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Abstract—Generative Adversarial Networks (GANs) are a
popular formulation to train generative models for complex
high dimensional data. The standard method for training GANs
involves a gradient descent-ascent (GDA) procedure on a minimax
optimization problem. This procedure is hard to analyze in
general due to the nonlinear nature of the dynamics. We study
the local dynamics of GDA for training a GAN with a kernel-
based discriminator. This convergence analysis is based on a
linearization of a non-linear dynamical system that describes
the GDA iterations, under an isolated points model assumption
from [2]. Our analysis brings out the effect of the learning rates,
regularization, and the bandwidth of the kernel discriminator, on
the local convergence rate of GDA. Importantly, we show phase
transitions that indicate when the system converges, oscillates, or
diverges. We also provide numerical simulations that verify our
claims. A full version with complete proofs is available on arXiv

[3].
I. INTRODUCTION

Generative Adversarial Networks (GANs) are a class of
probabilistic generative models that avoid expensive likelihood
computations while still providing good sample quality [4]. To
fit complex data distributions, two models (typically deep neural
networks) are trained in an alternating manner: a generator G
learns a deterministic map from a latent space Z to the data
space X', while a discriminator or critic model D attempts to
discern whether a sample belongs to the training dataset or the
generated dataset.

The discriminator plays an important, yet poorly understood,
role in the training of a GAN. It is well known from [4] that
if the discriminator is trained to minimize the cross-entropy
between true and generated samples, the generator would
minimize the Jensen-Shannon divergence between distributions.
Similarly different choices for discriminator loss functions lead
to a variety of f-divergences [13] and probability metrics [5].

In practice, however, we apply GDA for training GANS,
whereby the discriminator is not allowed to converge, making
analysis of the iterative training extremely difficult. Further-
more, training commonly suffers from empirical breakdowns
such as mode collapse, in which the entire generated distri-
bution converges to a small portion of the target distribution
[14]. The generator may even fail to converge entirely when
gradients from the discriminator are too small for the generator
to proceed during training. Without an understanding of when
and how these phenomena occur, practitioners have to rely on
heuristics and extensive hyperparameter tuning based on trial
and error procedures [7], [10], [14].
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In this work, we characterize the local convergence rates
of GAN training when the discriminator is kernel-based. This
choice of the discriminator model is motivated by the recently
discovered equivalence between wide neural networks and
kernel methods via the Neural Tangent Kernel framework [6].
While the discriminators problem is simplified due to the kernel-
based discriminator, the overall dynamics of the generated
samples remain non-linear and complex, and hence retain many
of the properties exhibited by GANs in practice such as mode
collapse and divergence [2].

A. Prior Work on Linear GANs and Main Contributions

Stability analysis for GANs under stylized settings goes back
to the Dirac-GAN framework from [9], which looked at the
local stability of a two-point system using a linear discriminator
to demonstrate examples of catastrophic forgetting. Other GAN
works use a similar linearization analysis, such as [11], [12].
The isolated points model proposed by [2] allowed for a
more complex model while remaining analytically tractable, by
letting the generated probability mass differ from the true mass
in various isolated regions. We provide new insight into the
framework proposed by [2] by going beyond stability analysis
and characterizing rates of convergence.

We analyze the local convergence of the non-linear dynami-
cal system that describes the GDA iterates, in settings when the
equilibrium is stable. Our analysis is based on a linearization
of these non-linear dynamics. We show how changing the
kernel width can improve the rate of convergence, while also
highlighting a phase transition under which the convergence
remains unaffected by changes in the kernel width.

II. MODEL

We investigate the training dynamics of a GAN where the
target distribution and the generated distribution are discrete
point masses, following the framework of [2]. We highlight
key elements of our model below.

A. Target and Generated Distributions

We assume that the target and generated distributions consist
of point masses with density functions over z € R? given by

N, Ny
]P’T(x)zz:pié(x—xi), Py (x) 22@5(1‘—@-), ey
i=1 j=1
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where ¢ is the Dirac delta function, X = {x; } ~, and X =
{xj} “, are the true and generated points, and {pz}i 7, and
{p; }J;l are their (fixed) probability masses. The problem we

consider is learning the locations X so that the generated and
true distributions match. Thus the decision variable of the
generator model is X. This simplification is justified since we
wish to study the role of the discriminator in this work.

B. Kernel Discriminator
The GAN discriminator is a function f : X — R which

predicts whether a sample z is real or fake based on sign(f(x)).

In this paper we assume that the discriminator belongs to
a Reproducing Kernel Hilbert Space H corresponding to a
bivariate positive definite kernel function K : R x R¢ — R.
The discrimininator defines a maximum mean discrepancy
(MMD) metric

MMD(P,, P,) ©)

Ng
) = > Bif (&)
=1

between [P, and P, which the generator tries to minimize.

= max Epl (z4)

nfu<1 =1

C. Minimax Optimization Formulation for Training a GAN

We assume a mini-max loss function similar to [1], [2], [8]
of the form:

H%n max L(f, X) (3a)
N, Ny

X) =Y pif(x) = > pif @) - 3 1f15,-  Gb)
i=1 i=1

The regularization parameter A > 0 is some constant, that
acts as a Lagrange multiplier for the optimization problem
in eq. (2). The loss is a function of the discriminator f and
generated samples X.

D. Training Dynamics of Gradient Descent Ascent

We assume the generator performs gradient descent on the
above minimax optimization problem with a step size 7, and

the discriminator performs gradient ascent with step size 74.

We let (f¢, X t) denote the discriminator and generated samples
in step t.

ft+1

Pl X" (4a)

9 t t
< L(f, X

where the first equation uses the Fréchet derivative with respect
to f. This can be simplified since the loss function L(f, X)
only consists of linear and quadratic terms of f. Observe that
for any v in R?, the linear term f(u) = (f, K(u % )4, due to
the reproducing property of the kernel whereby, -2 3F f ( ) is the
function v — K (u,v), denoted K (u,-).

Using the loss function in eq. (3), we get the updates

Fo =0 =) f +na (K(-,X)p = K('v)?i)ﬁ) (52)

T =T 4 nep, VI, Vji=12,...,N, (5b)

)?t"rl Xt _ 77 (4b)

Notice that (5a) is linear in f, whereby we can simplify
these equations further. The following lemma simplifies eq. (5)
by eliminating the discriminator f.

Lemma 1 (Training Dynamics). Assume fo = 0, the zero
function in the RKHS H. Then the following deterministic
dynamical system describes the evolution of the samples
generated using eq. (5).
t
)?tJrl :)?t + 1ang Z(l _ /\nd)tisx
s=0

© (ViK(X, X)p - ViK(X', X)) ©)

Note that the above dynamical system is nonlinear in X, and

is non-Markovian due to dependence of X1 on {)} s} .
s<t

The term p @ V1 K (X X)p can be thought of as a drift,
whereas p ® V1 K (X, X)p can be thought of as a diffusion.

From eq. (6) we can immediately infer a condition for a set
of generated points X* to be in equilibrium

Lemma 2. A set of points X* isin equilibrium for the dynamics
eq. (6) if and only if

V1K (X", X)p = V1 K(X*, X*)p. )
Remark 1. The set of equilibrium points depend only on the
kernel K and are invariant to the hyperparameters 74, 14, A
However the dynamics and convergence properties of these

equilibria depend on 74,74, A as well as o.

E. Model and Optimization Hyperparameters

This setting has two model hyperparameters that control
the smoothness of the discriminator. The regularization A
controls the H-norm of the discriminator, which is a measure
of global smoothness. In contrast, the kernel bandwidth o is a
measure of the local smoothness. We also have two optimization
hyperparameters, which are the learning rate of the generator
14 and the learning rate of the discriminator 74. In practice
often ng < ngq.

III. LocAL CONVERGENCE AROUND TRUE SAMPLES

A. Assumptions on the kernel function

We assume the the kernel K (z,z’) is smooth and, at each
true point x;:

Vi K (2, 1;) = W — 0, (82)
0?K (z, ;) 82K(;,lx’) 1
_ 78332 . = 7@%5@/ i, = ;Id (Sb)

for some o > 0 that we call the kernel width and represents
the curvature of the kernel around x = x;. Note that (8a) and
(8b) are satisfied for the standard RBF kernel:

K(z,2') = exp (—ﬁ”x — z’||2) .

©))

Proposition 1. Under the above assumption, X* such that

EE;* = x; for some 1, is an equilibrium.
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This follows immediately from the observation in eq. (7).

When the assumptions on the kernel eq. (8) are satisfied, both
sides of eq. (7) vanish. The results in [2] analyzed the stability
of this equilibrium under an isolated points model described
below, which localizes the analysis around each true point.

B. Isolated Points Model

We assume the true samples are separated far enough so
that there exists a non-empty isolated neighborhood V; around
each sample z; such that,

K(z,2')=0forall x € V; and 2’ € V; for all i # j. (10)

In other words, the generated points are separated sufficiently
far apart such that they are outside the width of the kernel
evaluated at another sample. We let NV; be the set of indices j
such that the generated points 5; e V;, for all ¢.

Thus the dynamics we study can be written as

t

X=X+ namg > (1= Ana)' =" x
s=0

B 0 (Vi (X wp - ViK(XLX0B:) ()

where )Z'f are points generated inside the region V;, and p; is
the length |A;| subvector of p corresponding to these points.

Under this assumption, if j € N; and k ¢ N, then
eq. (11) ignores interaction terms between (Zy,z;), and
(2, 2y), compared to eq. (6). Note eq. (6) tracks N, N, + Ng2
interaction terms whereas eq. (11) only tracks |N;| + |A;|?
terms where |A;| is the number of generated points inside V;.

We will call the updates eq. (11) the dynamical system in
the region V;. For the purpose of analysis it is beneficial to
write the dynamics involving both the discriminator and the
generator as below:

[ = =) f 4+ KCa)p— Y K(58)p: (12)
1EN;
T =Ty VE) eV (12b)

Under the isolated points model, the discriminator satisfies

N,
fiu)=>"flw),  Vu (13a)
=1
fl@)=filx) VYaeV. (13b)

C. Main result

Given a local region V;, we wish to study the dynamics of
the local system given by eq. (12) where z; are close to x;
for all j € AV;. That is, all the generated points are close to
the true point in that region. To this end, we write the local
updates (12) as a mapping

(fthrla)?erl):(I)z( 57‘52:)7 (14)
where ®@,(-) represents the update function in (12). Also, let

X;={3, jeN}, T =u (15)

J

It is showg in [2] that there exists a parameter vector f;* such
that (f*, X) is an equilibrium point of ®;(-) in that

(f. X7) = ®i(f7. X]). (16)

The condition (16) implies that if (f!, X!) (fr,X7)
for some ¢, then (ff, X?) will remain at (f}, X;) for all
subsequent times s > ¢. Let J; denote the Jacobian of the
update mapping ®;(-) at the equilibrium point (f}, )Z;‘) and
define the spectral radius of the Jacobian

Pmax = pmax(J;") = max{|p| | p € spec(J;)}, (17)

where spec(J) is the spectrum of J, i.e., its eigenvalues.

A well-known result of non-linear systems theory [16] is
that the equilibrium point (f;, X}) is locally asymptotically
stable if pmax(JF) < 1. Conversely, if pmax(J;) > 1, the
system can be shown to be locally unstable — see [16] for
precise definitions. Hence, pmax(J;) can provide necessary
and sufficient conditions for local stability. Also, if pmax < 1
and the system is initialized at (f?, X?) sufficiently close to

(fr, )?Z*) then, the components will converge geometrically as

174 — T3] < Cplaell T — Zll, (18)

for some constant C. Hence, the spectral radius pmax also
provides a measure of the convergence rate of the system.
Our main theorem below applies this result to obtain an exact
characterization of the convergence rate of the local dynamics
by studying the spectrum of J* in terms of the model and
optimization hyperparameters.

Recall the model hyperparameters: o — discriminator kernel
width, A — IPM regularization, ng — learning rate of discrimi-
nator and 7, — learning rate of the generator.

Theorem 1. Consider the isolated neighborhood training
dynamics in (12) under the assumptions in Section II in
some region V;. Additionally, assume that the weights of the
generated points are equal so that p; = p for some p > 0 and
all j € N;. Define

o MDA __ kP Ny
a:=2X b:= o2 =2 = == (19)
and
Ai=pi— Y b =pi— NP (20)
JEN;
Then, the eigenvalues of the J* are of the form
p=1-—nav, (21)
where v is from the set:
L e {a,b,m+vm? —c} if|Ni|>1 )
{a,mEtvm?—c} ifN|=1

where m = (a + b)/2.

The proof of the result is given in Appendix A and builds
on the linear analysis in [2]. The theorem above gives an exact
characterization of the eigenvalues of the linear system in terms
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Fig. 1. Eigenvalues of the linearized system in Theorem 1. Here a := X
the regularization, b := “pﬁi , and ¢ := #PBL where 1 := 13 where o is

the kernel width, and 14 and 74 are learning rates of the discriminator and
generator respectively.

of the key parameters including the step sizes and kernel width.

D. Selecting the step size

An immediate consequence of Theorem 1 is that it guides
the selection of the step-sizes that ensure local stability. As
described above, for local stability, we wish that |p| < 1 for
all p in (21). The following provides necessary and sufficient
conditions on 74 for this stability condition to occur.

Corollary 1. Under the conditions in Theorem 1, the spectral
radius of the Jacobian, pmax(spec(J})) < 1, if and only if:

S f2 2 atby 4
0<ng< MM p SEE AN oy
mmn o, T} if N = 1.

In particular, by choosing 74 small enough, we can always
guarantee the system is locally stable when A > 0 and A; > 0,
meaning that there is at least some regularization and the true
point mass exceeds the generated point mass. We can also
derive a simple sufficient condition:

Proposition 2 (Sufficient condition for stability). The training
dynamics eq. (12) are stable around equilibrium X from
eq. (15) for all A; € (0,p;) if,

and Ng < o2,

Na < (24)

Xa
The rest of the paper assumes eq. (24) holds and derives
convergence rates based on the choice of kernel width o.

IV. CONVERGENCE RATE AND KERNEL WIDTH

Theorem 1 can also provide insights into the relation of
the convergence rate to the system parameters. Specifically,
recall from eq. (18) that the spectral radius, pmax(J;*) defined in
eq. (17), determines the convergence rate of the local dynamics,
i.e., pmax closer to 1 indicating slower convergence and pmax
closer to 0 indicates faster convergence. Now, among the values
in (21), the p that maximizes |p| will be one of three values:

pa = 1—nqa, py = 1—ngb, p. = 1—ng(m—v/m? —¢), (25)

where m = (a + b)/2. The cases when the different values
dominate are shown in Figure 1.

It is clear from eq. (25) that controlling the dominant
eigenvalue by adjusting the relevant hyperparameters can
improve the rate of convergence.

Remark 2 (Saturation with Kernel Width). We now share a
phase of the dynamical system where changing o does not
affect the convergence rate. Consider the dynamics (12) with
fixed p, and |NV;|. Furthermore, assume 74 is fixed such that
the condition from Corollary 1 is satisfied. Then changing the
kernel width parameter 02 cannot improve the convergence
rate in the following settings:

o When all eigenvalues are real and p, dominates. Equiva-
lently ¢ < 1(a+b)? and a < min (b,m — vVm? — ¢).

o When two eigenvalues are complex and p, dominates.
Equivalently ¢ > ¥(a + b)? and a < min {b, 2m — ngc}.

A. Diminishing learning rate

One example regime in which this saturation can clearly be
understood is when the learning rate is small, A; is positive,
and p. is complex. When the learning rate is small, the
magnitude for any eigenvalue of the form p, = 1 —n4v can be
approximated by |p,|? &~ 1 — 2ngRe(v) + O(n3). This means
that we have eigenvalues with approximate magnitudes:

Ipal® =~ 1 = 2ng\ (26a)
2 UPA;
~1-2 26b
ool sy . (26b)
2 UPA;
lpel” = 1 —na(A+ o2 ) (26¢)
This yields that the largest eigenvalue is
A
1— 274 -min { A, 2P @7
Ao?

Thus reducing the kernel width o below /upA; /X, does not
lead to changes in the convergence rate 1 — 2mgA.

V. NUMERICAL RESULTS

In this section, we demonstrate the accuracy of our linearized
dynamics by comparing predicted convergence to actual GAN
training behavior around local equilibrium.
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Fig. 2. (Left) Heat map of | pmax\Q as a function of (o, \), the kernel width
and regularization. The colorbar shows the intensity of pmax. Learning rates
are g =1ng = le72, p; = 1 and p = 0.8 whereby A; = 0.2, = 1. The
region for which |,oma><|2 > 1 is highlighted in red, where p, dominates is
in black, p, dominates is in blue and where p. dominates is in green. In the
black region where p, dominates, pmax is insensitive to o. (Right) The region
in which p. is complex is selected from the heat map on the left. In this
region the system shows oscillatory behavior due to the imaginary part of pc.

a) Phase transitions: In Figure 2, we plot the heatmap of
dominating eigenvalue magnitude for a range of regularization
and kernel width settings. Note that in this figure we use
small learning rate (14,7, = le~?2), meaning firstly that the
system 1is stable for almost all choices of hyperparameters
(Figure 2a). In the middle plot (Figure 2b), the majority
of fast convergence behaviors occur when p. has imaginary
components. To analytically find this region, the condition
m? < c provides a quadratic inequality in terms of v = 1/02,

from which the roots tell us the exact ranges of kernel widths.

When A =0, v > 4;‘%, meaning a small enough kernel width

will always gesult in oscillatory behavior. When A # 0, we
have v € Aﬁ‘—m@p — A +2py/1 — A/p), meaning extremely

small or extremely large kernel widths will have no oscillations.

Lastly for the right plot (Figure 2c), we highlight the range
of kernel widths that for a given regularization strength do
not affect the convergence rate (Remark 2). For positive A
(more target mass than generated), this region intuitively begins
where p, = pp: as kernel width shrinks further, the magnitude

Learning Rates: ng = 1.0e — 03, ng = 1.0e — 03

tows A=l A=0.1

Lo T [
§ 08 \ m
S os | 1t
2 oo [/\ ‘M Wl“ i
2 0|l Wi L \v

o W%\M\/\,\,M_ Hw [V’LU‘ ”

Iteration

Fig. 3. GAN training behavior with RBF kernel discriminator. One generated
point is initialized close to the target, in order to compare predicted local
convergence rates (dotted lines) to empirical convergence (solid lines).

learning rates of generator and discriminator, on the stability
and local convergence rate of the dynamics.
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