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Abstract— Surface electromyography (sEMG) and high-
density sEMG (HD-sEMG) biosignals have been extensively
investigated for myoelectric control of prosthetic devices,
neurorobotics, and more recently human-computer inter-
faces because of their capability for hand gesture recog-
nition/prediction in a wearable and non-invasive manner.
High intraday (same-day) performance has been reported.
However, the interday performance (separating training and
testing days) is substantially degraded due to the poor gen-
eralizability of conventional approaches over time, hinder-
ing the application of such techniques in real-life practices.
There are limited recent studies on the feasibility of multi-
day hand gesture recognition. The existing studies face a
major challenge: the need for long sEMG epochs makes
the corresponding neural interfaces impractical due to the
induced delay in myoelectric control. This paper proposes
a compact ViT-based network for multi-day dynamic hand
gesture prediction. We tackle the main challenge as the
proposed model only relies on very short HD-sEMG sig-
nal windows (i.e., 50 ms, accounting for only one-sixth of
the convention for real-time myoelectric implementation),
boosting agility and responsiveness. Our proposed model
can predict 11 dynamic gestures for 20 subjects with an
average accuracy of over 71% on the testing day, 3-25 days
after training. Moreover, when calibrated on just a small
portion of data from the testing day, the proposed model
can achieve over 92% accuracy by retraining less than 10%
of the parameters for computational efficiency.

Index Terms— Human-robot Interactions, Surface Elec-
tromyography (sEMG), Vision Transformer, Hand Gesture
Recognition (HGR), Cross-day HGR, Minimal Calibration

I. INTRODUCTION

The initiation of voluntary human motion starts from the

central nervous system, which sends synaptic inputs to the
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motor neurons in the spinal cord [1]. These inputs are then

transduced into forces and transmitted through action po-

tentials by motor units that comprise muscle fibers. Surface

electromyography (sEMG) is the cumulative sum of motor

unit action potentials [2]. It is measured and recorded from

the skin surface during muscle activities. The early research

of sEMG has the main interest in clinical diagnosis and

biomedical applications, such as rehabilitation and assistive

technologies (e.g., prosthetic control) and ergonomics [3], [4].

Nowadays, sEMG, which is the control signal in human-

computer interaction, has a wide range of applications, such as

in augmented reality and virtual reality (for hands-free control

to counterbalance network delay) [5] and sports science (for

performance measurement and optimization) [6]. The increas-

ing research interest in sEMG is due to its non-invasiveness,

wearability, and potential for real-time control. Over the past

two decades, high-density sEMG (HD-sEMG) has enhanced

the performance of these applications by capturing signals with

high spatial resolution information on muscle activities.

sEMG-based hand gesture recognition (HGR) is achieved

through pattern recognition (PR), which mainly includes two

progressive steps: feature extraction and classification. Ma-

chine learning (ML) and deep learning (DL) are the two basic

processing methods in sEMG PR [7]. Classical ML relies

on researchers’ expertise and feature engineering for feature

extraction and models such as Support Vector Machine (SVM)

for classification [8]. DL methods such as Convolutional

Neural Networks (CNNs) automatically extract various tem-

poral, spectral, and spatial features from sEMG through their

hierarchical architectures [9]. Conventionally, these methods

trained and tested on sEMG signals collected on the same day

only provide short-term performance but underestimate long-

term practicality due to the disregard for the effect of sensor

misplacement, sensor displacement, and day-to-day variation

in human neurophysiology and skin conductivity [10]. The

performance of a previously trained model can drop by 55%

if used on another day [11]. To enhance the scalability and

feasibility of such wearable neural interfaces for human-robot

interaction and control, temporal generalizability should be

addressed by securing high interday reliability.

Researchers have started investigating multi-day HGR based

on sEMG to improve the longitudinal performance of these

control systems within the last five years. These works can
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also be categorized into traditional ML and DL methods.

Traditional ML relies on training on the extracted features

from multiple days to capture sEMG variations across days

and secure high interday performance without calibration.

Adaptive ML approaches such as Adaptive LDA (ALDA)

can adapt to new data from the testing day by updating its

parameters to improve interday performance. However, at root,

the main hurdles of these traditional ML methods are (1)

the simplicity of the extracted features that are incompetent

to capture cross-day characteristics in sEMG and generalize

the use of multi-day HGR systems over a large number of

subjects and (2) the computational inefficiency of the feature

extraction processes, such that extracting 4th-order autoregres-

sion from highly spatiotemporal HD-sEMG collected from 256

electrodes can be more than half a second; these processes will

be even less efficient on wearable devices with limited power.

Researchers favor DL approaches in sEMG-based research due

to their strong feature extraction power, which relaxes the need

for expertise in sEMG compared to feature-engineering-based

conventional ML. Adaptive DL methods have used domain

adaptation (DA) to calibrate their previously trained models

from one day to another to enhance the interday performance.

Although most of the existing DL efforts have reduced the pre-

processing time by directly feeding their deepnets with raw

sEMG signals, their methods did not minimize the induced

myoelectric control delay by using window sizes from 150

ms to 300 ms and sEMG signals from the plateau phase.

Regardless of the approaches, the limitations of the current

literature can be summarized into (1) time-consuming feature

extraction, (2) large window sizes ranging from 150 to 750

ms, and (3) the use of plateau-phase sEMG, neglecting the rich

information during the dynamic transient phase when gesture-

associated motor unit recruitment occurs. Other constraints of

existing literature include but are not limited to (1) the low

number of subjects (i.e., <20), which makes a control system

not representative enough to general users, (2) the exclusion

of dynamic gestures, which makes the system unrealistic since

hand gestures are naturally dynamic rather than static in real-

world applications, and (3) training on data only from multiple

consecutive days (where the potential changes in sEMG can

be minimized), which is impractical due to the progressive

performance degradation when the interval between training

and testing days is large.

In this paper, we propose a multi-day dynamic hand gesture

prediction method through decoding HD-sEMG signals to

overcome the above limitations. We aim for a seamless (i.e.,

real-time-ready) and realistic hand gesture prediction system

based on a deep vision transform structure. The restriction

of control delay is lifted by investigating 11 dynamic ges-

tures and using a small window size of 50 ms. Compared

to static gestures, dynamic gestures are more natural and

realistic, thus more complex to detect due to the dynamicity

of neurophysiology during such tasks. It should be noted that

the 50 ms window size is only one-sixth of the maximum

window size qualified for real-time implementation [12] and

the smallest size, to the best of our knowledge, in multi-day

HGR research. Leveraging the power of the Multi-headed Self-

attention (MSA) mechanism in a vision transformer (ViT),

the proposed model can predict dynamic 11 gestures with an

average accuracy of over 71% across 20 subjects on the testing

day, 3-25 days after training. When calibrated on minimum

data from the testing day (i.e., one or two repetitions), the

proposed model can achieve over 92% accuracy by retraining

only 8.8% of the parameters, almost regaining the intraday

accuracy, for which the proposed model is trained and tested

on the same day.

The main contributions of this paper to the research of

multi-day HGR are as follows:

• This paper proposes the first ViT-based network to im-

prove the multi-day performance of dynamic hand gesture

prediction by capturing the temporal relationships within

each HD-sEMG window through attention mechanisms.

• 50 ms is the shortest window size used in multi-day HGR,

minimizing the latency of myoelectric control to the best

of our knowledge. This window size is only one-sixth of

the requirement for real-time implementation, preparing

the proposed model for seamless real-life practices.

• This paper investigates the minimum calibration data

needed from the testing day to maintain the performance

of the proposed model trained on a previous day and

reused on the testing day. This investigation, which falls

under the umbrella of few-shot learning, is for the first

time in the research of sEMG-based multi-day HGR when

only two days of data are available.

The rest of the paper is organized as follows: the Prior

Works section summarizes the previous studies in single-day

and multi-day HGR. The Dataset and Pre-processing section

describes the acquisition and pre-processing of the datasets.

The model architecture, the model evaluation protocols, and

the statistical test are introduced in the Methods section. The

Results section presents the model performance, followed by

the comparative study section that compares our proposed

method with the state-of-the-art approaches when solving the

same multi-day HGR task. Finally, the Conclusion section

summarizes this paper.

II. PRIOR WORKS

Single-day HGR: For single-day hand gesture recogni-

tion/prediction, a model is trained and tested on sEMG

signals collected from the same day. Classical ML relies

on researchers’ expertise and feature engineering for feature

extraction and models, such as LDA [24], [25], SVM [26],

and K-nearest Neighbor (KNN) [27], for classification. CNNs

[28], Recurrent Neural Networks (RNNs) [29], and other DL

methods [30] automatically extract various temporal, spectral,

and spatial features from sEMG through their hierarchical

architectures.

Although researchers have reported high performance on a

large number of classified gestures, the short-term (intraday)

performance cannot be translated into long-term (interday)

performance due to the changes in the characteristics of sEMG

signals over time caused by electrode artifacts, electrode dis-

placement, and electrode misplacement. Such artifacts mainly

include (a) stochastic electromagnetic noises (such as fluores-

cent noise, power-line noise, and those by nearby electronics),
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TABLE I

COMPARISON BETWEEN THE PROPOSED MODEL WITH THE STATE-OF-THE-ART EFFORTS IN SEMG-BASED MULTI-DAY HGR.

Paper # Subs # Moves # Reps # Days
Rep
Len

Win
Len

Signal
Type

Method Interday Acc

[13] 10 10+rest 4 7c 3 s 200 ms plateau feature engineering+AE 66-80%

[14] 6 12+rest 1 10c 5 s 256 ms plateau feature engineering+LDA 72.3%

[15] 10 11+rest 5 10 4 s 200 ms complete feature engineering+(KNN,LDA) 86.61%

[16] 20 10+rest 6 2 1 s 500 ms dynamic feature engineering+SVM 92.2%

[17] 10 10+rest 4 7c 3 s 160 ms plateau feature engineering+ANN 76.2-85.6%

[18] 6 12+rest 1 10c 5 s 256 ms plateau (feature engineering,raw)+CNN 83.42%

[19] 10 7 12 5c 6 s 150 ms complete raw+TCN 49.4%

[20] 8 10+rest 4 7c 5 s 200 ms complete mel spectrogram+CNN 65.88-88.73%

[21] 10 8 10 2 1 s 300 ms plateau raw+RNN
54.6% (w/o cal);

83.8 (w/ cal)

[22] 10 8 10 2 1 s 150 ms plateau raw+CNN+AdaBN 63.3%

[23] 20 10+rest 3 3 5 s 150 ms dynamic feature engineering+SCADANN
53.08% (w/o cal);
55.69% (w/ cal)

ours 20 11 6 2 1 s 50 ms dynamic ViT
71.34% (w/o cal);

88.87% (w/ 1 rep cal);
92.25% (w/ 2 reps cal)

Note: #: Number; Subs: Subjects; Rep: Repetition; Len: Length; Win: Window; Acc: Accuracy; s: Second; ms: Millisecond; c: Consecutive; w/o: Without; w/: With; cal: Calibration;

KNN: K-Nearest Neighbors; ANN: Artificial Neural Network; AdaBN: Adaptive Batch Normalization; SCADANN: Self-Calibrating Asynchronous Domain Adversarial Neural

Network.

(b) signal deterioration due to degraded electrode skin contact

impedance (due to hair blockage and sweat), and (c) changes

in capacitive coupling [31]. Electrode displacement results

from electrode shift on the skin surface [32], while electrode

misplacement happens due to imprecise electrode positioning

[33]. Other factors include but are not limited to natural

sEMG variation over time and the muscle contraction effort

of subjects [34]. Due to the lack of robustness of the existing

models to the sources of signal variation, commercial sEMG-

PR-based control systems (e.g., myoelectric prostheses) are

currently limited on the market [35], [36]. Therefore, it is

crucial to address the day-to-day reliability by proposing algo-

rithms that can generalized to sEMG collected from multiple

days, enhancing the scalability and feasibility of such wearable

neural interfaces for human-robot interaction and control.

Multi-day HGR: Researchers have investigated multi-day

HGR, where a model is trained on the previous day(s) and

reused on the testing day with or without being calibrated

on the data from the testing day. These works can also be

categorized into conventional ML and DL methods. Existing

research based on conventional ML [13]–[17] relies on manu-

ally extracting commonly used temporal (e.g., Hudgin’s time-

domain features [37] and autoregression coefficients), spectral

(e.g., median frequency and spectral entropy) features. The

extracted features are often optimized using dimensionality

reduction techniques (e.g., principal component analysis) to

achieve computational efficiency and prevent overfitting. A

traditional ML classifier (e.g., SVM) is then trained on the

features extracted from sEMG signals collected from the

previous day(s) and tested on the new day. One of the problems

of the traditional ML methods based on feature engineering is

the lack of adaptability to the data from the new day. Adaptive

LDA (ALDA) is one of the most commonly used adaptive ML

approaches in this category [38]–[41]. ALDA can be calibrated

on the new day’s data by updating its mean and covariance

matrices based on the same parameters from previous and

new days to capture the interday sEMG variation to improve

interday performance.

Existing DL works in multi-day HGR have developed deep-

nets (e.g., CNNs and autoencoders or AEs) to automatically

extract HGR-related features from raw sEMG signals in the

time domain [18], [19], [42], or from spectrograms in the

time-and-frequency domain [20]. Domain adaptation (DA)

is the adaptive technique for DL methods to calibrate their

previously trained models from one day to another to enhance

the interday performance. DA aims to develop a discriminative

predictor on the data from the source domain and then to adapt

the predictor to the data from the target domain, which is

different but related to the source domain, possibly achieving

high performance on the testing day. One way to apply

DA is through transfer learning using labeled data from the

testing day [21]. The proposed deepnet consists of a DA layer

followed by a classifier. In the pre-training stage, only the

classifier is trained on sEMG collected before the testing day

(source domain) while the DA layer is frozen. During the DA

stage, the classifier is frozen at its pre-trained stage while

the DA layer is trained on sEMG collected on the testing

day (target domain). The other way is to reduce the domain

divergence between the labeled sEMG (in the source domain)

and the unlabeled sEMG (in the target domain) by progres-

sively updating their proposed deepnets using the unlabeled

sEMG based on techniques such as pseudo-labels generating

heuristic and Adaptive Batch Normalization [22], [23], [43].

The comparison between our paper and the existing state-of-

the-art efforts in sEMG-based multi-day HGR is summarized

in Table I.

III. DATASET AND PRE-PROCESSING

A. Dataset

We employ the PR dataset in a publicly available HD-sEMG

database, referred to as “Hyser” [44]. This dataset includes 34
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 1. 11 hand gestures that are common to all 20 subjects in the
Hyser PR dataset are demonstrated. These gestures are the following:
(a) index finger extension (IFE), (b) little finger extension (LFE), (c)
wrist flexion (WF), (d) extension of thumb and index fingers (ETIF),
(e) extension of index and middle fingers (EIMF), (f) wrist supination
combined with hand close (WSHC), (g) wrist flexion combined with hand
open (WFHO), (h) extension of middle, ring and little fingers (EMRLF),
(i) extension of index, middle, ring and little fingers (EIMRLF), (j) hand
close (HC), and (k) hand open (HO).

hand and finger gestures recorded from 20 intact subjects (12

male and 8 female with an average age of 26.5). In order to

incorporate two-day data from all 20 subjects for statistical

analysis, 11 gestures that are common to all subjects have

been included in this study. Fig. 1 shows these gestures.

HD-sEMG signals were recorded using four 8×8 electrode

array patches (256 sensors in total) by attaching two patches of

sensors at each of the forearm sides (extensor and flexor) with

a sampling rate of 2048 Hz. Each subject was instructed to

perform two trials for each gesture, each trial containing three

dynamic tasks of one-second duration from the resting state

to the desired gesture and one maintenance task of holding

that gesture for four seconds. In this study, we focus only on

the dynamic tasks, resulting in six repetitions of one-second

duration per gesture for each individual subject. Data were

recorded from two different days with a between-day interval

of 3 to 25 days, hereafter referred to as Day 1 (first day of

recording) and Day 2 (second day of recording).

Remark 1: It should be noted that this paper implicitly

tackles electrode placement, signal degradation over time,

and the impact of environmental conditions on signal quality,

which are factors that can result in day-to-day variations of

sEMG. Our proposed method has inherent encoded robustness

due to the loosely controlled environment of data acquisition

imposed by the utilized database.•

B. Data Pre-processing

“Hyser” pre-processed their PR dataset by applying a 10-

500 Hz 8th-order Butterworth band-pass filter, followed by a

notch filter that attenuates power-line interference at 1st-8th

harmonics of 50 Hz. These pre-processed signals are further

filtered by an 8th-order Butterworth low-pass filter at 200

Hz. Then, the first 250 ms of the signals corresponding to

the reaction time are removed before windowing. Next, each

signal is segmented into 50 ms windows with a stride of 10 ms,

complying with the real-time requirements. More specifically,

this window length corresponds to one-sixth of the maximum

window length allowed for real-time analysis. To the best of

our knowledge, this is the shortest window length used for

multi-day gesture detection tasks using sEMG signals. In order

to minimize all possible delays, no further pre-processing is

performed on the windowed data. The input data shape is

adjusted according to the model at hand. For the proposed ViT

model, we use the input shape of 100× 4× 8× 8 correspond-

ing to window length × # electrode grids × electrode width ×
electrode length. For RNN models (described in section VI),

we use the input shape of 100 × 256 corresponding to

window length × # electrodes.

IV. METHODS

A. Model Architecture

ViTs have attracted extensive attention in image classifi-

cation, challenging the dominance of CNNs. They introduce

fewer inductive biases into the architectures than CNNs,

which allows them to capture global contextual information by

dividing each image into non-overlapping patches. Attention

mechanisms enable ViTs to focus on relevant patches and

establish long-range dependencies to learn complex patch

relationships, capturing important visual patterns. Because of

the patch extraction, ViTs are also scalable for high-resolution

tasks that require fine-grained details. Position embedding

preserves the spatial arrangement of the patches, whereas the

spatial information may be lost due to the pooling layers of

CNNs [45], [46]. sEMG-based HGR can benefit from the

above advantages of ViTs, but ViT-based HGR methods using

sEMG or HD-sEMG have been rarely studied in the literature,

neglecting the temporal relationship between signals at any

two timestamps. Montazerin et al. [47] just published the first

ViT-based model for HD-sEMG-based HGR with intraday

evaluation. In this paper, for the first time, we propose a

compact deep neural network with a ViT backbone in multi-

day dynamic hand gesture prediction from HD-sEMG signals,

named ViT-MDHGR. The proposed model captures cross-

day features by learning the relationships between HD-sEMG

signals at any two timestamps within a window. The four

components of the proposed model (patch embedding, position

embedding, transformer encoder, and Multi-Layer Perceptron

or MLP head) are introduced below. We follow most of the

notations from the original ViT paper [45].

Patch Embedding: The raw input of each HD-sEMG win-

dow can be represented as a tensor x ∈ R
T×Ng×H×W , where

T is the window length, Ng is the number of electrode grids,

and H × W is the shape of each electrode grid. In our

experiment, T = 100, Ng = 4, and H ×W = 8 × 8. As we

aim to learn the relationships between the signals at any two

timestamps of an HD-sEMG window, we consider the signals

from the electrode grids at timestamp, x[i, :, :, :], i = 1, . . . , T ,
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Fig. 2. Model architecture. The entire model is trained during the pre-training stage, while only the Linear Projection layer (the white rectangle
connected to HD-sEMG heatmaps), which accounts for only 8.8% model complexity, is retrained. σ denotes the softmax function in MSA.

as a patch. Therefore, we reshape an HD-sEMG window input

x into a sequence of flattened patches xp ∈ R
T×NgHW . A

trainable linear projection layer maps these flattened patches

at each time stamp to size D latent vectors. The output of the

projection is the patch embeddings. Then we prepend a class

token, a vector of learnable embeddings xcls ∈ R
D, to the

patch embeddings, turning the shape of patch embeddings to

R
(T+1)×D. The state of the class token at the output of the

transformer encoder is referred to as the classification head,

which serves as the representation of an HD-sEMG window

to be classified as different gestures.

Position Embedding: Learnable position embeddings, p ∈
R

(T+1)×D, are added to the patch embeddings (including

the class token) to retain the position information of the

patches. Since we are interested in the patch relationships

along the time axis and consider the input as a sequence rather

than a grid of patches, we choose one-dimensional position

embeddings. The position embeddings are initialized from a

standard normal distribution. The input of the transformer

encoder is:

z0 = [xcls, x
1
pE, x2

pE, . . . , xT
p E] + p, (1)

where E ∈ R
NgHW×D is the matrix for the linear projection.

Transformer Encoder: The transformer encoder consists of

multiple layers of MSA and MLP blocks. Pre-norm happens

before each block, where Layer Normalization (LN) is applied

to the block input to estimate the normalization statistics and

residual connections after (by adding the block input to the

output) to improve model convergence. The outputs of an

MSA block and an MLP block on layer ℓ are (2) and (3),

respectively.

z′ℓ = MSA(LN(z′ℓ−1)) + z′ℓ−1 (2)

zℓ = MLP (LN(z′ℓ)) + z′ℓ (3)

MSA has a building block of the standard qkv self-attention

[48], where the sequence of patches z0 is linearly projected

separately into Q (queries), K (keys), and V (values), all with

the same dimension of h×(T +1)×dk, h denotes the number

of heads and dk is the head dimension. The attention weights

A are the similarities between two patches of the sequence

and are calculated as

A = softmax(
QK⊺

√
dk

). (4)

The scaling factor
√
dk ensures the dot product of Q and K

will not be a large number. The softmax function converts the

scaled dot product to the range between 0 and 1, indicating

the total attention paid to V sums up to 1. Therefore, the self-

attention operation for each head is

MSA(Q,K, V ) = softmax(
QK⊺

√
dk

)V . (5)

The self-attention operations of h heads are run in parallel.

The outputs of all the heads are concatenated and projected to

form the input of the MLP block after the residual connection.

An MLP block consists of two linear layers with Gaussian

Error Linear Unit (GELU) activation and a dropout in between.

The output of an MLP block matches the dimension of the

latent space D.

MLP Head: The MLP head is a linear classifier that predicts

the classification head z0L, the class token from the last layer L

of the transformer encoder, into different gestures ŷ as follows:

ŷ = softmax(FC(LN(z0L))), (6)

where FC denotes “fully connected”, mapping z0L from di-

mension D to the total number of predicted gestures (i.e., 11

in this paper).
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The proposed model is trained for a maximum of 200

epochs with a batch size of 32 for all the experiments,

including pre-training and calibration. We use Adam as the

optimizer with an adaptive learning rate of 0.001, which will

be reduced to half at Epoch 40 and 80. Early stopping is

employed with patience 40, such that the proposed model will

stop training if the validation accuracy does not improve for

40 consecutive epochs.

B. Model Evaluation Protocols

Intraday

Day i
(i = 1,2)

Interday

Day 1

Day 2

Rep # 1 2 3 4 5 6

Rep # 1 2 3 4 5 6

Training Set

Test Set

Validation Set

Calibration Set

Fig. 3. Visualization of training/training-calibration strategy of model
evaluation for intraday (upper figure) and interday (lower figure) per-
formances. Each colored rectangle with rounded corners represents a
repetition. The two dark green rectangles show an example of 2 Reps
Calibration on the repetitions (1 and 3) from Day 2.

This paper evaluates the proposed model for intraday and

interday performance. The intraday performance serves as a

benchmark to be compared with the interday performance to

see (1) the acceptable performance degradation of our model

trained on one day and used on another without calibration

and (2) the slim performance gap between the intraday per-

formance and the interday performance when calibrating our

model on limited data from the testing day.

Intraday Performance: To evaluate the intraday performance

of our proposed model on Day 1 or Day 2, we use the four

repetitions (1, 3, 4, and 6) and the remaining two repetitions

(2 and 5) of the same day for training and testing, respectively.

Interday Performance: We use the signals from Day 1 for

training and validation and Day 2 for calibration and testing.

As this paper leverages transfer learning to learn the HGR-

related pre-knowledge on Day 1 and transfer this knowledge

to each subject to predict gestures on Day 2, the evaluation of

interday performance consists of two stages: pre-training and

calibration stages.

This paper investigates two strategies in the pre-training

stage: (1) pre-training our proposed model on the data from

individual subjects, named “Pre-trained on Individuals”, and

(2) pre-training the proposed model on the data pooled from

all 20 subjects, named “Pre-trained on All”. The first pre-

trained strategy will result in 20 pre-trained models, one for

each subject, while the second strategy will result in only one

general pre-trained model. Under both strategies, we pre-train

and validate our model on the Training and Validation Sets

(i.e., repetitions (1, 3, 4, and 6) and repetitions (2 and 5)

on Day 1), respectively. The calibration stage includes three

strategies: “0 Rep” calibration, “1 Rep” calibration, and “2

Reps” calibration. 0 Rep calibration directly evaluates a pre-

trained model (either Pre-trained on Individuals or Pre-trained

on All) on the Test Set (i.e., repetitions (2 and 5) on Day

2). To improve the performance of a pre-trained model on

Day 2, we calibrate it on limited data from Day 2 by only

retraining the Linear Projection layer (which accounts for 8.8%

of total trainable parameters) of the pre-trained model. We

conduct 4-fold or 6-fold cross-validation for calibration by

selecting one or two repetitions from the Calibration set (i.e.,

repetitions (1, 3, 4, and 6) on Day 2). The training/training-

calibration strategy of model evaluation for intraday and

interday performances can be visualized in Fig. 3.

C. Statistical Test

The distribution of the differences between two compared

groups of results is not normal. Also, the compared groups of

results are dependent. Thus, we use Wilcoxon signed-rank test

with an alpha value of 0.05 in this study. Asterisks (∗) are used

to indicate statistical significance with respect to p values. ns

or not significant denotes p > 0.05; ∗ denotes p ≤ 0.05; ∗∗
denotes p ≤ 0.01; ∗ ∗ ∗ denotes p ≤ 0.001; and ∗ ∗ ∗∗ denotes

p ≤ 0.0001.

V. RESULTS

A. Model Configuration

This paper particularly focuses on learning the relation-

ships of signals from all the sensors at any timestamp of

an HD-sEMG window to enhance the long-term, interday

performance of HGR. Thus, the dimension of each patch

(patch size) is the same as each electrode grid (i.e., 8 × 8).

We consider channels as the number of used electrode grids,

which is four for the “Hyser”. As a result of hyper-parameter

tuning, the dimension of the latent space D is set to 128. The

transformer encoder has eight layers (L = 8), each having an

MSA with four size 16 heads (h = 4 and dk = 16). mlp dim,

which is the dimension of the MLP block’s hidden layer, is

set to 32. The dropout rates after the position embedding and

inside the transformer encoder are 0.1 and 0.5, respectively.

The model configuration is summarized in Table II.

TABLE II

MODEL CONFIGURATION (NOTATION AND VALUE PAIRS).

Notation Value Notation Value

patch size 8× 8 channels 4

D 128 L 8

h 4 dk 16

mlp dim 32

B. Results of Evaluation Protocols

This paper aims to achieve high reliability and performance

for day-to-day HGR without or with minimal calibration.
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We investigate the minimum amount of data needed for

our proposed model pre-trained on Day 1 to maintain the

performance on Day 2, lifting the data collection burden from

users and enhancing the ease of use of such HGR systems. In

this regard, we conduct 0 Rep calibration, 1 Rep calibration,

and 2 Reps calibration strategies on sEMG signals collected

on Day 2 using our pre-trained model (i.e., Pre-trained on

Individuals or Pre-trained on All). The calibration data of the

latter two strategies account for 17% and 33% of data collected

on Day 2, respectively. As 1 Rep and 2 Reps calibrations

are evaluated using 4-fold and 6-fold cross-validation, the

average accuracies across folds are reported as the final results.

Our proposed model’s intraday and interday performances are

shown in Table III and Fig. 4.

Intraday performance: When training our proposed model

from scratch on four repetitions (1, 3, 4, and 6), we can achieve

consistently high accuracies of 94.32%±2.66% for Day 1 and

94.33%±1.78% for Day 2 averaged across 20 subjects. The

distributions of sEMG signals collected on Day 1 and Day 2

are different due to sEMG variation over time, though the data

collection followed the same protocol. Thus, the performance

consistency shows that our proposed model performs stably in

single-day HGR.

TABLE III

AVERAGE INTERDAY PERFORMANCE BY PRE-TRAINING STRATEGY.

Pre-training Strategy 0 Rep 1 Rep 2 Reps

Pre-trained on All 71.34% 88.87% 92.25%

Pre-trained on Individuals 62.84% 87.92% 91.38%

�������� ��������

Fig. 4. Box plots of intraday and interday performance given different
pre-training strategies. The number of data points in each box plot is 20,
equal to the total subjects. Green triangles denote the averages.

Interday performance: Pre-trained on Individuals mod-

els can achieve 62.84%±16.67%, 87.92%±3.57%, and

91.38%±2.50% averaged across all subjects in 0 Rep, 1 Rep,

and 2 Reps calibrations. In comparison, these performances are

8.5%±3.91%, 0.95%±0.76%, and 0.87%±0.5% higher when

using the Pre-trained on All model. It should be noted that

the average standard deviations are lower, indicating that our

model pre-trained on all subjects is more confident in predict-

ing gestures based on sEMG signals collected on Day 2 than

the Pre-trained on Individuals models. Thus, pre-training on

all subjects can help our proposed model learn time-invariant

HGR-related knowledge from sEMG signals collected on Day

1. This knowledge can be more generalized, emphasized, and

strengthened when learned from all subjects than captured

from individuals. Furthermore, the interday performance of

our proposed model can almost match the intraday one when

using the Pre-trained on All and 2 Reps calibration strategies

only with a 2.08% accuracy gap.

TABLE IV

AVERAGE INTERDAY PERFORMANCE BY WINDOW SIZE UNDER

PRE-TRAINED ON ALL STRATEGY.

Window Size 0 Rep 1 Rep 2 Reps

30 ms 66.58% 86.19% 89.59%

40 ms 69.20% 86.81% 90.31%

50 ms 71.34% 88.87% 92.25%

100 ms 74.16% 89.65% 92.44%

200 ms 74.70% 91.92% 94.46%

0 Rep 1 Rep 2 Reps
20

40

60

80

100

120
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st
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cc
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ac
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)
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** ns
**

**** *** **** ns

30ms
40ms
50ms

100ms
200ms

Fig. 5. Box plots of interday performance by window size under Pre-
trained on All strategy. The number of data points in each box plot is 20,
equal to the total subjects. Green triangles denote the averages. The
shade of color darkens as the window size increases.

There is a trade-off between window size and the perfor-

mance of an HGR system. Larger window sizes contain more

information that can be important for the proposed model to

learn to enhance HGR performance. However, larger window

sizes can result in longer induced delays to myoelectric control

and more complex model structures. This paper aims to find

the shortest window size that can achieve the optimal interday

HGR performance, preparing our proposed model for real-

time cross-day use. Previous works [29], [47] achieved high

intraday performance in classifying a large number of multi-

degree-of-freedom gestures using short window sizes ranging

from 30 ms to 250 ms. Hence, in this paper, we investigate

the effect of window sizes on interday performance by pre-

training (under the Pre-trained on All strategy) and calibrate

our proposed model on five window sizes: 30 ms, 40 ms, 50

ms, 100 ms, and 200 ms. The results are shown in Table IV

and Fig. 5. We statistically analyze and compare the interday

performances on (30 ms, 40 ms), (40 ms, 50 ms), (50 ms,

100 ms), and (100 ms, 200 ms) pairs of window sizes on each

calibration strategy. As shown in Fig. 5, the performance on 50

ms windows is significantly higher than on 30 ms and 40 ms

windows but similar to the performance on 100 ms windows.
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As a result, our proposed model achieves the most optimistic

interday performance on 50 ms windows.

This paper also investigates gesture-wise reliability across

days by analyzing the interday performance of our proposed

model without calibration (0 Rep calibration) for each gesture

performed by the top-5-performing subjects (subjects 1, 7, 9,

18, and 19). As a result, Fig. 6 shows that our proposed model

can robustly and reliably predict almost all gestures on two

different days. Our model achieves more than 90% accuracy in

predicting five gestures (IFE, WF, EIMF, HO, and EIMRLF).

Only one gesture (WSCHC) has an accuracy of less than 75%.

IFE

LFE

WF
ETIF

EIMF

WSHC

WFHO

EMRLF

EIMRLF
HC

HO

IFE
20

40
60

80
100

Subject 1
Subject 7
Subject 9
Subject 18
Subject 19
Mean

Fig. 6. Gesture-wise average interday performance without calibration
(0 Rep calibration) on the top-5-performing subjects. The bold red line
denotes the interday performance averaged across the five subjects.

Remark 2: This paper uses the 50 ms window length, which

accounts for only one-sixth of the real-time requirement [12]

and less than 66% of the smallest window length (i.e., 150 ms)

used in the existing literature on multi-day HGR. Using such

a short window length is already a challenge in single-day

HGR, where a proposed method needs to distinguish different

gestures given limited temporal information. This challenge

will be amplified in multi-day HGR, where the method not

only needs to differentiate one gesture from another but also

recognize the same gesture by acknowledging the variations

in the sEMG signals collected from varying days.•

Remark 3: Due to the cross-day variations in sEMG

signals, the interday reliability of an HGR system depends on

calibrating the system on the data from the testing day. There is

a trade-off between the amount of data needed for calibration

from the testing day and the practicality of such HGR systems;

generally, the more data required for calibrating an HGR

system on another day, the more tedious the calibration process

will be, the less likely the users will use such a system

frequently in daily living so less practicality and translational

value. This paper investigates the minimum calibration data

needed from the testing day to maintain the performance

of an HGR system trained on a previous day, enhancing

the feasibility of such a system in real-life practices. As a

result, our proposed ViT-based network secures ≈60% higher

performance than the general literature [11] when trained

and tested on different days without calibration. Furthermore,

calibrated on minimum data (i.e., up to two repetitions data)

from the testing day, the proposed model can almost match

the interday performance with the intraday. •

Remark 4: ViT models have usually been used to cap-

ture global spatial contextual information. In this paper, for

multi-day HGR, we propose the first ViT-based deep-learning

model to capture the global “temporal contextual” information

between signals at any two timestamps within an HD-sEMG

window. The innovation of temporally rather than spatially

segmenting each input into patches enables the proposed

model to be best suited for multi-day HGR, achieving high

performance with the shortest window length and minimum

calibration mentioned in the previous two remarks. The com-

pactness of the novel design of the transformer structure in

addition to the need for only retraining 8.8% of the model on

a new day further enhances the real-life practicality.•

VI. COMPARATIVE STUDY

In this study, we present a novel strategy to generalize

HGR across days while requiring minimal calibration. In

order to evaluate the performance of our model compared to

the state of the art, we comprehensively conduct three sets

of comparative experiments. In one experiment, we compare

our model with one of the most common approaches toward

generalizable gesture detection using sEMG signals: feature

engineering combined with ALDA. We show that our model

significantly outperforms ALDA under similar training and

calibration configurations. To further highlight the superiority

of our proposed model over other state-of-the-art models, in

another experiment, we compare the performance of our ViT-

MDHGR with three well-known RNN models which have

proven to be effective when addressing time-series data [49].

Finally, as three-dimensional CNNs (3D CNNs) [50] become

increasingly popular in HGR for extracting temporal and

spatial information from HD-sEMG using 3D kernels, we

compare our proposed model with a 3D CNN model. These

experiments follow the same pre-training (i.e., Pre-trained

on All) and calibration strategies as our ViT-MDHGR. The

experimental details are described as follows.

Comparison to ALDA: ALDA based on feature engineering

has been subject to extensive studies in the gesture recognition

literature [39]–[41]. In order to demonstrate the superiority of

our ViT-MDHGR over ALDA, we adopt a feature engineering

+ ALDA model to the same dataset (“Hyser”) following the

general methodology of [39]. More specifically, we create a

pipeline that extracts a number of features from each 50 ms

signal window and classifies the feature vectors into gestures

using an LDA classifier. The features we considered are Mean

Absolute Value, Zero Crossing, Slope Sign Changes, and

Waveform Length similar to [39]. The training and calibration

stages of ALDA are described as follows.

• Training: Features are extracted from the Training Set

of all 20 subjects. Next, an LDA with the following dis-

criminant function is fit to the extracted features following
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[39], [41]:

gc(x) = x⊺Σ−1µc −
1

2
µ⊺

c
Σ−1µc + log πc (7)

where µc is the mean value for class c, Σ is the covariance

matrix of classes (assumed to be equal for all classes),

and πc is the prior probability for class c.

• Calibration: Given new samples on Day 2 (Any one

or two repetitions selected from the Calibration Set) for

each subject, we adapt the LDA by readjusting the mean

vectors and covariance matrix similar to [41] as follows:

µ̃c = (1− λ)µtrc
+ λµcalc

(8a)

Σ̃c = (1− λ)Σtrc
+ λΣcalc

(8b)

where (µtrc
,Σtrc

) refer to training (mean, covariance)

and (µcalc
,Σcalc

) refer to calibration data (mean,

covariance). λ = 0.5 is a hyperparameter.

Limitations of ALDA: Approaches based on ALDA rely

on feature extraction which can cause control delays in the

gesture detection pipeline. In our comparative study, we have

selected common features that are theoretically suitable to

real-time applications (e.g. they are causal and do not rely

on future windows). However, our experiments show that

extracting these features for each signal window takes about

12.1-14.9 ms across various subjects. Noting that the window

increments used in this study are 10 ms, this time-consuming

feature extraction step can cause delays in the gesture detection

pipeline. An advantage of our ViT-MDHGR model is that

it does not require such time consuming feature extraction

steps and thus does not suffer additional delays. Another

fundamental limitation of ALDA is the assumption that all

gesture classes have the same covariance matrix Σ which

might not be true in practice. Another advantage of our

proposed model is that it does not require any assumptions

on the data distribution of gesture classes. Finally, looking at

Fig. 7 we note that ViT-MDHGR significantly outperforms

ALDA when there is no calibration data available.

Comparison to RNNs: The compared models in this experi-

ment set are Gated Recurrent Units (GRUs) [51], Long Short

Term Memories (LSTMs) [52], and Bidirectional LSTMs

(BILSTMs). Each model has three RNN layers followed by

FC layer(s) with hyperbolic tangent activation and Dropout

(rate=0.2) layers. The last layer is an FC layer with softmax

activation that outputs a predicted gesture. In the calibration

stage, only the first RNN layer is trainable. Table V shows the

configurations and hyperparameters of RNN models.

Limitations of RNNs: Looking at Tables VII and VIII

we note that RNN-based models that have similar model

complexity and no calibration Day 2 performance as ViT-

MDHGR require a larger percentage of their parameters to be

retrained to yield satisfactory interday performance. We also

note that despite the retraining of around 40 − 50% of their

parameters, RNN-based models perform significantly worse

than ViT-MDHGR on Day 2. This implies that RNN-based

models are more sensitive to interday variations and therefore

need a more extensive retraining to improve their accuracy.

The advantage of ViT-MDHGR over RNN-based models is

that our proposed model outperforms the RNN-based models

while requiring significantly fewer parameters to be retrained.

TABLE V

RNN MODEL CONFIGURATIONS

Hyperparameter GRU LSTM BILSTM

layers 3 3 3

hidden units 134 115 75

dilation order 3 3 3

FC layers before classifier 2 1 1

Dropout None 1 1

Comparison to 3D CNN: Similar to the previous experi-

ments, we compare the ViT-MDHGR model with a 3D CNN

model structured as shown in Table VI. For calibration, we

freeze everything except the second 3D convolution and batch

normalization layers.

Limitations of 3D CNN: Looking at Table VIII and Fig.

7, we note that the 3D CNN model is more sensitive to inter-

day variations. Learning local information within the sliding

kernels, instead of capturing the global contextual informa-

tion through the multi-headed self-attention mechanism (ViT-

MDHGR), can be the reason for the inefficacy of the interday

performance of 3D CNN. However, we note that a 3D CNN

model in general is lightweight compared to ViT-MDHGR.

Despite the comparatively light-weight architecture, 3D CNN

in general performs poorly compared to the other state-of-the-

art models and ViT-MDHGR with or without calibration.

TABLE VI

MODEL STRUCTURE FOR 3D CNN. C: CHANNELS/UNITS, K: KERNEL

SIZE, D: DILATION RATE, A: ACTIVATION.

Layer Configuration

3D convolution c = 16, k = (8, 2, 2), d=(2, 1, 1), a=’relu’

Batch normalization N/A

3D convolution c=32, k=(8, 2, 2), d=(2, 1, 1), a=’relu’

Batch normalization N/A

3D Max pooling N/A

3D convolution c=64, k=(8, 2, 2), d=(4, 1, 1), a=’relu’

Batch normalization N/A

3D convolution c=64, k=(8, 2, 2), d=N/A, a=’relu’
Batch normalization N/A

flatten N/A

FC c=32, a=’tanh’

Dropout rate=0.2

FC (classifier) c=11, a=’softmax’

TABLE VII

TRAINABLE PARAMETERS IN PRE-TRAINING AND CALIBRATION STAGES.

Model Pre-training Calibration Percentage

ViT-MDHGR 382,475 33,664 8.8%

GRU 385,747 157,584 40.8%

LSTM 387,715 171,120 44.1%

BILSTM 385,595 199,200 51.6%

3D CNN 218,011 16,480 7.5%

Table VII shows the total number of trainable parameters in

the pre-training and calibration stages for each of the models.

The ratio of the trainable parameters of the calibration

stage to the pre-training stage is also shown. We note that
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TABLE VIII

PERFORMANCE EVALUATION OF DIFFERENT MODELS. MEAN VALUES

ARE REPORTED FOR CALIBRATION RESULTS.

Model 0 Rep 1 Rep 2 Reps

ViT-MDHGR 71.34% 88.87% 92.25%

GRU 69.02% 78.07% 81.20%

LSTM 70.26% 81.41% 84.59%

BILSTM 70.61% 82.11% 84.80%

ALDA 50.84% 74.76% 81.41%

3D CNN 67.49% 79.47% 83.05%
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Fig. 7. Day 2 Accuracy comparison between ViT-MDHGR and various
state of the art models. The number of data points in each box plot is 20,
equal to the total subjects. Green triangles show mean values across 20
subjects.

ViT-MDHGR and 3D CNN require significantly lower ratios

of trainable parameters during calibration. Table VIII shows

how these models compare to each other in various interday

calibration scenarios. Mean values are shown for various

Calibration percentages and the models are calibrated on

individual subjects separately. Fig. 7 gives a more detailed

view of Calibration results for the two models. We make the

following observations:

Observation 1: ViT-MDHGR slightly outperforms the

RNN models when evaluated on Day 2 data with 0 Rep

calibration. However, by calibrating over one repetition, the

performance gap increases to more than 6%. Calibrating on

two repetitions increases this gap to around 8% compared to

the best RNN model. We emphasize that in all scenarios, our

proposed model outperforms RNN models while requiring

calibration over significantly fewer parameters.

Observation 2: ViT-MDHGR significantly outperforms

ALDA in all scenarios. When calibrating on two repetitions,

this gap is around 10.84%. In comparison to ALDA, We

emphasize that our proposed model does not require any

additional pre-processing or feature extraction. ViT-MDHGR

also outperforms 3D CNN, more significantly when two

repetitions for calibration are available.

Observation 3: When calibrated on one or two repetitions,

ViT-MDHGR is more reliable in the sense that it has a lower

variance among 20 subjects. We also note that when calibrated

on two repetitions, the worst ViT-MDHGR accuracy is still

higher than the third quartile values of all the other models.

In general, these results confirm the potential and reliability

of our proposed model for accurate and agile gesture recog-

nition across days.

VII. CONCLUSION

In this study, we propose a ViT-based network (ViT-

MDHGR) that can be deployed for real-time HGR from HD-

sEMG signals. Our proposed model addresses the challenge

of inter-day gesture recognition relying on 50 ms HD-sEMG

signal windows. This innovation enhances the agility and

responsiveness of the system, making it suitable for practical

applications. Retraining only 8.8% of the model parameters

on a different day, we show that this model can achieve

an inter-day accuracy of 92.25% for detecting 11 gestures

by calibration on only two repetitions of each gesture. We

demonstrate that our proposed model significantly outperforms

various sequential, CNN, and LDA based state of the art

networks. This research highlights a significant step towards

making multi-day hand gesture recognition a reality, with

potential applications in myoelectric control of prosthetic

devices, neurorobotics, and human-computer interfaces. The

ViT-MDHGR not only improves the generalizability of hand

gesture recognition but also offers a promising avenue for

enhancing the usability and practicality of such systems in

real-world contexts.

In section II, we enumerate electrode noise, electrode

displacement, and electrode misplacement as the hurdles of

reliable and practical HGR systems for multi-day uses. We

recently discussed these issues separately and achieved high

performance, providing promising solutions [53]–[57]. For

future work, to understand the model’s capability in real-

world implementation thoroughly, we will conduct compre-

hensive studies on the effect of each challenge. In addition,

real-time multi-day HGR is one of the future lines of re-

search that bridges the gap between offline and online model

performance evaluation. Other possible directions of future

work include extending the number of gestures, incorporating

subject-generalization, and increasing the length of inter-day

intervals. Focusing on refining and expanding the capabilities

of this model will bring us closer to seamless and efficient

myoelectric control solutions for a wide range of applications.
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