular momentum J. Using one of the possible choice of
the recoupling order, we obtain

pd,(free)
ma,mi,k

Z Varil 2L + 1etor

LSJ

1
x (Imagmy | ST.)(LOST. | J.J.)
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where we have assumed k//2 and therefore Yz (k) =

\2/%151V170- Note that J, = mi + ma.

2. Fully interacting case

Now, let us consider the fully interacting case. The
total wave function becomes

. 1
8 = 3 VI (s 0
LSJ
X (LOSJ. | JJ)¥Lsyg

2

(24)

where Vg7, are three-body wave functions satisfying
(H — E)\I/LSJJZ = O7 with

EFE=-— -8B 25
3MN d ( )

B, denoting the deuteron binding energy and My the
nucleon mass. We compute such wave functions as

u’n (073
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n,o
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Here Yy, o(€2) is a set of completely antisymmetric basis
functions constructed in terms of HH functions (which
form a complete basis in the Q Hilbert space) multiplied
by appropriate combinations of spin-isospin states of the
three particles. Explicitly,

even perm.

Vnal@ = Y falw)Na(singe)"(cos )™
0
X Pfﬁ%’Lﬁ%(cos 2¢0)
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(27)
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where o« = {L;, Ly, A, S2,3,T5, T} is a set of quantum
numbers specifying the HH functions, P%* a Jacobi poly-
nomial of degree n, and N suitable normalization factors.
Moreover, to accelerate the convergence of the expansion
over n, we have added the so-called “correlation factors”
fa(ze), chosen in order to reproduce the behaviour of the
wave function when the particles i and j are close (and
thus the distance x, is small). These functions therefore
describe the two-body correlations of the wave functions,
and clearly they depend on the spin-isospin-angular state
of the pair (i.e., by the quantum numbers «). The ex-
pansion so organized is called Pair-Correlated HH (PHH)
expansion. For a discussion of the choice of the functions
fo and a review of the properties of the HH and PHH
states, see, for example, Refs. [28, 29].

The calculation is performed as follows. For a given
choice of the quantum number « (called a “channel”), the
functions given in Eq. (27) with increasing values of n
are considered, up to a value N,, chosen so to have a
convergence of the quantities of interest, as the phase-
shifts. Thanks to the presence of the correlation factor,
a very good convergence is obtained already with low val-
ues of N,, typically N, = 5—10 is sufficient. Then other



channels are included in the expansion, etc. Note the the
most important channels are those with low values of L,
and L, so we usually start by including in the expansion
channels with L, + Ly, = £ = 0 or 1, and then increase
the values of £. Usually it is sufficient to consider chan-
nels up to £ = 5 or 6, of a total number ranging from
18 to 30, depending on the value of J™. At the end the
expansion over n and « includes some hundreds terms.

The expansion in the first row of Eq. (26) describes
the system when the three nucleons are close to each
other. The hyperradial functions u, o (p) are obtained by
solving a set of coupled differential equations, obtained
using the Kohn variational principle [30, 31]. They go
asymptotically to zero for energies below the deuteron
breakup threshold, whereas for energies E = Q*/m > 0,
see Eq. (25), the hyperradial functions u, o (p) — A,e'9”
when p — oco.

Moreover, in Eq. (26) TLS g are the T-matrix ele-
ments, also obtained from the Kohn variational principle,
which describe pd scattering observables. Above we have
introduced

)(zL’+1)

Gr(n, ky) = Gr(n, ky) (1 —e Py . (28)

G being the irregular Coulomb function. With this
definition, the regularized irregular Coulomb functions
Gr(n,ky) are well behaved for all values of y and for
y > B~ they reduce to the irregular Coulomb functions.
Typically 8 = 0.25 fm~! is used as regularization scale.
In Eq. (26), L'S’ are all possible combinations for the
given J and parity (—1)%.

The asymptotic behaviour of the wave functions
Wrsss. is chosen so that if we turn off the nuclear in-
teraction they reduce to

even perm.

1
v i X Deafetiino] )
LSJJ. /3 XZ: L(Ge) | (4 3)x () s
FL(na ky[)

X ——— . 29
m (29)

. d
In fact, in such a case, uy = TL]S,L’S’ =0and ¥} ik

reduces to \I/f;i(fie%( Moreover, the asymptotic be-

haviour is such that the part multiplying the T-matrix
has a form of an outgoing wave, since Gr/(n,kye) +
iFr(n, kyg) ~ etFve.

In the calculation, we will include the effect of the nu-
clear interaction up to a given J. In fact, for .J > J, the
centrifugal barrier should forbid the three particle to be
close, in that case the free wave function given by Eq. (29)
should be appropriate. Accordingly, it is convenient to
resum all the terms proportional to Ff(n, ky,) in order

to reproduce the free wave function. Let us define

Urs7, = Z 5/2 ya )+ Z Tis s

— LS’
even perm.
S ),

xﬁ;

% éL’(nv ky@) + iFL’ (777 kyf)
kye

z

)

(30)

where namely we have subtracted from the wave function
given in Eq. (26) the “free” part. Then the total wave

function \Ilfxgl m, k can be cast in the form
d pd,(free)
\ijnzﬂnhk - \Ijmzfmhk
J<J 1
+ ) VaritV2L + lei"L(1m2§m1 | SJ.)
LSJ

X (LOSJ, | JJ) U sss. .
(31)

This is the three-nucleon wave function which asymptot-
ically behaves as a pd (distorted) plane-wave, with the
proton (deuteron) in the spin state m; (ms). The com-
ponents v 577, describe configurations where the three
particles are close to each other. Varying the value of

J it is possible to control the waves where the strong

interaction is taken into account.

Great care must be taken in order to include a suffi-
cient number of PHH states ), (), in particular it is
necessary to include a sufficient number of channels « in
Eq. (30). This part is essential to describe the configu-
rations where the three particles are close to each other.
Partial waves where the convergence of this expansion
is more critical are those in which the orbital angular
momentum L takes its lowest values, J™ = 1/2F, 3/2%,
1/27,3/27, and 5/27. For the J™ = 1/2% case, there is
the formation of the *He bound state and therefore the
scattering wave function must be constructed orthogonal
to it. For the states with relative orbital angular momen-
tum L = 1, the interaction between the three particles
is rather attractive, therefore a large number of terms in
the sum over « in Eq. (30) is required.

C. Pionless EFT with momentum-space integral
equations

Pionless effective field theory (EFT) is designed to cap-
ture the universal low-energy features of few-nucleon sys-
tems that arise from the fact that the nucleon-nucleon S-
wave scattering lengths are large compared to the typical
range of the nuclear interaction, set by the inverse pion
mass M_! ~ 1.4 fm. The theory is constructed to yield
the most general parametrization of the nuclear force
within its regime of validity (characterized by the EFT



breakdown scale ~ M), and it has been used to make a
number of highly precise predictions for low-energy pro-
cesses (for a recent review of the theory and applications,
see Ref. [17]).

The strong nuclear interaction in Pionless EFT is de-
scribed by a series of contact (zero-range) interactions,
including an increasing number of derivatives as one goes
to subsequently higher order in the EFT expansion. In
the two-nucleon sector, this series reproduces the well-
known effective range expansion [32], which Pionless EFT
consistently extends to few- and many-nucleon systems.
Pionless EFT in particular captures the universal physics
reflecting the closeness of low-energy nuclear systems to
the unitarity limit (infinite two-nucleon S-wave scatter-
ing lengths). A remarkable feature stemming from this
is the appearance of a three-nucleon contact interaction
at leading order in the theory [33, 34], which one would
naively expect to be subleading.

In order to evaluate the correlation function as de-
fined in Sec. IT A in momentum space, in the following
subsection we consider first the general Faddeev formal-
ism for scattering calculations, which is not limited to
interactions derived from Pionless EFT. Since for the
moment we neglect electromagnetic effects, the result-
ing expressions will be valid for calculations of neutron-
deuteron correlation functions. For the proton-deuteron
system, discussed subsequently in Sec. II C 2, we will in-
stead use equations derived directly from a diagrammatic
approach, which we relate to general formalism.

1.  Faddeev approach for neutron-deuteron scattering

We will follow here largely Ref. [35], with some differ-
ences, and begin with an overview of the homogeneous
Faddeev equation that describes bound states. Neglect-
ing three-nucleon forces, the basic Faddeev equation for
the three-nucleon bound-state problem can be written as

[¥) = GotP|¢) (32)

where [¢)) denotes one of three equivalent Faddeev com-
ponents, Gy is the free three-nucleon Green’s function, ¢
denotes the two-nucleon T-matrix, and P is a permuta-
tion operator defined as

P = P12P23 + P13P23 . (33)

For definiteness, we use here the convention that |¢)
is the Faddeev components with nucleons 1 and 2 sin-
gled out. Therefore, ¢ acts within the (12) subsystem,
and in order to represent the equations in momentum
space we use Jacobi momenta u; = %(kl — ko) and
uy = %[kd — %(kl + ko)), where k; are the individual
nucleon momenta. Note that u; and us are the mo-
menta conjugate to the Jacobi coordinated x and y, rep-
sectively, that were introduced previously. Projecting
the three-dimensional momenta onto partial waves yields

states |ujus; s), where

|S> = ‘(lg((llSl)jl%)SQ)J; (tlé)T> (34)

collects angular momentum, spin, and isospin quantum
numbers. They are coupled such that (I1s1)j1 and ¢
describe the two-nucleon subsystem, whereas lo denotes
the orbital angular momentum associated with the Ja-
cobi momentum us and ss is an intermediate quantum
number. Given a solution |¢) of Eq. (32), the full three-
nucleon wave function can be obtained as

W) =1+ P)) . (35)

In order to calculate three-nucleon scattering, we need
to consider an inhomogeneous Faddeev equation. Specif-
ically, we are interested here in neutron-deuteron (nd)
scattering, and to set up that system we define a state

|¢) = |pak; sa) (36)

that is a product of a deuteron state |¢4) in the (12) sub-
system and a plane wave |k) which describes the relative
motion of the third nucleon with respect to the deuteron.
The s4 in Eq. (36) is used to denote a set of three-nucleon
quantum numbers restricted to channels that support the
existence of a deuteron component, i.e., |sq) necessarily
has s1 = 1,¢t1 =0, j1 = 1 and l; = 0 or 2. In the
momentum-space partial-wave representation, we have
6(’U,Q — k)

(urug; s|¢) ~ @i (ur) =g
Us

05,54 (37)

where go&ll)(ul) is the momentum-space wave function

of the deuteron component with angular momentum ;.
In configuration space, if y denotes the Jacobi coordi-
nate conjugate to ug, the representation of |¢) involves a
spherical Bessel function ji, (ky).!

With the help of |¢) we can now introduce an operator
T that satisfies

s sa) = o) +T'|o) (38)

where |t¢y) is one Faddeev component of the neutron-
deuteron scattering state with relative momentum k.
Note that this definition is analogous to the definition
of the two-body T-matrix as the operator that maps a
plane-wave state to the full scattering state with the same
momentum. The T" we use here is related to the operator
called T in Ref. [35] by T' = GoT. The inhomogeneous

Faddeev equation used to calculate T has the form
T |¢) = GotP[¢) + GotPT |¢) . (39)

For clarity we choose here, unlike most references on the
subject, to explicitly write the dependence on |@), so re-
ally the object that we obtain by solving Eq. (39) is T' |¢).

1 For pd scattering the Bessel function would be replaced by a
regular Coulomb wave function.



Note that working with T instead of 7' is convenient for
our goal of calculating scattering wave functions, but it
is by no means a necessary choice: T" and T contain ex-
actly the same physics information and one can easily
be obtained from the other. For a numerical solution we
project Eq. (39) onto the momentum-space partial-wave
states |ujug; s) introduced before. To that end, note that
only the total spin J and isospin T (and their projections
M; and Mr that we do not specify explicitly) are con-
served quantum numbers for the three-nucleon system.
Therefore, in practice we need to fix J and T and in-
clude all channels |s) for which the intermediate quan-
tum numbers defined in Eq. (34) can couple to the chosen
total J and T. From Eq. (39) one therefore obtains a set
of coupled integral equations, which turn into a set of
coupled matrix equations upon discretization of the Ja-
cobi momenta u; 2 on a quadrature mesh. We omit here
the details of that numerical procedure and instead focus
on how to obtain scattering parameters and wave func-
tions from a solution of the equation system obtained via
Eq. (39).

In order to obtain elastic scattering parameters, one
calculates from T another quantity

Ulg) = PGy |¢) + PTGy |9) (40)

and then this needs to be contracted with (¢'| = (pak; s}
from the left to obtain matrix elements (¢'|U|¢). The
dimension of the final matrix is determined by the al-
lowed combinations of quantum numbers Il and s, for a
given fixed total J, whereas [; is summed over for each
individual matrix element. If standing-wave boundary
conditions are chosen for the solution of Eq. (39), the
resulting matrix is a K matrix from which it is straight-
forward to obtain phase shifts and mixing angles after
picking a particular representation.

The procedure for calculating scattering wave func-
tions is slightly different. Firstly, Eq. (39) is most con-
veniently solved with outgoing boundary conditions in
order to have direct access to the imaginary part of
the amplitude. Instead of U we are now interested di-
rectly in the Faddeev component [¢;sq) as defined in
Eq. (38). In order to obtain from this a relative nd
wave function in momentum space, we need to project
onto an outgoing asymptotic state similarly to what we
did to obtain (¢'|U|¢p), except that now we are using
(@] = (paua;sy|, with an arbitrary momentum u, and
(s))| such that I5 =I5 and sy = sp. Assuming that |pg)
is properly normalized to unity, this yields an expression
of the form
Ouz ~ k) + (pauz; sq|T|wak; sa) -

(41)

At this point we note that the discussion so far is based
only on the single Faddeev component |¢y;s4) and the
corresponding amplitude T. That is sufficient if one is
interested merely in extracting elastic scattering infor-
mation (via U), and a Fourier-Bessel transformation of

(auz; Sylthe; Sna) =

Eq. (41) will produce a wave function the (reduced) radial
part of which has the appropriate form ~ sin(ky + §(k)),
which is used for example in configuration-space formula-
tions of the Faddeev equations [36]. To actually calculate
the full scattering wavefunction, however, we need to use
the analog of Eq. (35) for scattering calculations, i.e.,

|Wi;sa) = (14 P) [x; sa) - (42)

Based on this we can then proceed as before and project
onto (¢'| = (pqus;sy|. The result involves the same dis-
tribution part §(us — k)/k? (which can be seen directly),
and its Fourier-Bessel transform will exhibit the same
asymptotic behavior ~ sin(ky + §(k)), but the antisym-
metrization changes the detailed structure at short dis-
tances.

In order to evaluate the correlation function within this
formulation (without Fourier transformation of the wave
functions to coordinate space), we note that the source
function S(r) can be written as an operator S that is
local in coordinate space:

A exp(—r?/R?) 3) ,
In momentum space, this translates to a non-local repre-
sentation that can be written in closed form [37]:

(0,0 S¢',0') = exp (—R*(¢* + ¢'*)) ic (2Rqq') deer (44)

In this expression, ¢ denotes the orbital angular momen-
tum of a particular partial wave, and i, is a modified
spherical Bessel function. The scale R is related to the
source radius of Sec. ITA via R = 1/3/4R);. Overall, we
can now write Egs. (7a) and (7b) as

AaCra(k) =" a(sa) (Wisal $ [Wpisa) . (45a)
Ag = (pal Slpa) - (45b)
In Eq. (45a) we include a factor
12J+1
afsa) = 3 L (16)

where the 1/3 in the front is due to the antisymmetriza-
tion in Eq. (42), and the rest covers the spin weights for
each individual contribution to the correlation function.
The factors 2 and 3 in the denominator account for the
spin 1/2 of the neutron and the spin 1 of the deuteron,
respectively.

2. Diagrammatic approach for proton-deuteron scattering

Coulomb effects in Pionless EFT were first studied in
Ref. [38] for two nucleons, and in Ref. [39] for proton-
deuteron scattering in the J = 3/2 channel; Ref. [40] was
the first to extend this work to scattering in the J = 1/2



channel. Importantly, Ref. [41] established that with
a nonperturbative inclusion of Coulomb effects, which
is mandatory in the very-low-energy regime, an isospin-
breaking correction to LO three-nucleon force enters at
next-to-leading order (NLO) in the EFT power count-
ing. At intermediate energies as well as for the trinucleon
bound states (*H and 3He), however, Coulomb effects are

J

a perturbative correction [42—44]. In this work we use the
nonperturbative treatment in order to describe pd scat-
tering from zero energy all the way up to the breakdown
scale of the theory, M, ~ 140 MeV, in a single unified
formulation.

The part of the Pionless EFT Lagrangian that is rele-
vant for the present work can be written as

D? : D? . D?
_ T it . i AT - A
L=N <2D0+2MN)N d |:O'd+(ZD0+4MN>:|d t |:0t+(ZD0+4MN>:|t

+ya [d" (NTPIN) +he] +y [t (NTPAN) +he] + Ls + Lonoton > (47)

with the nucleon field N (with mass Mpy), a doublet in
spin and isospin space, and two dibaryon fields d* (with
spin 1 and isospin 0) and ¢4 (with spin 0 and isospin
1), corresponding to the deuteron and the spin-singlet
isospin-triplet virtual bound state in S-wave nucleon-
nucleon scattering. Projectors P! and P/ are used to se-
lect the appropriate quantum numbers for nucleon field
bilinears. The formulation in terms of dibaryon fields
that we use here is particularly convenient to discuss
nucleon-deuteron scattering. It is equivalent to Pionless
EFT constructed with only nucleon fields in the strong
sector, and the coupling constants y4/; and 04/, can be re-
lated to the standard low-energy constants Co 4/¢, Ca q/4
that multiply two-nucleon contact interactions. An im-
portant feature that arises from the closeness of the low-
energy few-nucleon regime to the so-called unitarity (in-
finite S-wave scattering lengths) limit—close enough, in
fact, to permit a perturbative expansion around it [45]—
is the presence of a three-nucleon interaction already
at leading order (LO) in the theory, first derived in
Refs. [34, 46]. We write this interaction in Eq. (47) sim-
ply as L3 and refer to the review [17] and the original
references above for details.

The coupling of nucleons (and dibaryons) to the elec-
tromagnetic (e.m.) field is implemented by the covariant
derivative D, = 0, + ieAHQ with the charge operator

Q, €2 = 4na the e.m. coupling strength, and the pho-
ton field A,. The photon kinetic term is included in
Lphoton- In the nonrelativistic low-energy regime we con-
sider, we need only to keep the contribution of so-called
Coulomb photons, corresponding to a static potential
~ 4ra/(q? + A?) between nucleons, where q denotes the
momentum transfer and A is a small photon mass (in-
frared regulator) necessary for a momentum-space for-
mulation of the theory. More details on the formalism
can be found in previous publications on the subject (see
e.g.. Ref. [40]).

Proton-deuteron scattering in the spin-doublet chan-
nels (J = 1/2) is described by an integral equation
that is shown diagrammatically in Fig. 2. This equa-
tion describes an amplitude T, represented by the blob

(

with hatched shading, and involves two coupled channels
because in intermediate configurations both spin-triplet
and spin-singlet two-nucleon states can appear. These
are drawn as double lines and thick lines, respectively.
In spin-quartet channels (J = 3/2), the Pauli princi-
ple prohibits intermediate spin-singlet states, and conse-
quently in this channel the scattering amplitude is given
by merely the first row in Fig. 2. For either channel, we
numerically implement the integral equation by project-
ing on a particular spin channel (described by quantum
numbers s4 as introduced in the previous section), and by
discretizing all momentum integrals (arising from loops
in the diagrams) to obtain matrix-vector equations. The
full details of this procedure can be found for example in
Refs. [41, 47].

We can relate T to the scattering amplitude T in-
troduced in Sec. IIC1. If we consider the special case
of a separable two-body interaction between nucleons,
V(u,u") = Cog(u)g(u') for momenta u and v’ (where
g(u) in an EFT context implements an ultraviolet cut-
off for a given regularization scheme), then we can write
(neglecting discrete quantum numbers for simplicity):

T(ul,ug) = g(u1)T(MNE — %u%)GO(E; ul,u2)7~'(U2) ,
(48)
where 7 expresses the energy dependence of the separable
two-nucleon T-matrix,

t(E;u,u') = g(u)T(MyE)g(u') . (49)

For each two-nucleon channel, the T-matrix can be ob-
tained by algebraically solving the Lippmann-Schwinger
equation for the separable potential V' [48], or equiva-
lently by solving an equation that follows from a diagram-
matic representation of the “dibaryon propagators” that
appear as intermediate states (double and thick lines) in
Fig. 2 [41, 47].

The relationship between 7 and 7 is then just a factor,
My
4
up to potentially different regularization schemes. Specif-
ically, the diagrammatic approach does in fact not use the

T=-—"1T, (50)
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FIG. 2. Coupled-channel integral equation for the full (i.e., strong + Coulomb) proton-deuteron scattering amplitude in the
J =1/2 channel. The diagrams representing the three-nucleon force have been omitted. Notation as in Ref. [40].

separable Gaussian regular, but instead imposes a sharp
cutoff A imposed directly on momentum integrals. This
can be interpreted as setting g(u) = O(A — u), where
© denotes the unit step function. Note that the details
of the running coupling Cy(A) change with the regula-
tor, but the physics does not depend on this arbitrary
choice. Finally, Eqgs. (50) and (48) can be combined and
inserted into Eq. (41), which then leads to an expression
for the pd correlation function Cpq(k) via Egs. (45). To
conclude this part we note that when the momentum k&
and therefore the associated energy F is large enough to
break up the deuteron (k 2 50 MeV), the Green’s func-
tion G in Eq. (48) exhibits an on-shell singularity. We
account for this effect by adding a small imaginary part
i with n < E to the energy.

3. Next-to-leading order calculation

In a rigorously perturbative setup, as we employ it
here, the pd correlation function has an expansion of the
form

Cpa(k) = (k) + Cpl () + -+, (51)
where C[()?i)(k) is the leading-order (LO) result, C[()}i)(k) is
the next-to-leading-order (NLO) correction, and the el-
lipses represent higher-order corrections that we do not
consider in this work. We emphasize that the LO calcu-
lation is still performed in a nonperturbative manner at
the three-nucleon level, which is necessary at least in the
J™ = 1/2% partial wave to generate the *He bound state,

and for convenience applied to all partial waves at leading

order. Moreover, the formalism naturally includes the
LO two-nucleon interaction nonperturbatively, as man-
dated by the shallow S-matrix poles associated with the
large NN scattering lengths. All corrections applied on
top of LO, however, are included via strict distorted-wave
perturbation theory, and that is what we refer to as the
“rigorously perturbative setup” in this context.

Assuming that the source operator does not have an
expansion by itself, the series in Eq. (51) is generated by
the EFT expansion of the scattering wave function,

N\

which is, in turn, generated by the expansions for 7 and
7, see Eq. (50). Moreover, the deuteron wave function
has an analogous expansion

0 1
=)+ )+ (52)

o) = o) + 1) + -, (53)

which gives rise to an expansion for A4. Overall, we have

400 (k) = (| 5 |w?) (54)
at leading order, whereas at NLO we need to extract
Ot (k) from

ADCE) (k) + ADC) (k) = 2Re (W) S0 . (55)
This can be achieved by noting that independently we
have Agll) = 2Re (@&0)\ S |30((11))>7 and from the LO calcu-
(k).

. 0
lation we already know C;()d Hence, we can solve

Eq. (55) for C\2) (k).



ITII. RESULTS AND COMPARISON
A. Proton-proton correlation function

Before we consider the nucleon-deuteron correlation
function, it is instructive to compare the performance of
different nuclear interactions for the pp case. In Fig. 3, we
show the pp correlation function C,, (k) calculated with
three different approaches. The circles and triangles rep-
resent the calculation based on the same AV18 potential
that we use for the Nd calculation. For the circles, the
nuclear interaction is included only in the S-wave (1Sp)
channel, while for the triangles we include the interaction
in addition in P- and D-wave channels. In both cases, ad-
ditional pure Coulomb contributions are included up to
a maximum angular momentum /., = 20. We observe
that the correlation function is completely dominated by
the S-wave interaction, with only very small contribu-
tions from higher partial waves for momenta above about
70 MeV.

G_RM = 1.26 fm 7
I Pionless LO, Ry = 0.8-1.2 fm |

5L |
Y Lednicky
al e  AV18 (S-wave) i
= v AV18 (S+P+D-wave)
O".— 3 [ -
2 [ -
1 bedoeennnnnnnnnnnnn s CONUELEY at eyt oy oo e = 8 s s s s s
0 Il 1

L L L L L L L L n L 1 L L n L
0 50 100 150 200

k (MeV)

FIG. 3. The proton-proton correlation function Cp,(k) as
function of the relative momentum k calculated with differ-
ent approaches. The symbols show Cp,(k) calculated with
the AV18 interaction, with circles representing a calculation
that includes the nuclear interaction only in the S-wave (*Sp)
channel, while for the triangles the interaction is considered
also in the P- and D-wave channels (the two results are prat-
ically coincident). The shaded band reflects a Pionless EFT
calculation at leading order for a range of regulator scales
(see text for details). The dashed line shows for comparison a
calculation based on the Lednicky model, as explained in the
main text.

The green band in Fig. 3 shows the result of a Pion-
less EFT calculation at leading order. For this two-body
system, the simplest way to implement Pionless EFT is
by employing a local coordinate-space potential

r? o
Veo,pp(r) = Co(Ra) exp Rz + el (56)
A

where Rp is the scale for a local Gaussian regula-
tor (which is roughly related to a momentum cutoff
A ~ 2/Ry)). For each choice of Ry, renormalization is
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achieved by adjusting the coefficient Cy(Ry) such that
V5o pp(r) overall reproduces the experimental value for
the pp scattering length, a,, = —7.806 fm. The band
in the figure is generated by varying R, in the range
between 0.8 and 1.2 fm. We note that for this leading-
order calculation only the scattering length is reproduced
exactly, while the next term in the (Coulomb-modified)
effective range expansion, namely the pp effective range,
is only induced by the regulator. The center of the band
shown in Fig. 3 roughly corresponds to Ry = 1.0 fm,
whereas we find the induced effective range closest to
the actual experimental value near Ry = 1.1 fm. This
observation gives good reason to expect that a proper
next-to-leading order calculation—which would fix a sec-
ond parameter to reproduce the effective exactly for any
Rax—will narrow the band close to the AV1S result.

Finally, the dashed line in Fig. 3 also shows a calcula-
tion of the pp correlation function based on the so-called
Lednicky model [49]. Specifically, the definition of the
scattering wave function described in Eq. (89) of Ref. [49]
is considered exclusively for the S-wave (S = J = 0) con-
tribution. The overall antisymmetrization of the wave
function and the normalization of the correlation func-
tion follows the same approach that is used for the AV18
S-wave contribution. Similar to Pionless EFT at LO, the
only input parameter to this calculation is the (Coulomb-
modified) S-wave scattering length a,,. The predicted
correlation function agrees with the Pionless EFT at LO,
but this model disagrees noticeably with both the AV18
calculations (with the caveat that neither the AV18 po-
tential nor the Lednicky model provide a theoretical un-
certainty estimate).

B. Comparing (4 using the PHH and Faddeev
techniques

In this subsection we start our study of the Nd cor-
relation function. We consider first the nd system in
order to avoid complications due to the inclusion of the
Coulomb interaction. To this end, it is convenient to
write the wave function as in Eq. (24), taking into ac-
count that now the regular and irregular functions reduce
to simple spherical Bessel functions, and the Coulomb
phase-shift is set to zero. Inserting this wave function in
Eq. (14), performing the sum over my and m; and real-
izing that [ dQ \IIE,S,J,J; Ursyy, clearly is not vanishing
only if J = J' and J, = J,, one obtains

11
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Each component of the wave function Vrgys, gives a
separate contribution and we can define

Cly(k)=> CE (k) (58)
LS

where m = + indicates the parity and the sum is over
all the possible LS combinations for a given J and .
Then we compare the contributions from different partial
waves 291 L ; to the nd correlation function C,,4(k). We
use the AV18 interaction and consider the specific cases
of E = 0.3195 MeV (k = 20 MeV) and E = 2 MeV
(k =50 MeV), with both the PHH method and Faddeev
equations. The results are shown in Table I.

k=20MeV | k=250 MeV
J” Wave | PHH Faddeev| PHH Faddeev
it “Sy | 0.42854 0.42763 | 0.26003 0.25950
Dy | 0.00004 0.00004 | 0.00075 0.00072
3 °Py | 000262 0.00256 | 0.01662 0.01635
Py | 0.01713  0.01655 | 0.07336  0.07062
g+ *Ss | 0.00931 0.00883 | 0.01742 0.01651
Dy | 0.00007 0.00007 | 0.00234 0.00222
“Ds | 0.00004 0.00004 | 0.00115 0.00110
5 ?Pg | 0.00514 0.00497 | 0.03225 0.03146
“Ps | 0.03588 0.03506 | 0.13444 0.13118
Fg | 0.00000 0.00000 | 0.00008 0.00007
57 4ps; | 0.06214 0.05900 | 0.25767 0.24525
*F5 | 0.00000 0.00000 | 0.00007 0.00007
F5 | 0.00000 0.00000 | 0.00012 0.00010

TABLE 1. Contributions from partial waves 25+11 . to the
neutron-deuteron correlation function C,q(k) calculated at
E = 0.3195 MeV (k = 20 MeV) and £ = 2 MeV (k = 50
MeV) with the AV18 potential, using two different methods
to perform the calculation. The source radius Rjs here is
chosen to be 1.5 fm.

As it can be seen in the table, there is a overall good
agreement between the two calculations up to minor
differences. The remaining small discrepancies are re-
flecting differences in the numerical approaches (such as
configuration-space versus momentum-space discretiza-
tions and corresponding truncation schemes), and in part
they are likely also due to the fact that for the Faddeev
calculation isospin breaking components within the AV18
are neglected, i.e., the np and nn interactions are taken
to be exactly degenerate. We also observe that at the en-
ergies we consider the largest contributions are brought
by the 25% and *P; waves.
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C. Proton-deuteron correlation function

In the following we show our results for the proton-
deuteron correlation function Cpq(k), starting with the
PHH calculation. As in the nd case, each component of
the wave function gives a separate contribution, namely

Cpa(k) = ilmZ(zJH)

il
<2
Sl

<
—~
>
&
—~

t

Ne}
S—

As before, we can define

Cila (k) = Cpi (k) . (60)
LS

In Fig. 4 the pd correlation function Cp4(k), calculated
using the AV18+UIX interaction, is shown splitted in
the different contribution up to J = 5/2. For higher
values of the angular momentum, the interaction gives
a negligible contribution and the correlation function is
therefore computed considering only the Coulomb force.
In the figure this is indicated by the curve labeled “Rest”,
whereas the curve labeled “TOT” gives the correlation
function including all contributions.

Note that low values of k corresponds to small values of
the pd relative kinetic energy T4 (as an example, k = 10
MeV corresponds to Tpq = 79 keV). For k — 0, the effect
of the Coulomb repulsion dominates and the correlation
function tends rapidly to zero. In this region, the largest
contribution is given by the pd waves with L = 0, in par-
ticular the L =0, S = J = 1/2 wave, whereas the L = 0,
S = J = 3/2 wave is suppressed at short inter-particle
distances due to the Pauli principle (for S = 3/2, all three
nucleon spins may be aligned). Around k£ = 60 to 160
MeV, the L =1, S = 3/2 components with total angular
momentum and parity J™ =1/27,3/27, and 5/2~ start
to give sizeable, resonance-like, contributions. In fact, in
those waves the effective pd interaction is rather attrac-
tive and the corresponding phase shifts increase very fast
with energy [50]. Moreover, below k = 200 MeV there
is a moderate splitting of the quartet L = 1 phases [30],
and their relative contributions are nearly related by a
factor (2J 4+ 1), see Eq. (59). The effect from this in
the total correlation function is the appearance of a wide
bump with maximum located approximately at &k = 120
MeV. At higher values of k, higher partial waves start to
contribute and the correlation function tends to one.

In addition to the study of the different partial waves
contribution, it is of interest to consider the correlation
function calculated with different interaction models. To
this aim, in Table II we show the values of the corre-
lation function at several energies computed with the
AV18+UIX, the AV18 (without accompanying 3N inter-
action), and with the NVIa/3N interaction. Moreover, in
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FIG. 4. The proton-deuteron correlation function Cpq(k)
and its various contributions C{)]; (k) calculated using the
AV18+4-UIX interaction using the PHH method. The curve
labeled “Rest” shows the contribution of J > 7/2 states (they
are taken into account via the U5, of Eq. (26)). The cal-
culations are performed using a source size of Ry = 1.5 fm.

the fourth column (labeled by “Ratio”), the ratio between
the second and third columns is given. In this way, the
effect of the three-nucleon force can be estimated, yield-
ing that for the models considered here it is around 3%
in the region close to k = 100 MeV.

To complete the analysis, in Fig. 5 we show the cor-
relation function calculated with the AV18, AV18+4UIX,
and NVIa+3N interactions, and further comparison cal-
culations that consider only the Coulomb force and an
approach based on the reduction of the wave function
in the Born approximation. The latter two contribu-
tions correspond to the following approximations. The
“Coulomb only” curve was obtained considering the free
(i.e., pure Coulomb) pd relative wave function—namely
that given in Eq. (21)—with the deuteron wave func-
tion still calculated with the AV18 interaction. The dif-
ference between this curve and the one labeled “AV18”
(blue diamonds) shows the importance of the inclusion
of the nuclear interaction between the two clusters. The
“optimized Born” curve was obtained by neglecting the
first term in Eq. (26), or equivalently setting to zero all
the hyperradial functions u, o(p). In this case, the wave
function is approximated by the asymptotic terms given
in the last five lines of Eq. (26). Then the T-matrix ele-
ments 77 5.1/ are determined from the Kohn variational
principle, using that wave function as the trial input.
This approximation works better for high partial waves in
which the centrifugal barrier suppresses the effects of the
interaction [51]. In fact, for S and P waves, this approxi-
mation gives rather different results from those obtained
using the full wave function. Therefore, the difference
between the curves obtained with the full wave function
and that labeled “optimized Born” shows the importance
of the “distortion” of the deuteron in the process. In other
word, the Nd wave function at short distances is not sim-
ply given by the product of the deuteron wave function
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TABLE II. The proton-deuteron correlation function Cpq(k)
calculated with different interaction models, using the PHH
method. The source radius Rys is chosen to be 1.5 fm. The
proton-deuteron relative momentum and the total kinetic en-
%% in the CM are given (MeV) in the first and
second column, respectively. In the fifth column we report
the ratio AV18+UIX results (second column) and the AV18
values (third column).

ergy 1pa =

k Tpa | AV184+UIX AV18 Ratio NVIa+3N
10 0.08 | 0.1613 0.1727 0.9341 0.1610
20 0.32 | 0.3690 0.3928 0.9393 0.3690
30 0.72 | 0.4888 0.5057 0.9665 0.4886
40 1.27 | 0.5931 0.6027 0.9842 0.6012
50  2.00 | 0.6987 0.7054 0.9905 0.7072
60  2.88 | 0.7943 0.7802 1.0182 0.7820
70  3.91| 0.8544 0.8365 1.0215 0.8536
80  5.11 | 0.9000 0.8792 1.0237 0.8955
90  6.47 | 0.9278 0.9085 1.0213 0.9210
100 7.99 | 0.9438 0.9272 1.0179 0.9388
110 9.66 | 0.9600 0.9367 1.0249 0.9546
120 11.50 | 0.9644 0.9406 1.0254 0.9618
130 13.50 | 0.9587 0.9398 1.0201 0.9559
140 15.66 | 0.9568 0.9375 1.0206 0.9491
150 17.97 | 0.9498 0.9371 1.0135 0.9431
160 20.45 | 0.9482 0.9336 1.0156 0.9401
170 23.08 | 0.9475 0.9304 1.0184 0.9369
180 25.88 | 0.9412 0.9274 1.0149 0.9368
200 31.95 | 0.9431 0.9277 1.0166 0.9370
225 40.44 | 0.9447 0.9308 1.0149 0.9361
250 49.92 | 0.9448 0.9368 1.0085 0.9432
275 60.41 | 0.9456 0.9427 1.0031 0.9437
300 71.89 | 0.9536 0.9491 1.0047 0.9483
325 84.37 | 0.9623 0.9545 1.0082 0.9554
350 97.85 | 0.9714 0.9605 1.0114 0.9631
375 112.32 | 0.9820 0.9668 1.0157 0.9729
400 127.80 | 0.9905 0.9745 1.0164 0.9862

times the spin state of the third particle, but a full treat-
ment of the three-body dynamics is necessary. Note that
for k£ < 60 MeV, this “optimized Born” approximation
predicts a completely wrong correlation function, which
therefore has not been reported in the figure.

The main result of the Pionless EFT calculation for
Cpa(k) is summarized in Fig. 6. For a fixed source radius
Ry = 1.51 fm this figure shows the correlation function
at LO and NLO in the EFT expansion as shaded bands,
reflecting the theoretical uncertainty stemming from the
EFT expansion. This calculation explicitly includes the
nuclear interaction in pd S- and P-waves (which are all
degenerate with respect to the total spin J at this or-
der) and adds pure Coulomb (or Bessel, in the nd case)
contributions on top of the interacting waves up to total
angular momentum £y, = 15.

To generate the uncertainty estimate, we have varied
the input parameters that enter in the EFT renormal-
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FIG. 5. The proton-deuteron correlation function Cpq(k) calculated with different interactions and approximation of the wave
function, using the PHH method. The calculations are performed using Ryr = 1.5 fm. See the main text for more details.

ization conditions. Specifically, the contributions that
primarily affect the calculation at LO are the 3S; two-
nucleon interaction and the three-nucleon contact inter-
action. The former can be determined by reproducing
either the exact deuteron binding energy or the exper-
imental value for the scattering length in that channel.
At LO, these choices are equivalent from the EFT per-
spective. Fitting Cy(A) to reproduce the 3S; scatter-
ing length yields a deuteron underbound at about 1.4
MeV, which gets moved close to the experimental bind-
ing energy by perturbative NLO corrections. Similarly,
the three-body interaction can be fit to reproduce either
the experimental triton binding energy or the nd scatter-
ing length (either way, the splitting between the *H and
3He binding energies is a prediction at this order that has
been studied in great detail [41-43, 47, 52, 53]). The LO
band in Fig. 6 is based on the maximum variation from
overall four different choices of input combinations. We
chose not to vary the 1Sy input here because the scatter-
ing length in this channel, a1 g, = —23.7 fm is so close to
the unitarity limit that small deviations from this value
would hardly make any difference.

Conceptual constraints prevent us at present from per-
forming an NLO calculation with the 3S; input fixed to
the scattering length because, as mentioned above, range
correction will shift the deuteron binding energy. Fur-
ther theoretical work is required to derive a perturba-
tive nucleon-deuteron scattering formalism that can han-
dle the moving threshold arising from the expansion in
the two-nucleon sector. The darker NLO band in Fig. 6
is therefore limited to varying the input for the three-
nucleon interaction, in the same way as described above.
In addition, we show a lighter NLO band generated from

a £10% variation of Cpq(k) around the result where the
three-nucleon force is fit to reproduce the nd scattering
length. We note that although this approach reflects the
a priori estimate for the Pionless EFT uncertainty at
NLO, it does not take into account the constraint that
the correlation function should approach unity as k — oo.

Generally, that constraint would be expected to lower
the NLO uncertainty. However, for larger k we observe
that pd P-wave contributions start dominating over the
S-wave, and ultimately higher pd partial waves become
sizeable as well. It is known that P-wave Nd phase shifts
converge relatively slowly in Pionless EFT, with sizeable
corrections at N2LO. While that calculation is currently
beyond our reach, we expect that it will improve agree-
ment of the Pionless EFT calculation with the results
from potential models. Moreover, at LO and NLO, Pi-
onless EFT receives its two-nucleon input from S-waves
only, while all higher partial waves vanish by construc-
tion at these orders (keep in mind that the three-nucleon
dynamics nevertheless induce P and higher partial waves
in the Nd sector). These effects will also enter at N2LO
and induce a splitting between contributions from differ-
ent J for the same [y, so combination [54].

It should be noted, however, that the breakdown scale
of Pionless EFT is expected to be set by the pion mass
M, ~ 140 MeV. One should therefore not expect this
EFT to perform well for momenta k near or beyond that
scale; the expansion is constructed for the low-energy
regime.

As mentioned at the end of Sec. II C 2, for calculations
above the deuteron breakup threshold we include a small
imaginary part ¢n in the energy to regularize an on-shell
singularity. For the results shown in Fig. 6, we have used



avalue n = 0.1 MeV. Increasing this ton = 0.5 MeV leads
to a variation of typically about 1%, which is negligible
compared to other uncertainties. Similarly, we used a
regulating photon mass A = 0.2 MeV for all calculations
shown here and note that variations due to alternative
choices can be be safely neglected.

A = 800 MeV, Ry, — 1.51 fm

0.8F

0.6F

Cra(k)

0.4r
F LO (input var.)
0.2 NLO (input var.)
i NLO (+£10%)

0 [ 1 1 1 1 1 i
0 20 40 60 80 100 120

k (MeV)

FIG. 6. Proton-deuteron correlation function calculated in
Pionless EFT for a source radius Ry = 1.51 fm. The shaded
bands here represent the theoretical uncertainty from the
EFT expansion. At LO, this is estimated by varying the
EFT input parameters for both the 3S; two-body interac-
tion as well as for the three-nucleon force (see text for de-
tails). At NLO, technical restriction at present permit us to
only vary the input for the three-nucleon force, while the 3S;
two-nucleon remains fixed to reproduce the deuteron at its
physical binding energy. As an additional lighter band we
therefore include a blanket 10% variation to show a crude a
priori estimate of the NLO uncertainty.

For the results shown in Fig. 6 we used a regulator scale
(cutoff) A = 800 MeV. In the diagrammatic framework
we used, this is implemented with a sharp upper bound
on momentum integrals at the three-nucleon level, while
the two-nucleon subsector is treated using dimensional
regularization. Pionless EFT like any effective field the-
ory exhibits some residual cutoff dependence that should
decrease in magnitude as one goes to higher orders, and it
is an indication of proper renormalization that results for
observables overall flatten out at large cutoffs. In Fig. 7
we show the change in the LO pd correlation function as
one goes from A = 400 to A = 800 MeV; little additional
variation is observed for larger A. In this figure we also
use different line styles to show how the correlation func-
tion changes as we vary the source radius Rj; between
1.27 and 1.59 fm.

D. Proton-deuteron vs. neutron-deuteron
correlation function

In Fig. 8 we compare the correlation functions for pd
and nd systems. For this comparison we keep the EFT in-
put paramters fixed (with the 3S; channel fixed to repro-
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FIG. 7. The proton-deuteron correlation function Cpq(k) cal-
culated in Pionless EFT for different EF T cutoffs A and source
radii Rys.

duce the deuteron binding energy and the three-nucleon
force fit to the nd scattering length) and show as shaded
bands the result of varying the source radius Ry, around
a central value of 1.51 fm. Consistent with the expecta-
tion that Coulomb effects should be a perturbative effect
anywhere except at the lowest energies, we observe that
the pd and nd curves in Fig. 8 approach one another with
increasing momentum k.

15 A = 800 MéV, Ry — 1.51 + 0.08 fm

n-d AVIS, Ry = 1.5fm M
p-d AVI8+UIX, Ry = 1.5fm X
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FIG. 8. The proton-deuteron and neutron-deuteron correla-
tion functions calculated in Pionless EFT with A = 800 MeV.
The central curves show results for a source radius Ry = 1.51
fm, while shaded bands here indicate the result of varying the
source radius by 4+0.08 fm. Double triangle show nd AV18
and pd AV18+UIX results calculated at Ry = 1.5 fm for
comparison.

We include in Fig. 8 also results obtained for the nd
correlation function with the AV18 potential (without
additional three-nucleon force, calculated in momentum
space via Faddeev equations), as well as for the pd corre-
lation function from an AV18+UIX potential (calculated
in coordinate-space via the PHH method). For these cal-
culations we use a source radius Rp; = 1.5 fm. Overall
these results and the Pionless EFT calculation are in rea-



sonable agreement, in particular if one keeps in mind that
in this figure we do not indicate EFT uncertainty bands
on top of the source-radius variation. For the nd cor-
relation function, some mild tension between the EFT
result and potential models might exist in the low-k re-
gion. While based on comparing Cpq(k) calculated us-
ing AV18 with and without UIX three-nucleon force we
do not expect including UIX in the calculation of Cyq4(k)
would improve the agreement, we note that even at small
k there is a sizeable shift from LO to NLO in the EFT
result. Based on that, we believe that an N2LO calcu-
lation, which would include NN P-wave interactions as
well as effects from the 3S;-3D; mixing induced by the
nuclear tensor force, is likely to narrow the discrepancy
between the different interactions.

IV. SUMMARY AND OUTLOOK

Femtoscopic analyses of correlation functions extracted
from high-energy collisions of protons and nuclei have
opened the door to new studies of low-energy scattering
processes in light systems such as pd, Ad, ppp, ppA, and
many others. Measurements of correlations in these sys-
tems have recently been performed, or are planned by
the ALICE Collaboration in the near future. Accord-
ingly, methods that have been applied in recent years
to calculate scattering observables can be used to obtain
the above-mentioned correlation functions. The present
study that performs a detailed analysis of the Nd correla-
tion functions is the first step in this direction. Although
the nd correlation function, C,,4, cannot be measured at
present since neutron detectors are not being used in the
relevant experiments, its study serves to compare dif-
ferent methods, as the Faddeev and PHH techniques.
In fact, the nd system does not present the challenge
of treating the long-range Coulomb interaction. In this
work, the AV18 potential has been used to make com-
parisons for Cpq(k), with the conclusion that the PHH
technique and the solution of the Faddeev equations pro-
duce extremely close results. This study, which directly
involves the scattering wave functions, extends to some
extent previous benchmarks done between these tech-
niques [35].

The next step in this work has been to use the PHH
wave functions obtained for AV18 and other nuclear po-
tential models to compute the pd correlation function
Cpa(k) in a broad energy range, in order to enable de-
tailed comparisons to current and upcoming measure-
ments. The ALICE Collaboration has presented pre-
liminary results for the pd correlation function measured
in proton-proton collisions [55] and final results are ex-
pected to be published soon. The correlation function,
as a function of the energy, has some structure produced
by the interplay of contributions from different partial
waves. At low energies the system in relative S-wave is
dominant, whereas a peak around values of k = 120 MeV
appears when the relative P-wave starts to dominate.
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These are the partial waves in which the short-range
nuclear interaction produces the largest effect. Due to
the centrifugal barrier, higher partial waves are mostly
dominated by the Coulomb interaction. All these con-
siderations have been presented in dedicated figures and
tables. In particular, we have considered the impact of
different interactions, with and without the inclusion of
three-nucleon forces, on the correlation functions. The
conclusion is that within the context of potential mod-
els different interactions give very small variations, not
above 1% effects, whereas the three-nucleon force pro-
duces changes of around 2% in the observable. Since the
correlation function is an integral observable, effects of
this kind are expected to be small. However a 2% effect
is likely within the reach of the next experimental runs
planned by the ALICE Collaboration, and this is one of
the main indications of the present analysis. In addi-
tion to phenomenological potential models, we have also
performed a Pionless EFT calculation of the correlation
function, going up to next-to-leading order in the EFT
expansion in a rigorously perturbative setup. Within the
theoretical uncertainty of the EFT, we find overall good
agreement with the potential-model calculations in the
low-energy regime where the EFT is applicable.

In order to compute the correlation function, two in-
gredients are needed, the source function and the scatter-
ing wave function. The size of the source is determined
by the size of the emitting nucleon source and it is fixed
by the analysis of the transverse mass mr (defined as
mp = (k3. +m?)”’", where m is the average mass and kr
is the transverse momentum of the pair). A precise de-
termination of the dependence of the source size with the
transverse mass mp has been realized in proton-proton
collisions [21]. For the present analysis, the source term
is characterized by the effective nucleon-nucleon distance
and depends on the myp of the emitted pd pairs. The
value of Ry; = 1.5 fm was used in this paper because
it is close to the value that gives the best description of
the preliminary Cpq(k) data from the ALICE Collabora-
tion [55].

Overall, we can draw two main conclusions: the first is
that the nucleon-deuteron scattering wave function, cal-
culated in the present analysis with a full account of the
three-body dynamics, introduces a complex dynamical
behavior in the correlation function through the relative
importance of different partial waves, in particular the
interplay between S- and P-waves. Secondly, we show
that over the considered range of momenta up to 400
MeV, the correlation function is sensitive to aspects of
the nuclear interaction, in the present work constructed
as a sum of two- and three-nucleon contributions. We
conclude that the present study supports the experimen-
tal efforts devoted to measuring the correlation function
in light nuclear systems dominated by the strong inter-
action.
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