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Abstract—Hand gesture recognition (HGR) has gained sig-
nificant attention due to the increasing use of Al-powered
human-computer interfaces (HCls) that can interpret the
deep spatiotemporal dynamics of biosignals from the periph-
eral nervous system, such as surface electromyography
(sEMG). These interfaces have a range of applications,
including the control of extended reality, agile prosthetics,
and exoskeletons. However, the natural variability of SEMG
among individuals has led researchers to focus on subject-
specific solutions. Deep learning methods, which often have
complex structures, are particularly data-hungry and can
be time-consuming to train, making them less practical for
subject-specific applications. The main contribution of this
article is to propose and develop a generalizable, sequential decoder of transient high-density sEMG (HD-sEMG) that
achieves 73% average accuracy on 65 gestures for partially-observed subjects through subject-embedded transfer
learning (TL), leveraging pre-knowledge of HGR acquired during pretraining. The use of transient HD-sEMG before
gesture stabilization allows us to predict gestures with the ultimate goal of counterbalancing system control delays.
The results show that the proposed generalized models significantly outperform subject-specific approaches, especially
when the training data is limited and there is a significant number of gesture classes. By building on pre-knowledge and
incorporating a multiplicative subject-embedded structure, our method comparatively achieves more than 13% average
accuracy across partially-observed subjects with minimal data availability. This work highlights the potential of HD-sEMG
and demonstrates the benefits of modeling common patterns across users to reduce the need for large amounts of data
for new users, enhancing practicality.
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. INTRODUCTION
HE increasing use of Internet of Things (IoT) and
Tinvestment in commercial augmented and virtual real-
ity (AR/VR) applications suggest a growing demand for
human—computer interfaces (HCIs) [1], [2]. This demand is
further highlighted by the growing population of people with
disability and amputees in the United States [3] that underlines

the importance of neurorobotic systems (e.g., exoskeletons and
prosthetics) equipped with HCL

Surface electromyography (sEMG) has been commonly
used to register the activation of the peripheral nervous system
and as part of noninvasive neural interfaces [4], [5], [6], [7],
[8], [9], [10], [11], [12]. High-density surface EMG (HD-
sEMG) is a variant of noninvasive SEMG, collected through
arrays of densely located electrodes to provide a more detailed
scan of the propagation of neural drive over space and a
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[13], [14], [15], [16]. The aforementioned modalities have
a wide range of applications, including gesture classification
and tracking in HCI [6], [7], [8], [9], [10], [17], and beyond,
such as the assessment of muscle function [18], the diagnosis
of neuromuscular disorders [5], and the evaluation of muscle
fatigue [4], [19]. Machine learning and deep learning (DL)
have enabled the development of robust decoders for sSEMG
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and HD-sEMG to detect the intended motor commands of
users in various contexts. As described in Section II, recent
advances in DL have obtained remarkably accurate decoding
of gestures from sEMG signals [11], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [301, [31], [32], [33], [34],
[35], [36], [37].

Despite the progress, a remaining key challenge of using
DL for decoding SEMG is that SEMG signals vary significantly
among various subjects [9], [38]. Thus, individual subject char-
acteristics such as age, muscle composition, skinfold thickness,
and gesture styles and habits can all influence the mapping
between the SEMG space and intended motions [6], [7], [8],
[9]. This variability has made it unlikely for a single model to
accurately predict a high number of gestures across multiple
subjects without retraining and fine-tuning [7]. For example,
[20] showed that a convolutional neural network (CNN) used
to decode 15 hand gestures achieved a high validation accuracy
of 91.26% in a subject-specific experiment but a low test
accuracy of 48.40% when tested on unseen subjects.

The poor performance on unseen subjects has necessitated
the development of subject-specific models. As a result, a com-
plex DL model needs to be fully retrained for each new
subject using sizable labeled data from that individual. This
exhaustive training and tedious data collection process raise
questions about such DL techniques in terms of effectiveness
and translation beyond research labs [9]. The aforementioned
challenge has motivated the research on potential generalizable
approaches to decode sEMG. Early attempts at generalization
(see [6], [7], [9], [36], [37], [39], [40], [41] described in
Section II), mostly using multichannel bipolar SEMG, have
demonstrated successes only on tasks with limited number
of gestures (in the range of five to 18 gestures) and lim-
ited gesture complexity (focusing on gestures with highly
distinguishable patterns). In contrast, this work will attempt
generalization for decoding 65 gestures, including complex
and similar motions. We will investigate the power of HD-
SEMG with 128 channels that can capture muscle activity
with high spatiotemporal resolution. This is done with the
goal of detecting underlying patterns of muscle activation
propagated in the space and time that can possibly be used
for generalization.

A. Contributions of This Work

The goal of this study is to push the boundaries of gener-
alizable and agile gesture decoding by attempting to achieve
high classification accuracy for a large number of gestures
across different subjects via minimal HD-sEMG data while
focusing on the transient phase of gesture conduction (to
reduce decoding latency in the resulting HCI). We propose
a dilated bidirectional long short-term memory (d-biLSTM)
model that combines the advantages of temporal dilation and
a bidirectional structure. At root, our model is designed with
the goal of overcoming the decoding complexity and inher-
ent variability in SEMG signals among subjects. Addressing
this problem can significantly impact clinical and practical
applications of SEMG in HCI. For this purpose, our training
approach (i.e., subject-embedded transfer learning (TL) for
gesture prediction using transient HD-sEMG) is composed of
two phases: 1) training the base model to capture the common

neurophysiological patterns of gesture performance from a
limited number of subjects through “common parameters”
and 2) retraining the model on a new subject with limited
available HD-sEMG data (referred to as “partially-observed
subject” in the rest of the article) to find the subject-specific
projection through common and “subject-specific” parameters.
In this work, the mapping of each subject index to the
subject-specific projection is considered an embedding. In the
first phase, the base model is trained with data from few
subjects (referred to as pretraining subjects). Both common
and subject-specific parameters are trained from scratch in
this phase. During the retraining phase on a new subject, the
common parameters learned in the first phase are used as
the initial condition, and an embedding vector for the new
subject is initialized by the average of embedding vectors
corresponding to pretraining subjects. Unlike traditional TL,
the proposed method enables subject-specificity in the pre-
training set by incorporating multiplicative subject embedding.
We demonstrate that the proposed method has several signifi-
cant advantages over pure subject-specific models and previous
traditional TL. The main contribution of this article is the
development of a generalizable, lightweight sequential decoder
that can achieve 73% average accuracy on 65 gestures using
only the transient phase of high-density sSEMG (HD-sEMG)
of partially-observed subjects through subject-embedded TL.
This contribution is described in an itemized format as
follows.

1) Generalization With HD-sEMG Signals and Large Num-
bers of Gestures: As described in Section II, earlier
efforts on generalizing to new subjects have mostly
demonstrated success with limited number of gestures.
In contrast, this article presents generalization perfor-
mance on 65 gestures. This is motivated as we use
HD-sEMG which introduces higher information rate for
finding common patterns. Most of the prior works (with
the exception of [40]) attempted generalization only
using sparsely located bipolar sSEMG rather than HD-
sEMG.

2) Generalization With Transient-Phase HD-sEMG: The
prior work on the topic of generalization uses the plateau
phase of sEMG during gesture conduction when the
signal is mostly stable. This, in general, can introduce
extra latency in the HCI system and inaccuracy during
transition from one gesture to another. In this article, for
the first time, we approach the more challenging prob-
lem of generalization on transient phase of HD-sEMG
with the goal of predicting the upcoming gestures and
reducing the latency in HCI.

3) Generalization With Minimal New Data: The proposed
model reaches an average accuracy of 73% across
partially-observed subjects when having access to a
limited number of repetitions per gesture during the
retraining phase. More specifically, in this study, the
challenging problem of single-repetition decoding has
been addressed, requiring retraining our model for each
subject using one repetition of data. This means that
we can achieve 13% more accuracy compared to the
state-of-the-art subject-specific counterpart while having
access to only 25% of data.
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4) Lightweight Bidirectional LSTM: In addition to the
multiplicative embedding, the proposed model is com-
pact with 79 K trainable parameters (e.g., compared
to 1.7 million parameters of CapsNet [41]). It should
be noted that for cloud computing, the compactness
of the model structure saves substantial computational
resources for rapid upgrades of the models on the cloud
and individual devices. Moreover, model compactness
enhances the practicality in terms of the implementation
of portable hardware, such as HCI controllers.

The results of this article support the hypothesis that
subject-embedded TL can indeed improve the HGR accuracy
on new subjects with limited calibration. We have observed
that the proposed generalized model consistently and signifi-
cantly outperforms both purely subject-specific models as well
as traditional TL-based models for all rates of data availability.
The accuracy improvement gap is particularly large when
sufficient training data (i.e., sufficient repetitions for each
gesture) from the partially-observed subject is not available.

The remainder of this article is organized as follows.
Section II reviews the prior studies considering the prob-
lem of HGR from sEMG signals, including subject-specific
models and attempts toward generalization to new subjects.
In Section III, our proposed subject-embedded TL strategy
and the intuition it relies on are explained. Section IV intro-
duces the dataset and pre-processing scheme used in this
study. Section V provides an overview of the proposed model
architecture. In Section VI, we describe the training and
retraining configurations, the experiments conducted, and the
corresponding results. Section VII is dedicated to compar-
ing our proposed model to other LSTM-based architectures
and analyzing the benefits of the proposed embedding-based
generalization approach. We also evaluate our method on the
steady-state (i.e., plateau) phase of HD-sEMG signals. Finally,
in Section VIII, we summarize our observations and draw
conclusions.

[I. PRIOR WORKS: FROM SUBJECT-SPECIFIC TO
GENERALIZATION

A. Subject-Specific Models

Subject-specific models for sSEMG are trained for each indi-
vidual and require complete retraining before being used on a
new subject. Previous subject-specific studies have primarily
used feature extraction methods and traditional machine learn-
ing techniques. These are just a few examples of the classic
efforts in this field [42]. Linear discriminant analysis (LDA)
[10], [43], Gaussian Naive Bayes [44], clustering-based algo-
rithms [45], decision trees, and hidden Markov models [46]
have been used to decode hand gestures from sEMG signals
with high accuracies. SEMG signals are complex and variable,
with a non-stationary and nonlinear relationship to muscle
contractions [47]. These characteristics make it difficult to
model the relationship between the signal and the gesture
explicitly, especially for a large number of gestures. To address
these issues (complexity, variability, and non-stationary nature
of sEMG signals), DL algorithms have been increasingly used
to decode SEMG signals into gesture classes [21], [22]. In the

following, we provide some examples of the use of DL for
this purpose.

CNNs [23], [24], [25], [26] and CNN-inspired architec-
tures such as temporal convolutional networks (TCNs) [30],
[31], compact CNNs (EMGNet) [28], 3-D CNNs [27], and
dilated CNNs [29] have been studied extensively toward
myoelectric control and pattern recognition in the past few
years. These models have reached high accuracies (e.g., 97%)
depending on the number of gestures during subject-specific
studies. Selection of the convolution kernels, number of model
layers, and dilation order are examples of model parame-
ters in CNNs. Long short-term memory (LSTM) networks
have demonstrated satisfactory performances as well. Such
architectures have been significantly improved by introducing
temporal dilation [11], [32], reaching an accuracy of 83%
for decoding 65 gestures from HD-sEMG signals. Number of
layers, dimension of hidden units, and dilation order are among
the model parameters for LSTM-based structures. Hybrid
architectures, combining CNNs and LSTMs, are shown to be
accurate as well [33]. DL algorithms require a large amount
of labeled data for training in order to achieve satisfactory
accuracy, and obtaining such data can be impractical in many
cases [6]. Transformer-based and few shot learning (FSL)-
based frameworks have been proposed to address the elongated
training time and the limited data availability problems of DL
models, respectively [34], [35], [36], [37].

B. Efforts at Generalization and Their Limitations

Several works have attempted to develop generalized mod-
els, but remain limited in various aspects. Matsubara and
Morimoto [39] propose a bilinear model that can detect five
gestures with an accuracy of 73% by an adaptation process.
In addition, in [7], an unsupervised domain adaptation (UDA)
is proposed to classify six gestures with an average accuracy
of 90.41%. TL can be used to improve model performance in
a target domain through knowledge from the source domain.
It is especially useful in the HGR context due to the subject
variability of SEMG signals mentioned earlier. Yu et al. [40]
propose a TL strategy with majority voting that reaches an
average accuracy of 95.97% for 12 basic finger movements
in CapgMyo-DBc (a HD-sEMG database [48]). These three
studies [7], [39], [40] only consider a few number of ges-
tures. The effect of TL on improving the accuracy of a
convolutional network architecture to detect 18 gestures for
new subjects is studied in [6]. They report an accuracy of
68.98% when given four repetitions of new data. Besides
the limited number of gestures, more repetitions are required
to calibrate this model for new subjects, in comparison to
our proposed model. The authors of [41] propose the dilated
efficient capsular neural network (CapsNet) that can predict
17 gestures from the transient phase of SEMG signals with an
accuracy of 78.3%. The disadvantages of this model include
the large number of trainable parameters and low number of
gestures. Shi et al. [9] report both subject-specific and gener-
alized (inter-subject) accuracy for static and dynamic gestures.
Shi et al. [9] have introduced a CNN model named the
multitask dual-stream supervised domain adaptation network
(MDSDA) that exhibits long-term robustness and adaptability
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to multiple subjects, reporting an inter-subject accuracy of
97.2% in detecting ten gestures. The low number of gestures
and high complexity of the model are limitations of the
study in [9]. Rahimian et al. [36], [37] use FSL to improve
accuracy on new subjects. They report accuracies in the range
of 76.39%—-81.29% based on different architectures they use
for five-way five-shot experiments. Few number of gestures
(five-way) and requirement for more repetitions (five-shot) of
new data are the limitations of these studies. In a very recent
study [49], domain generalization and UDA were integrated
into a single framework that detects seven gestures from
HD-sEMG signals. Similarly, the low number of gestures is
the limitation of this study besides the low-complexity of
the targeted gestures. Table I summarizes these studies and
highlights the existing research gaps and limitations. Based on
the comprehensive literature review conducted in this article,
it can be observed that the major research gaps include the
lack of studies focusing on generalization over subjects for a
large number of complicated gestures and securing reliability
of prediction when enough calibration data is not available
(all using compact DL techniques). These issues have been
addressed in this study.

I1l. SUBJECT-EMBEDDED TRANSFER LEARNING

We briefly describe the general principle of the proposed
subject-embedded TL and how it contrasts to other methods.
Consider a general problem of predicting some target y from
an input x. In the sSEMG problem, y will be the gesture index
and x will be an array representing the multichannel data
collected over some time interval. Let u denote a subject index.
One simple predictor would be of the form

y=/f(x0) (1

where y is the prediction of the target y, and f(x,0) is a
function with parameters 6. For example, f(x,0) could be
a neural network with input x and 6 would be weights and
biases. By a common model, we mean that we learn a single
common parameter 6 for all subjects u. The obvious drawback
with a common model is that it cannot capture subject-specific
characteristics of the mapping. The other extreme would be
a subject-specific model where one set of parameters 6
is learned for each subject u. As mentioned in Section I,
the challenge of subject-specific models is that they require
significant training data for each subject.

One approach to reduce the data required for
subject-specific models is to use what we will call
standard TL. In this method, one typically first selects
one or more pretraining subjects and learns a common
base model 3 = f(x,0°) for these pretraining subjects
where 0° represents the base parameters. Then, given a new
subject u, the parameters 0 are finely tuned to obtain a
new subject-specific parameter 6(u). The simplest method
is to divide the parameters into components 8 = (61, 6>).
For example, 0; are the weight and biases for the initial
layers, and 6, are the parameters for the final [generally fully
connected (FC)] layers. In the pretraining phase, we learn
base parameters 90 = (90, 93). For the new subject, we freeze
9? and only learn a subject-specific component, 6, (1), thereby

reducing the parameters to be learned. The problem in this
method, is that the base model is not subject-specific, and
therefore, may not be able to provide a good fit over a large
pretraining set.

For the proposed subject-embedded TL, we similarly divide
the parameters into two components, 6 = (61, 62(u)). In the
pretraining phase, we learn a parameter 60 = (00, 6,(u)),
where the first component, 9?, is common to all pretraining
subjects. However, unlike standard TL, the second parameter,
0> (u), is dependent on the subject index u within the pretrain-
ing set. The mapping of the subject index u to the parameters
0> (u) can thus be seen as an embedding of the subject in some
parameter space. This embedding enables the base model to
have a subject-specific component.

For a new subject, u’, not in the pretraining set, we run
traditional gradient-descent learning on the data from a new
subject where: 1) we initialize the first component 6; =
9?, the common parameters in the base model and 2) we
initialize the second component, 6>(u’) to the average of
6>(u) for u in the pretraining set. The initialization of 6; =
6? implicitly captures the common aspects of the model from
the pretraining set, while the search over 6(u’) helps capture
the subject-specific characteristics of the new subject.

IV. DATABASE

A. Data Acquisition

Our work aims to develop a robust, multifunctional HCI
control system capable of supporting a diverse range of control
tasks through HD-sEMG data. To this end, the study uses a
publicly available open-source HD-sEMG database containing
65 isometric hand gestures [47]. HD-sEMG data provide rich
spatiotemporal information about underlying muscle activity
and are particularly useful in recognizing a large number of
gestures. The database includes 16 gestures with one degree of
freedom (DoF), 41 gestures with two DoFs, and eight gestures
with three DoFs, encompassing a range of finger and wrist
movements such as bending, stretching, rotating, grasping,
pointing, and pinching. The three DoF gestures are essential
to maintain an ordinary daily life, whereas the one and two
DoF gestures are the basic components for more complicated
gestures. Fig. 1 shows two example gestures with their corre-
sponding muscle-activity heatmaps. The signals were collected
by a Quattrocento (OT Bioelettronica, Turin, Italy) biomedical
amplifier through two 8 x 8 electrode grids (128 sensors in
total) positioned on the volar and dorsal aspects of the forearm
at a sampling rate of 2048 Hz. Please note that Fig. 2 is
taken from our experimental setup for which we re-created the
electrode placement similar to that of the dataset [47] used in
this article. There might be some misplacement. The purpose
of Fig. 2 is only for visualization. This database was collected
from 20 non-disabled subjects (14 men and six women with
average age of 35) who were instructed to perform each
gesture for five repetitions, each lasting 5 s, with a 5-s inter-
repetition rest period. The plateau phase of the repetitions
is often used in gesture recognition due to the stability of
muscle contraction during gesture maintenance, introducing
control delay in practical applications. However, this study
focuses only on transient-phase signals, which include the
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TABLE |
COMPARISON BETWEEN THE PROPOSED MODEL WITH THE STATE-OF-THE-ART EFFORTS IN SEMG-BASED SUBJECT GENERALIZATION FOR
HGR
Window Signal Accuracy o .
Paper # Sub. # Ges. Length Type Method % Limiations
[39] 11 (LOO) 5 128 ms N/A bilinear model 73 low # gestures, feature
extraction
low # gestures, need for
[7] 9 (LOO) 6 256 ms plateau UDA 90.41 reliable data pairs
[40] 10 (LOO) 12 timestamp N/A TL :Jgﬁ{g"“‘y 95.97 low # gestures
[6] 10 (LOO) 18 260 ms N/A CWT+TL 68.98 low # gestures, high #
repetitions
[41] 40 17 300 ms transient TL 783 low # gestures, high model
complexity
9] 12 (LOO) 10 200 ms N/A domain adaptation 9722 low # gestures, high model
complexity
[36], * . 76.39- low # gestures, high #
137] 8 5 200 ms N/A Few shot learning 8129 repetitions
domain low # gestures and complexit
[49] 8 (LOO) 7 256 ms N/A generalization + 95.71 & plexity
UDA of gestures, feature extraction
Our 15% 65 200 ms transient subject-embedded 73.22 Requirement fpr pre-training
work TL subjects

Note: #: Number; ms: Millisecond; Sub.: Subjects; Ges: Gestures; LOO: Leave-one-out strategy for selecting training and testing subjects; N/A: unspecified; UDA: Unsupervised
domain adaptation; TL: Transfer Learning; timestamp: inputs are vectors including all channels, not windows of time series; CWT: continuous wavelet transform; *: we refer to

testing subjects only.

Dorsal Aspect Volar Aspect

| —‘
(a)

Dorsal Aspect Volar Aspect

B
(b)

Fig. 1. Two example gestures with corresponding heatmaps that are
the root mean square of a 200 ms window. (a) Little and ring fingers
bend. (b) All fingers extension (without thumb).

most dynamic muscle activity, to design an agile HCI control
system that can begin recognizing gestures as soon as a
user initiates one. HGR on transient data transforms gesture
detection into gesture prediction, minimizing control delay.

B. Data Pre-Processing

The raw HD-sEMG signals from the two 8 x 8 electrode
grids are flattened and concatenated to form 128-channel
signals suitable to our proposed sequential model. The total
data can then be represented as a tensor, x[n, i, t], where n
is the sample index, i is the channel, and ¢ is the time index
within the sample. Each sample is the data from one repetition,
so we will use the terms repetition and sample interchangeably.
Magnitudes of muscle signals such as SEMG vary according to

Fig. 2. Placement of two 8 x 8 electrode grids, with one on the dorsal
aspect (outer forearm) and the other on the volar (inner forearm) aspect
of the forearm [50].

muscle type, length, and velocity [51]. sSEMG can benefit from
normalization in the sense that the signals collected from each
electrode can contribute equally during model training [52].
We normalize the raw signals using z-score transformation
via the means and standard deviations from only the training
data. The standardization method converts the raw signals to a
common scale such that the standardized signals have a zero
mean and unit standard deviation. We then obtain scaled data

x[n, i, t]— wli]

v o [i] )
where
n [l] = ZnENtr’l]\f [l’l, L, t] (3a)
T 2
MR TEVITL e
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Following the previous work [11], we define the duration of
the transient phase as the first 0.5 s of each repetition, accord-
ing to the average force signals of each gesture. Windowing
is a commonly used data augmentation technique for model
performance and generalization enhancement in SEMG-based
gesture detection. A repetition of the normalized signals is
segmented into multiple overlapping windows before being fed
into the proposed model. Implementing overlapping windows
is a standard convention for SEMG-based HGR. It should be
noted that the stride should be larger than the idle time needed
by the processor for signal conditioning (e.g., normalization)
and model inference [53]. Regarding the method implemented
in this article for testing the accuracy of the system, it should
be noted that overlapping windows do not cause any data
leakage since the testing data and training data are separated by
different gesture repetitions. We use a window size of 200 ms
and a stride of 10 ms to meet the requirement of real-time
control based on the standards followed by the literature [54],
[55], [56], [57]. Based on our measurements, the average over
15 subjects for combined signal conditioning and inference
time is 1.6 ms on CPU (NYU Greene HPC; 24-core Intel
Cascade Lake Platinum 8268 chips) which allows for short
stride length of 10 ms used in this article. This means that our
proposed model has the potential to be employed for real-time
inference, assuming that it has been retrained on a few samples
for a new subject. The data pre-processing can be visualized
as the upper box in Fig. 3.

In the pretraining phase, the train-test division is determined
by assigning repetitions 1, 3, and 5 to the training set, and the
remaining repetitions (2 and 4) to the testing set. To evaluate
the capability of the generalized models on partially-observed
subjects given different data availability in retraining, we cal-
ibrate the generalized models on any selection of one (33%),
two (67%), and all three (100%) of the training repetitions.
The train-test split for subject-specific model training follows
the setups in the retraining phase.

Remark 1: Please note that this article proposes a gener-
alized hand gesture recognition (HGR) system that requires
minimum data from new subjects by acknowledging the
between-subject variabilities and in combination with chal-
lenges imposed due to the loosely controlled data acquisition
environment. It should be mentioned that variations between
data from different subjects may be due to differences
in neurophysiological characteristics, experimental variations,
and environmental variations, which are all common issues
challenging the re-utilization of inference models on new
subjects. This is the focus of the article where we propose
a deep-learning model and training approach to target these
issues. However, specifically targeting the problem of elec-
trode misplacement and displacement within one session or
between different sessions is out of the scope of the current
study. Readers may refer to our recent works [50], [58]
for more information regarding electrode misplacement and
displacement challenges.

V. MODEL ARCHITECTURE

We propose the d-biLSTM model that combines the advan-
tages of temporal dilation and a bidirectional structure. The

model consists of three components: a three-layer d-biLSTM,
a classifier with FC layers and dropout, and an embedding
layer that captures subject dependencies in the generalized
model. We will now provide a brief overview of these compo-
nents. Table II summarizes all the model parameters and their
corresponding values.

1) biLSTM: The exploding and vanishing gradient issue
in recurrent neural networks (RNNs) has been well-studied
in the literature and is often addressed through the use of
LSTM cells [59], [60]. LSTM introduces additional gating
mechanisms that enable the model to selectively retain or
forget information, allowing it to better capture long-range
dependencies in the input data. Inspired by the work in [32],
we introduce temporal dilation in the LSTM architecture to
further improve its ability to capture long-term dependencies
in the input data. Temporal dilation allows for an expansion
of the temporal receptive field (in the time series) without
increasing the number of parameters and indeed, reducing the
computational cost, making it an effective method for captur-
ing longer-range dependencies and complex input sequences.
In addition, in order to fully utilize all of the past and
future information available within a specific signal window,
we utilize a bidirectional LSTM (biLSTM) structure instead
of a standard LSTM. A biLSTM processes the input sequence
in both the forward and backward directions, allowing it to
integrate contextual information from both past and future time
steps within the processing window. Our experiments demon-
strate that the biLSTM can achieve comparable accuracy to the
LSTM while requiring fewer trainable parameters. The model
consists of three d-biLSTM layers, each containing 32 hidden
units and dilated with a factor of three, such that the next
d-biLSTM layer has (1/8) connected LSTM cells compared
to the current layer (details of homogeneous temporal dilation
can be referred to [32]). The combination of temporal dilation
and bidirectional processing enables the d-biLSTM model to
effectively learn and classify the complex sequential SEMG
data. Each d-biLSTM layer has a set of forward and backward
outputs which are added before being passed as the input to the
next layer. The final forward and backward hidden states are
concatenated (yielding a 64-dimensional vector) before being
fed into the classifier module.

2) Embedding: The weights of an embedding layer create
a matrix that serves as an encoder of subject-specific infor-
mation, resembling a lookup mechanism. The dimension of
the embedding matrix can be adjusted based on the number
of subjects and the specific model architecture in which it
will be used. When given a subject index, a row from the
embedding matrix corresponding to that specific subject is
extracted and used in the model. In this study, we use a
multiplicative embedding structure, where the extracted row
is multiplied with the output of the first FC layer in the
classifier module. The embedding rows have a dimension
of 32 to match the structure of the classifier. This allows
the model to effectively capture subject dependencies in the
input data and improve performance on the classification
task.

3) Classifier: As part of the classifier, first, an FC layer with
the hyperbolic tangent activation function is used to decrease
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Fig. 3. Figure illustrates the proposed pipeline for gesture prediction using HD-sEMG data. The blue area represents the data pre-processing

steps, including sensor flattening and windowing. The purple area shows the proposed d-biLSTM model, which takes each window of normalized
HD-sEMG data as input and predicts the 65 gestures according to the maximum predicted probability output from the softmax function. The
generalized model (shown in the figure) includes a subject embedding layer (shown in magenta), which captures subject-specific dependencies in
the data, while the subject-specific counterpart excludes this layer. This allows the model to effectively learn and classify sequential data for a wide

range of subjects.

the output dimension of the d-biLSTM module from 64 to 32.
It is followed by a dropout layer with a rate of 0.2 to avoid
overfitting the training data. The resulting vector is multiplied
by the embedded vector extracted from the embedding module,
given the subject index. A final FC layer with the softmax
activation function is used to assign probabilities to various
gesture classes. The predicted label corresponds to the gesture
with the highest output probability.

In this study, two-phase generalization is conducted on the
model with the embedding layer (named generalized model),
whereas for the conventional subject-specific model that is
only trained in one phase, no embedding layer is considered.
Fig. 3 demonstrates the data pre-processing and model training

pipelines. The lower box (i.e., model training) shows the
proposed model structure.

VI. EXPERIMENTS AND RESULTS
In this section, experimental results are reported regard-
ing various phases of training for the proposed generalized
models in comparison with the performance of the corre-
sponding subject-specific models. Also, additional results will
be reported regarding the effect of data reduction and task
complexity (i.e., number of gestures) on the performance.
It will be shown that
1) The proposed generalized model outperforms its
subject-specific counterpart more significantly when pre-
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TABLE Il
PROPOSED MODEL PARAMETERS. PLEASE NOTE THAT #, FC, AND
TANH REFER TO NUMBER, FC LAYER, AND HYPERBOLIC TANGENT,
RESPECTIVELY

Component parameter value
biLSTM layers 3
biLSTM hidden units 32
biLSTM dilation order 3

Embedding dimension 32

Embedding type multiplicative
First FC activation tanh
First FC output shape 32
Dropout rate 0.2

Second FC activation Softmax

Second FC output shape # gestures

TABLE IlI
COMPARISON OF THE NUMBER OF TRAINABLE PARAMETERS AND
TRAINING EPOCHS WHEN PREDICTING 65 GESTURES

Subj. training
78,721
200

Gen. pre-training  Gen. retraining
78,881 78,753
200 100

Parameters

Epochs

dicting a higher number of gestures with fewer available
data, benefiting from the proposed TL which includes
the multiplicative embedding layer through weight ini-
tialization in retraining.

2) The pretrained weights represent the HGR
pre-knowledge captured from known subjects, resulting
in faster convergence for a new subject (100 epochs
compared to 200) and reducing the chances of ending
up at local minima.

In all experiments, Adam optimizer with learning rate le
— 3,81 =09, B = 0999, and € = le — 08 is used. The
proposed generalized model is pretrained for 200 epochs with
patience 40 on a number of subjects (referred to as the pre-
training subjects). It is later retrained for only 100 epochs on
a new subject (i.e., partially-observed subject). Moreover, the
embedding vector of the partially-observed subject is initial-
ized as the average of vector values for the pretraining subjects
before the retraining phase. Categorical cross-entropy is used
as the loss function and validation categorical accuracy is
monitored. The number of training parameters is about 79 000
for the generalized and subject-specific models, depending on
the number of gestures. Table III summarizes the number of
parameters and training epochs for two phases of the general-
ized model and one phase of subject-specific model training
when detecting 65 gestures. The subject-specific model in each
gesture detection task is trained from scratch for 200 epochs.

A. Pretraining

As an initial step, the proposed generalized model needs
to be pretrained on a number of subjects. At this phase,
we have access to sufficient recordings of gestures from
multiple subjects. To determine the optimal number of subjects
to use in the pretraining phase of the generalized model,
we conduct a series of experiments in which the model is
pretrained on one to seven subjects for the task of detecting
65 gestures. We select a diverse group of subjects in terms of

subject-specific accuracy to mimic the real-world scenario in
which a variety of subjects might be chosen for pretraining.
Table IV shows the generalized average accuracy of detecting
65 gestures evaluated on the remaining 13 subjects on three
levels of data availability (33%, 67%, and 100% which corre-
spond to one, two, and three retraining repetitions per gesture,
respectively). It can be seen that increasing the number of pre-
training subjects improves the generalized accuracy, and thus,
the generalized model consistently outperforms the subject-
specific model, especially when insufficient data is available
for a new subject. Fig. 4 shows the accuracy improvement
of the proposed generalized model when compared with
the subject-specific model with respect to the number of
subjects used in the pretraining phase. It can be observed
that the accuracy improvement from adding the sixth and
seventh subjects is less significant. Given the limited number
of subjects available in the dataset (20 subjects), we use a
maximum of five subjects to pretrain the generalized model in
all other experiments in order to have sufficient test subjects
for statistical analysis. The pretraining step is performed in an
offline manner and takes about 6 h on average over 30225
sample windows. All experiments are conducted on CPU
(NYU Greene HPC; 24-core Intel Cascade Lake Platinum
8268 chips).

B. Data Reduction Experiments

As mentioned earlier, a main challenge in developing PR
models is the requirement of a large dataset to train complex
models for each new subject. In this section, we analyze the
effect of available training data on the final accuracy. This
reduction is based on the available training repetitions and
will be analyzed in the following setting.

1) The generalized model is adequately pretrained on five
random subjects using all three repetitions {1,3,5}.

2) After proper initialization of the embedding vector cor-
responding to a new subject, the generalized model
is retrained on a subset of {1,3,5} repetitions of that
subject (i.e., the partially-observed subject). The subsets
roughly measure to 100% (all three repetitions), 67%
(two repetitions), and 33% (one repetition) of the data.

3) The subject-specific model is trained from scratch on
the same subset as the retraining of the generalized
model.

4) Final accuracies of both models are evaluated on repe-
titions {2,4} of that subject.

The results of these experiments for the task of predicting
65 gestures are demonstrated in the right-most column of
Fig. 5. Noting that retraining the proposed generalized model
converges faster than training a subject-specific model from
scratch (Table IIT), we also observe that for a high number of
gestures, without having access to sufficient samples from the
new subject, the proposed model more significantly outper-
forms the subject-specific counterpart. In fact, given only one
repetition of each of the 65 gestures for a new subject, our
proposed model achieves a prediction accuracy that is about
13% higher than the subject-specific accuracy. To further
emphasize the superiority of our model to the subject-specific
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TABLE IV
COMPARISON OF AVERAGE ACCURACY FOR PARTIALLY-OBSERVED SUBJECTS (EVALUATED ON 13 SUBJECTS) FOR PREDICTING 65 GESTURES

Data access Number of pre-training subjects for generalized model Subject
(%) 1 2 3 4 5 6 7 specific
33 4328 4346 47.00 4958 5295 54.67 5547 40.20
67 6149 60.86 62.67 6499 67.03 68.13 68.83 58.53
100 71.16  70.87 71.04 7326 73.85 7453 7596 70.08
20 33% Data

m67% Data
m100% Data

[N
()]

(¢]

Performance Diff. (%)
=

o

.
1 2 3

Notes: Diff. - Difference; # - Number

# Pre-trained Subjects

Fig. 4. Performance difference when given a varying number of pretraining subjects. The performance difference (y-axis) is the average accuracy
difference between a generalized model and its subject-specific counterpart across partially-observed subjects based on the same percentage of
retraining data. The lighter the color shade, the less the retraining data. The dotted lines indicate the moving averages as the trend of the ascending

performance gap as more known subjects are included in pretraining.

TABLE V
COMPARISON OF RUN-TIME FOR TRAINING THE SUBJECT-SPECIFIC
MODEL (SUBJ.) FROM SCRATCH AND RETRAINING OUR PROPOSED
MODEL (GEN.) FOR THE TASK OF DETECTING 65 GESTURES.
RUN-TIME IS MEASURED IN SECONDS (S). ALL EXPERIMENTS HAVE
BEEN CONDUCTED ON CPU (NYU GREENE HPC; 24-CORE INTEL
CASCADE LAKE PLATINUM 8268 CHIPS)

Data access Run-time (s)

(%) subj. gen.

33 1046.54  1038.66
67 1714.73  1684.83
100 2756.25  2139.56

counterpart, we compare the average run-time of retraining the
generalized model with the average run-time of training of the
subject-specific model for the task of detecting 65 gestures.
All experiments are conducted on CPU (NYU Greene HPC;
24-core Intel Cascade Lake Platinum 8268 chips) and we
provide the results for various data availability scenarios.
Table V shows this comparison.

C. Comparing to Traditional TL

In order to emphasize the advantage of using a subject-
embedded structure, we also implement a traditional TL
scheme for detecting 65 gestures by pretraining the model
excluding the embedding layer on five random subjects (sub-
jects 1, 6, 10, 11, and 14), and then after freezing all layers
except the FC layers of the classifier, we retrain the model
on various amounts of data from a new subject. The training
configurations match those of the generalized model for a fair
comparison. The results are reflected in the last column of
Table VI. The results show that even by 100% retraining on
a new subject, the traditional TL model has a lower accuracy

I Subj. I Gen.
33% data
100 A ns ok
801 kokokok .
60 A
40 ¢
20+ . . .
67% data
ns
1001 ne — _—
807 %
60 A
.
40+ ¢
100% data
ns ns
1004 ns ook
807 ﬁ
60 A . . 3
loées ZSGes 4SGes 6SGes

Fig. 5. Comparison of models during data reduction experiments
when the generalized model is pretrained on five random subjects. The
compared distribution pairs are dependent, as they are the accuracies
of the same subjects derived from the generalized and subject-specific
models. Also, the accuracy differences are not normally distributed.
Thus, the Wilcoxon signed-rank test with o = 0.05 is employed as the
statistical hypothesis test. X- and Y-axes denote the number of gestures
and accuracy, respectively. Each box plot includes 15 data points that
represent 15 partially-observed subjects.

(around 9% less) compared to the generalized model that is
only retrained with 33% data.

D. Task Complexity Experiments

To investigate the effect of task complexity on model perfor-
mance, we conduct experiments on the proposed generalized
model on various numbers of gestures, ranging from 10 to 65.
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TABLE VI
COMPARISON OF AVERAGE ACCURACY FOR PARTIALLY-OBSERVED SUBJECTS (EVALUATED ON 15 SUBJECTS) EVALUATED FOR TASKS OF
DETECTING 10, 25, 45, AND 65 GESTURES. PRETRAINED ON FIVE RANDOM SUBJECTS. SUBJ., GEN., AND TL REFER TO SUBJECT-SPECIFIC,
GENERALIZED, AND TRADITIONAL TL MODELS, RESPECTIVELY. THE COMPARISON WITH TL MODELS IS CONDUCTED ONLY WHEN
CLASSIFYING 65 GESTURES

Data access 10 Gestures

25 Gestures

45 Gestures 65 Gestures

(%) subj. gen. subj.

gen.

subj. gen. subj. gen. TL

33
67
100

69.20
82.02
85.88

72.10
82.94
87.61

54.07
70.30
77.56

59.94
72.11
78.42

42.72
60.94
70.29

53.01
66.87
73.36

38.56
56.58
68.04

51.05
64.70
73.22

32.01
38.34
41.87
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Fig. 6. Comparative results on 65 gestures when given different data
availability. The error bars represent one standard deviation away from
the mean values. (a) 33% Data. (b) 67% Data. (c) 100% Data.

For each experiment, five random subjects (subjects 1, 6, 10,
11, and 14) are selected for the pretraining phase and the
remaining subjects are used for testing. Table VI shows the
final test accuracy for different amounts of retraining data.
It is important to note that the testing subjects for Table VI
are different from those in Table IV, so the final average
accuracy for 65 gestures is not directly comparable. The
results in Table VI and Fig. 5 show that the performance gap
between the generalized and subject-specific models increases
as the task complexity increases. The largest gap was observed
when the models are asked to predict 65 gestures using only
33% of data from a partially-observed subject. This suggests
that the generalized model becomes more effective as the
number of gestures to be detected increases. In this case, the
subject-specific model would require more data for accurate
classification. We would like to highlight the significance
of the 73.2% performance over 65 gestures noting that the
“chance threshold” (i.e., random guess baseline) for a problem
of this scale is around 1.5%. This performance is also remark-
able when comparing to various aspects of existing literature
(e.g., number of subjects, gestures, window length, and signal
phase outlined in Table I). In order to see which gestures are
the most difficult to predict correctly, we analyze the confusion
matrices for various subjects. Our observations show that
gestures including multi-DoF movements are harder to detect.

Specifically, multi-DoF gestures that include rotation of the
wrist, moving the ring or little finger are more frequently con-
fused with other gestures. This could be caused by the fact that
many individuals cannot move specific fingers (e.g., the ring
finger) in an isolated manner from other fingers, resulting in
involuntary movement of other digits that can cause the model
to classify the gestures incorrectly. A more detailed explana-
tion of the factors affecting model performance is as follows.

1) The number of gestures: The probability threshold of
the correct prediction of a random guess from a model
decreases as the number of classified gestures increases.
Additionally, the larger number of classified gestures
usually include multi-DoF gestures (especially complex
wrist gestures) that have higher requirements for gesture
distinguishment on the proposed model. Compared to
the most recent generalized HGR works in the literature,
our proposed model classifies 3.6x to 13 x more number
of gestures.

The number of subjects: For “Generalized” HGR, the
larger the number of involved subjects in the studies,
the higher the generalizability and practicality of the
proposed systems. However, the recognition accuracy of
an unseen/partially unseen subject can be different from
another due to factors like noise, even under the same
experimental setup for data collection. The accuracy
variance can increase as the number of involved subjects
increases.

Window length: There is a trade-off between window
length and model performance; generally, the longer the
window length, the more information has been included
in a single input, and the higher the recognition accuracy,
but the slower and less intuitive/practical the control.
In this article, we use a window size of 200 ms that
meets the requirement of real-time control.

The phase of input sEMG signals: To achieve
high performance in SEMG-based HGR, most of the
existing works in the literature (either conventional
subject-specific or generalized HGR) used steady-state-
phase (or plateau-phase) sSEMG signals as model inputs,
which will introduce control delay. Also, separating the
transition phase is not always practical. This article
includes the transient-phase SEMG, which accounts for
only 10% of the entire repetition of gesture perfor-
mance, turning the gesture recognition task into gesture
prediction and counterbalancing/reducing the control
delay.

2)

3)

4)
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TABLE VII
PERFORMANCE COMPARISON BETWEEN GENERALIZED AND
SUBJECT-SPECIFIC MODELS

Average Accuracy Average Accuracy

Model (Generalized) (Subject-specific)
33% Data
d-biLSTM (Ours) 51.05% 38.56%
Regular biLSTM 41.22% 33.79%
d-LSTM 51.14% 38.49%
Regular LSTM 38.52% 30.94%
67% Data
d-biLSTM (Ours) 64.70% 56.58%
Regular biLSTM 56.62% 52.99%
d-LSTM 65.62% 57.29%
Regular LSTM 53.52% 48.21%
100% Data
d-biLSTM 73.22% 68.04%
Regular biLSTM 65.00% 62.01%
d-LSTM 73.39% 68.89%
Regular LSTM 62.32% 59.47%
89.33
90 85.41
3\; 80 74.65 - 88.45
§ 70
E) 60 69.17
g 50
§ 40 .
en.
30 —o—Subj.
20
33% 67% 100%

Fig. 7. Average results of d-biLSTM on plateau-phase signals given
any data availability.

VII. COMPARATIVE STUDY

This work presents a novel method for transferring knowl-
edge learned from known subjects to new ones using
subject-embedded TL to the best of our knowledge. To demon-
strate the superiority of our generalized d-biLSTM model over
other state-of-the-art sequential DL models, we apply the same
subject-embedded TL to a regular LSTM, a dilated LSTM (d-
LSTM), and a regular biLSTM. These models are pretrained
on the same five random subjects (subjects 1, 6, 10, 11, and
14) used by our proposed d-biLSTM. The comparative study
is based on 33%, 67%, and 100% of retraining repetitions for
all 65 gestures for the remaining 15 subjects. The results are
shown in Fig. 6 and Table VII. It is worth noting that although
the d-LSTM model performs similar to our proposed model,
it requires an additional 40960 trainable parameters (51.9%
more complex than the proposed model) in both generalized
and subject-specific models. In addition, we evaluate the
subject-embedded TL technique of our proposed d-biLSTM
on signals from the plateau phase (determined as 3 s after the
transient phase). The results (shown in Fig. 7) demonstrate
that our proposed method can be applied to signals from any
phase of a repetition. Noting the higher accuracy when using
plateau phase signals compared to transient phase, we would

like to emphasize the significance of using transient phase
signals for mitigating control delay and turning the gesture
recognition task into gesture prediction.

The results demonstrate the impact and potential of our pro-
posed subject-embedded TL approach for generalized muscle
activity classification. Analyzing the results of our experiments
reveals three main observations.

Observation 1: Dilated models, including the proposed
d-biLSTM model, significantly outperform their non-dilated
counterparts in terms of classification accuracy across all
levels of training data availability. Moreover, the proposed
generalized d-biLSTM model exhibits comparable accuracy to
the generalized d-LSTM model while requiring fewer trainable
parameters, making it a more efficient choice for classification.

Observation 2: The generalized models consistently outper-
form the subject-specific models in both transient and plateau
phase experiments for all data availability conditions. This
demonstrates the effectiveness of our proposed approach in
transferring pre-learned knowledge from known subjects to
classify muscle activity from new subjects.

Observation 3: The performance gap between the gener-
alized d-biLSTM model and its subject-specific counterpart
significantly increases with every 33% reduction in training
data availability. This demonstrates the robustness and gener-
alizability of the proposed approach, even in situations where
limited data is available for training.

Overall, these findings suggest that the proposed
subject-embedded TL approach using the d-biLSTM
model is promising for accurate and efficient muscle
activity classification in real-world scenarios involving
partially-observed subjects with limited data availability.

VIII. CONCLUSION

In this study, we introduce a subject-embedded TL
approach to mitigate the challenge of insufficient training
data in DL-based HGR. Our proposed d-biLSTM model
incorporates a multiplicative embedding layer that encodes
subject-specific information, enabling the model to capture
subject-specific neurophysiological features while learning
HGR pre-knowledge from multiple subjects during pretrain-
ing. The resulting generalized models, retrained based on
this pre-knowledge, demonstrate superior performance com-
pared to subject-specific counterparts trained from scratch.
This performance advantage is particularly evident when data
availability is limited, or the number of gestures is large.
Additionally, our approach uses transient-phase HD-sEMG
signals, corresponding to muscle contraction prior to the
maintenance of gestures, to minimize control delay in practical
applications. It should also be noted that to the best of our
knowledge, our proposed generalized model is the first that
includes an embedding layer in a d-biLSTM structure for
HGR. For future work, we aim to scale up the evaluation of
our proposed HGR by testing our proposed model on multiple
open-source databases combined with a separate dataset we
will collect. This can help test the model on a larger number
of subjects. Collecting and releasing data for such a combined
evaluation is out of the scope of this current paper but an
important future step of this work.
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