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Many-body approaches for atomic nuclei generally rely on a basis expansion of the nuclear states, inter-

actions, and current operators. In this work, we derive the representation of the magnetic dipole operator in

plane-wave and harmonic-oscillator basis states, as needed for Faddeev calculations of few-body systems or

many-body calculations within, e.g., the no-core shell model, the in-medium similarity renormalization group,

coupled-cluster theory, or the nuclear shell model. We focus in particular on the next-to-leading-order two-body

contributions derived from chiral effective field theory. We provide detailed benchmarks and also comparisons

with quantum Monte Carlo results for three-body systems. The derived operator matrix elements represent the

basic input for studying magnetic properties of atomic nuclei based on chiral effective field theory.

I. INTRODUCTION

Calculating the electromagnetic structure of nuclei is a

powerful tool to explore and test nuclear theory. The weak

electromagnetic coupling compared to the strong interaction

allows for a perturbative treatment of these processes, so that

the nuclear structure content can be separated with great con-

trol. The electromagnetic interaction between the nucleus and

external photons can in general be described by a current-

current interaction. While quantum electrodynamics (QED)

describes the current of the external probe, nuclear theory

deals with the nuclear current. To first approximation, the in-

teraction between the photon and an atomic nucleus can be

expressed in terms of the sum of photon interactions with all

the individual nucleons. This approximation is equivalent to

retaining only one-body contributions in the nuclear current,

while all possible higher-body operators are neglected. Even

though these leading terms provide the dominant contribu-

tions, higher-order contributions, especially from two-body

operators are crucial for precise predictions of electromag-

netic observables.

The modern approach to quantitatively understanding low-

energy nuclear physics in terms of ab initio calculations is

based on effective field theory (EFT), most notably chiral

EFT. It provides a systematic expansion of the strong inter-

action between nucleons as well as electroweak interactions

with a direct connection to the fundamental theory of quan-

tum chromodynamics (QCD) and its symmetries [1–3]. A

power-counting scheme orders the expansion terms accord-

ing to decreasing importance in powers of (Q/Λb)¿, with Q

the typical momentum scale governing processes in the nu-
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cleus, which is of the order of the pion mass mÃ, and Λb

the breakdown scale Λb = 500 − 600 MeV. Leading order

(LO) terms, i.e., ¿ = −2 for electromagnetic currents, include

the dominant one-body contributions mentioned earlier, while

next-to-leading order (NLO) and next-to-next-to-leading or-

der (N2LO) terms, etc., add contributions of decreasing im-

portance. The systematic expansion provides a way to im-

prove calculations and to determine uncertainties arising from

neglected higher orders [4, 5]. Furthermore, EFT provides a

consistent derivation of nuclear forces and currents. To date,

there have been several efforts to derive electromagnetic nu-

clear currents within the framework of chiral EFT. In Refs. [6–

8] time-ordered perturbation theory was used to obtain current

operator expressions up to next-to-next-to-next-to-leading or-

der (N3LO) in the chiral expansion, while Refs. [9–11] used

the method of unitary transformation. Both methods agree

on the current operators at the order we employ in this work.

However, at higher orders disagreements occur; for a detailed

discussion see Ref. [11].

Calculating the electromagnetic structure of nuclei involves

evaluating the electromagnetic nuclear current operator Jµ =

(Ä, j), with charge operator Ä and three-vector current operator

j, between initial and final states of the nuclear system |ið and

| f ð. The Fourier transform of the current operator contains

information about the charge and magnetization densities in-

side the nucleus. Because the nuclear states have a definite

angular momentum, it is useful to decompose the nuclear cur-

rent into its multipole components. For example, the current

operator j can be expressed in terms of electric and magnetic

multipole operators, the long-wavelength limits of which cor-

respond to the electric and magnetic moment operators, where

the magnetic dipole contribution is the focus of this work.

With the magnetic dipole operator, one can calculate ground-

state properties like the nuclear magnetic moment, defined by

µ ≡ ïÀJM = J | µz | ÀJM = Jð , (1)

where J and M are the nuclear spin and its projection, respec-

tively, and À represents all other quantum numbers relevant

to describe the state. In addition, one can calculate magnetic
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transitions between nuclear states. The probability of an initial

state of the nucleus to emit or absorb a photon and transition

to a final state is given by Fermi’s golden rule [12]:

Γµ,i→ f =
2 (¼ + 1)

¼
[

(2¼ + 1)!!
]2

E2¼+1
µ B(M¼; ÀiJi → À f J f ), (2)

where ¼ is the angular momentum of the photon with energy

Eµ. We use units with ℏ = c = ε0 = 1, and the last term above

is the transition strength

B(M¼; ÀJi → ÀJ f ) ≡
1

2Ji + 1

∣

∣

∣ïÀ f J f ||Omag

¼
||ÀiJið

∣

∣

∣

2
. (3)

Here, O
mag

¼
represents the magnetic multipole operator in the

long-wavelength limit (momentum transfer Q → 0) [13, 14],

with the reduced matrix element ïÀ f J f ||Omag

¼
||ÀiJið. In the

case ¼ = 1 the multipole operator is the magnetic dipole op-

erator O
mag

1z
=

√

3
4Ã
µz, and the corresponding transition is re-

ferred to as the dipole transition or M1 transition.

Studies of electromagnetic properties calculated with chi-

ral EFT currents combined with nuclear states obtained from

chiral EFT interactions or phenomenological potentials have

to date been focused on few-nucleon systems and light nuclei.

Deuteron and trinucleon electromagnetic form factors, radii,

and moments have been studied up to N3LO in Refs. [15–

24], with the most recent result for the charge and quadrupole

form factors of the deuteron pushing the calculation to fifth

order in the chiral expansion [25, 26]. In Ref. [27], magnetic

moments and electromagnetic transitions of light nuclei up to

A f 9 have been calculated with a hybrid method, combin-

ing phenomenological wave functions with chiral magnetic

dipole operators up to N3LO, based on quantum Monte Carlo

methods to solve the many-body problem. More recently, the

first full chiral EFT calculation of the ground-state magnetic

moment and the lowest magnetic transition in 6Li has been

presented [28]. All studies identified that current operator

contributions beyond LO are important to improve agreement

with experimental magnetic properties, with two-body contri-

butions entering at NLO having the largest impact.

Higher-order corrections to the current operator are clearly

necessary for improving the agreement with experimental re-

sults and can provide an explanation to long-standing discrep-

ancies between theory and experiment. For example, the sys-

tematically smaller beta-decay rate in nuclei compared to free

neutrons can, in part, be explained by the coupling of the weak

force to two nucleons [29]. In spite of this evidence for weak

processes, the magnetic structure of heavier nuclei has so far

only been studied without two-body currents (2BCs). Most ab

initio many-body methods that calculate medium-mass nuclei

are based upon basis expansion methods [30–34]. To perform

computations, these frameworks require operators expanded

in a computational basis that is commonly constructed based

on harmonic-oscillator (HO) states. In this work, we provide

partial-wave matrix elements for the LO one-body-current and

NLO two-body current operators in a two-body momentum-

space basis as well as partial-wave matrix elements for the

corresponding LO and NLO magnetic dipole operators in

HO bases. A straightforward implementation of these ma-

trix elements can be used to calculate magnetic properties of

medium-mass nuclei. We validate our expressions by compar-

ing the trinucleon magnetic moments obtained from the the

magnetic form factors with Faddeev calculations against the

magnetic dipole operator used in Jacobi no-core shell-model

(NCSM) calculations. Figure 1 displays the strategy of our

trinucleon magnetic moments calculations.

This paper is organized as follows. In Sec. II we introduce

the current operators that are employed and show how to ob-

tain the magnetic dipole operators from them. Section III pro-

vides the expressions for the matrix elements of the various

operators with respect to the different bases. The results and

comparison of the trinucleon magnetic moments are presented

in Sec. IV. Finally, we conclude in Sec. V.

II. NUCLEAR MAGNETIC MOMENTS

Nuclear magnetic moments can be calculated using two re-

lated methods. The first uses the magnetic form factor at zero

momentum transfer. The form factor is the Fourier transform

of the magnetization density of the nucleus and is obtained by

calculating the expectation value of the nuclear current opera-

tor. The second method obtains the nuclear magnetic moment

by directly evaluating the magnetic moment operator, which

is the long-wavelength limit of the dipole term of the multi-

pole expansion of the current operator. Below we specify the

current and magnetic moment operators.

A. Magnetic form factor normalization

The one-body current operator at LO (∼ eQ−2) is given in

momentum space by [21]

j(−2)(Q) =
e

2mN

(

2 eN

(

Q2) K + i µN

(

Q2)σ × Q

)

, (4)

where e is the elementary charge, mN the nucleon mass, k and

k′ are the initial and final nucleon momenta, K = (k + k′)/2,

σ is the vector of Pauli spin matrices, and Q is the spatial

part of the momentum transfer associated with the photon Q2

is QµQµ. Momentum conservation requires that the relation

k′ = k+Q holds. The functions eN

(

Q2
)

and µN

(

Q2
)

are given

by

eN

(

Q2) =
GS

E

(

Q2
)

+GV
E

(

Q2
)

Äz

2
, (5)

µN

(

Q2) =
GS

M

(

Q2
)

+GV
M

(

Q2
)

Äz

2
, (6)

with G
S/V

E
(G

S/V

M
) the isoscalar S and isovector V nucleon elec-

tric (magnetic) form factors, respectively. At zero momentum

transfer, the form factors are known to be GS
E

(0) = GV
E

(0) = 1,

GS
M

(0) = 0.880 µN , and GV
M

(0) = 4.706 µN , where µN =

eℏ/2mproton is the nuclear magneton. For all form-factor cal-

culations in this work we employ the nucleon parametrization
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FIG. 1. Schematic of the two methods used in this work to obtain the magnetic moments of the triton (t) and helion (h). The left part of the

figure shows the steps for the current operator evaluated in a momentum-space basis to calculate the magnetic form factor, while the right part

demonstrates the equivalent steps for the magnetic dipole operator evaluated between harmonic-oscillator basis states.

derived by Ye et al. [35]. This parametrization includes two-

photon exchange corrections as well as information from new

high-precision electron-nucleon scattering data, including un-

certainties.

At NLO (∼ eQ−1), the leading 2BC operators enter. They

are connected to the one-pion-exchange interaction and their

momentum-space expressions are given by [21]

j(−1)(Q) = − i e
g2

A

4F2
Ã

GV
E (Q2)(τ1 × τ2)z

[

σ1 − q1

σ1 · q1

q2
1
+ m2

Ã

]

× σ2 · q2

q2
2
+ m2

Ã

+ 1⇋ 2, (7)

with the axial coupling gA = 1.27, the pion decay constant

FÃ = 92.3 MeV, the averaged pion mass mÃ = 138.039 MeV,

the momentum transfers qi = k′
i
− ki, the two-body center of

mass momenta P(′) = (k
(′)
1
+ k

(′)
2

)/2, and the Pauli isospin ma-

trices τi, operating on nucleon i. Here momentum conserva-

tion implies P′ = P+Q. Figure 2 shows the LO and NLO dia-

grams for the current operator. The first and second term in the

square bracket in Eq. (7) correspond to diagram (b) and (c),

respectively, which are commonly referred to as the “seagull”

and “pion-in-flight terms.” Higher orders of the current oper-

ator have been derived see, e.g., Refs. [7, 9–11, 21]. Also, we

note that the 2BC operator is not regularized in this work. In

that sense, the operator is not fully consistent with employed

nuclear interactions. Very recently, a consistent implementa-

tion was achieved by using semilocal coordinate-space regu-

larization [36].

For the triton (t) and helion (h), the magnetic form factor is

given by [27]

FM(Q) = −2mN

Q
ïΨJ ,T

M′
J=+J ,MT

| j+(Q) |ΨJ ,T
MJ=−J ,MT

ð, (8)

where Q = |Q|, J = 1/2 and MJ are the total three-body

angular momentum and its projection, T = 1/2 and MT are

the three-body isospin and its projection, |Ψð represents the

three-body state, and we have suppressed the other quantum

numbers of the triton or helion. As mentioned previously, the

magnetic moments of triton and helion are given by the form

factors at zero momentum transfer:

µt/h = FM(0). (9)
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The single-particle partial-wave momentum-space basis

states we employ are given by

∣

∣

∣ki (ℓisi) jim ji timti

〉

, (23)

with the absolute value of the single-particle momentum ki =

|ki|, orbital angular momentum li, spin si =
1
2
, total angu-

lar momentum ji and its projection m ji , and isospin ti =
1
2

along with its projection mti for nucleon i. Relative two-body

quantum numbers are denoted by capital letters and relative

two-body momentum-space basis states are defined by

|p³2bð ≡ |p (LS )JMJ T MT ð , (24)

with the relative momentum p = 1
2
(k1 − k2) of two nucle-

ons, p = |p|, the relative orbital angular momentum L, two-

body spin S , total angular momentum J and its projection

MJ , and total isospin T and its projection MT . The collec-

tive index ³2b defines the set of two-body quantum numbers

³2b = {L, S , J,T }. Three-body basis states are constructed by

coupling a third nucleon to the two-body system and defin-

ing it relative to the center of mass of the nucleon pair with

momentum p:

|p q³ð ≡
∣

∣

∣p q [(LS )J (ℓs) j]JMJ (Tt)TMT
〉

. (25)

Here q = 2
3

(

k3 − 1
2
(k1 + k2)

)

is the second Jacobi momen-

tum, whereas ℓ, s, j, and t are the corresponding spin, isospin

and angular momentum quantum numbers [39]. The total

three-body angular momentum and isospin are denoted by

J and T , respectively. Here again, the collective index

³ = {L, S , J,T, l, s, j,J ,T } contains the partial-wave quan-

tum numbers that define the state.

Partial-wave HO states are constructed in a similar man-

ner, with the only difference being that the momentum is ex-

changed by the principle HO quantum number. Accordingly,

the single-particle HO basis states are given by

∣

∣

∣ni(ℓisi) jim ji timti

〉

, (26)

while the two-body basis states become

|N ³2bð ≡ |N(LS )JMJ T MT ð , (27)

and the three-body HO basis states are specified by

|N n³ð ≡
∣

∣

∣N n [(LS )J (ℓs) j]JMJ (Tt)TMT
〉

. (28)

Note that the Jacobi coordinates used in our NCSM calcula-

tions are not exactly the same as those used in the Faddeev

calculations. All definitions are provided in Appendix A.

A. Partial-wave expanded current operator

Generally, the matrix elements of one-body and two-body

current operators, as defined in Eqs. (4) and (7), can be ex-

pressed in the following form within the three-body partial-

wave basis defined in Eq. (25) [39, 40]:

〈

p′q′³′ |j(Q)| pq³
〉

=
∑

MJ M′
J
m jm

′
j

CJ ′M′
J

J′M′
J

jm′
j

CJMJ
JMJ jm j

∑

MT M′
T

mtm
′
t

CT ′M′
T

T ′M′
T

t′m′
t
CTMT

T MT tmt
PM′

J
M′

T
MJ MT

(L′S ′)J′T ′(LS )JT

(

Q, p, p′
)Qm′

j
m′

t m jmt

(ℓ′ s′) j′t′(ℓs) jt

(

Q, q, q′
)

, (29)

with

PM′
J
M′

T
MJ MT

(L′S ′)J′T ′(LS )JT

(

Q, p, p′
)

=
1

(2Ã)3

∫

dp1dp′
1

¶
(

p′
1
− p′

)

p′
1
p′ Y∗J′M′

J

L′S ′
(

p̂′
1

) 〈

p′
1T ′M′

T |j(Q)|p1T MT

〉 ¶ (p − p1)

pp1

YJMJ

LS
(p̂1) , (30)

Qm′
j
m′

t m jmt

(l′ s′) j′t′(ℓs) jt

(

Q, q, q′) =
1

(2Ã)3

∫

dq1dq′
1

¶
(

q′
1
− q′

)

q′
1
q′

Y∗ j′
j
m′

j

ℓ′ s′
(

q̂′
1

) 〈

q′
1t′m′

t |j(Q)|q1tmt

〉 ¶ (q − q1)

qq1

Y jm j

ℓs
(q̂1) , (31)

and the spinor spherical harmonics

YJMJ

LS
(â) =

∑

ML,MS

CJMJ

LMLS MS
YLML

(â) |S MS ð . (32)

This factorized representation is very useful in practice as one-

body operator can be represented in a natural way in terms

of the quantity Q (Q, q, q′), while for two-body operators the

dynamics of the interaction with the external probe can be

parametrized naturally via P (Q, p, p′).

1. One-body operators

For the representation of one-body currents it is convenient

to choose the coordinates such that the external probe interacts

with the “last” particle, which for the 3N system is the nucleon

with Jacobi momentum q resp. q′ describing its motion rela-

tive to the subsystem of the other two nucleons. Specifically,

we have:

k′
1 = k1, k′

2 = k2, k′
3 = k3 +Q, (33)
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which implies for the Jacobi momenta:

p′ = p, q′ = q +
2

3
Q . (34)

Consequently, the matrix elements of P(Q, p, p′) are trivial since both particles with the relative momentum p = p′ are just

spectator particles:

PM′
J
M′

T
MJ MT

(L′S ′)J′T ′(LS )JT

(

Q, p, p′
)

= ¶MT M′
T
¶MJ M′

J
¶JJ′¶LL′¶S S ′¶TT ′

¶ (p − p′)

p′p
. (35)

The quantity Q(Q, q, q′) on the other hand contains the dynamics of the probe described by the one-body current and is given by:

Qm′
j
m′

t m jmt

(l′ s′) j′t′(ℓs) jt

(

Q, q, q′
)

=

∫

dq̂
¶
(

q′ − |q + 2
3
Q|

)

q′2
Y∗ j′

j
m′

j

ℓ′ s′













̂

q +
2

3
Q













〈

(q + 2/3Q)t′m′
t |j(Q)|qtmt

〉Y jm j

ℓs
(q̂) . (36)

The evaluation is straightforward and can be performed numerically or partially analytically, depending on the specific form of

the current operator.

2. Two-body operators

In the case of 2BC operators it is most convenient for the practical evaluation of the matrix elements to choose the two-body

subsystem characterized by the Jacobi momenta p resp. p′ to interact with the external probe, i.e., k′
3
= k3. We first express the

single-particle momenta in terms of the Jacobi and center-of-mass momenta [39]:

k1 = p − q

2
+

1

3
P3N (37)

k2 = −p − q

2
+

1

3
P3N (38)

k3 = q +
1

3
P3N. (39)

As a result of the interaction process, the center-of-mass momentum changes, P′
3N
= P3N +Q, and hence:

q′ = q +
1

3
Q, (40)

while the Jacobi momentum p = (k2 −k1)/2 and p′ = (k′
2
−k′

1
)/2 are again unaffected by the interaction with the external probe.

Overall, we obtain:

PM′
J
M′

T
MJ MT

(L′S ′)J′T ′(LS )JT

(

Q, p, p′
)

=
1

(2Ã)3

∫

dp̂′dp̂Y∗J′M′
J

L′S ′
(

p̂′) 〈p′T ′M′
T |j(Q)|pT MT

〉YJMJ

LS
(p̂) (41)

Qm′
j
m′

t mtmt

(l′ s′) j′t′(ℓs) jt

(

Q, q, q′) = ¶mtm
′
t
¶ss′¶msm

′
s

∫

dq̂
¶
(

q′ − |q + 1
3
Q|

)

q′2
Y∗ j′

j
m j

ℓ′ s′













̂

q +
1

3
Q













Y jm j

ℓs
(q̂) . (42)

The quantity Q is a current-independent function that in this

case depends only on the kinematics specified by the momen-

tum Q, while the two-body quantity P contains all the infor-

mation about the current operator.

B. Harmonic-oscillator expanded magnetic dipole operator

In this section, we show matrix elements expressed in the

HO basis, which enter the three-body Jacobi NCSM calcula-

tions. Without loss of generality we choose the external mo-

mentum Q to be along the z direction. In the Jacobi NCSM,

a wave function |Ψ3bð is obtained through diagonalization of

the Hamiltonian and expressed as a superposition of antisym-

metrized HO basis states:

|Ψ3bð =
∑

i

ci|ið. (43)

Note that the antisymmetrized HO basis |ið is not the same as

the state defined in Eq. (28) and computed as

|ið =
∑

Nn³

|Nn³ðïNn³|ið, (44)
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with the coefficient of fractional parentage ïNn³|ið [41, 42].

Through the antisymmetrization, it is clear that expectation

values do not depend on the choice of the three-body Jacobi

coordinate, i.e., one can choose the spectator particle. For ex-

ample, the basis definitions (25) and (28) take spectator parti-

cle as the third one. Exploiting this, one can find

ïΨ′
3b|

∑

i

µ1b,i|Ψ3bð = 3
∑

kl

∑

N′n′³′

∑

Nn³

c′∗k cl

× ïk|N′n′³′ðïNn³|lðïN′n′³′|µ1b,3|Nn³ð, (45)

for one-body operators. A similar expression can be found for

two-body operators:

ïΨ′
3b|

∑

i< j

µ2b,i j|Ψ3bð = 3
∑

kl

∑

N′n′³′

∑

Nn³

c′∗k cl

× ïk|N′n′³′ðïNn³|lðïN′n′³′|µ2b,12|Nn³ð. (46)

The main tasks are to find expressions for

ïN′n′³′|||µ»1b,3|||Nn³ð, (47)

and

ïN′n′³′|||µ»2b,12|||Nn³ð. (48)

Here, we introduced doubly reduced matrix element with re-

spect to spin and isospin, where » is the isospin rank of the

magnetic moment operator. This does not lose any informa-

tion, and one can always restore normal matrix elements by

means of the Wigner-Eckart theorem.

1. Harmonic-oscillator basis

To compute matrix elements within the HO basis, we first

define the momentum-space representation of radial oscillator

wave functions for a single-particle R̃nℓ(k) = ïk ℓ|n ℓð, defined

by the overlap between momentum and HO eigenstates, given

by the slightly modified definition from Ref. [43]

R̃nℓ(k) =

√

2n!b3

Γ(n + ℓ + 3/2)

(

kb
)ℓ

e−
1
2

k2b2

Lℓ+1/2
n (k2b2), (49)

with b ≡ 1/
√

mNÉ the oscillator length in terms of the oscilla-

tor frequency É and the nucleon mass mN , and Lℓn(x) are gen-

eralized Laguerre polynomials. Similarly, coordinate-space

radial wave functions Rnℓ(r) = ïr ℓ|n ℓð are given by

Rnℓ(r) =(−1)n

√

2n!

Γ(n + ℓ + 3/2)b3

(

r

b

)ℓ

e−
1
2

( r
b

)2

Lℓ+1/2
n

(

r2

b2

)

,

(50)

which are connected to the momentum-space functions

through a Fourier-Bessel transform

Rnℓ(r) =

∫

dk k2 ïr ℓ|k ℓð R̃nℓ(k), (51)

where the overlap is described by spherical Bessel functions

ïr ℓ|k ℓð =
√

2/Ã jℓ(kr).

2. One-body operator

Matrix elements of the one-body magnetic dipole operator

defined in Eqs. (13)-(16) are given by

ïn′ℓ′ j′|||µ0
spin|||nℓ jð = 2

√
3GS

M(0) ĵ′ ĵ(−1)ℓ
′+ j′+3/2

×
{

1/2 1/2 1

j′ j ℓ

}

¶nn′¶ℓℓ′ , (52)

ïn′ℓ′ j′|||µ1
spin|||nℓ jð = 6GV

M(0) ĵ′ ĵ(−1)ℓ
′+ j′+3/2

×
{

1/2 1/2 1

j′ j ℓ

}

¶nn′¶ℓℓ′ , (53)

ïn′ℓ′ j′|||µ0
orb|||nℓ jð = µN√

2
ĵ′ ĵℓ̂

√

ℓ(ℓ + 1)(−1)ℓ+ j+3/2

×
{

ℓ ℓ 1

j′ j 1/2

}

¶nn′¶ℓℓ′ , (54)

ïn′ℓ′ j′|||µ1
orb|||nℓ jð =

√

3

2
µN ĵ′ ĵℓ̂

√

ℓ(ℓ + 1)(−1)ℓ+ j+3/2

×
{

ℓ ℓ 1

j′ j 1/2

}

¶nn′¶ℓℓ′ . (55)

For the spin term µ»
spin

, the required reduced matrix element

for Eq. (47) is

ïN′n′³|||µ»spin,3|||Nn³ð = (−1)J
′+J+ j+1Ĵ ′Ĵ

{

j′ J ′ J

J j 1

}

× (−1)T
′+T+3/2T̂ ′T̂

{

1/2 T ′ T

T 1/2 »

}

× ïn′ℓ′ j′|||µ»spin|||nℓ jð¶N′N¶L′L¶S ′S ¶J′J¶T ′T .

(56)

A similar expression can be found for the orbital contribution

µ»
orb

:

ïN′n′³|||µ»orb,3|||Nn³ð = 2

3
(−1)J

′+J+ j+1Ĵ ′Ĵ
{

j′ J ′ J

J j 1

}

× (−1)T
′+T+3/2T̂ ′T̂

{

1/2 T ′ T

T 1/2 »

}

× ïn′ℓ′ j′|||µ»orb|||nℓ jð¶N′N¶L′L¶S ′S ¶J′J¶T ′T .

(57)

Notice that there is a factor 2/3, coming from the transfor-

mation from single-particle to three-body Jacobi coordinates.

Also, we have used that we can choose the orbital angular mo-

mentum of the three-body center-of-mass coordinate as zero

since the intrinsic and center-of-mass motions do not couple.

3. Intrinsic magnetic dipole operator

After angular momentum recoupling, the reduced matrix

element of the intrinsic magnetic dipole operator (20) with

respect to a relative two-body HO basis (27) can be computed
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nate R. Same as the intrinsic contribution, the isospin rank of

the operator » is 1.

Finding an expression for the matrix element of the Sachs

operator in terms of three-body Jacobi basis states requires

more work compared to the matrix elements we evaluated in

previous sections. First, the two-body basis we defined in

Eq. (61) has to be extended to include a third nucleon. This

is achieved by coupling the total two-body angular momen-

tum and isospin to the total angular momentum and isospin

of the third nucleon to obtain three-body quantities. Second,

this basis allows to evaluate the Sachs operator in terms of

three-body states which include the two-body center-of-mass

motion, so that the result in Eq. (62) can be used to express

the matrix element. This expression, however, is unsuitable

to calculate expectation values of the operator because the

NCSM wave functions are expressed with three-body Jacobi

states. Therefore, in a third step, we determine the overlap

between the two different three-body bases.

To consider three particles in a basis which includes the

two-body center-of-mass motion, we add a third nucleon rep-

resented by
∣

∣

∣n3(ℓ3
1
2
) j3

〉

, which is defined with respect to the

origin, and couple its angular momentum j3 with the total two-

body angular momentum Jrc to the total three-body angular

momentum Jtot:

∣

∣

∣NNNN12n3 ³12 ³3 JtotMJtot
TMT

〉

≡
∣

∣

∣NNNN12n3{[LNN(L12S 12)J12]Jrc(ℓ3
1
2
) j3}JtotMJtot

〉

×
∣

∣

∣(T12
1
2
)TMT

〉

.
(64)

The right part of Fig. 3 shows the coordinate system that cor-

responds to this basis state.

The matrix elements of the Sachs operator using the states

defined in Eq. (64) can be represented in terms of reduced

two-body matrix elements from Eq. (62), angular momentum

and isospin coupling factors, and a third particle which is di-

agonal in all its quantum numbers:

ïN′
NNN′

12n′3³
′
12³

′
3J ′

totT ′|||µNLO,Sachs

2b,12
|||NNNN12n3³12³3JtotTð

= (−1)J′rc+ j′
3
+Jtot+1Ĵ ′

totĴtot

{

J ′
tot J′rc j3

Jrc Jtot 1

}

× (−1)T ′+T+3/2T̂ ′T̂
{

T ′ T ′ 1/2

T T 1

}

× ïN′
NNN′

12³
′
12|||µ

NLO,Sachs

2b
|||NNNN12³12ð¶n′

3
n3
¶ℓ′

3
ℓ3¶ j′

3
j3

(65)

This result shows that the majority of the work to calculate

three-body matrix elements consists in determining the two-

body matrix elements.

To calculate the overlap between the three-body basis states

defined in Eq. (64) and the three-body Jacobi states from

Eq. (28), the three-body center-of-mass motion has to be in-

cluded. This is done by coupling the three-body angular mo-

mentum J with the center-of-mass orbital angular momentum

L3N to the total angular momentum Jtot, so that the basis from

Eq. (28) is extended to

∣

∣

∣N3NNn³3N³JtotMJtot

〉 ≡
∣

∣

∣N3NNn{L3N[(LS )J(ℓ 1
2
) j]J}JtotMJtot

(T 1
2
)TMT

〉

, (66)

where the subscript 3N denotes quantities related to the three-

body center of mass. This state corresponds to the coordinate

representation in the left part of Fig. 3.

The matrix elements of the Sachs operator in the three-body

Jacobi basis can be obtained by carrying out the following

transformation:

ïN ′
3NN′n′³′3N³

′J ′
totT ′|||µNLO,Sachs

2b,12
|||N3NNn³3N³JtotTð

=
∑

N′
12

N′
NN

n′
3

∑

³′
12
³′

3

∑

N12 NNN n3

∑

³12 ³3

〈

N ′
3NN′n′ ³′3N ³

′ Jtot

∣

∣

∣N′
NNN′

12n′3 ³
′
12 ³

′
3 Jtot

〉

× ïN′
NNN′

12n′3³
′
12³

′
3J ′

totT ′|||µNLO,Sachs

2b,12
|||NNNN12n3³12³3JtotTð

× ïNNNN12n3 ³12 ³3 Jtot|N3NNn³3N ³Jtotð .

(67)

The remaining task is to determine the basis transformation

brackets ïNNNN12n3 ³12 ³3 Jtot|N3NNn³3N ³Jtotð, as the ma-

trix element with respect to the three-body basis is already

given in Eq. (65). Again, since the intrinsic and center-of-

mass motions are exactly decoupled, we are free to choose any

N3N and L3N. The most convenient choice is N3N = L3N = 0.

Then, the overlap is found to be

ïNNNN12n3³12³3Jtot|0Nn³Jtotð = (−1)LNN−Jrc+ℓ3+1/2+ j3+ j+J

× Ĵrc ĵ ĵ3 l̂

{

J LNN Jrc

j3 J j

}{

LNN ℓ3 ℓ

1/2 j j3

}

× ï00nℓ|NNNLNNn3ℓ3ðd=2

× ¶NN12
¶LL12
¶S S 12
¶JJ12
¶TT12
¶JJtot

.

(68)

Here, the Talmi-Moshinsky brackets are necessary to trans-

form between the three- and two-body center-of-mass sys-
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tems. Also note that the Kronecker deltas indicate the rela-

tive two-body quantum numbers of the two different bases to

be the same, which is expected as they essentially represent

the same subsystem. A detailed derivation of this result can

be found in Appendix B. Note that the object in the left-hand

side in Eq. (67) takes the required form in Eq. (48) as we set

N3N = L3N = 0.

IV. RESULTS

In this section, we examine the magnetic form factors and

the magnetic moments of the trinucleons using different nu-

clear interactions based on chiral EFT. First, we present re-

sults for the magnetic form factors by evaluating the current

operator in terms of the matrix elements presented in Sec-

tion III A with corresponding partial-wave expanded wave

functions, which are obtained by solving the three-body Fad-

deev equations. Magnetic moments are calculated as the zero-

momentum-transfer limits of these form factors. We further-

more show results for the magnetic moments obtained from

the expanded magnetic dipole operator expressions discussed

in Sec. III B, based on NCSM wave functions. Finally, we

compare Faddeev and NCSM calculations against each other

to benchmark our results for the magnetic dipole operator.

We use the non-local chiral NN interactions by Entem,

Machleidt, and Nosyk (EMN) [44] from LO to N3LO with

cutoffs Λ = 420, 450, and 500 MeV. These are supplemented

with 3N interactions at the same orders, with 3N low-energy

constants (LECs) cD and cE determined by fits to the triton

binding energy and nuclear matter saturation properties, and

with a nonlocal three-body regulator with cutoff Λ3N identical

to the NN cutoff [45]. A systematic study of the dependence

of the magnetic observables on the three-body (LECs) cD and

cE is, however, not pursued, because the magnetic form fac-

tors turn out to be nearly independent of the 3N interaction,

and the magnetic moments even less so [46]. In addition, we

also consider the Entem and Machleidt (EM) [47] interaction

at N3LO, with a cutoff Λ = 500 MeV.

The availability of the EMN potentials at each order of

the expansion makes it possible to calculate theoretical uncer-

tainty estimates of neglected higher-order terms based on the

convergence pattern of observables. We use a Bayesian model

as outlined in [5, 48, 49] to provide a statistical approach to

calculate these uncertainties for the form-factor results. This

method determines a posterior distribution which captures all

the information about the neglected higher-order terms, from

which degree-of-belief (DoB) intervals are calculated. For the

evaluation, we employ a prior set C0.25−10 withΛb = 650 MeV,

specified and publicly made available as a code in Ref. [48].

A characteristic momentum scale of p = 2/3Q is used to cal-

culate the 68% and 95% DoBs of the form factors. Overall,

the characteristic scale for momentum Q transferred to a nu-

cleus with mass number A is set by (A − 1)/A Q according to

Ref. [50].

The trinucleon magnetic form factors and dipole moments

are computed as

FM(Q) = −2mN

Q

〈

Ψ
J ,T
MJ+1,MT

(F)
∣

∣

∣

∣

j+(Q)
∣

∣

∣

∣

Ψ
J ,T
MJ ,MT

(F)
〉

, (69)

and

µt/h =
〈

Ψ
J ,T
MJ ,MT

(NCSM)
∣

∣

∣

∣

µz

∣

∣

∣

∣

Ψ
J ,T
MJ ,MT

(NCSM)
〉

, (70)

respectively. Here, |ΨJ ,T
MJ
, (F)ð and |ΨJ ,T

MJ
, (NCSM)ð are the

Faddeev and NCSM wave functions, respectively, with to-

tal three-body spin and isospin specified by J = T = 1/2

and maximally projected total angular momentum states, i.e.,

MJ = ±J . The isospin projection MT = −1/2 or MT = 1/2

determines whether the wave function represents a triton or a

helion, respectively.

In order to perform Faddeev calculations, we truncate the

basis by choosing a maximal value for the relative total two-

body angular momentum J. Our calculations include partial

waves up to J f 6, which generates 42 distinct combina-

tions of one- and two-body quantum numbers. This truncation

proves to be sufficient to obtain converged results with respect

to the basis states, so that any variation observed in the results

are attributed to the interactions.

A. Magnetic form factor

We use the EMN interactions to calculate the magnetic

form factors of the trinucleons with LO and NLO current op-

erators. Figure 4 shows the triton (left column) and the helion

(right column) magnetic form factors, in units of µN , for calcu-

lations with the one-body current operator only (top row) and

including 2BC corrections at NLO (bottom row) as a func-

tion of the momentum transfer Q, in units of fm−1, and are

compared to experimental results which are summarized by

the hatched band [51]. Results are given for cutoffs Λ = 420,

450, and 500 MeV at N3LO by the dashed-dotted, dashed, and

solid lines, respectively, together with the 68% (light band)

and 95% (dark band) DoBs for the 500 MeV result. These

bands terminate around Q ∼ 4.6 fm−1, because the Bayesian

method has a limited range of validity. Lower orders of the in-

teraction are used to calculate the truncation uncertainty, dis-

played by the colored bands, but not explicitly shown other-

wise.

The magnetic form-factor results for 3He obtained with

only the one-body current disagree with experiment for all

cutoffs over the entire momentum-transfer region and under-

estimate the data until the minimum, even when the trunca-

tion uncertainty is considered. For 3H, the results disagree

below 3.8 fm−1 when the truncation uncertainty is taken into

account, yet fall within the 95% DoB interval at larger mo-

mentum transfer. Although the truncation uncertainty clearly

increases as Q grows, note that the logarithmic scale overem-

phasizes the uncertainty at large Q in the figures. As ex-

pected, the cutoff dependence increases as well with momen-

tum transfer, and the bands for the different cutoff values sep-

arate around Q ∼ 3 fm−1; nevertheless they remain within the

68% DoB intervals. At Q = 0, the results for Λ = 500 MeV,
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The decomposition of the latter has been checked by calculat-

ing the trinucleon magnetic moments and benchmarking them

to form factor normalization results.

We provided results for the trinucleon magnetic form fac-

tors based on the EMN potentials, which allowed us to also

estimate the uncertainty arising from truncating the chiral ex-

pansion. This uncertainty estimate, which by default grows

for increasing momentum transfer, indicates that the precise

reproduction of the minimum is not an important discrimi-

nator for EFTs. Our results agree well with values previously

obtained in the literature using different chiral interactions and

are consistent with experiment if the uncertainty in the EFT

truncation is taken into account. In addition, our results for the

magnetic dipole operator show a very good convergence and

agree well with the form factor normalization results, demon-

strating that the coordinate-space expression and the partial-

wave decomposition of the dipole operator are correct.

This work establishes a starting point for many-body ex-

pansion methods to incorporate the HO partial-wave decom-

posed NLO dipole matrix elements for calculations of elec-

tromagnetic observables. Such studies could validate already

obtained results for A f 9 systems [7, 28] and will extend

the ab initio analysis of NLO corrections to magnetic observ-

ables to medium-mass nuclei based on chiral EFT interactions

and consistent current operators. As a next step, the partial-

wave decomposition of the magnetic dipole operator could be

pushed to higher orders in the chiral expansion. This will test

the chiral expansion and reduce the truncation uncertainty.
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Appendix A: Three-body Jacobi coordinate

For our Faddeev calculations, the Jacobi momenta are de-

fined as



















Kcm

p

q



















=





















1 1 1
1
2

− 1
2
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− 1
3

− 1
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3







































k1

k2

k3



















, (A1)

with the single-particle momenta ki, i = 1, 2, 3. The corre-

sponding conjugate coordinates are given by



















Rcm

rp

rq



















=
















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

1
3

1
3

1
3

1 −1 0
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
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
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, (A2)

with the single-particle coordinates ri, i = 1, 2, 3. For our

NCSM calculations, we use a symmetric choice as the Talmi-

Moshinsky bracket [55, 56] is defined with them. The mo-

menta and coordinates are then defined as
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, (A3)

and
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Appendix B: Three-body overlap for Sachs term evaluation

Here we give a derivation of Eq. (68). To this end, we con-

sider the following recoupling so that we can factor out the

orbital part:

|NNNN12n3³12³3Jtotð
= (−1) j3+Jtot−Jrc+LNN+ℓ3+1/2

×
∑

Λ

(−1)Λ ĴrcΛ̂

{

J12 LNN Jrc

j3 Jtot Λ

}

×
∑

¼

¼̂ ĵ3

{

LNN ℓ3 ¼

1/2 Λ j3

}

× |NNNN12n3{J12 [(LNNℓ3)¼ 1
2
]Λ}Jtotð.

(B1)

To factorize the three-body center-of-mass part, one can use

the coordinate transformation

(

ξ0

ξ2

)

=


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√

2
3

√

1
3

√

1
3

−
√

2
3



































√

1
2
(r1 + r2)

r3















. (B2)

The above coordinate transformation ensures the following

transformation using the Talmi-Moshinsky bracket [55, 56],

with the notation given in Ref. [57]:

|NNNN12n3{J12[(LNNℓ3)¼
1

2
]Λ}Jtotð

=
∑

N ′
3N
L′

3N
n′ℓ′

|N ′
3NN12n′{J12[(L3Nℓ

′)¼
1

2
]Λ}Jtotð

× ïN ′
3NL′

3N, n
′ℓ′ : ¼|NNNLNN, n3ℓ3 : ¼ðd=2.

(B3)
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For the Jacobi three-body basis, the recoupling is given by

|N ′
3NN12n′{J12[(L3Nℓ

′)¼
1

2
]Λ}Jtotð

=
∑

j′

(−1)ℓ
′+1/2+ j′ ¼̂ ĵ′

{

L′
3N
ℓ′ ¼

1/2 Λ j′

}

×
∑

J ′

(−1)J12+ j′+J ′Ĵ ′Λ̂

{

J12 j′ J ′

L′
3N

Jtot Λ

}

× |N ′
3NN12n′[L′

3N(J12 j′)J ′]Jtotð.

(B4)

Combining Eqs. (B1), (B3), and (B4), and using the diagonal-

ity of the states, we obtain

ïN3NNn³3N³Jtot|N ′
3NN12n′[L′

3N(J12 j′)J ′]Jtotð
= ¶N3NN ′

3N
¶L3NL′

3N
¶NN12

¶LL12
¶S S 12
¶JJ12
¶nn′¶ℓℓ′¶ j j′¶JJ ′ ,

(B5)

and one can find the overlap:

ïNNNN12n3³12³3Jtot|N3NNn³3N³Jtotð
= (−1)J12+L12−Jrc+ℓ3+ℓ+J+Jtot

×
∑

Λ¼

(−1) j3+Λ ĴrcĴ ĵ3 ĵΛ̂2¼̂2

×
{

J12 LNN Jrc

j3 Jtot Λ

}{

J12 j J
L3N Jtot Λ

}

×
{

LNN ℓ3 ¼

1/2 Λ j3

}{

L3N ℓ ¼

1/2 Λ j

}

× ïN ′
3NL′

3N, n
′ℓ′ : ¼|NNNLNN, n3ℓ3 : ¼ðd=2

× ¶NN12
¶LL12
¶S S 12
¶JJ12
.

(B6)

Inserting N3N = L3N = 0 into Eq. (B6) leads to Eq. (68).

Appendix C: Transformation to single-particle basis

For applications to medium-mass and heavier systems,

current developments will need to be combined with basis-

expansion methods such as coupled-cluster theory [30] or the

in-medium-similarity renormalization group [31, 33]. Then,

the matrix elements need to be expressed in terms of the

single-particle coordinates rather than relative and center-

of-mass coordinates. They are related by Talmi-Moshinsky

transformations, already mentioned in Appendex B.

Our goal here is to show the transformation for

ïn′1ℓ′1 j′1, n
′
2ℓ

′
2 j′2 : J′tot||O¼||n1ℓ1 j1, n2ℓ2 j2 : Jtotð. (C1)

Here the state |n1ℓ1 j1, n2ℓ2 j2 : Jtotð is the antisymmetrized

product of {n1, ℓ1, j1} and {n2, ℓ2, j2} states coupling to the to-

tal angular momentum Jtot in the proton-neutron (p-n) basis.

One can find the following transformation

|n1ℓ1 j1,n2ℓ2 j2 : Jtotð =
∑

N12NNN³12

|NNNN12³12ð

× ïNNNN12³12|n1ℓ1 j1, n2ℓ2 j2 : Jtotð,
(C2)

where the overlap is

ïNNNN12³12|n1ℓ1 j1, n2ℓ2 j2 : Jtotð = (−1)L+LNN+S 12+Jtot f12

× ĵ1 ĵ2Ŝ 12 Ĵ12

∑

Λ

Λ̂2



















ℓ1 s1 j1
ℓ2 s2 j2
Λ S 12 Jtot



















×
{

S 12 L12 J12

LNN Jtot Λ

}

¶Jrc Jtot

× ïNNNLNN,N12L12 : Λ|n1ℓ1, n2ℓ2 : Λðd=1,

(C3)

with antisymmetrization factor

f12 =















√

1
2(1+¶n1n2

¶ℓ1ℓ2 ¶ j1 j2
)
[1 + (−1)L12+S 12 ] pp or nn

1 pn
. (C4)

Note that we have removed the isospin part from ³12 as we

work in the proton-neutron formalism. Then, the matrix ele-

ments in the laboratory frame can be computed as

ïn′1ℓ′1 j′1, n
′
2ℓ

′
2 j′2 : J′tot||O¼||n1ℓ1 j1, n2ℓ2 j2 : Jtotð

=
∑

N′
12

N′
NN
³′

12

∑

N12NNN³12

ïn′1ℓ′1 j′1, n
′
2ℓ

′
2 j′2 : J′tot|N′

NNN′
12³

′
12ð

× ïN′
NNN′

12³
′
12||O¼||NNNN12³12ð

× ïNNNN12³12|n1ℓ1 j1, n2ℓ2 j2 : Jtotð.

(C5)

If the operator does not depend on the center-of-mass coordi-

nate, the matrix element can be evaluated as

ïN′
NNN′

12³
′
12||O¼||NNNN12³12ð = (−1)LNN+Jrc+J′

12
+¼

× Ĵ′rc Ĵrc

{

J′rc J′
12

LNN

J12 Jrc ¼

}

ïN′
12³

′
2b||O¼||N12³2bð

× ¶NNNN′
NN
¶LNNL′

NN
.

(C6)
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