2024 58th Annual Conference on Information Sciences and Systems (CISS) | 979-8-3503-6929-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/CISS59072.2024.10480173

Learning Embedding Representations in High
Dimensions

Golara Ahmadi Azar*, Melika Emami **, Alyson Fletcher*, and Sundeep Rangan'
Email: golazar@g.ucla.edu, emami@ucla.edu, akfletcher@g.ucla.edu, srangan@nyu.edu
* Electrical and Computer Engineering Department, UCLA, Los Angeles, CA
T Electrical and Computer Engineering Department, NYU, Brooklyn, NY

Abstract—Embeddings are a basic initial feature extraction
step in many machine learning models, particularly in natural
language processing. An embedding attempts to map data tokens
to a low-dimensional space where similar tokens are mapped
to vectors that are close to one another by some metric in
the embedding space. A basic question is how well can such
embedding be learned? To study this problem, we consider
a simple probability model for discrete data where there is
some ‘“‘true” but unknown embedding where the correlation of
random variables is related to the similarity of the embeddings.
Under this model, it is shown that the embeddings can be
learned by a variant of low-rank approximate message passing
(AMP) method. The AMP approach enables precise predictions
of the accuracy of the estimation in certain high-dimensional
limits. In particular, the methodology provides insight on the
relations of key parameters such as the number of samples
per value, the frequency of the terms, and the strength of
the embedding correlation on the probability distribution. Our
theoretical findings are validated by simulations on both synthetic
data and real text data.

Index Terms—AMP, Poisson channel, State Evolution, Embed-
ding learning.

I. INTRODUCTION

Embeddings are widely-used in machine learning tasks,
particularly text processing [1]. In this work, we study embed-
ding of pairs of discrete random variables, (X1, X2), where
Xy, € m] :=={1,...,m} and Xy € [n] := {1,...,n}. For
example, in word embeddings, X; could represent a target
word, and X5 a context word (e.g., a second word found close
to the target word) [2]. By an embedding, we mean a pair of
mappings of the form:

Xi=i—w, Xo=jr v, (1)

where u; and v; € R%. The embedding thus maps each value
of the random variable to an associated d-dimensional vector.
The dimension d is called the embedding dimension.
Typically, (see e.g., [2]), we try to learn embeddings such
that w]v; is large when the pair (X, X>) = (i,7) occurs
more frequently. Many algorithms have been proposed for
training such embeddings [2]-[5]. While these algorithms have
been successful in practice, precise convergence results are
difficult to obtain. At root, we wish to understand how well can
embeddings be learned? For example, questions include: how
well do the correlations, u]v; of learned embeddings predict

1 Now at Optum Al, work done while at UCLA.
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the underlying correlation of events X; =4 and X2 = 7. How
do these predictions depend on the number of data samples
available and embedding dimension?

To study these problems, we propose a simple model for
the joint distribution of (X7, X5) where

PXi=i,Xo=3) ] 1 . ‘

5 | PoG =P =) TRt @
for some true embedding vectors u; and v;. The property (2)
indicates that the log correlation of the events that X; = ¢
and X, = j is proportional to the vector correlation wu]v;
in the embedding space. Importantly, the model also has
parameters ;" and 77 (called the bias parameters) that describe
the marginal distributions P(X; = ¢) and P(Xs = j). This
feature captures the fact that there is a high variability in the
probabilities of terms.

The problem of learning the embeddings can then be
thought of as estimating the vectors u; and v; from samples
(z1,x2). We show that the estimation problem is equivalent
to a low-rank matrix factorization problem. Low-rank matrix
factorization [6], and variants of such algorithms are often used
in learning embeddings [2], [7]. In this work, we consider
a variant of low-rank approximate message passing (AMP)
method. Several AMP methods are available for low-rank
matrix factorization (AMP-KM [8], IterFac [9], Low-rank
AMP [10]). In this work, we assume that the number of
samples where (x1,22) = (4,7) is distributed as a Poisson
random variable with rate proportional to the joint probability,
P(X; =1, X5 = j). Under this assumption, we show that we
can apply variant of [10], [11] that allows low-rank estimates
under general (possibly, non-Gaussian) measurements. The
method is modified to incorporate the bias terms and we call
the resulting method biased low-rank AMP.

The main advantage of the AMP approach is the precise
predictions of the algorithm performance in certain high-
dimensional limits. Specifically, we consider the case where
the embedding dimension d is fixed while the number of
values, m and n, for X; and X5 grow to infinity with m/n
constant. Under this assumption, we show that the joint distri-
bution of the true embedding vectors and their estimates can be
exactly characterized. The characterization is given by a state
evolution similar to other AMP algorithms [12], [13]. From
this joint distribution, one can evaluate various performance
metrics such as mean squared error (MSE) or overlap of the
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true and learned embedding vectors as well as the error in the
learned joint probability distribution. The performance, in turn,
can be related to key parameters such as the number of data
samples per outcome (i,7), the relative frequency of terms,
and strength of the dependence of the embedding correlation
u}vj on the correlation of events X; =4 and X = j.

Prior work: Since the introduction of AMP algorithms
by [12], there has been a vast body of literature in their
applications to various statistical estimation problems [14].
Early AMP methods for low-rank estimation include [8] and
[15]. IAMP methods were proven to be optimal for the case
of sparse PCA [16]. The work [17] applied AMP to the
stochastic block model which is a popular statistical model
for the large-scale structure of complex networks. Authors
of [18] address the shortcomings of classical PCA in the
high dimensional and low SNR regime. They use an AMP
algorithm to solve the non-convex non-negative PCA problem.
In [19], authors consider a general form of the problem at
hand and provide the MMSE that is in principle achievable
in any computational time. Specifically relevant to our study,
[10], [11] present a framework to address the constrained
low-rank matrix estimation assuming a general prior on the
factors, and a general output channel (a biased Poisson channel
in our case) through which the matrix is observed. Noting
that state evolution is uninformative when the algorithm is
initialized near an unstable fixed point, [20] proposes a new
analysis of AMP that allows for spectral initializations. The
main contribution of the current work is to modify and apply
these methods to the embedding learning problem.

For space considerations, all assumptions, proofs, and sim-
ulations details are omitted and provided in a full paper [21].

II. PROBLEM FORMULATION

A. Joint Density Model for the Embedding

As stated in the introduction, we consider embeddings of
pairs of discrete random variables (X7, X5) with X; € [m]
and X, € [n] for some m and n. Let P,i(l) = P(X; =1)
and PJ@ = P(X3 = j) denote the marginal distributions and
P,; = P(X; = i,X, = j) denote the joint distribution. We
assume the joint distribution has the form,

1
P;j = Cexp <uiTv]- + s+ s;’) , ?3)

vm

where u;,v; € R are some “true” embedding vectors, s;'
and s”j are scalars, and C > 0 is a normalization constant. It
can be verified that, for large m, the marginal distributions of
X, are Xy satisfy:

log PV = Cy + s% + O(1/y/m),

log P\? = Cy + s 4+ 0(1/v/m),
where C) and C are constants. Hence, s}’ and s;’ which we
will call the bias terms, represent the log likelihoods of the

(42)
(4b)

values. Also, the PMF (3) satisfies the property

— T+ O(1/m),

Jm

Hence, the similarity w] v, represents the log of the correlation
of the events that X7 = ¢ and X5 = j.

Py

P p@ )
i J

log

B. Poisson Measurements

We can try to learn an embedding by fitting a model of the
form (3) to the data. To this end, suppose we are given a set
of samples, (z¢,2%),t=1,...,N. Let

Zij=|{t | (a} =i,25 =j)}], (6)

which are the number of instances where (X1, X2) = (4, J).
If we assume that the samples are independent and identicaly
distributed (i.i.d.), with PMF (3) and the number of samples,
N, is Poisson distributed, then the measurements Z;; will be
independent with distributions,

Z;; ~ Poisson(A;;),

1
)\7,] = AO exp <\/ﬁulv‘; + S;{-u' + S;) s

)

where \g = CE (N).
III. AMP-BASED ESTIMATION

A. Bias vector estimation

Our problem is to estimate the embedding vectors u; and v;
and the biases s}' and 87 from the model (3) and measurements
Z;j. In principle, one can use maximum likelihood (ML)
estimation. In this work, we consider a simpler two-step
estimation method that is easier to analyze.

In the first step, we estimate the bias terms s}* and s;-’. Define

®)

Our plan is to estimate r' and r} and then estimate s;' and
sy from (8). Note that, by adjusting the bias terms s;' or s7,
we will assume in the sequel, without loss of generality, that
in the model (7)

u ., —s v —s;-’

, rji=e

1 u
do=1, —> e =1 ©)
m £

i=1
Under this assumption, we propose to estimate the bias terms
with:

5p = —log(r}'), §j = —log(r}), (10)
where 7} and 7] are estimates of rj* and r given by:
1 m 1 n &
— = Z == Zj 11
T Ziot Z YT Zios “ an
j=1 J =1
and m n
Ziot =3 Y Zij. (12)
i=1j=1

Note that Z;.¢ represents the total number of measurements.
Also, 1/73 is proportional to . Z;;, which is simply the
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relative frequency of the event X; = i. Similarly, 1/ 77 is the
relative frequency of the event Xo = j.

B. Regularized Maximum Likelihood

Having estimated the bias terms, we next estimate the
embedding vectors u; and v;. Let U and V' be the matrices
with rows u; and v;. Consider the loss function,

ZlogPowD (ZZJ|\F'UJ v + 5§ +s>

ij
+ ¢u(U) + du(V), (13)

where P, (z|log \) := e"*\*/2! is the Poisson distribution,
and ¢, (U) and ¢,(V) are regularizers on the matrices of
embedding vectors. Ideally, we would obtain estimates for U
and V' by minimizing this loss:

U,V = argr(r]{glLo(U, V).

Lo(U, V) :

(14)

This minimization would correspond to performing a regular-
ized ML estimation assuming the Poisson model (7).

We will assume the regularizers are row-wise separable
meaning

m
U) = gulw), ¢u(V ng v;),  (5)
i=1
for some functions g, (-) and g,(-). For example, we can use
a square norm regularizers such as:

A
Qu(ui)¢::‘é£HUiH2

for normalization constants A\, and \,. Regularizers can also
be used to impose sparsity.
Of course, the loss function (13) depends on the bias terms

s and s;-’ , which are not known. In place, we will use the
estimates 5 and 7 from (10).

W
gv(vj) = *H JH2 (16)

C. Biased Low-Rank AMP

One possible approach to minimizing the loss (13) is to
use the low-rank AMP method of [10], [11]. This method
considers general loss functions of the form

ZlogPout <Z”|\F vj>

+ ¢u(U) + ¢u(V).

The method [10], [11] permits general probability mappings
P(Z;;|-) (these are called the “output channels”). However,
there is no direct method to incorporate the bias terms s;* and
s3 that appear in the likelihood in (13).

We will show that, for the particular structure of the Poisson
channel, we can modify the low-rank AMP method [10], [11].
The key to the low-rank AMP method is to take a quadratic
approximation of the log likelihood of the output channel. We

Lo(U,V) :

a7)

apply a similar approach here and first compute the so-called
Fisher score functions:

0
Y = 3 log Pout(Zij|u + si + s5)

1
J

Also, let Aij denote the so-called inverse Fisher information:

u=0

(18)

1
Aij

1

U Q0
T‘i’l“j

(19)

Next, let M;; := (u]wv;)/y/m. For large m, M;; is small, so
we can take a Taylor’s approximation,

0 v )
= l(fmlngout(Zmu_'—si —I—Sj)) 1 =

lOg Pout<Zij |M’Lj -+ S;L + S;))

~ Yi; M, — MEJ + const. (20)

2Aij

To write this as a quadratic, define the scaled variables:
A:=R;Y?U, B:=R;Y*V, Y :=R;/*YR,?

(2D

Then, using (18), (19), (20) and some simple algebra shows
that the log likelihood can be written in a quadratic form:

log Pout(Zz] |

1

) \/ﬁ

Hence, we can approximate the loss function (13) as:

1H~ 1

+ S’IL + S’U

XN’M — + const. (22)

[ABT];;

2

Lo(U, V)~ L(A,B) == = ||Y — —ABT

2 vm
+ ¢u(RY2A) + 6,(RY?B),

and then find the minima:

A,B=

F
(23)

argmin L(A, B).
A,B

(24)
We call L(A, B) the quadratic approximate loss function.

Several possible AMP methods are available for the mini-
mization (24). In this work, we consider a generalization of
the rank one method in [22] shown in Algorithm 1, which we
call Biased Low-Rank AMP. Here, the function G,(-) is the
denoiser

— pillFa + gu(y/r}a),

where we use the notation ||z||% = 27 Fz. The denoiser Gy(+)
is defined similarly. The updates for the I' is

1
Go(pi,ry, F*) = argmin§||a (25)

o 1 n 6Gb([Pk]j*, ],Fk)
T = 2 a[Pb]. (26a)
Fz — - Z aG 7*]7 rl 7Fa)‘ (26b)
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Algorithm 1 Biased Low Rank AMP

Algorithm 2 State Evolution

Require: Number of iterations K;;; denoisers Go(-), Gp(+);
initial matrix By € R™**¢.

1: Initialize k =0, I'} =0

2: while k£ < Kt do

3 Fg=1Llp] Bk —TIe¢

4: P]g = \/—YBk —Ak 1F

S [Adlis = Go([Pfi, i, F) Vi € [m]

6 T} =0 3y 0Ga([Pelis it F) JOIPEL,
7: F,?— 1ATAk—Fb

8: P}g = \/—YTAk — Bkl“

o (Berlje = GollPflye,rs FR) V) € o
0: Ty =4 Z,?zl OGPl 75, ) /0[P,
1: k<« k +

12: end whlle
13: return Ak and Bk+1

For the squared norm reguarlizer (16), it can be verified that
the denoisers are given by:

Ga([Plg]l*aT?aFl?) =
Gb([Plg]j*ﬂﬂ;vFl?) =

(27a)
(27b)

[Pis (F + NuriIa) ™!
(PP (FY + Aot Ig) ™!

Algorithm 1 is similar to the Low Rank AMP algorithm
of [10] where we have replaced the MMSE denoiser with the
MAP denoiser and added a row dependence for the bias terms.
The following Lemma shows that if the algorithm converges,
it is, at least, a local minima of the objective.

Lemma 1. Any fixed point of Algorithm 1 is a local minimum

of (23).

IV. ANALYSIS IN THE LARGE SYSTEM LIMIT

The benefit of the AMP method is that the performance
of the algorithm can be precisely analyzed in a certain large
system limit (LSL) as is commonly used in studying AMP
algorithms. In the LSL, we consider a sequence of problems
indexed by n. For each n, we assume that m = m(n) where
lim m(n)
n—soo N

=7,

for some 3 > 0. That is, the number of values of the random
variables X and X, grow linearly. The bias terms r;* and 77
as well as the true embedding vectors u; and v; are treated as
deterministic vectors that converge empirically with second-
order to random variables

ey S Re (2} S Ry,

(28)

(i} U, {v;} 5V, 9)

where R" and RV are scalar random variables and U and V'
are random d-dimensional vectors. We let

A=U/VR*, B=V/VR®

denote the random vectors for the normalized rows. In addi-
tion, we assume that the rows of the initial condition converge

(30)

Require: Number of iterations Kj:; denoisers Gq(-), Gb(-);
initial random row vector BO € R

1: Initialize k =0, '} =0

2: while k < K;; do

3 Mb= E(BTﬁk), Qb =E(B]By)
4: F]g = Qk

5 AM}’+/\/(0 Q%)

6: Ak = G, (PY, R*, F)

7. T} =E [0G.(Pg, R, F})/0P;]
8: M]? =E (ATAk), =E (AZA]C)
9: F]? = Qk

10: P} =BMj +N(0 Q%)

11: Bpyi = Gb(P,g,Rv )

122 IY ., =E [0G.(P},R", F})/0P}]
132 k< k+1

14: end while

15: return Ak and Bk+1

empirically as:
{{Bolin} < By, (31)

where By is some random row vector. To simplify the analysis,
we assume that the random variables and vectors in (29) are
bounded and G,(-) and Gy(-) are Lipschitz continuous.

Under these assumptions, the joint distribution of true
embedding vectors and their estimates can be predicted by
a state evolution (SE). The SE, shown in Algorithm 2 is a
modification of the result in [23]. The SE generates a sequence
of deterministic quantities such as Mg, Qf, Fy, as well as
random row vectors such as P, and Ay. It is argued, in the
full paper that the joint distributions of the embedding vectors
and their estimates converge as

([A]M’ [Ak}l*v T ) _> (A AkvRu)
([B}j*v [Bk]j*’r/j) —> (BkavRv)

(32a)
(32b)

From these distributions, we can then compute any row-wise
metrics on the error of the estimated embedding vectors — see
[22] for examples.

V. NUMERICAL EXPERIMENTS

A. Synthetic data

To validate the SE equations, we first consider a simple
synthetic data example. We use m = 2000,n = 3000,d =
10 and use Lo, regularizers (16) with A\, = A\, = 1074 We
generate rows of true matrices Uy and Vj following:

u; ~ N(0,0.11)
vy~ ./\/ (0
To generate the problem instance we assume that s;’s and s}’s
randomly take one of the values from the set {5,6}.We will

use estimations of these biases via (10) in our algorithms. We
run algorithms 1 and 2 for 20 instances and average our results.

i € [m)
0.11) e [n]

Authorized licensed use limited to: New York University. Downloaded on July 09,2024 at 16:08:11 UTC from IEEE Xplore. Restrictions apply.



m=2000 n=3000 rank=10

—— Low Rank AMP
— SE

4x10° —-= True loss

3x10°

2x10°

Normalized Loss

100 R

iteration

Fig. 1. Normalized loss vs iteration averaged over 20 instances, evaluated
for an instance of the problem with m = 2000, n = 3000, and d = 10.

We initialize the ﬁk and Ek matrices with i.i.d. entries with
zero mean and unit variance Gaussian distributions. Fig. 1
shows the loss function (23) (normalized by the true loss)
vs iterations, averaged over 20 instances of the problem. We
see that the average of the loss function observed in the
simulations closely matches the predicted training loss from
the SE.

We can also use the SE to estimate the error on the
correlation terms: For each iteration index £, let M;; and MZ;
denote the true and estimated correlation values:

My; = [Ali.[B]],, M} = [Aplie[Bi]], (33)
At each iteration k, defined the normalized MSE as:
E(MiJ Mzk )
MSEy, := —J, (34)
E(M;;)?

where the expectation is over the indices ¢ and j. This MSE
corresponds to how well the true correlation of the events
X7 =1 and X, = j are predicted. We can similarly obtain
a prediction of the MSE from the SE. Figure 2. shows the
simulated MSE and SE predictions as a function of the
iteration. Again, we see an excellent match.

B. MSE vs. inverse Fisher information

A basic challenge in many text problems is that there
is a high variabilty of the terms. In our model, this prop-
erty is equivalent to variability in the marginal probabilities
P(X; =1) and P(X2 = j) over indices 7 and j. Presumably,
the estimation of the correlation M;; = w]v; will be better
when the P(X; = i) and P(X, = j) are higher so that
there are more samples with (z1,22) = (4,7). This intuition
is predicted by our model. Specifically, the state evolution
reveals that the key parameter in estimation accuracy of M;;
is the inverse Fisher information, A;; in (19). To validate
this prediction, Fig. 3 shows a scatter plot of samples of
the normalized MSE of M;; vs. A;; demonstrating higher
inverse Fisher information results in higher MSE. Moreover,
the joint distribution of the MSE and Fisher information is
well-predicted by the state evolution.

m=2000 n=3000 rank=10

—— Low Rank AMP
— SE

Normalized MSE

iteration

Fig. 2. Normalized MSE vs iteration averaged over 20 instances, evaluated
for an instance of the problem with m= 2090, n = 3000, and d = 10. We
note that MSE = 1 refers to setting A =0,B = 0.

MSE for M; m=2000 n=3000 rank=10

e Low Rank AMP ]
SE ve
Steady state equations *
SVD

—=—- critical A

10-1 4

normalized MSE

1074 1073 1072
LY

Fig. 3. Effect of individual biases on each element of M. As expected, we
see an increasing trend of MSE with respect to A.

C. Evaluating the algorithm on a real text dataset

Finally, we apply our proposed algorithm over text data
from a publicly available dataset called Large Movie Review
Dataset [24]. More specifically, we select a large batch of
text documents and perform preprocessing steps explained in
the full paper [21]. Next, we construct a document-word co-
occurance matrix using the data. This will serve as our Z
matrix. We estimate bias vectors s* and s” using (10) and
use the estimations to compute Y. At this stage, we do not
have the ground truth distributions. Thus, we apply algorithm
1 and use the output A and B, and corresponding U and V
as the ground truths U and V, respectively. Now, we sample
m and n rows from ground truth U and Vs, respectively
and observe the new matrix Z from the Poisson channel. We
apply algorithms 1 and 2 to derive the final estimations Ak
and By, and corresponding Uy, and V. Fig. 4 and Fig. 5 show
the resulting loss and MSE when we sample m = 2000 and
n = 3000 from the ground truth distributions. Again, we see
an excellent match between the SE and simulations.
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Fig. 4.

m=2000 n=3000 rank=10

—— Low Rank AMP
— SE
----- true loss

3x10°

2 x10°

Normalized Loss

iteration

Loss function vs iteration when sampling from a real dataset.

m=2000 n=3000 rank=10

—— Low Rank AMP
— SE
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103 4

MSE
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©

iteration

Fig. 5. MSE vs iteration when sampling from a real dataset.

VI. CONCLUSIONS

We have proposed a simple Poisson model to study learning
of embeddings. Applying an AMP algorithm to this estimation
problem enables predictions of how key parameters such as
the embedding dimension, number of samples and relative
frequency impact embedding estimation. Future work could
consider more complex models, where the embedding correla-
tion are described by a neural network. Also, we have assumed
that the embedding dimension is known. An interesting avenue
is to study the behavior of the methods in both over and under-
parameterized regimes.
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