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Abstract—Hand gesture recognition (HGR) has gained sig-
nificant attention due to the increasing use of AI-powered
human–computer interfaces (HCIs) that can interpret the
deep spatiotemporal dynamics of biosignals from the periph-
eral nervous system, such as surface electromyography
(sEMG). These interfaces have a range of applications,
including the control of extended reality, agile prosthetics,
and exoskeletons. However, the natural variability of sEMG
among individuals has led researchers to focus on subject-
specific solutions. Deep learning methods, which often have
complex structures, are particularly data-hungry and can
be time-consuming to train, making them less practical for
subject-specific applications. The main contribution of this
article is to propose and develop a generalizable, sequential decoder of transient high-density sEMG (HD-sEMG) that
achieves 73% average accuracy on 65 gestures for partially-observed subjects through subject-embedded transfer
learning (TL), leveraging pre-knowledge of HGR acquired during pretraining. The use of transient HD-sEMG before
gesture stabilization allows us to predict gestures with the ultimate goal of counterbalancing system control delays.
The results show that the proposed generalized models significantly outperform subject-specific approaches, especially
when the training data is limited and there is a significant number of gesture classes. By building on pre-knowledge and
incorporating a multiplicative subject-embedded structure, our method comparatively achieves more than 13% average
accuracy across partially-observed subjects with minimal data availability. This work highlights the potential of HD-sEMG
and demonstrates the benefits of modeling common patterns across users to reduce the need for large amounts of data
for new users, enhancing practicality.

Index Terms— Gesture recognition, high-density EMG, human–computer interface (HCI), transfer learning (TL).

I. INTRODUCTION

T
HE increasing use of Internet of Things (IoT) and

investment in commercial augmented and virtual real-

ity (AR/VR) applications suggest a growing demand for

human–computer interfaces (HCIs) [1], [2]. This demand is

further highlighted by the growing population of people with

disability and amputees in the United States [3] that underlines
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the importance of neurorobotic systems (e.g., exoskeletons and

prosthetics) equipped with HCI.

Surface electromyography (sEMG) has been commonly

used to register the activation of the peripheral nervous system

and as part of noninvasive neural interfaces [4], [5], [6], [7],

[8], [9], [10], [11], [12]. High-density surface EMG (HD-

sEMG) is a variant of noninvasive sEMG, collected through

arrays of densely located electrodes to provide a more detailed

scan of the propagation of neural drive over space and a

high-resolution representation of the muscle activity [11],

[13], [14], [15], [16]. The aforementioned modalities have

a wide range of applications, including gesture classification

and tracking in HCI [6], [7], [8], [9], [10], [17], and beyond,

such as the assessment of muscle function [18], the diagnosis

of neuromuscular disorders [5], and the evaluation of muscle

fatigue [4], [19]. Machine learning and deep learning (DL)

have enabled the development of robust decoders for sEMG
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and HD-sEMG to detect the intended motor commands of

users in various contexts. As described in Section II, recent

advances in DL have obtained remarkably accurate decoding

of gestures from sEMG signals [11], [20], [21], [22], [23],

[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],

[35], [36], [37].

Despite the progress, a remaining key challenge of using

DL for decoding sEMG is that sEMG signals vary significantly

among various subjects [9], [38]. Thus, individual subject char-

acteristics such as age, muscle composition, skinfold thickness,

and gesture styles and habits can all influence the mapping

between the sEMG space and intended motions [6], [7], [8],

[9]. This variability has made it unlikely for a single model to

accurately predict a high number of gestures across multiple

subjects without retraining and fine-tuning [7]. For example,

[20] showed that a convolutional neural network (CNN) used

to decode 15 hand gestures achieved a high validation accuracy

of 91.26% in a subject-specific experiment but a low test

accuracy of 48.40% when tested on unseen subjects.

The poor performance on unseen subjects has necessitated

the development of subject-specific models. As a result, a com-

plex DL model needs to be fully retrained for each new

subject using sizable labeled data from that individual. This

exhaustive training and tedious data collection process raise

questions about such DL techniques in terms of effectiveness

and translation beyond research labs [9]. The aforementioned

challenge has motivated the research on potential generalizable

approaches to decode sEMG. Early attempts at generalization

(see [6], [7], [9], [36], [37], [39], [40], [41] described in

Section II), mostly using multichannel bipolar sEMG, have

demonstrated successes only on tasks with limited number

of gestures (in the range of five to 18 gestures) and lim-

ited gesture complexity (focusing on gestures with highly

distinguishable patterns). In contrast, this work will attempt

generalization for decoding 65 gestures, including complex

and similar motions. We will investigate the power of HD-

sEMG with 128 channels that can capture muscle activity

with high spatiotemporal resolution. This is done with the

goal of detecting underlying patterns of muscle activation

propagated in the space and time that can possibly be used

for generalization.

A. Contributions of This Work

The goal of this study is to push the boundaries of gener-

alizable and agile gesture decoding by attempting to achieve

high classification accuracy for a large number of gestures

across different subjects via minimal HD-sEMG data while

focusing on the transient phase of gesture conduction (to

reduce decoding latency in the resulting HCI). We propose

a dilated bidirectional long short-term memory (d-biLSTM)

model that combines the advantages of temporal dilation and

a bidirectional structure. At root, our model is designed with

the goal of overcoming the decoding complexity and inher-

ent variability in sEMG signals among subjects. Addressing

this problem can significantly impact clinical and practical

applications of sEMG in HCI. For this purpose, our training

approach (i.e., subject-embedded transfer learning (TL) for

gesture prediction using transient HD-sEMG) is composed of

two phases: 1) training the base model to capture the common

neurophysiological patterns of gesture performance from a

limited number of subjects through “common parameters”

and 2) retraining the model on a new subject with limited

available HD-sEMG data (referred to as “partially-observed

subject” in the rest of the article) to find the subject-specific

projection through common and “subject-specific” parameters.

In this work, the mapping of each subject index to the

subject-specific projection is considered an embedding. In the

first phase, the base model is trained with data from few

subjects (referred to as pretraining subjects). Both common

and subject-specific parameters are trained from scratch in

this phase. During the retraining phase on a new subject, the

common parameters learned in the first phase are used as

the initial condition, and an embedding vector for the new

subject is initialized by the average of embedding vectors

corresponding to pretraining subjects. Unlike traditional TL,

the proposed method enables subject-specificity in the pre-

training set by incorporating multiplicative subject embedding.

We demonstrate that the proposed method has several signifi-

cant advantages over pure subject-specific models and previous

traditional TL. The main contribution of this article is the

development of a generalizable, lightweight sequential decoder

that can achieve 73% average accuracy on 65 gestures using

only the transient phase of high-density sEMG (HD-sEMG)

of partially-observed subjects through subject-embedded TL.

This contribution is described in an itemized format as

follows.

1) Generalization With HD-sEMG Signals and Large Num-

bers of Gestures: As described in Section II, earlier

efforts on generalizing to new subjects have mostly

demonstrated success with limited number of gestures.

In contrast, this article presents generalization perfor-

mance on 65 gestures. This is motivated as we use

HD-sEMG which introduces higher information rate for

finding common patterns. Most of the prior works (with

the exception of [40]) attempted generalization only

using sparsely located bipolar sEMG rather than HD-

sEMG.

2) Generalization With Transient-Phase HD-sEMG: The

prior work on the topic of generalization uses the plateau

phase of sEMG during gesture conduction when the

signal is mostly stable. This, in general, can introduce

extra latency in the HCI system and inaccuracy during

transition from one gesture to another. In this article, for

the first time, we approach the more challenging prob-

lem of generalization on transient phase of HD-sEMG

with the goal of predicting the upcoming gestures and

reducing the latency in HCI.

3) Generalization With Minimal New Data: The proposed

model reaches an average accuracy of 73% across

partially-observed subjects when having access to a

limited number of repetitions per gesture during the

retraining phase. More specifically, in this study, the

challenging problem of single-repetition decoding has

been addressed, requiring retraining our model for each

subject using one repetition of data. This means that

we can achieve 13% more accuracy compared to the

state-of-the-art subject-specific counterpart while having

access to only 25% of data.
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4) Lightweight Bidirectional LSTM: In addition to the

multiplicative embedding, the proposed model is com-

pact with 79 K trainable parameters (e.g., compared

to 1.7 million parameters of CapsNet [41]). It should

be noted that for cloud computing, the compactness

of the model structure saves substantial computational

resources for rapid upgrades of the models on the cloud

and individual devices. Moreover, model compactness

enhances the practicality in terms of the implementation

of portable hardware, such as HCI controllers.

The results of this article support the hypothesis that

subject-embedded TL can indeed improve the HGR accuracy

on new subjects with limited calibration. We have observed

that the proposed generalized model consistently and signifi-

cantly outperforms both purely subject-specific models as well

as traditional TL-based models for all rates of data availability.

The accuracy improvement gap is particularly large when

sufficient training data (i.e., sufficient repetitions for each

gesture) from the partially-observed subject is not available.

The remainder of this article is organized as follows.

Section II reviews the prior studies considering the prob-

lem of HGR from sEMG signals, including subject-specific

models and attempts toward generalization to new subjects.

In Section III, our proposed subject-embedded TL strategy

and the intuition it relies on are explained. Section IV intro-

duces the dataset and pre-processing scheme used in this

study. Section V provides an overview of the proposed model

architecture. In Section VI, we describe the training and

retraining configurations, the experiments conducted, and the

corresponding results. Section VII is dedicated to compar-

ing our proposed model to other LSTM-based architectures

and analyzing the benefits of the proposed embedding-based

generalization approach. We also evaluate our method on the

steady-state (i.e., plateau) phase of HD-sEMG signals. Finally,

in Section VIII, we summarize our observations and draw

conclusions.

II. PRIOR WORKS: FROM SUBJECT-SPECIFIC TO

GENERALIZATION

A. Subject-Specific Models

Subject-specific models for sEMG are trained for each indi-

vidual and require complete retraining before being used on a

new subject. Previous subject-specific studies have primarily

used feature extraction methods and traditional machine learn-

ing techniques. These are just a few examples of the classic

efforts in this field [42]. Linear discriminant analysis (LDA)

[10], [43], Gaussian Naive Bayes [44], clustering-based algo-

rithms [45], decision trees, and hidden Markov models [46]

have been used to decode hand gestures from sEMG signals

with high accuracies. sEMG signals are complex and variable,

with a non-stationary and nonlinear relationship to muscle

contractions [47]. These characteristics make it difficult to

model the relationship between the signal and the gesture

explicitly, especially for a large number of gestures. To address

these issues (complexity, variability, and non-stationary nature

of sEMG signals), DL algorithms have been increasingly used

to decode sEMG signals into gesture classes [21], [22]. In the

following, we provide some examples of the use of DL for

this purpose.

CNNs [23], [24], [25], [26] and CNN-inspired architec-

tures such as temporal convolutional networks (TCNs) [30],

[31], compact CNNs (EMGNet) [28], 3-D CNNs [27], and

dilated CNNs [29] have been studied extensively toward

myoelectric control and pattern recognition in the past few

years. These models have reached high accuracies (e.g., 97%)

depending on the number of gestures during subject-specific

studies. Selection of the convolution kernels, number of model

layers, and dilation order are examples of model parame-

ters in CNNs. Long short-term memory (LSTM) networks

have demonstrated satisfactory performances as well. Such

architectures have been significantly improved by introducing

temporal dilation [11], [32], reaching an accuracy of 83%

for decoding 65 gestures from HD-sEMG signals. Number of

layers, dimension of hidden units, and dilation order are among

the model parameters for LSTM-based structures. Hybrid

architectures, combining CNNs and LSTMs, are shown to be

accurate as well [33]. DL algorithms require a large amount

of labeled data for training in order to achieve satisfactory

accuracy, and obtaining such data can be impractical in many

cases [6]. Transformer-based and few shot learning (FSL)-

based frameworks have been proposed to address the elongated

training time and the limited data availability problems of DL

models, respectively [34], [35], [36], [37].

B. Efforts at Generalization and Their Limitations

Several works have attempted to develop generalized mod-

els, but remain limited in various aspects. Matsubara and

Morimoto [39] propose a bilinear model that can detect five

gestures with an accuracy of 73% by an adaptation process.

In addition, in [7], an unsupervised domain adaptation (UDA)

is proposed to classify six gestures with an average accuracy

of 90.41%. TL can be used to improve model performance in

a target domain through knowledge from the source domain.

It is especially useful in the HGR context due to the subject

variability of sEMG signals mentioned earlier. Yu et al. [40]

propose a TL strategy with majority voting that reaches an

average accuracy of 95.97% for 12 basic finger movements

in CapgMyo-DBc (a HD-sEMG database [48]). These three

studies [7], [39], [40] only consider a few number of ges-

tures. The effect of TL on improving the accuracy of a

convolutional network architecture to detect 18 gestures for

new subjects is studied in [6]. They report an accuracy of

68.98% when given four repetitions of new data. Besides

the limited number of gestures, more repetitions are required

to calibrate this model for new subjects, in comparison to

our proposed model. The authors of [41] propose the dilated

efficient capsular neural network (CapsNet) that can predict

17 gestures from the transient phase of sEMG signals with an

accuracy of 78.3%. The disadvantages of this model include

the large number of trainable parameters and low number of

gestures. Shi et al. [9] report both subject-specific and gener-

alized (inter-subject) accuracy for static and dynamic gestures.

Shi et al. [9] have introduced a CNN model named the

multitask dual-stream supervised domain adaptation network

(MDSDA) that exhibits long-term robustness and adaptability
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to multiple subjects, reporting an inter-subject accuracy of

97.2% in detecting ten gestures. The low number of gestures

and high complexity of the model are limitations of the

study in [9]. Rahimian et al. [36], [37] use FSL to improve

accuracy on new subjects. They report accuracies in the range

of 76.39%–81.29% based on different architectures they use

for five-way five-shot experiments. Few number of gestures

(five-way) and requirement for more repetitions (five-shot) of

new data are the limitations of these studies. In a very recent

study [49], domain generalization and UDA were integrated

into a single framework that detects seven gestures from

HD-sEMG signals. Similarly, the low number of gestures is

the limitation of this study besides the low-complexity of

the targeted gestures. Table I summarizes these studies and

highlights the existing research gaps and limitations. Based on

the comprehensive literature review conducted in this article,

it can be observed that the major research gaps include the

lack of studies focusing on generalization over subjects for a

large number of complicated gestures and securing reliability

of prediction when enough calibration data is not available

(all using compact DL techniques). These issues have been

addressed in this study.

III. SUBJECT-EMBEDDED TRANSFER LEARNING

We briefly describe the general principle of the proposed

subject-embedded TL and how it contrasts to other methods.

Consider a general problem of predicting some target y from

an input x . In the sEMG problem, y will be the gesture index

and x will be an array representing the multichannel data

collected over some time interval. Let u denote a subject index.

One simple predictor would be of the form

ŷ = f (x, ¹) (1)

where ŷ is the prediction of the target y, and f (x, ¹) is a

function with parameters ¹ . For example, f (x, ¹) could be

a neural network with input x and ¹ would be weights and

biases. By a common model, we mean that we learn a single

common parameter ¹ for all subjects u. The obvious drawback

with a common model is that it cannot capture subject-specific

characteristics of the mapping. The other extreme would be

a subject-specific model where one set of parameters ¹

is learned for each subject u. As mentioned in Section I,

the challenge of subject-specific models is that they require

significant training data for each subject.

One approach to reduce the data required for

subject-specific models is to use what we will call

standard TL. In this method, one typically first selects

one or more pretraining subjects and learns a common

base model ŷ = f (x, ¹0) for these pretraining subjects

where ¹0 represents the base parameters. Then, given a new

subject u, the parameters ¹0 are finely tuned to obtain a

new subject-specific parameter ¹(u). The simplest method

is to divide the parameters into components ¹ = (¹1, ¹2).

For example, ¹1 are the weight and biases for the initial

layers, and ¹2 are the parameters for the final [generally fully

connected (FC)] layers. In the pretraining phase, we learn

base parameters ¹0 = (¹0
1 , ¹0

2 ). For the new subject, we freeze

¹0
1 and only learn a subject-specific component, ¹2(u), thereby

reducing the parameters to be learned. The problem in this

method, is that the base model is not subject-specific, and

therefore, may not be able to provide a good fit over a large

pretraining set.

For the proposed subject-embedded TL, we similarly divide

the parameters into two components, ¹ = (¹1, ¹2(u)). In the

pretraining phase, we learn a parameter ¹0 = (¹0
1 , ¹2(u)),

where the first component, ¹0
1 , is common to all pretraining

subjects. However, unlike standard TL, the second parameter,

¹2(u), is dependent on the subject index u within the pretrain-

ing set. The mapping of the subject index u to the parameters

¹2(u) can thus be seen as an embedding of the subject in some

parameter space. This embedding enables the base model to

have a subject-specific component.

For a new subject, u′, not in the pretraining set, we run

traditional gradient-descent learning on the data from a new

subject where: 1) we initialize the first component ¹1 =

¹0
1 , the common parameters in the base model and 2) we

initialize the second component, ¹2(u
′) to the average of

¹2(u) for u in the pretraining set. The initialization of ¹1 =

¹0
1 implicitly captures the common aspects of the model from

the pretraining set, while the search over ¹2(u
′) helps capture

the subject-specific characteristics of the new subject.

IV. DATABASE

A. Data Acquisition

Our work aims to develop a robust, multifunctional HCI

control system capable of supporting a diverse range of control

tasks through HD-sEMG data. To this end, the study uses a

publicly available open-source HD-sEMG database containing

65 isometric hand gestures [47]. HD-sEMG data provide rich

spatiotemporal information about underlying muscle activity

and are particularly useful in recognizing a large number of

gestures. The database includes 16 gestures with one degree of

freedom (DoF), 41 gestures with two DoFs, and eight gestures

with three DoFs, encompassing a range of finger and wrist

movements such as bending, stretching, rotating, grasping,

pointing, and pinching. The three DoF gestures are essential

to maintain an ordinary daily life, whereas the one and two

DoF gestures are the basic components for more complicated

gestures. Fig. 1 shows two example gestures with their corre-

sponding muscle-activity heatmaps. The signals were collected

by a Quattrocento (OT Bioelettronica, Turin, Italy) biomedical

amplifier through two 8 × 8 electrode grids (128 sensors in

total) positioned on the volar and dorsal aspects of the forearm

at a sampling rate of 2048 Hz. Please note that Fig. 2 is

taken from our experimental setup for which we re-created the

electrode placement similar to that of the dataset [47] used in

this article. There might be some misplacement. The purpose

of Fig. 2 is only for visualization. This database was collected

from 20 non-disabled subjects (14 men and six women with

average age of 35) who were instructed to perform each

gesture for five repetitions, each lasting 5 s, with a 5-s inter-

repetition rest period. The plateau phase of the repetitions

is often used in gesture recognition due to the stability of

muscle contraction during gesture maintenance, introducing

control delay in practical applications. However, this study

focuses only on transient-phase signals, which include the
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TABLE I

COMPARISON BETWEEN THE PROPOSED MODEL WITH THE STATE-OF-THE-ART EFFORTS IN SEMG-BASED SUBJECT GENERALIZATION FOR

HGR

Fig. 1. Two example gestures with corresponding heatmaps that are
the root mean square of a 200 ms window. (a) Little and ring fingers
bend. (b) All fingers extension (without thumb).

most dynamic muscle activity, to design an agile HCI control

system that can begin recognizing gestures as soon as a

user initiates one. HGR on transient data transforms gesture

detection into gesture prediction, minimizing control delay.

B. Data Pre-Processing

The raw HD-sEMG signals from the two 8 × 8 electrode

grids are flattened and concatenated to form 128-channel

signals suitable to our proposed sequential model. The total

data can then be represented as a tensor, x[n, i, t], where n

is the sample index, i is the channel, and t is the time index

within the sample. Each sample is the data from one repetition,

so we will use the terms repetition and sample interchangeably.

Magnitudes of muscle signals such as sEMG vary according to

Fig. 2. Placement of two 8 × 8 electrode grids, with one on the dorsal
aspect (outer forearm) and the other on the volar (inner forearm) aspect
of the forearm [50].

muscle type, length, and velocity [51]. sEMG can benefit from

normalization in the sense that the signals collected from each

electrode can contribute equally during model training [52].

We normalize the raw signals using z-score transformation

via the means and standard deviations from only the training

data. The standardization method converts the raw signals to a

common scale such that the standardized signals have a zero

mean and unit standard deviation. We then obtain scaled data

v [n, i, t] =
x [n, i, t] − µ [i]

Ã [i]
(2)

where

µ [i] :=

∑
n∈Ntr,t

x [n, i, t]

N
(3a)

Ã [i] :=

√∑
n∈Ntr,t

(x [n, i, t] − µ [i])2

N
. (3b)
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Following the previous work [11], we define the duration of

the transient phase as the first 0.5 s of each repetition, accord-

ing to the average force signals of each gesture. Windowing

is a commonly used data augmentation technique for model

performance and generalization enhancement in sEMG-based

gesture detection. A repetition of the normalized signals is

segmented into multiple overlapping windows before being fed

into the proposed model. Implementing overlapping windows

is a standard convention for sEMG-based HGR. It should be

noted that the stride should be larger than the idle time needed

by the processor for signal conditioning (e.g., normalization)

and model inference [53]. Regarding the method implemented

in this article for testing the accuracy of the system, it should

be noted that overlapping windows do not cause any data

leakage since the testing data and training data are separated by

different gesture repetitions. We use a window size of 200 ms

and a stride of 10 ms to meet the requirement of real-time

control based on the standards followed by the literature [54],

[55], [56], [57]. Based on our measurements, the average over

15 subjects for combined signal conditioning and inference

time is 1.6 ms on CPU (NYU Greene HPC; 24-core Intel

Cascade Lake Platinum 8268 chips) which allows for short

stride length of 10 ms used in this article. This means that our

proposed model has the potential to be employed for real-time

inference, assuming that it has been retrained on a few samples

for a new subject. The data pre-processing can be visualized

as the upper box in Fig. 3.

In the pretraining phase, the train-test division is determined

by assigning repetitions 1, 3, and 5 to the training set, and the

remaining repetitions (2 and 4) to the testing set. To evaluate

the capability of the generalized models on partially-observed

subjects given different data availability in retraining, we cal-

ibrate the generalized models on any selection of one (33%),

two (67%), and all three (100%) of the training repetitions.

The train-test split for subject-specific model training follows

the setups in the retraining phase.

Remark 1: Please note that this article proposes a gener-

alized hand gesture recognition (HGR) system that requires

minimum data from new subjects by acknowledging the

between-subject variabilities and in combination with chal-

lenges imposed due to the loosely controlled data acquisition

environment. It should be mentioned that variations between

data from different subjects may be due to differences

in neurophysiological characteristics, experimental variations,

and environmental variations, which are all common issues

challenging the re-utilization of inference models on new

subjects. This is the focus of the article where we propose

a deep-learning model and training approach to target these

issues. However, specifically targeting the problem of elec-

trode misplacement and displacement within one session or

between different sessions is out of the scope of the current

study. Readers may refer to our recent works [50], [58]

for more information regarding electrode misplacement and

displacement challenges.

V. MODEL ARCHITECTURE

We propose the d-biLSTM model that combines the advan-

tages of temporal dilation and a bidirectional structure. The

model consists of three components: a three-layer d-biLSTM,

a classifier with FC layers and dropout, and an embedding

layer that captures subject dependencies in the generalized

model. We will now provide a brief overview of these compo-

nents. Table II summarizes all the model parameters and their

corresponding values.

1) biLSTM: The exploding and vanishing gradient issue

in recurrent neural networks (RNNs) has been well-studied

in the literature and is often addressed through the use of

LSTM cells [59], [60]. LSTM introduces additional gating

mechanisms that enable the model to selectively retain or

forget information, allowing it to better capture long-range

dependencies in the input data. Inspired by the work in [32],

we introduce temporal dilation in the LSTM architecture to

further improve its ability to capture long-term dependencies

in the input data. Temporal dilation allows for an expansion

of the temporal receptive field (in the time series) without

increasing the number of parameters and indeed, reducing the

computational cost, making it an effective method for captur-

ing longer-range dependencies and complex input sequences.

In addition, in order to fully utilize all of the past and

future information available within a specific signal window,

we utilize a bidirectional LSTM (biLSTM) structure instead

of a standard LSTM. A biLSTM processes the input sequence

in both the forward and backward directions, allowing it to

integrate contextual information from both past and future time

steps within the processing window. Our experiments demon-

strate that the biLSTM can achieve comparable accuracy to the

LSTM while requiring fewer trainable parameters. The model

consists of three d-biLSTM layers, each containing 32 hidden

units and dilated with a factor of three, such that the next

d-biLSTM layer has (1/8) connected LSTM cells compared

to the current layer (details of homogeneous temporal dilation

can be referred to [32]). The combination of temporal dilation

and bidirectional processing enables the d-biLSTM model to

effectively learn and classify the complex sequential sEMG

data. Each d-biLSTM layer has a set of forward and backward

outputs which are added before being passed as the input to the

next layer. The final forward and backward hidden states are

concatenated (yielding a 64-dimensional vector) before being

fed into the classifier module.

2) Embedding: The weights of an embedding layer create

a matrix that serves as an encoder of subject-specific infor-

mation, resembling a lookup mechanism. The dimension of

the embedding matrix can be adjusted based on the number

of subjects and the specific model architecture in which it

will be used. When given a subject index, a row from the

embedding matrix corresponding to that specific subject is

extracted and used in the model. In this study, we use a

multiplicative embedding structure, where the extracted row

is multiplied with the output of the first FC layer in the

classifier module. The embedding rows have a dimension

of 32 to match the structure of the classifier. This allows

the model to effectively capture subject dependencies in the

input data and improve performance on the classification

task.

3) Classifier: As part of the classifier, first, an FC layer with

the hyperbolic tangent activation function is used to decrease
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Fig. 3. Figure illustrates the proposed pipeline for gesture prediction using HD-sEMG data. The blue area represents the data pre-processing
steps, including sensor flattening and windowing. The purple area shows the proposed d-biLSTM model, which takes each window of normalized
HD-sEMG data as input and predicts the 65 gestures according to the maximum predicted probability output from the softmax function. The
generalized model (shown in the figure) includes a subject embedding layer (shown in magenta), which captures subject-specific dependencies in
the data, while the subject-specific counterpart excludes this layer. This allows the model to effectively learn and classify sequential data for a wide
range of subjects.

the output dimension of the d-biLSTM module from 64 to 32.

It is followed by a dropout layer with a rate of 0.2 to avoid

overfitting the training data. The resulting vector is multiplied

by the embedded vector extracted from the embedding module,

given the subject index. A final FC layer with the softmax

activation function is used to assign probabilities to various

gesture classes. The predicted label corresponds to the gesture

with the highest output probability.

In this study, two-phase generalization is conducted on the

model with the embedding layer (named generalized model),

whereas for the conventional subject-specific model that is

only trained in one phase, no embedding layer is considered.

Fig. 3 demonstrates the data pre-processing and model training

pipelines. The lower box (i.e., model training) shows the

proposed model structure.

VI. EXPERIMENTS AND RESULTS

In this section, experimental results are reported regard-

ing various phases of training for the proposed generalized

models in comparison with the performance of the corre-

sponding subject-specific models. Also, additional results will

be reported regarding the effect of data reduction and task

complexity (i.e., number of gestures) on the performance.

It will be shown that

1) The proposed generalized model outperforms its

subject-specific counterpart more significantly when pre-
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TABLE II

PROPOSED MODEL PARAMETERS. PLEASE NOTE THAT #, FC, AND

TANH REFER TO NUMBER, FC LAYER, AND HYPERBOLIC TANGENT,

RESPECTIVELY

TABLE III

COMPARISON OF THE NUMBER OF TRAINABLE PARAMETERS AND

TRAINING EPOCHS WHEN PREDICTING 65 GESTURES

dicting a higher number of gestures with fewer available

data, benefiting from the proposed TL which includes

the multiplicative embedding layer through weight ini-

tialization in retraining.

2) The pretrained weights represent the HGR

pre-knowledge captured from known subjects, resulting

in faster convergence for a new subject (100 epochs

compared to 200) and reducing the chances of ending

up at local minima.

In all experiments, Adam optimizer with learning rate 1e

− 3, ´1 = 0.9, ´2 = 0.999, and ϵ = 1e − 08 is used. The

proposed generalized model is pretrained for 200 epochs with

patience 40 on a number of subjects (referred to as the pre-

training subjects). It is later retrained for only 100 epochs on

a new subject (i.e., partially-observed subject). Moreover, the

embedding vector of the partially-observed subject is initial-

ized as the average of vector values for the pretraining subjects

before the retraining phase. Categorical cross-entropy is used

as the loss function and validation categorical accuracy is

monitored. The number of training parameters is about 79 000

for the generalized and subject-specific models, depending on

the number of gestures. Table III summarizes the number of

parameters and training epochs for two phases of the general-

ized model and one phase of subject-specific model training

when detecting 65 gestures. The subject-specific model in each

gesture detection task is trained from scratch for 200 epochs.

A. Pretraining

As an initial step, the proposed generalized model needs

to be pretrained on a number of subjects. At this phase,

we have access to sufficient recordings of gestures from

multiple subjects. To determine the optimal number of subjects

to use in the pretraining phase of the generalized model,

we conduct a series of experiments in which the model is

pretrained on one to seven subjects for the task of detecting

65 gestures. We select a diverse group of subjects in terms of

subject-specific accuracy to mimic the real-world scenario in

which a variety of subjects might be chosen for pretraining.

Table IV shows the generalized average accuracy of detecting

65 gestures evaluated on the remaining 13 subjects on three

levels of data availability (33%, 67%, and 100% which corre-

spond to one, two, and three retraining repetitions per gesture,

respectively). It can be seen that increasing the number of pre-

training subjects improves the generalized accuracy, and thus,

the generalized model consistently outperforms the subject-

specific model, especially when insufficient data is available

for a new subject. Fig. 4 shows the accuracy improvement

of the proposed generalized model when compared with

the subject-specific model with respect to the number of

subjects used in the pretraining phase. It can be observed

that the accuracy improvement from adding the sixth and

seventh subjects is less significant. Given the limited number

of subjects available in the dataset (20 subjects), we use a

maximum of five subjects to pretrain the generalized model in

all other experiments in order to have sufficient test subjects

for statistical analysis. The pretraining step is performed in an

offline manner and takes about 6 h on average over 30 225

sample windows. All experiments are conducted on CPU

(NYU Greene HPC; 24-core Intel Cascade Lake Platinum

8268 chips).

B. Data Reduction Experiments

As mentioned earlier, a main challenge in developing PR

models is the requirement of a large dataset to train complex

models for each new subject. In this section, we analyze the

effect of available training data on the final accuracy. This

reduction is based on the available training repetitions and

will be analyzed in the following setting.

1) The generalized model is adequately pretrained on five

random subjects using all three repetitions {1,3,5}.

2) After proper initialization of the embedding vector cor-

responding to a new subject, the generalized model

is retrained on a subset of {1,3,5} repetitions of that

subject (i.e., the partially-observed subject). The subsets

roughly measure to 100% (all three repetitions), 67%

(two repetitions), and 33% (one repetition) of the data.

3) The subject-specific model is trained from scratch on

the same subset as the retraining of the generalized

model.

4) Final accuracies of both models are evaluated on repe-

titions {2,4} of that subject.

The results of these experiments for the task of predicting

65 gestures are demonstrated in the right-most column of

Fig. 5. Noting that retraining the proposed generalized model

converges faster than training a subject-specific model from

scratch (Table III), we also observe that for a high number of

gestures, without having access to sufficient samples from the

new subject, the proposed model more significantly outper-

forms the subject-specific counterpart. In fact, given only one

repetition of each of the 65 gestures for a new subject, our

proposed model achieves a prediction accuracy that is about

13% higher than the subject-specific accuracy. To further

emphasize the superiority of our model to the subject-specific
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TABLE IV

COMPARISON OF AVERAGE ACCURACY FOR PARTIALLY-OBSERVED SUBJECTS (EVALUATED ON 13 SUBJECTS) FOR PREDICTING 65 GESTURES

Fig. 4. Performance difference when given a varying number of pretraining subjects. The performance difference (y-axis) is the average accuracy
difference between a generalized model and its subject-specific counterpart across partially-observed subjects based on the same percentage of
retraining data. The lighter the color shade, the less the retraining data. The dotted lines indicate the moving averages as the trend of the ascending
performance gap as more known subjects are included in pretraining.

TABLE V

COMPARISON OF RUN-TIME FOR TRAINING THE SUBJECT-SPECIFIC

MODEL (SUBJ.) FROM SCRATCH AND RETRAINING OUR PROPOSED

MODEL (GEN.) FOR THE TASK OF DETECTING 65 GESTURES.

RUN-TIME IS MEASURED IN SECONDS (S). ALL EXPERIMENTS HAVE

BEEN CONDUCTED ON CPU (NYU GREENE HPC; 24-CORE INTEL

CASCADE LAKE PLATINUM 8268 CHIPS)

counterpart, we compare the average run-time of retraining the

generalized model with the average run-time of training of the

subject-specific model for the task of detecting 65 gestures.

All experiments are conducted on CPU (NYU Greene HPC;

24-core Intel Cascade Lake Platinum 8268 chips) and we

provide the results for various data availability scenarios.

Table V shows this comparison.

C. Comparing to Traditional TL

In order to emphasize the advantage of using a subject-

embedded structure, we also implement a traditional TL

scheme for detecting 65 gestures by pretraining the model

excluding the embedding layer on five random subjects (sub-

jects 1, 6, 10, 11, and 14), and then after freezing all layers

except the FC layers of the classifier, we retrain the model

on various amounts of data from a new subject. The training

configurations match those of the generalized model for a fair

comparison. The results are reflected in the last column of

Table VI. The results show that even by 100% retraining on

a new subject, the traditional TL model has a lower accuracy

Fig. 5. Comparison of models during data reduction experiments
when the generalized model is pretrained on five random subjects. The
compared distribution pairs are dependent, as they are the accuracies
of the same subjects derived from the generalized and subject-specific
models. Also, the accuracy differences are not normally distributed.
Thus, the Wilcoxon signed-rank test with α = 0.05 is employed as the
statistical hypothesis test. X- and Y-axes denote the number of gestures
and accuracy, respectively. Each box plot includes 15 data points that
represent 15 partially-observed subjects.

(around 9% less) compared to the generalized model that is

only retrained with 33% data.

D. Task Complexity Experiments

To investigate the effect of task complexity on model perfor-

mance, we conduct experiments on the proposed generalized

model on various numbers of gestures, ranging from 10 to 65.
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TABLE VI

COMPARISON OF AVERAGE ACCURACY FOR PARTIALLY-OBSERVED SUBJECTS (EVALUATED ON 15 SUBJECTS) EVALUATED FOR TASKS OF

DETECTING 10, 25, 45, AND 65 GESTURES. PRETRAINED ON FIVE RANDOM SUBJECTS. SUBJ., GEN., AND TL REFER TO SUBJECT-SPECIFIC,

GENERALIZED, AND TRADITIONAL TL MODELS, RESPECTIVELY. THE COMPARISON WITH TL MODELS IS CONDUCTED ONLY WHEN

CLASSIFYING 65 GESTURES

Fig. 6. Comparative results on 65 gestures when given different data
availability. The error bars represent one standard deviation away from
the mean values. (a) 33% Data. (b) 67% Data. (c) 100% Data.

For each experiment, five random subjects (subjects 1, 6, 10,

11, and 14) are selected for the pretraining phase and the

remaining subjects are used for testing. Table VI shows the

final test accuracy for different amounts of retraining data.

It is important to note that the testing subjects for Table VI

are different from those in Table IV, so the final average

accuracy for 65 gestures is not directly comparable. The

results in Table VI and Fig. 5 show that the performance gap

between the generalized and subject-specific models increases

as the task complexity increases. The largest gap was observed

when the models are asked to predict 65 gestures using only

33% of data from a partially-observed subject. This suggests

that the generalized model becomes more effective as the

number of gestures to be detected increases. In this case, the

subject-specific model would require more data for accurate

classification. We would like to highlight the significance

of the 73.2% performance over 65 gestures noting that the

“chance threshold” (i.e., random guess baseline) for a problem

of this scale is around 1.5%. This performance is also remark-

able when comparing to various aspects of existing literature

(e.g., number of subjects, gestures, window length, and signal

phase outlined in Table I). In order to see which gestures are

the most difficult to predict correctly, we analyze the confusion

matrices for various subjects. Our observations show that

gestures including multi-DoF movements are harder to detect.

Specifically, multi-DoF gestures that include rotation of the

wrist, moving the ring or little finger are more frequently con-

fused with other gestures. This could be caused by the fact that

many individuals cannot move specific fingers (e.g., the ring

finger) in an isolated manner from other fingers, resulting in

involuntary movement of other digits that can cause the model

to classify the gestures incorrectly. A more detailed explana-

tion of the factors affecting model performance is as follows.

1) The number of gestures: The probability threshold of

the correct prediction of a random guess from a model

decreases as the number of classified gestures increases.

Additionally, the larger number of classified gestures

usually include multi-DoF gestures (especially complex

wrist gestures) that have higher requirements for gesture

distinguishment on the proposed model. Compared to

the most recent generalized HGR works in the literature,

our proposed model classifies 3.6× to 13× more number

of gestures.

2) The number of subjects: For “Generalized” HGR, the

larger the number of involved subjects in the studies,

the higher the generalizability and practicality of the

proposed systems. However, the recognition accuracy of

an unseen/partially unseen subject can be different from

another due to factors like noise, even under the same

experimental setup for data collection. The accuracy

variance can increase as the number of involved subjects

increases.

3) Window length: There is a trade-off between window

length and model performance; generally, the longer the

window length, the more information has been included

in a single input, and the higher the recognition accuracy,

but the slower and less intuitive/practical the control.

In this article, we use a window size of 200 ms that

meets the requirement of real-time control.

4) The phase of input sEMG signals: To achieve

high performance in sEMG-based HGR, most of the

existing works in the literature (either conventional

subject-specific or generalized HGR) used steady-state-

phase (or plateau-phase) sEMG signals as model inputs,

which will introduce control delay. Also, separating the

transition phase is not always practical. This article

includes the transient-phase sEMG, which accounts for

only 10% of the entire repetition of gesture perfor-

mance, turning the gesture recognition task into gesture

prediction and counterbalancing/reducing the control

delay.
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TABLE VII

PERFORMANCE COMPARISON BETWEEN GENERALIZED AND

SUBJECT-SPECIFIC MODELS

Fig. 7. Average results of d-biLSTM on plateau-phase signals given
any data availability.

VII. COMPARATIVE STUDY

This work presents a novel method for transferring knowl-

edge learned from known subjects to new ones using

subject-embedded TL to the best of our knowledge. To demon-

strate the superiority of our generalized d-biLSTM model over

other state-of-the-art sequential DL models, we apply the same

subject-embedded TL to a regular LSTM, a dilated LSTM (d-

LSTM), and a regular biLSTM. These models are pretrained

on the same five random subjects (subjects 1, 6, 10, 11, and

14) used by our proposed d-biLSTM. The comparative study

is based on 33%, 67%, and 100% of retraining repetitions for

all 65 gestures for the remaining 15 subjects. The results are

shown in Fig. 6 and Table VII. It is worth noting that although

the d-LSTM model performs similar to our proposed model,

it requires an additional 40 960 trainable parameters (51.9%

more complex than the proposed model) in both generalized

and subject-specific models. In addition, we evaluate the

subject-embedded TL technique of our proposed d-biLSTM

on signals from the plateau phase (determined as 3 s after the

transient phase). The results (shown in Fig. 7) demonstrate

that our proposed method can be applied to signals from any

phase of a repetition. Noting the higher accuracy when using

plateau phase signals compared to transient phase, we would

like to emphasize the significance of using transient phase

signals for mitigating control delay and turning the gesture

recognition task into gesture prediction.

The results demonstrate the impact and potential of our pro-

posed subject-embedded TL approach for generalized muscle

activity classification. Analyzing the results of our experiments

reveals three main observations.

Observation 1: Dilated models, including the proposed

d-biLSTM model, significantly outperform their non-dilated

counterparts in terms of classification accuracy across all

levels of training data availability. Moreover, the proposed

generalized d-biLSTM model exhibits comparable accuracy to

the generalized d-LSTM model while requiring fewer trainable

parameters, making it a more efficient choice for classification.

Observation 2: The generalized models consistently outper-

form the subject-specific models in both transient and plateau

phase experiments for all data availability conditions. This

demonstrates the effectiveness of our proposed approach in

transferring pre-learned knowledge from known subjects to

classify muscle activity from new subjects.

Observation 3: The performance gap between the gener-

alized d-biLSTM model and its subject-specific counterpart

significantly increases with every 33% reduction in training

data availability. This demonstrates the robustness and gener-

alizability of the proposed approach, even in situations where

limited data is available for training.

Overall, these findings suggest that the proposed

subject-embedded TL approach using the d-biLSTM

model is promising for accurate and efficient muscle

activity classification in real-world scenarios involving

partially-observed subjects with limited data availability.

VIII. CONCLUSION

In this study, we introduce a subject-embedded TL

approach to mitigate the challenge of insufficient training

data in DL-based HGR. Our proposed d-biLSTM model

incorporates a multiplicative embedding layer that encodes

subject-specific information, enabling the model to capture

subject-specific neurophysiological features while learning

HGR pre-knowledge from multiple subjects during pretrain-

ing. The resulting generalized models, retrained based on

this pre-knowledge, demonstrate superior performance com-

pared to subject-specific counterparts trained from scratch.

This performance advantage is particularly evident when data

availability is limited, or the number of gestures is large.

Additionally, our approach uses transient-phase HD-sEMG

signals, corresponding to muscle contraction prior to the

maintenance of gestures, to minimize control delay in practical

applications. It should also be noted that to the best of our

knowledge, our proposed generalized model is the first that

includes an embedding layer in a d-biLSTM structure for

HGR. For future work, we aim to scale up the evaluation of

our proposed HGR by testing our proposed model on multiple

open-source databases combined with a separate dataset we

will collect. This can help test the model on a larger number

of subjects. Collecting and releasing data for such a combined

evaluation is out of the scope of this current paper but an

important future step of this work.
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