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AbstractÐEmbeddings are a basic initial feature extraction
step in many machine learning models, particularly in natural
language processing. An embedding attempts to map data tokens
to a low-dimensional space where similar tokens are mapped
to vectors that are close to one another by some metric in
the embedding space. A basic question is how well can such
embedding be learned? To study this problem, we consider
a simple probability model for discrete data where there is
some ªtrueº but unknown embedding where the correlation of
random variables is related to the similarity of the embeddings.
Under this model, it is shown that the embeddings can be
learned by a variant of low-rank approximate message passing
(AMP) method. The AMP approach enables precise predictions
of the accuracy of the estimation in certain high-dimensional
limits. In particular, the methodology provides insight on the
relations of key parameters such as the number of samples
per value, the frequency of the terms, and the strength of
the embedding correlation on the probability distribution. Our
theoretical findings are validated by simulations on both synthetic
data and real text data.

Index TermsÐAMP, Poisson channel, State Evolution, Embed-
ding learning.

I. INTRODUCTION

Embeddings are widely-used in machine learning tasks,

particularly text processing [1]. In this work, we study embed-

ding of pairs of discrete random variables, (X1, X2), where

X1 ∈ [m] := {1, . . . ,m} and X2 ∈ [n] := {1, . . . , n}. For

example, in word embeddings, X1 could represent a target

word, and X2 a context word (e.g., a second word found close

to the target word) [2]. By an embedding, we mean a pair of

mappings of the form:

X1 = i 7→ ui, X2 = j 7→ vj , (1)

where ui and vj ∈ R
d. The embedding thus maps each value

of the random variable to an associated d-dimensional vector.

The dimension d is called the embedding dimension.

Typically, (see e.g., [2]), we try to learn embeddings such

that u
⊺

i vj is large when the pair (X1, X2) = (i, j) occurs

more frequently. Many algorithms have been proposed for

training such embeddings [2]±[5]. While these algorithms have

been successful in practice, precise convergence results are

difficult to obtain. At root, we wish to understand how well can

embeddings be learned? For example, questions include: how

well do the correlations, u
⊺

i vj of learned embeddings predict

‡ Now at Optum AI, work done while at UCLA.

the underlying correlation of events Xi = i and X2 = j. How

do these predictions depend on the number of data samples

available and embedding dimension?

To study these problems, we propose a simple model for

the joint distribution of (X1, X2) where

log

[
P (X1 = i,X2 = j)

P (X1 = i)P (X2 = j)

]
≈ 1√

m
u
⊺

i vj , (2)

for some true embedding vectors ui and vj . The property (2)

indicates that the log correlation of the events that X1 = i
and X2 = j is proportional to the vector correlation u

⊺

i vj

in the embedding space. Importantly, the model also has

parameters rui and rvj (called the bias parameters) that describe

the marginal distributions P (X1 = i) and P (X2 = j). This

feature captures the fact that there is a high variability in the

probabilities of terms.

The problem of learning the embeddings can then be

thought of as estimating the vectors ui and vj from samples

(x1, x2). We show that the estimation problem is equivalent

to a low-rank matrix factorization problem. Low-rank matrix

factorization [6], and variants of such algorithms are often used

in learning embeddings [2], [7]. In this work, we consider

a variant of low-rank approximate message passing (AMP)

method. Several AMP methods are available for low-rank

matrix factorization (AMP-KM [8], IterFac [9], Low-rank

AMP [10]). In this work, we assume that the number of

samples where (x1, x2) = (i, j) is distributed as a Poisson

random variable with rate proportional to the joint probability,

P (X1 = i,X2 = j). Under this assumption, we show that we

can apply variant of [10], [11] that allows low-rank estimates

under general (possibly, non-Gaussian) measurements. The

method is modified to incorporate the bias terms and we call

the resulting method biased low-rank AMP.

The main advantage of the AMP approach is the precise

predictions of the algorithm performance in certain high-

dimensional limits. Specifically, we consider the case where

the embedding dimension d is fixed while the number of

values, m and n, for X1 and X2 grow to infinity with m/n
constant. Under this assumption, we show that the joint distri-

bution of the true embedding vectors and their estimates can be

exactly characterized. The characterization is given by a state

evolution similar to other AMP algorithms [12], [13]. From

this joint distribution, one can evaluate various performance

metrics such as mean squared error (MSE) or overlap of the
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true and learned embedding vectors as well as the error in the

learned joint probability distribution. The performance, in turn,

can be related to key parameters such as the number of data

samples per outcome (i, j), the relative frequency of terms,

and strength of the dependence of the embedding correlation

u
⊺

i vj on the correlation of events X1 = i and X2 = j.

Prior work: Since the introduction of AMP algorithms

by [12], there has been a vast body of literature in their

applications to various statistical estimation problems [14].

Early AMP methods for low-rank estimation include [8] and

[15]. IAMP methods were proven to be optimal for the case

of sparse PCA [16]. The work [17] applied AMP to the

stochastic block model which is a popular statistical model

for the large-scale structure of complex networks. Authors

of [18] address the shortcomings of classical PCA in the

high dimensional and low SNR regime. They use an AMP

algorithm to solve the non-convex non-negative PCA problem.

In [19], authors consider a general form of the problem at

hand and provide the MMSE that is in principle achievable

in any computational time. Specifically relevant to our study,

[10], [11] present a framework to address the constrained

low-rank matrix estimation assuming a general prior on the

factors, and a general output channel (a biased Poisson channel

in our case) through which the matrix is observed. Noting

that state evolution is uninformative when the algorithm is

initialized near an unstable fixed point, [20] proposes a new

analysis of AMP that allows for spectral initializations. The

main contribution of the current work is to modify and apply

these methods to the embedding learning problem.

For space considerations, all assumptions, proofs, and sim-

ulations details are omitted and provided in a full paper [21].

II. PROBLEM FORMULATION

A. Joint Density Model for the Embedding

As stated in the introduction, we consider embeddings of

pairs of discrete random variables (X1, X2) with X1 ∈ [m]

and X2 ∈ [n] for some m and n. Let P
(1)
i = P (X1 = i)

and P
(2)
j = P (X2 = j) denote the marginal distributions and

Pij = P (Xi = i,X2 = j) denote the joint distribution. We

assume the joint distribution has the form,

Pij = C exp

(
1√
m
u
⊺

i vj + sui + svj

)
, (3)

where ui,vj ∈ R
d are some ªtrueº embedding vectors, sui

and svj are scalars, and C > 0 is a normalization constant. It

can be verified that, for large m, the marginal distributions of

X1 are X2 satisfy:

logP
(1)
i = C1 + sui +O(1/

√
m), (4a)

logP
(2)
i = C2 + svj +O(1/

√
m), (4b)

where C1 and C2 are constants. Hence, sui and svj , which we

will call the bias terms, represent the log likelihoods of the

values. Also, the PMF (3) satisfies the property

log

[
Pij

P
(1)
i P

(2)
j

]
=

1√
m
u
⊺

i vj +O(1/m), (5)

Hence, the similarity u
⊺

i vj represents the log of the correlation

of the events that X1 = i and X2 = j.

B. Poisson Measurements

We can try to learn an embedding by fitting a model of the

form (3) to the data. To this end, suppose we are given a set

of samples, (xt
1, x

t
2), t = 1, . . . , N . Let

Zij =
∣∣{t | (xt

1 = i, xt
2 = j)}

∣∣ , (6)

which are the number of instances where (X1, X2) = (i, j).
If we assume that the samples are independent and identicaly

distributed (i.i.d.), with PMF (3) and the number of samples,

N , is Poisson distributed, then the measurements Zij will be

independent with distributions,

Zij ∼ Poisson(λij),

λij = λ0 exp

(
1√
m
uiv

⊺

j + sui + svj

)
, (7)

where λ0 = CE (N).

III. AMP-BASED ESTIMATION

A. Bias vector estimation

Our problem is to estimate the embedding vectors ui and vj

and the biases sui and svj from the model (3) and measurements

Zij . In principle, one can use maximum likelihood (ML)

estimation. In this work, we consider a simpler two-step

estimation method that is easier to analyze.

In the first step, we estimate the bias terms sui and svj . Define

rui := e−sui , rvj := e−svj . (8)

Our plan is to estimate rui and rvj and then estimate sui and

svj from (8). Note that, by adjusting the bias terms sui or svj ,

we will assume in the sequel, without loss of generality, that

in the model (7)

λ0 = 1,
1

m

m∑

i=1

es
u
i = 1. (9)

Under this assumption, we propose to estimate the bias terms

with:

ŝui = − log(r̂ui ), ŝvj = − log(r̂vj ), (10)

where r̂ui and r̂vj are estimates of rui and rvj given by:

1

r̂ui
=

m

Ztot

n∑

j=1

Zij ,
1

r̂vj
=

n

Ztot

m∑

i=1

Zij (11)

and

Ztot :=

m∑

i=1

n∑

j=1

Zij . (12)

Note that Ztot represents the total number of measurements.

Also, 1/r̂ui is proportional to
∑

j Zij , which is simply the
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relative frequency of the event X1 = i. Similarly, 1/r̂vj is the

relative frequency of the event X2 = j.

B. Regularized Maximum Likelihood

Having estimated the bias terms, we next estimate the

embedding vectors ui and vj . Let U and V be the matrices

with rows ui and vj . Consider the loss function,

L0(U, V ) := −
∑

ij

logPout

(
Zij |

1√
m
u
⊺

i vj + sui + svj

)

+ ϕu(U) + ϕv(V ), (13)

where Pout(z| log λ) := e−λλz/z! is the Poisson distribution,

and ϕu(U) and ϕv(V ) are regularizers on the matrices of

embedding vectors. Ideally, we would obtain estimates for U
and V by minimizing this loss:

Û , V̂ = argmin
U,V

L0(U, V ). (14)

This minimization would correspond to performing a regular-

ized ML estimation assuming the Poisson model (7).

We will assume the regularizers are row-wise separable

meaning

ϕu(U) =
m∑

i=1

gu(ui), ϕv(V ) =
n∑

j=1

gv(vj), (15)

for some functions gu(·) and gv(·). For example, we can use

a square norm regularizers such as:

gu(ui) :=
λu

2
∥ui∥2, gv(vj) :=

λv

2
∥vj∥2, (16)

for normalization constants λu and λv . Regularizers can also

be used to impose sparsity.

Of course, the loss function (13) depends on the bias terms

sui and svj , which are not known. In place, we will use the

estimates ŝui and ŝvj from (10).

C. Biased Low-Rank AMP

One possible approach to minimizing the loss (13) is to

use the low-rank AMP method of [10], [11]. This method

considers general loss functions of the form

L0(U, V ) := −
∑

ij

logPout

(
Zij |

1√
m
u
⊺

i vj

)

+ ϕu(U) + ϕv(V ). (17)

The method [10], [11] permits general probability mappings

P (Zij |·) (these are called the ªoutput channelsº). However,

there is no direct method to incorporate the bias terms sui and

svj that appear in the likelihood in (13).

We will show that, for the particular structure of the Poisson

channel, we can modify the low-rank AMP method [10], [11].

The key to the low-rank AMP method is to take a quadratic

approximation of the log likelihood of the output channel. We

apply a similar approach here and first compute the so-called

Fisher score functions:

Yij :=
∂

∂u
logPout(Zij |u+ sui + svj )

∣∣∣∣
u=0

= rui r
v
j

(
Zij −

1

rui r
v
j

)
. (18)

Also, let ∆ij denote the so-called inverse Fisher information:

1

∆ij
:= E

[(
∂

∂u
logPout(Zij |u+ sui + svj )

)2
]
=

1

rui r
v
j

(19)

Next, let Mij := (u⊺

i vj)/
√
m. For large m, Mij is small, so

we can take a Taylor’s approximation,

logPout(Zij |Mij + sui + svj )

≈ YijMij −
1

2∆ij
M2

ij + const. (20)

To write this as a quadratic, define the scaled variables:

A := R−1/2
u U, B := R−1/2

v V, Ỹ := R−1/2
u Y R−1/2

v ,
(21)

Then, using (18), (19), (20) and some simple algebra shows

that the log likelihood can be written in a quadratic form:

− logPout(Zij |Mij + sui + svj )

≈ 1

2

∣∣∣∣Ỹij −
1√
m
[AB⊺]ij

∣∣∣∣+ const. (22)

Hence, we can approximate the loss function (13) as:

L0(U, V ) ≈ L(A,B) :=
1

2

∥∥∥∥Ỹ −
1√
m
AB⊺

∥∥∥∥
2

F

+ ϕu(R
1/2
u A) + ϕv(R

1/2
v B), (23)

and then find the minima:

Â, B̂ = argmin
A,B

L(A,B). (24)

We call L(A,B) the quadratic approximate loss function.

Several possible AMP methods are available for the mini-

mization (24). In this work, we consider a generalization of

the rank one method in [22] shown in Algorithm 1, which we

call Biased Low-Rank AMP. Here, the function Ga(·) is the

denoiser

Ga(pi, r
u
i , F

a) := argmin
a

1

2
∥a− pi∥2Fa + gu(

√
rui a), (25)

where we use the notation ∥x∥2F = x⊺Fx. The denoiser Gb(·)
is defined similarly. The updates for the Γa

k is

Γa
k =

1

n

n∑

j=1

∂Gb([P
b
k ]j∗, r

v
j , F

b
k)

∂[P b
k ]

⊺

j∗

(26a)

Γb
k =

1

m

m∑

i=1

∂Ga([P
a
k ]i∗, r

u
i , F

a
k )

∂[P a
k ]

⊺

i∗

. (26b)
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Algorithm 1 Biased Low Rank AMP

Require: Number of iterations Kit; denoisers Ga(·), Gb(·);
initial matrix B̂0 ∈ R

n×d.

1: Initialize k = 0, Γa
k = 0

2: while k < Kit do

3: F a
k = 1

m B̂⊺

k B̂k − Γa
k

4: P a
k = 1√

m
Ỹ B̂k − Âk−1Γ

a
k

5: [Âk]i∗ = Ga([P
a
k ]i∗, r

u
i , F

a
k ) ∀i ∈ [m]

6: Γb
k = 1

m

∑m
i=1 ∂Ga([P

a
k ]i∗, r

u
i , F

a
k )/∂[P

a
k ]

⊺

i∗

7: F b
k = 1

m Â⊺

kÂk − Γb
k

8: P b
k = 1√

m
Ỹ ⊺Âk − B̂kΓ

b
k

9: [B̂k+1]j∗ = Gb([P
b
k ]j∗, r

v
j , F

b
k) ∀j ∈ [n]

10: Γa
k+1 = 1

n

∑n
j=1 ∂Gb([P

b
k ]j∗, r

v
j , F

b
k)/∂[P

b
k ]

⊺

j∗

11: k ← k + 1
12: end while

13: return Âk and B̂k+1

For the squared norm reguarlizer (16), it can be verified that

the denoisers are given by:

Ga([P
a
k ]i∗, r

u
i , F

a
k ) = [P a

k ]i∗(F
a
k + λur

u
i Id)

−1 (27a)

Gb([P
b
k ]j∗, r

v
j , F

b
k) = [P b

k ]j∗(F
b
k + λvr

v
j Id)

−1 (27b)

Algorithm 1 is similar to the Low Rank AMP algorithm

of [10] where we have replaced the MMSE denoiser with the

MAP denoiser and added a row dependence for the bias terms.

The following Lemma shows that if the algorithm converges,

it is, at least, a local minima of the objective.

Lemma 1. Any fixed point of Algorithm 1 is a local minimum

of (23).

IV. ANALYSIS IN THE LARGE SYSTEM LIMIT

The benefit of the AMP method is that the performance

of the algorithm can be precisely analyzed in a certain large

system limit (LSL) as is commonly used in studying AMP

algorithms. In the LSL, we consider a sequence of problems

indexed by n. For each n, we assume that m = m(n) where

lim
n→∞

m(n)

n
= β, (28)

for some β > 0. That is, the number of values of the random

variables X1 and X2 grow linearly. The bias terms rui and rvj
as well as the true embedding vectors ui and vj are treated as

deterministic vectors that converge empirically with second-

order to random variables

{rui }
d→ Ru, {rvj }

d→ Rv, {ui} d→ U, {vj} d→ V, (29)

where Ru and Rv are scalar random variables and U and V
are random d-dimensional vectors. We let

A = U/
√
Ru, B = V/

√
Rv (30)

denote the random vectors for the normalized rows. In addi-

tion, we assume that the rows of the initial condition converge

Algorithm 2 State Evolution

Require: Number of iterations Kit; denoisers Ga(·), Gb(·);
initial random row vector B̂0 ∈ R

d.

1: Initialize k = 0, Γa
k = 0

2: while k < Kit do

3: M b
k = E (B⊺B̂k), Q

b
k = E (B̂⊺

k B̂k)
4: F a

k = Qb
k − Γa

k

5: P a
k = AM b

k +N (0, Qb
k)

6: Âk = Ga(P
a
k , R

u, F a
k )

7: Γb
k = E [∂Ga(P

a
k , R

u, F a
k )/∂P

a
k ]

8: Ma
k = E (A⊺Âk), Q

a
k = E (Â⊺

kÂk)
9: F b

k = Qa
k − Γb

k

10: P b
k = BMa

k +N (0, Qa
k)

11: B̂k+1 = Gb(P
b
k , R

v, F b
k)

12: Γb
k+1 = E

[
∂Ga(P

b
k , R

v, F b
k)/∂P

b
k

]

13: k ← k + 1
14: end while

15: return Âk and B̂k+1

empirically as:

{[B̂0]i∗} d→ B0, (31)

where B0 is some random row vector. To simplify the analysis,

we assume that the random variables and vectors in (29) are

bounded and Ga(·) and Gb(·) are Lipschitz continuous.

Under these assumptions, the joint distribution of true

embedding vectors and their estimates can be predicted by

a state evolution (SE). The SE, shown in Algorithm 2 is a

modification of the result in [23]. The SE generates a sequence

of deterministic quantities such as Ma
k , Qa

k, F a
k , as well as

random row vectors such as P a
k , and Âk. It is argued, in the

full paper that the joint distributions of the embedding vectors

and their estimates converge as

([A]i∗, [Âk]i∗, r
u
i )

d→ (A, Âk, R
u) (32a)

([B]j∗, [B̂k]j∗, r
v
j )

d→ (B, B̂k, R
v) (32b)

From these distributions, we can then compute any row-wise

metrics on the error of the estimated embedding vectors ± see

[22] for examples.

V. NUMERICAL EXPERIMENTS

A. Synthetic data

To validate the SE equations, we first consider a simple

synthetic data example. We use m = 2000, n = 3000, d =
10 and use L2 regularizers (16) with λu = λv = 10−4. We

generate rows of true matrices U0 and V0 following:

ui ∼ N (0, 0.1I) i ∈ [m]

vj ∼ N (0, 0.1I) j ∈ [n]

To generate the problem instance we assume that sui ’s and svj ’s

randomly take one of the values from the set {5, 6}.We will

use estimations of these biases via (10) in our algorithms. We

run algorithms 1 and 2 for 20 instances and average our results.
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Low Rank AMP
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Fig. 1. Normalized loss vs iteration averaged over 20 instances, evaluated
for an instance of the problem with m = 2000, n = 3000, and d = 10.

We initialize the Âk and B̂k matrices with i.i.d. entries with

zero mean and unit variance Gaussian distributions. Fig. 1

shows the loss function (23) (normalized by the true loss)

vs iterations, averaged over 20 instances of the problem. We

see that the average of the loss function observed in the

simulations closely matches the predicted training loss from

the SE.

We can also use the SE to estimate the error on the

correlation terms: For each iteration index k, let Mij and M̂k
ij

denote the true and estimated correlation values:

Mij = [A]i∗[B]⊺j∗, M̂k
ij = [Âk]i∗[B̂k]

⊺

j∗ (33)

At each iteration k, defined the normalized MSE as:

MSEk :=
E(Mij − M̂k

ij)
2

E(Mij)2
, (34)

where the expectation is over the indices i and j. This MSE

corresponds to how well the true correlation of the events

X1 = i and X2 = j are predicted. We can similarly obtain

a prediction of the MSE from the SE. Figure 2. shows the

simulated MSE and SE predictions as a function of the

iteration. Again, we see an excellent match.

B. MSE vs. inverse Fisher information

A basic challenge in many text problems is that there

is a high variabilty of the terms. In our model, this prop-

erty is equivalent to variability in the marginal probabilities

P (X1 = i) and P (X2 = j) over indices i and j. Presumably,

the estimation of the correlation Mij = u
⊺

i vj will be better

when the P (X1 = i) and P (X2 = j) are higher so that

there are more samples with (x1, x2) = (i, j). This intuition

is predicted by our model. Specifically, the state evolution

reveals that the key parameter in estimation accuracy of Mij

is the inverse Fisher information, ∆ij in (19). To validate

this prediction, Fig. 3 shows a scatter plot of samples of

the normalized MSE of Mij vs. ∆ij demonstrating higher

inverse Fisher information results in higher MSE. Moreover,

the joint distribution of the MSE and Fisher information is

well-predicted by the state evolution.

0 1 2 3 4 5
iteration

10 3

10 2

10 1

100

101

102

103

104

No
rm

al
ize

d 
M

SE

m=2000 n=3000 rank=10
Low Rank AMP
SE

Fig. 2. Normalized MSE vs iteration averaged over 20 instances, evaluated
for an instance of the problem with m = 2000, n = 3000, and d = 10. We

note that MSE = 1 refers to setting Â = 0, B̂ = 0.

10 4 10 3 10 2

ij

10 1
no

rm
al

ize
d 

M
SE

MSE for Mij m=2000 n=3000 rank=10
Low Rank AMP
SE
Steady state equations
SVD
critical 

Fig. 3. Effect of individual biases on each element of M . As expected, we
see an increasing trend of MSE with respect to ∆.

C. Evaluating the algorithm on a real text dataset

Finally, we apply our proposed algorithm over text data

from a publicly available dataset called Large Movie Review

Dataset [24]. More specifically, we select a large batch of

text documents and perform preprocessing steps explained in

the full paper [21]. Next, we construct a document-word co-

occurance matrix using the data. This will serve as our Z
matrix. We estimate bias vectors su and sv using (10) and

use the estimations to compute Ỹ . At this stage, we do not

have the ground truth distributions. Thus, we apply algorithm

1 and use the output Â and B̂, and corresponding Û and V̂
as the ground truths U and V , respectively. Now, we sample

m and n rows from ground truth U and V ’s, respectively

and observe the new matrix Z from the Poisson channel. We

apply algorithms 1 and 2 to derive the final estimations Âk

and B̂k and corresponding Ûk and V̂k. Fig. 4 and Fig. 5 show

the resulting loss and MSE when we sample m = 2000 and

n = 3000 from the ground truth distributions. Again, we see

an excellent match between the SE and simulations.
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Fig. 4. Loss function vs iteration when sampling from a real dataset.
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Fig. 5. MSE vs iteration when sampling from a real dataset.

VI. CONCLUSIONS

We have proposed a simple Poisson model to study learning

of embeddings. Applying an AMP algorithm to this estimation

problem enables predictions of how key parameters such as

the embedding dimension, number of samples and relative

frequency impact embedding estimation. Future work could

consider more complex models, where the embedding correla-

tion are described by a neural network. Also, we have assumed

that the embedding dimension is known. An interesting avenue

is to study the behavior of the methods in both over and under-

parameterized regimes.
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