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Magnetic dipole operator from chiral effective field theory for many-body expansion methods
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Many-body approaches for atomic nuclei generally rely on a basis expansion of the nuclear states, inter-
actions, and current operators. In this work, we derive the representation of the magnetic dipole operator in
plane-wave and harmonic-oscillator basis states, as needed for Faddeev calculations of few-body systems or
many-body calculations within, e.g., the no-core shell model, the in-medium similarity renormalization group,
coupled-cluster theory, or the nuclear shell model. We focus in particular on the next-to-leading-order two-body
contributions derived from chiral effective field theory. We provide detailed benchmarks and also comparisons
with quantum Monte Carlo results for three-body systems. The derived operator matrix elements represent the
basic input for studying magnetic properties of atomic nuclei based on chiral effective field theory.

I. INTRODUCTION

Calculating the electromagnetic structure of nuclei is a
powerful tool to explore and test nuclear theory. The weak
electromagnetic coupling compared to the strong interaction
allows for a perturbative treatment of these processes, so that
the nuclear structure content can be separated with great con-
trol. The electromagnetic interaction between the nucleus and
external photons can in general be described by a current-
current interaction. While quantum electrodynamics (QED)
describes the current of the external probe, nuclear theory
deals with the nuclear current. To first approximation, the in-
teraction between the photon and an atomic nucleus can be
expressed in terms of the sum of photon interactions with all
the individual nucleons. This approximation is equivalent to
retaining only one-body contributions in the nuclear current,
while all possible higher-body operators are neglected. Even
though these leading terms provide the dominant contribu-
tions, higher-order contributions, especially from two-body
operators are crucial for precise predictions of electromag-
netic observables.

The modern approach to quantitatively understanding low-
energy nuclear physics in terms of ab initio calculations is
based on effective field theory (EFT), most notably chiral
EFT. It provides a systematic expansion of the strong inter-
action between nucleons as well as electroweak interactions
with a direct connection to the fundamental theory of quan-
tum chromodynamics (QCD) and its symmetries [1-3]. A
power-counting scheme orders the expansion terms accord-
ing to decreasing importance in powers of (Q/Ap)”, with O
the typical momentum scale governing processes in the nu-
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cleus, which is of the order of the pion mass m,, and Ay
the breakdown scale A, = 500 — 600 MeV. Leading order
(LO) terms, i.e., v = =2 for electromagnetic currents, include
the dominant one-body contributions mentioned earlier, while
next-to-leading order (NLO) and next-to-next-to-leading or-
der (N?LO) terms, etc., add contributions of decreasing im-
portance. The systematic expansion provides a way to im-
prove calculations and to determine uncertainties arising from
neglected higher orders [4, 5]. Furthermore, EFT provides a
consistent derivation of nuclear forces and currents. To date,
there have been several efforts to derive electromagnetic nu-
clear currents within the framework of chiral EFT. In Refs. [6—
8] time-ordered perturbation theory was used to obtain current
operator expressions up to next-to-next-to-next-to-leading or-
der (N*LO) in the chiral expansion, while Refs. [9-11] used
the method of unitary transformation. Both methods agree
on the current operators at the order we employ in this work.
However, at higher orders disagreements occur; for a detailed
discussion see Ref. [11].

Calculating the electromagnetic structure of nuclei involves
evaluating the electromagnetic nuclear current operator J, =
(o, j), with charge operator p and three-vector current operator
J» between initial and final states of the nuclear system |i) and
|f). The Fourier transform of the current operator contains
information about the charge and magnetization densities in-
side the nucleus. Because the nuclear states have a definite
angular momentum, it is useful to decompose the nuclear cur-
rent into its multipole components. For example, the current
operator j can be expressed in terms of electric and magnetic
multipole operators, the long-wavelength limits of which cor-
respond to the electric and magnetic moment operators, where
the magnetic dipole contribution is the focus of this work.
With the magnetic dipole operator, one can calculate ground-
state properties like the nuclear magnetic moment, defined by

HEEIM =T |EIM = J), (D

where J and M are the nuclear spin and its projection, respec-
tively, and ¢ represents all other quantum numbers relevant
to describe the state. In addition, one can calculate magnetic



transitions between nuclear states. The probability of an initial
state of the nucleus to emit or absorb a photon and transition
to a final state is given by Fermi’s golden rule [12]:
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where A is the angular momentum of the photon with energy

E,. We use units with /i = ¢ = gy = 1, and the last term above
is the transition strength
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Here, 07" represents the magnetic multipole operator in the
long-wavelength limit (momentum transfer 9 — 0) [13, 14],
with the reduced matrix element (¢,J¢[| O7* |€;J;). In the
case A = 1 the multipole operator is the magnetic dipole op-
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erator O~ = / i-Hz» and the corresponding transition is re-

ferred to as the dipole transition or M1 transition.

Studies of electromagnetic properties calculated with chi-
ral EFT currents combined with nuclear states obtained from
chiral EFT interactions or phenomenological potentials have
to date been focused on few-nucleon systems and light nuclei.
Deuteron and trinucleon electromagnetic form factors, radii,
and moments have been studied up to N3LO in Refs. [15-
24], with the most recent result for the charge and quadrupole
form factors of the deuteron pushing the calculation to fifth
order in the chiral expansion [25, 26]. In Ref. [27], magnetic
moments and electromagnetic transitions of light nuclei up to
A < 9 have been calculated with a hybrid method, combin-
ing phenomenological wave functions with chiral magnetic
dipole operators up to N3LO, based on quantum Monte Carlo
methods to solve the many-body problem. More recently, the
first full chiral EFT calculation of the ground-state magnetic
moment and the lowest magnetic transition in ®Li has been
presented [28]. All studies identified that current operator
contributions beyond LO are important to improve agreement
with experimental magnetic properties, with two-body contri-
butions entering at NLO having the largest impact.

Higher-order corrections to the current operator are clearly
necessary for improving the agreement with experimental re-
sults and can provide an explanation to long-standing discrep-
ancies between theory and experiment. For example, the sys-
tematically smaller beta-decay rate in nuclei compared to free
neutrons can, in part, be explained by the coupling of the weak
force to two nucleons [29]. In spite of this evidence for weak
processes, the magnetic structure of heavier nuclei has so far
only been studied without two-body currents (2BCs). Most ab
initio many-body methods that calculate medium-mass nuclei
are based upon basis expansion methods [30—34]. To perform
computations, these frameworks require operators expanded
in a computational basis that is commonly constructed based
on harmonic-oscillator (HO) states. In this work, we provide
partial-wave matrix elements for the LO one-body-current and
NLO two-body current operators in a two-body momentum-
space basis as well as partial-wave matrix elements for the
corresponding LO and NLO magnetic dipole operators in

HO bases. A straightforward implementation of these ma-
trix elements can be used to calculate magnetic properties of
medium-mass nuclei. We validate our expressions by compar-
ing the trinucleon magnetic moments obtained from the the
magnetic form factors with Faddeev calculations against the
magnetic dipole operator used in Jacobi no-core shell-model
(NCSM) calculations. Figure 1 displays the strategy of our
trinucleon magnetic moments calculations.

This paper is organized as follows. In Sec. II we introduce
the current operators that are employed and show how to ob-
tain the magnetic dipole operators from them. Section III pro-
vides the expressions for the matrix elements of the various
operators with respect to the different bases. The results and
comparison of the trinucleon magnetic moments are presented
in Sec. IV. Finally, we conclude in Sec. V.

II. NUCLEAR MAGNETIC MOMENTS

Nuclear magnetic moments can be calculated using two re-
lated methods. The first uses the magnetic form factor at zero
momentum transfer. The form factor is the Fourier transform
of the magnetization density of the nucleus and is obtained by
calculating the expectation value of the nuclear current opera-
tor. The second method obtains the nuclear magnetic moment
by directly evaluating the magnetic moment operator, which
is the long-wavelength limit of the dipole term of the multi-
pole expansion of the current operator. Below we specify the
current and magnetic moment operators.

A. Magnetic form factor normalization

The one-body current operator at LO (~ eQ™?) is given in
momentum space by [21]

Q) = 2L(z en(0) K +iuy(0%) o x Q), 4)
my

where e is the elementary charge, my the nucleon mass, k and
kK’ are the initial and final nucleon momenta, K = (k + k)/2,
o is the vector of Pauli spin matrices, and Q is the spatial
part of the momentum transfer associated with the photon Q?
is 0*Q,. Momentum conservation requires that the relation
k’ = k+ Q holds. The functions ex(Q?) and uy(Q?) are given

by
S 2 \4 2
en(g?) = SV GO )
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with Gé/ v (Gi,l/v) the isoscalar S and isovector V nucleon elec-
tric (magnetic) form factors, respectively. At zero momentum
transfer, the form factors are known to be G (0) = GL(0) = 1,
Gi,[(O) = 0.880 uy, and GI‘\/,[(O) = 4.706 uy, where uy =
ehi/2mpror0n 1s the nuclear magneton. For all form-factor cal-
culations in this work we employ the nucleon parametrization
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FIG. 1. Schematic of the two methods used in this work to obtain the magnetic moments of the triton (t) and helion (h). The left part of the
figure shows the steps for the current operator evaluated in a momentum-space basis to calculate the magnetic form factor, while the right part
demonstrates the equivalent steps for the magnetic dipole operator evaluated between harmonic-oscillator basis states.

derived by Ye et al. [35]. This parametrization includes two-
photon exchange corrections as well as information from new
high-precision electron-nucleon scattering data, including un-
certainties.

At NLO (~ eQ7"), the leading 2BC operators enter. They
are connected to the one-pion-exchange interaction and their
momentum-space expressions are given by [21]
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with the axial coupling g4 = 1.27, the pion decay constant
Fr = 92.3 MeV, the averaged pion mass m, = 138.039 MeV,
the momentum transfers q; = k] — k;, the two-body center of
mass momenta P*) = (k(l') + k(z')) /2, and the Pauli isospin ma-
trices T;, operating on nucleon i. Here momentum conserva-
tion implies P’ = P+ Q. Figure 2 shows the LO and NLO dia-
grams for the current operator. The first and second term in the
square bracket in Eq. (7) correspond to diagram (b) and (c),
respectively, which are commonly referred to as the “seagull”
and “pion-in-flight terms.” Higher orders of the current oper-

ator have been derived see, e.g., Refs. [7, 9-11, 21]. Also, we
note that the 2BC operator is not regularized in this work. In
that sense, the operator is not fully consistent with employed
nuclear interactions. Very recently, a consistent implementa-
tion was achieved by using semilocal coordinate-space regu-
larization [36].

For the triton (t) and helion (h), the magnetic form factor is
given by [27]

2m
Fu(Q) = —KNGI’M/ rp QT (®)
where O = |Q|, J = 1/2 and Mg are the total three-body

angular momentum and its projection, 7 = 1/2 and My are
the three-body isospin and its projection, |¥) represents the
three-body state, and we have suppressed the other quantum
numbers of the triton or helion. As mentioned previously, the
magnetic moments of triton and helion are given by the form
factors at zero momentum transfer:

Hem = Frm(0). )
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FIG. 2. Diagrams for the LO (top row) and NLO (bottom row)
contributions to the electromagnetic current operator, indicated by
their scaling according to eQ”. Solid lines represent nucleons, while
dashed and wiggly lines represent pions and photons. Diagrams (b)
and (c) are the leading 2BCs given by the seagull and pion-in-flight
contribution, respectively. Note that the one-body charge operator is
represented by diagram (a) too, but with order eQ3.

B. Magnetic moment operator

The magnetic moment operator is determined from the nu-
clear current operator in momentum space by [7]

i, .
p =3 lim Vo xj(Q). (10)

The current operator can be expanded as a sum of one- and
many-body operators, resulting in a similar expansion for the
magnetic moment operator

A A
Il=Zﬂ1b,i+lezb,u+~--, (11)

i<j

where pyp,; is the single-nucleon contribution and pop;; the
two-body part. The two-body magnetic dipole operator at
NLO includes contributions from diagrams (b) and (c) in
Fig. 2.

The one-body magnetic dipole operator is given by [37]

1
Hibi = D (1 + o) (12)
k=0
Hpins = Gr(0)a, (13)
Hipin; = G (O)Ti- 0, (14)
Hoi = 5100 (15)
u
Mo = = Tizls (16)

with the orbital angular momentum ¢;.

Because 2BC operators are translationally invariant with re-
spect to the two-body center of mass R;; = (r; + r;)/2, the
center-of-mass motion can be factored out as

i (Q R = €0y Q). (17)

Accordingly, Eq. (10) splits into two parts, where one term
depends only on the intrinsic coordinates and the other also on
the center of mass. The intrinsic magnetic moment operator
and is then given by [7]

int

i .
Hohij = =5 (1)1_% Vo X j.ij(Q), (18)

whereas the center-of-mass dependence is contained in the so-
called “Sachs” term [38]

1 .
Ko = 5 Rij X Jonf(Q). (19)
This division into two parts can be made for 2BC operators at
any order.

Summing the contributions of the seagull and the pion-in-
flight terms yields for the total NLO intrinsic operator
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with f(r;;) = 1+1/(mgr;;) and the unit vector £;; of r;; = r;—r;.
The result for the NLO Sachs term is given by

1
NLO, Sach
Hop i iRy = _E(Ti X 7)) Viz(rij) R;j x5, (21)
where V,(r;;) is the coordinate-space one-pion-exchange po-
tential without isospin dependence:
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HCI’C, Sij(fij) = 3(f'ij . O'i)(f',‘j . (Tj) —0;-0; and h(r,-j) =1+

3/(mgrij) + 3/ (myr; j)2. At NLO, the Sachs term is determined

by the one-pion-exchange potential only.

III. OPERATOR MATRIX ELEMENTS

Matrix elements of operators expanded with respect to a
chosen computational basis are essential components for cal-
culating observables in few- and many-body methods. This
section focuses on expanding the one- and two-body current
and magnetic dipole operators into matrix elements with re-
spect to a specific basis. First, we show the expansion of the
current operators with respect to one-, two-, and three-body
momentum-space Jacobi bases, where the three-body result is
expressed in terms of the one- and two-body matrix elements.
Next, we expand the magnetic dipole operator contributions
with respect to one-, two-, and three-body relative HO bases.
As the Sachs term explicitly depends on the two-body center-
of-mass coordinate, embedding it into three-body Jacobi basis
needs additional steps. We will show this embedding for the
Sachs term in detail.



The single-particle partial-wave momentum-space basis
states we employ are given by

|ki (€isi)jim, limt,> , (23)

with the absolute value of the single-particle momentum k; =
|k;|, orbital angular momentum /;, spin s; = %, total angu-
lar momentum j; and its projection mj,, and isospin #; = %
along with its projection m,, for nucleon i. Relative two-body
quantum numbers are denoted by capital letters and relative

two-body momentum-space basis states are defined by
|paz) = |p(LS)IM; TMr), (24)

with the relative momentum p = %(kl — kj;) of two nucle-
ons, p = |p|, the relative orbital angular momentum L, two-
body spin S, total angular momentum J and its projection
M, and total isospin T and its projection Mr. The collec-
tive index ayp, defines the set of two-body quantum numbers
az = {L, S, J, T}. Three-body basis states are constructed by
coupling a third nucleon to the two-body system and defin-
ing it relative to the center of mass of the nucleon pair with
momentum p:

lpga) =|pql(LS) HJIT Mg (THT Mr)y.  (25)

Here q = %(k3 -1k + k2)> is the second Jacobi momen-
tum, whereas ¢, s, j, and ¢ are the corresponding spin, isospin
and angular momentum quantum numbers [39]. The total
three-body angular momentum and isospin are denoted by

J
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and the spinor spherical harmonics
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This factorized representation is very useful in practice as one-
body operator can be represented in a natural way in terms
of the quantity Q(Q, ¢, ¢’), while for two-body operators the
dynamics of the interaction with the external probe can be
parametrized naturally via  (Q, p, p’).

’
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J and 7, respectively. Here again, the collective index
a ={LS,JT,Ls,jJ,T} contains the partial-wave quan-
tum numbers that define the state.

Partial-wave HO states are constructed in a similar man-
ner, with the only difference being that the momentum is ex-
changed by the principle HO quantum number. Accordingly,
the single-particle HO basis states are given by

|ni(€isi)jimj, timt,-> , (26)
while the two-body basis states become
IN az) = IN(LS)JM;TMr), 27
and the three-body HO basis states are specified by
INna) = |Nn [(LS) (£s)JIT Mg (THT M. (28)
Note that the Jacobi coordinates used in our NCSM calcula-

tions are not exactly the same as those used in the Faddeev
calculations. All definitions are provided in Appendix A.

A. Partial-wave expanded current operator

Generally, the matrix elements of one-body and two-body
current operators, as defined in Eqgs. (4) and (7), can be ex-
pressed in the following form within the three-body partial-
wave basis defined in Eq. (25) [39, 40]:

-
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1. One-body operators

For the representation of one-body currents it is convenient
to choose the coordinates such that the external probe interacts
with the “last” particle, which for the 3N system is the nucleon
with Jacobi momentum q resp. " describing its motion rela-
tive to the subsystem of the other two nucleons. Specifically,
we have:

K =k,

K, =k, Kkj=k;+Q, (33)



which implies for the Jacobi momenta:

/

2
pP=p. q=q+3Q. (34)

3
Consequently, the matrix elements of P(Q, p, p’) are trivial since both particles with the relative momentum p = p’ are just
spectator particles:

MM}, MMy
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(35)
The quantity Q(Q, g, ¢’) on the other hand contains the dynamics of the probe described by the one-body current and is given by:

m’.mym , n 6(q, - |(1 + %Ql) it /§ ;. I
Q(l//s/)jfﬂ([s)jf (Q’ q.49 ) = quT‘yg/j;/ ! (q + §Q] <(q + 2/3Q)t my |.](Q)| qt’nt>'~yi7x ! (Q) . (36)

The evaluation is straightforward and can be performed numerically or partially analytically, depending on the specific form of
the current operator.

2. Two-body operators

In the case of 2BC operators it is most convenient for the practical evaluation of the matrix elements to choose the two-body
subsystem characterized by the Jacobi momenta p resp. p’ to interact with the external probe, i.e., K} = k3. We first express the
single-particle momenta in terms of the Jacobi and center-of-mass momenta [39]:

1
ki =p- 3+ P (37
q 1
ky=-p-=-+-=-P 38
2 =P 2+3 3N (38)
1
k3 =q+ §P3N. (39)

As a result of the interaction process, the center-of-mass momentum changes, P’3N = P3y + Q, and hence:

, 1
9=9+3Q (40)

while the Jacobi momentum p = (k; —k;)/2 and p’ = (K}, —K{)/2 are again unaffected by the interaction with the external probe.
Overall, we obtain:

M’ MMM , 1 o I MY A e R
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(

The quantity Q is a current-independent function that in this
case depends only on the kinematics specified by the momen-
tum Q, while the two-body quantity ¥ contains all the infor-
mation about the current operator.

B. Harmonic-oscillator expanded magnetic dipole operator

In this section, we show matrix elements expressed in the
HO basis, which enter the three-body Jacobi NCSM calcula-
tions. Without loss of generality we choose the external mo-

mentum Q to be along the z direction. In the Jacobi NCSM,
a wave function |3) is obtained through diagonalization of
the Hamiltonian and expressed as a superposition of antisym-
metrized HO basis states:

Wap) = > cil). (43)

1

Note that the antisymmetrized HO basis |i) is not the same as
the state defined in Eq. (28) and computed as

iy = > INna)(Nnali), (44)

Nna



with the coefficient of fractional parentage (Nnali) [41, 42].
Through the antisymmetrization, it is clear that expectation
values do not depend on the choice of the three-body Jacobi
coordinate, i.e., one can choose the spectator particle. For ex-
ample, the basis definitions (25) and (28) take spectator parti-
cle as the third one. Exploiting this, one can find

(¥ b|zmb,|%b>-32 D e

kIl N'n’a’ Nna
X (kIN'n o Y Nna|l)(N'n' & |urp 3\Nnay,  (45)

for one-body operators. A similar expression can be found for
two-body operators:

(Pl Zﬂzb,ulq’%) =3 Z Z Z cle
i<j kIl N'na’ Nna
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The main tasks are to find expressions for
(N'n'|||ufy 5 INna), (47
and
(N’ &l 1, IND@). (48)

Here, we introduced doubly reduced matrix element with re-
spect to spin and isospin, where « is the isospin rank of the
magnetic moment operator. This does not lose any informa-
tion, and one can always restore normal matrix elements by
means of the Wigner-Eckart theorem.

1. Harmonic-oscillator basis

To compute matrix elements within the HO basis, we first
define the momentum-space representation of radial oscillator
wave functions for a single-particle R,;(k) = (k £|n ), defined
by the overlap between momentum and HO eigenstates, given
by the slightly modified definition from Ref. [43]

~ 2n'b3 0 —L1i2p2 241
R = 4| DT 201202y (4
ne(K) ‘/F(n T 132) (kb)" e n o (k°D7), (49)

with b = 1/ y/myw the oscillator length in terms of the oscilla-
tor frequency w and the nucleon mass my, and L. (x) are gen-
eralized Laguerre polynomials. Similarly, coordinate-space
radial wave functions R,,(r) = (r {|n ) are given by

2n! ‘
n -G )L€+1/2
T(n+¢+3/2)b* \b b2)

(50)

Rye(r) =(=1)"

which are connected to the momentum-space functions
through a Fourier-Bessel transform

Ry(r) = dekk2 (rllk €) R, (k), Sh

where the overlap is described by spherical Bessel functions

(rllk €y = N2/mje(kr).

2. One-body operator

Matrix elements of the one-body magnetic dipole operator
defined in Eqgs. (13)-(16) are given by

<n/€/j/|||ﬂgpin|||n€j) =2 \/§Gi/l(0)jfj(_1)£'+j'+3/z
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For the spin term p*

spin’ the required reduced matrix element
for Eq. (47) is

’ K ’ j > & j, j’ J
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12 7T
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(56)

A similar expression can be found for the orbital contribution
K

#orb:
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(57
Notice that there is a factor 2/3, coming from the transfor-
mation from single-particle to three-body Jacobi coordinates.
Also, we have used that we can choose the orbital angular mo-
mentum of the three-body center-of-mass coordinate as zero
since the intrinsic and center-of-mass motions do not couple.

3. Intrinsic magnetic dipole operator

After angular momentum recoupling, the reduced matrix
element of the intrinsic magnetic dipole operator (20) with
respect to a relative two-body HO basis (27) can be computed
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Also, the matrix element of the intrinsic two-body magnetic
moment operator for Eq. (48) can be written as
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4. Sachs operator

In the previous section, we described how to embed a two-
body operator that only depends on the relative coordinate be-
tween two nucleons with respect to a relative two-body basis
and a three-body Jacobi basis. Here, we consider a two-body
operator depending on the two-nucleon center-of-mass, in ad-
dition to the relative coordinate. The Sachs contribution to the
NLO magnetic dipole operator is of this type.

We start by constructing basis states that explicitly include
the two-body center-of-mass motion. Such a basis is denoted
by

where the subscript 12 expresses relative quantities between
nucleon 1 and 2, while NN indicates quantities related to the
two-body center of mass. Coupling the relative and center-of-
mass angular momenta generates the total angular momentum
of the two-body system J,. with projection M;_. A schematic
representation of this basis is displayed in the right half of
Fig. 3, which shows the momenta associated to a two-body
system with respect to the origin by black dots labeled 1 and 2.

FIG. 3. Schematic of two different coordinate systems representing a
three-nucleon system. The left part represents the Jacobi coordinate
system characterized by (Psn, p, q), while the right part shows the
coordinate system described by (Pxn, p. K3).

The matrix element of the Sachs operator with respect to
the states defined in Eq. (61) is given by
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In addition to the integration over r, the matrix elements of the

Sachs operator are integrated over the center-or-mass coordi-



nate R. Same as the intrinsic contribution, the isospin rank of
the operator « is 1.

Finding an expression for the matrix element of the Sachs
operator in terms of three-body Jacobi basis states requires
more work compared to the matrix elements we evaluated in
previous sections. First, the two-body basis we defined in
Eq. (61) has to be extended to include a third nucleon. This
is achieved by coupling the total two-body angular momen-
tum and isospin to the total angular momentum and isospin
of the third nucleon to obtain three-body quantities. Second,
this basis allows to evaluate the Sachs operator in terms of
three-body states which include the two-body center-of-mass
motion, so that the result in Eq. (62) can be used to express
the matrix element. This expression, however, is unsuitable
to calculate expectation values of the operator because the
NCSM wave functions are expressed with three-body Jacobi
states. Therefore, in a third step, we determine the overlap
between the two different three-body bases.

To consider three particles in a basis which includes the
two-body center-of-mass motion, we add a third nucleon rep-
resented by |n3(€3%) j3>, which is defined with respect to the
origin, and couple its angular momentum j3; with the total two-
body angular momentum J. to the total three-body angular
momentum Yo

|NawN1ang @12 @3 T My, T Me)
= | NanNians{lLan(Li2S 12) 121 ke (633 ja }jtotMJm>

(64)

X |(T|2%)TM7'> .

The right part of Fig. 3 shows the coordinate system that cor-
responds to this basis state.

The matrix elements of the Sachs operator using the states

defined in Eq. (64) can be represented in terms of reduced

J

NLO,Sachs
<N§NN’n,a/3Na/jt,ot7-l”|/12b’12 * S|IIN3NNna3Najmt7')

N, N,

two-body matrix elements from Eq. (62), angular momentum
and isospin coupling factors, and a third particle which is di-
agonal in all its quantum numbers:

NLO,Sachs
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(65)
This result shows that the majority of the work to calculate
three-body matrix elements consists in determining the two-

body matrix elements.

To calculate the overlap between the three-body basis states
defined in Eq. (64) and the three-body Jacobi states from
Eq. (28), the three-body center-of-mass motion has to be in-
cluded. This is done by coupling the three-body angular mo-
mentum J with the center-of-mass orbital angular momentum
L3N to the total angular momentum 7y, so that the basis from
Eq. (28) is extended to

|N3NNH N JoMy, ) =
INsNNRL LN LS )T AT VT oMy THT Mr), - (66)

where the subscript 3N denotes quantities related to the three-
body center of mass. This state corresponds to the coordinate
representation in the left part of Fig. 3.

The matrix elements of the Sachs operator in the three-body
Jacobi basis can be obtained by carrying out the following
transformation:

Z Z Z Z <N§NN'n, @y @ $0t|NI/\INN12né @), @} jtor>

N 5 @, @ Nio Nawng @i as
NLO,Sach: (67)
XANGNN 5 T 6T kg 157 NN N 1273 1203 T 10T )
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The remaining task is to determine the basis transformation
brackets (NnnN1213 @12 @3 Tt NanNn asn @ Jior ), as the ma-
trix element with respect to the three-body basis is already
given in Eq. (65). Again, since the intrinsic and center-of-
mass motions are exactly decoupled, we are free to choose any
N3N and L3n. The most convenient choice is N3y = Lan = 0.
Then, the overlap is found to be

(NNNN113@ 1203 T 1ot ONna Jror) = (= 1)t lat1i240s+747

soan | J LN Jre Iny 6 ¢
XJrC l . R ..
”3{13 J J}{1/2 st}
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X ONN,0LL1,0551,000,,0TT,0.9 T -
(68)
Here, the Talmi-Moshinsky brackets are necessary to trans-
form between the three- and two-body center-of-mass sys-



tems. Also note that the Kronecker deltas indicate the rela-
tive two-body quantum numbers of the two different bases to
be the same, which is expected as they essentially represent
the same subsystem. A detailed derivation of this result can
be found in Appendix B. Note that the object in the left-hand
side in Eq. (67) takes the required form in Eq. (48) as we set
N3N = Lan = 0.

IV. RESULTS

In this section, we examine the magnetic form factors and
the magnetic moments of the trinucleons using different nu-
clear interactions based on chiral EFT. First, we present re-
sults for the magnetic form factors by evaluating the current
operator in terms of the matrix elements presented in Sec-
tion III A with corresponding partial-wave expanded wave
functions, which are obtained by solving the three-body Fad-
deev equations. Magnetic moments are calculated as the zero-
momentum-transfer limits of these form factors. We further-
more show results for the magnetic moments obtained from
the expanded magnetic dipole operator expressions discussed
in Sec. III B, based on NCSM wave functions. Finally, we
compare Faddeev and NCSM calculations against each other
to benchmark our results for the magnetic dipole operator.

We use the non-local chiral NN interactions by Entem,
Machleidt, and Nosyk (EMN) [44] from LO to N3LO with
cutoffs A = 420, 450, and 500 MeV. These are supplemented
with 3N interactions at the same orders, with 3N low-energy
constants (LECs) ¢p and cg determined by fits to the triton
binding energy and nuclear matter saturation properties, and
with a nonlocal three-body regulator with cutoff Ay identical
to the NN cutoff [45]. A systematic study of the dependence
of the magnetic observables on the three-body (LECs) ¢p and
cg is, however, not pursued, because the magnetic form fac-
tors turn out to be nearly independent of the 3N interaction,
and the magnetic moments even less so [46]. In addition, we
also consider the Entem and Machleidt (EM) [47] interaction
at N3LO, with a cutoff A = 500 MeV.

The availability of the EMN potentials at each order of
the expansion makes it possible to calculate theoretical uncer-
tainty estimates of neglected higher-order terms based on the
convergence pattern of observables. We use a Bayesian model
as outlined in [5, 48, 49] to provide a statistical approach to
calculate these uncertainties for the form-factor results. This
method determines a posterior distribution which captures all
the information about the neglected higher-order terms, from
which degree-of-belief (DoB) intervals are calculated. For the
evaluation, we employ a prior set Cgs-10 with Ay, = 650 MeV,
specified and publicly made available as a code in Ref. [48].
A characteristic momentum scale of p = 2/3Q is used to cal-
culate the 68% and 95% DoBs of the form factors. Overall,
the characteristic scale for momentum Q transferred to a nu-
cleus with mass number A is set by (A — 1)/A Q according to
Ref. [50].

The trinucleon magnetic form factors and dipole moments
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are computed as

2
Fu(Q) = —% (7 (B

ST ), (69
and

_ A
= (¥ o, (NCSM)

i SH v, (NCSM)), (70)
respectively. Here, |\1J%,(F)> and |t11{4’3”f, (NCSM)) are the
Faddeev and NCSM wave functions, respectively, with to-
tal three-body spin and isospin specified by J = 7 = 1/2
and maximally projected total angular momentum states, i.e.,
Mg = 9. The isospin projection Mg = —1/2 or Mq = 1/2
determines whether the wave function represents a triton or a
helion, respectively.

In order to perform Faddeev calculations, we truncate the
basis by choosing a maximal value for the relative total two-
body angular momentum J. Our calculations include partial
waves up to J < 6, which generates 42 distinct combina-
tions of one- and two-body quantum numbers. This truncation
proves to be sufficient to obtain converged results with respect
to the basis states, so that any variation observed in the results
are attributed to the interactions.

A. Magnetic form factor

We use the EMN interactions to calculate the magnetic
form factors of the trinucleons with LO and NLO current op-
erators. Figure 4 shows the triton (left column) and the helion
(right column) magnetic form factors, in units of u, for calcu-
lations with the one-body current operator only (top row) and
including 2BC corrections at NLO (bottom row) as a func-
tion of the momentum transfer Q, in units of fm~!, and are
compared to experimental results which are summarized by
the hatched band [51]. Results are given for cutoffs A = 420,
450, and 500 MeV at N’LO by the dashed-dotted, dashed, and
solid lines, respectively, together with the 68% (light band)
and 95% (dark band) DoBs for the 500 MeV result. These
bands terminate around Q ~ 4.6 fm~!, because the Bayesian
method has a limited range of validity. Lower orders of the in-
teraction are used to calculate the truncation uncertainty, dis-
played by the colored bands, but not explicitly shown other-
wise.

The magnetic form-factor results for 3He obtained with
only the one-body current disagree with experiment for all
cutoffs over the entire momentum-transfer region and under-
estimate the data until the minimum, even when the trunca-
tion uncertainty is considered. For *H, the results disagree
below 3.8 fm~! when the truncation uncertainty is taken into
account, yet fall within the 95% DoB interval at larger mo-
mentum transfer. Although the truncation uncertainty clearly
increases as Q grows, note that the logarithmic scale overem-
phasizes the uncertainty at large Q in the figures. As ex-
pected, the cutoff dependence increases as well with momen-
tum transfer, and the bands for the different cutoff values sep-
arate around Q ~ 3 fm~!; nevertheless they remain within the
68% DoB intervals. At Q = 0, the results for A = 500 MeV,
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FIG. 4. Triton (left column) and helion (right column) magnetic form factors, in units of yy, as a function of the momentum transfer, in units

of fm™!

. The hatched band represents a parametrization of the elastic scattering data [S1]. The top row shows the result with the one-body

current operator only, while the bottom row includes the 2BC contributions. The solid, dashed, and dashed-dotted lines represent the results
for interactions at N*LO with cutoff A = 500, 450, and 420 MeV, respectively. Light and dark shaded bands represent the 95% and 68% DoBs.

Fyz, ((0) = 2.583 uy and Fy n(0) = —1.767 uy, deviate from
the experimental values for the triton (2.9789624659(59) uy)
and helion (—2.127625307(25) pux [52]) magnetic moments,
and within the low-momentum transfer regime an approxi-
mate constant offset from experiment is found. In the fol-
lowing, we will examine the form factor normalization, i.e.,
the magnetic moment, in more detail. It is well known that
higher-order two-body current operator corrections are sizable
at Q = 0[21, 53], and thus they will impact the offset observed
at low momentum transfers.

The bottom row of Fig. 4 shows results with 2BC correc-
tions included. Values at low momentum transfer are shifted
up for both nuclei, but still disagree with experiment. Note
that the DoB intervals of the one-body and two-body results
do not overlap at low momentum transfers, which is a conse-

quence of the inconsistent inclusion of current operators com-
pared to the order of the interaction. At higher Q, the mini-
mum is shifted to higher momentum transfers, so that the cen-
tral value of the helion band is slightly too low and the central
value of the triton band reproduces the minimum, confirming
once again that 2BCs provide essential corrections to the one-
body current operator. Because the chiral truncation uncer-
tainty is expected to grow for increasing momentum transfers,
the goal of exactly reproducing the minimum is too strong.
We observe that within the truncation uncertainty the higher
Q region fully overlaps with experimental data for both nu-
clei. The cutoff variation is slightly reduced with respect to the
one-body result and falls well within the 68% DoBs. Stronger
conclusions can only be made by including higher-order op-
erators in the calculation.
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FIG. 5. Same as Fig. 4, but compared to results from Ref. [21] and without DoB intervals. The green and yellow bands correspond to a

variation of the cutoff scale from A = 500 MeV to A = 600 MeV.

In Fig. 5, we compare our results to calculations from Pi-
arulli et al. [21], which are given by the yellow and green
bands. The upper row displays the comparison of the one-
body current operator (yellow band), while the bottom row
shows results with 2BCs included (green band). Their results
are obtained by calculating the expectation value of the op-
erators with wave functions generated by the hyperspherical
harmonics framework. The bands in this case represent the
variation of the cutoff from A = 500 MeV to A = 600 MeV of
the employed chiral interaction and therefore have a different
interpretation compared to our bands.

Our one-body current results for *He with cutoffs A = 450
and 500 MeV fall within the yellow band over the entire mo-
mentum range, while our results for 3H overestimate the min-
imum and the high momentum region. Considering that the
operator is identical, the differences could only be explained
by the use of different chiral interactions. This shows that

apart from the corrections to the operator, also the interaction
strongly influences the high momentum transfer region.

The green bands in the bottom row include 2BC operators
up to N3LO, whereas our results only include the leading NLO
contributions. At zero and low momentum transfers a small
difference is observed, we will clarify its origin when dis-
cussing the magnetic moment below. For the minimum and
the high momentum region, the observation is similar to the
one-body comparison. Assuming that the truncation uncer-
tainty for the results from Ref. [21] would be comparable to
our findings, all results at high momentum transfers would
agree and even be consistent with experiment.

In order to systematically study the low momentum transfer
region, we display the trinucleon magnetic moments obtained
from Fy(0) in Fig. 6 as a function of increasing chiral order,
for cutoffs 450 MeV (indicated by downward triangles and
connected by dashed lines) and 500 MeV (indicated by cir-
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FIG. 6. Triton and helion magnetic moments in units of uy as a func-
tion of increasing order of the chiral expansion for the EMN NN +
3N interaction at cutoffs 450 MeV (downward triangles and dashed
lines) and 500 MeV (circles and solid lines). Results from calcula-
tions with LO, NLO, NLO + NLO 2BC, N°LO + NLO 2BC, and
N°LO + NLO 2BC interactions are shown in orange, yellow, green,
blue, and red, respectively. Blue plus and cross symbols show the
magnetic moment including NLO and N?LO current operator cor-
rections, respectively, from Ref. [21]. The black diamonds represent
the experimental values for both nuclei [52].

cles and solid lines). They are compared to the experimental
values of the triton and the helion, as well as to results from
Piarulli et al. [21] (blue pluses and crosses), which include
NLO 2BC corrections and the relativistic one-body correction
to the magnetic moment at N’LO.

The magnetic moments can be understood as one-nucleon
hole with respect to *He, and the single-particle limit for triton
(helion) of 2.793 (-1.913) uy is reasonably close to the com-
puted result. We observe that increasing the order of the chi-
ral interaction used for the bound-state calculation has almost
no effect on the magnetic moment of the trinucleons. How-
ever, adding NLO 2BC corrections (shown as “NLO + NLO
2BC” in the figure) changes the values by ~10% and improves
agreement with experiment. Our final result, labeled “N°LO +
NLO 2BC,” agrees well with both results from Piarulli et al.,
which implies that the relativistic correction to the one-body
operator is very small. On the other hand, comparing the re-
sult to the experimental values suggests that important correc-
tions to the operator are still missing to explain the remaining
5—7% discrepancy. Two-body corrections to the current oper-
ator at N*LO introduce new LECs that have to be fixed before
predictions can be made [7, 9]. Different strategies exist for
this procedure, and commonly a combination of observables
is chosen which includes the isoscalar us and the isovector
combination yy of the trinucleon magnetic moments to con-
strain the new LECs [7, 21]." As a result, the experimental

2 The isoscalar (us) and isovector (i) combinations of the trinucleon mag-
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TABLE 1. Triton and helion magnetic moments and their (cumula-
tive) contributions, in puy, from the form factor normalization, the
magnetic dipole operator, as well as experimental values [52]. The
NCSM wave function is computed at Ny, = 40 and fiw = 20 MeV.

He (1] Hn [un]

Fu@©) Fu) 4
LO 2.622 2.622 —1.783 —1.783
NLO 2.838 2.837 —-1.995 —-1.994
intrinsic - 0.195 - -0.191
Sachs - 0.021 - -0.021

Exp. 2.979 -2.128

magnetic moments of the trinucleons are reproduced exactly
if these higher-order corrections to the operator are taken into
account. Therefore, tests of higher order 2BC require finite
momentum transfer or nuclei beyond A = 3.

B. Test of magnetic dipole operator

In this section we present the trinucleon magnetic moments
obtained from the magnetic dipole operator with the Jacobi
NCSM, as discussed in Section III B. The three-body NCSM
calculations are done with NuHamil code [54]. We examine
their convergence behavior and benchmark them to the mag-
netic moments obtained from the form factors in momentum
space. Because our main goal is to benchmark the magnetic
dipole operator matrix elements, we only consider the EM
N3LO interaction with cutoff A = 500 MeV, without 3N in-
teractions.

Figure 7 shows the convergence of the triton (left) and he-
lion (right) magnetic moments as a function of Ny, for four
different HO frequencies iw = 10, 20, 30, and 40 MeV.
The top row displays the one-body magnetic dipole opera-
tor results relative to the one-body magnetic form factor nor-
malization, while the bottom row shows the NLO-corrected
result, represented by the label “upo, 1v + tuo. 2o~ with the
corresponding form-factor normalization in absolute terms.
The two-body contribution consists of the intrinsic and Sachs
terms, i.e., UHO, 2b = IJIZ\I[}O, intrinsic + #IZ\II}O, Sachs’ where the ma-
jority of the correction is contributed by the intrinsic compo-
nent.

Below we present numerical values and discuss the impact
of both contributions in more detail. The results show a sys-
tematic convergence towards the desired results obtained from
the form factor normalizations. Remarkably, very high values
of Nnax are required in order to obtain converged results. This
pattern follows the slow convergence of the three-body en-
ergy, which is a consequence of describing a loosely bound
system in a HO basis.

Table I displays the magnetic moments obtained from both
methods. The left column contains the results for the triton

netic moments are defined by us =y + up and py = p — .
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towards the NLO form factor result (dashed line), in .

magnetic moment 4, from the form-factor normalization and
the magnetic dipole operator and the right column gives the
same results for the helion . The first row presents results
from calculations with the one-body operator only (“LO”),
while the second row shows results with the NLO 2BCs in-
cluded (“NLO”). Contributions from the latter to the magnetic
moment are shown separately by the rows indicated with “in-
trinsic” and “Sachs.” As noted in Section III B, this separa-
tion cannot be made for the form factor calculation, hence
only the total values can be compared. At the bottom, the
experimental results for both nuclei are given. The effect on
the ground-state magnetic moment of the ﬂgbm’ nnsie gpera-
tor accounts for the bulk of the correction and its influence
amounts to around 10%, while the Sachs operator, which re-
quires much more resources to calculate, has a minor effect
of 0.5-1%. Total results from both methods agree with each
other within <« 1%.

The excellent agreement between the magnetic moments of
the triton and helion obtained from both methods gives strong
confidence that the partial-wave decomposition of the LO and
in particular the NLO magnetic dipole operator has been car-
ried out correctly. After a transformation to single-particle
coordinates (given in Appendix C), the matrix elements pre-
sented in this work can be used in many-body basis-expansion
frameworks that are capable of calculating observables for

heavier nuclei. For example, a recent NCSM calculation of
the magnetic moment and a magnetic transition of °Li based
on the developments presented in this work showed that the
NLO corrections to the magnetic dipole operator are essential
and improve the agreement with experiment [28].

V.  SUMMARY AND CONCLUSIONS

In this paper, we studied the nuclear magnetic dipole oper-
ator obtained from chiral EFT current operators with a partic-
ular focus on the two-body NLO contribution. We discussed
the general connection between the current operator and the
magnetic dipole operator, and presented the coordinate space
expressions for the NLO magnetic dipole operator. The mag-
netic dipole operator from 2BCs can be split into two terms:
the intrinsic and Sachs terms, where the Sachs term depends
explicitly on the two-body center-of-mass, in addition to the
relative coordinate. We derived in detail the partial-wave de-
composed matrix elements of the operators in the correspond-
ing single-particle, two-body, and three-body bases. For the
current operator we employed momentum-space basis states,
to easily accommodate for the momentum dependence of the
operator, while the magnetic dipole operator was evaluated
with respect to HO basis states through Eqgs. (58) and (62).



The decomposition of the latter has been checked by calculat-
ing the trinucleon magnetic moments and benchmarking them
to form factor normalization results.

We provided results for the trinucleon magnetic form fac-
tors based on the EMN potentials, which allowed us to also
estimate the uncertainty arising from truncating the chiral ex-
pansion. This uncertainty estimate, which by default grows
for increasing momentum transfer, indicates that the precise
reproduction of the minimum is not an important discrimi-
nator for EFTs. Our results agree well with values previously
obtained in the literature using different chiral interactions and
are consistent with experiment if the uncertainty in the EFT
truncation is taken into account. In addition, our results for the
magnetic dipole operator show a very good convergence and
agree well with the form factor normalization results, demon-
strating that the coordinate-space expression and the partial-
wave decomposition of the dipole operator are correct.

This work establishes a starting point for many-body ex-
pansion methods to incorporate the HO partial-wave decom-
posed NLO dipole matrix elements for calculations of elec-
tromagnetic observables. Such studies could validate already
obtained results for A < 9 systems [7, 28] and will extend
the ab initio analysis of NLO corrections to magnetic observ-
ables to medium-mass nuclei based on chiral EFT interactions
and consistent current operators. As a next step, the partial-
wave decomposition of the magnetic dipole operator could be
pushed to higher orders in the chiral expansion. This will test
the chiral expansion and reduce the truncation uncertainty.
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Appendix A: Three-body Jacobi coordinate

For our Faddeev calculations, the Jacobi momenta are de-
fined as

(AL)
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with the single-particle momenta k;, i = 1,2,3. The corre-
sponding conjugate coordinates are given by

Rem ;o3 o3)(nm
r, |={ 1 -10 r |, (A2)
Ty -3 =3 1)\rs

with the single-particle coordinates r;, i = 1,2,3. For our
NCSM calculations, we use a symmetric choice as the Talmi-
Moshinsky bracket [55, 56] is defined with them. The mo-
menta and coordinates are then defined as

o [T
2] |

1
)
&o
¢
&

Appendix B: Three-body overlap for Sachs term evaluation
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Here we give a derivation of Eq. (68). To this end, we con-
sider the following recoupling so that we can factor out the
orbital part:

INNNN 12131203 T or)
— (_1)j3+$ot—-/rc+LNN+[3+l/2
~a ) Jio Inn Jre
X Y (-DMAL
;( Ve {JS Jot A} (B1)

Aa | Lan €3 A
X2 ’”3{1/2 A j3}
X INnnN12n3{J 1 [(Ean63)A 5 1AL o)

To factorize the three-body center-of-mass part, one can use
the coordinate transformation

2 1 .

) FN )
NP

The above coordinate transformation ensures the following

transformation using the Talmi-Moshinsky bracket [55, 56],
with the notation given in Ref. [57]:

1
INNNN1213{J 12 [(LNN€3)/15]A}jtot>

1
= D NN Ul (Ln)A5 A w) - (B3)

NN L't
X (NgNLQN,n'Z’ : AINNNLNN,I’Z3€3 : /l)dzz.



For the Jacobi three-body basis, the recoupling is given by
’ 4 1
NG Ni2n' {J12[(Lsne )/l—]/\}jtoO
_ Z( 1)[ +l/2+j'A o '£3N 5/ /l
1/2 A J

XZ(_I)J12+j/+J’jIA{ J}Z j, j’ }
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Combining Egs. (B1), (B3), and (B4), and using the diagonal-
ity of the states, we obtain

(NsNNnasne T ol Nag N2t [ Ly (J127)T 1T o)

= 6N3N)V§N6L3NL§N6NN126LL12655lzéfflzénn'éff'éfj'éjj”
(BS)
and one can find the overlap:
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Inserting N3y = Lsn = 0 into Eq. (B6) leads to Eq. (68).

Appendix C: Transformation to single-particle basis

For applications to medium-mass and heavier systems,
current developments will need to be combined with basis-
expansion methods such as coupled-cluster theory [30] or the
in-medium-similarity renormalization group [31, 33]. Then,
the matrix elements need to be expressed in terms of the
single-particle coordinates rather than relative and center-
of-mass coordinates. They are related by Talmi-Moshinsky
transformations, already mentioned in Appendex B.
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Our goal here is to show the transformation for

& jromh 6 - T lloMini by jramalajo = Tty (C1)
Here the state |n1€)j1,n262j2 @ Jwot) 1S the antisymmetrized
product of {ny, €y, ji1} and {ny, £>, j»} states coupling to the to-
tal angular momentum Jy, in the proton-neutron (p-n) basis.
One can find the following transformation

[ni€1jinataja : Jio) = Z INNNN12012)
NipNanann (C2)
XANNNNpa €y ji,nala jo o Jior)s
where the overlap is
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(C3)
with antisymmetrization factor
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Note that we have removed the isospin part from @, as we
work in the proton-neutron formalism. Then, the matrix ele-
ments in the laboratory frame can be computed as

(€ j1 5 Jy = O inily i naba o = Jior)
= Z Z (Ml - g

4 4
ot NN @)
N, NN @1, Ni2Nawaiz (CS5)

X (Ni N 12 @ lOYINNN N 12 12)
X ANNNNpa |l ji, nala jo @ Jior).

If the operator does not depend on the center-of-mass coordi-
nate, the matrix element can be evaluated as

(N{N 12 @ lOY NN N1 1) = (=) et/ +

&7 J' J LNN
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