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Abstract. We introduce an integral representation of the Monge—Ampére equation, which leads
to a new finite difference method based upon numerical quadrature. The resulting scheme is mono-
tone and fits immediately into existing convergence proofs for the Monge—Ampeére equation with ei-
ther Dirichlet or optimal transport boundary conditions. The use of higher-order quadrature schemes
allows for substantial reduction in the component of the error that depends on the angular resolution
of the finite difference stencil. This, in turn, allows for significant improvements in both stencil width
and formal truncation error. The resulting schemes can achieve a formal accuracy that is arbitrarily
close to O(h?), which is the optimal consistency order for monotone approximations of second-order
operators. We present three different implementations of this method. The first two exploit the
spectral accuracy of the trapezoid rule on uniform angular discretizations to allow for computation
on a nearest-neighbors finite difference stencil over a large range of grid refinements. The third uses
higher-order quadrature to produce superlinear convergence while simultaneously utilizing narrower
stencils than other monotone methods. Computational results are presented in two dimensions for
problems of various regularity.
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1. Introduction. In this article we introduce an integral representation of the
Monge—Ampere equation

—det(D?*u(x)) + f(x) =0, z€Q,

u is convex,

(1.1)

where 2 C R™ is convex and the right-hand side f is nonnegative. This allows us
to produce new monotone approximation schemes via quadrature. Because these
schemes are monotone, they fit within several recently developed numerical conver-
gence frameworks [3, 5, 16, 19, 20, 29]. Moreover, these new schemes offer significant
advantages over existing monotone methods in terms of both accuracy and efficiency.

Recent years have seen a growing interest in Monge—Ampere type equations in
the context of a diverse range of problems including design of optical systems [33],
geophysics [12], mesh generation [7], medical image processing [18], meteorology [10],
and data science [31]. This has encouraged the design of many new methods for the
Monge-Ampere equation including [4, 6, 11, 13, 32].

The development of numerical methods that are guaranteed to converge to the
correct solution, particularly in the absence of classical solutions, has proven to be
more challenging. An early method [30] used a geometric interpretation of weak
solutions to design a convergent, but computationally expensive, method for the
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two-dimensional Monge-Ampere equation. Recently, convergence frameworks have
been established for the Monge—Ampere equation with either Dirichlet boundary con-
ditions [16, 19, 27, 29],

(1.2) u(z)=g(x), x€0N
or the second type boundary condition arising in optimal transport [3, 5, 20],
(1.3) Vu(Q) C Q.

These convergence proofs can be viewed as extensions of the powerful Barles and
Souganidis convergence framework [1], which is valid for weak (viscosity) solutions
of fully nonlinear partial differential equations. Critically, they are valid only for
approximation schemes that are monotone. Construction of monotone schemes for
degenerate elliptic PDE operators is not trivial: in fact, given any fixed finite difference
stencil, it is possible to find linear elliptic operators for which no consistent, monotone
approximation is possible on the given stencil [24, 26]. Circumventing this challenge
requires the use of finite difference stencils that are allowed to grow wider as the grid
is refined. Monotone schemes are inherently limited in their accuracy: a monotone
approximation of a second-order operator can achieve at most second-order (O(h?))
truncation error [28, Theorem 4].

Several monotone finite difference schemes are now available for the Monge—
Ampere equation [2, 5, 15, 16, 25, 29]. Because of the wide-stencil nature of these
methods, the methods are computationally expensive and typically have low (sublin-
ear) accuracy. There are limited techniques available that are capable of achieving
the optimal O(h?) truncation error [2, 5], but these schemes are valid for the Monge—
Ampere equation only in two dimensions and with problem data that guarantees
uniform ellipticity of the PDE. These challenges are magnified in three dimensions,
where even evaluating the finite difference approximations (without attempting to
solve the resulting nonlinear system) can be prohibitively expensive [21].

In this article, we propose to express the Monge-Ampere operator in terms of a
Gaussian integral. This allows us to utilize higher-order quadrature schemes in order
to simultaneously achieve improved consistency error (of O(h*~¢) for any € > 0) and
more compact wide finite difference stencils. The schemes are nevertheless mono-
tone and fit neatly within the existing proofs of convergence of numerical methods
to the weak (viscosity) solution of the Monge-Ampere equation. We describe three
different implementations of this approach in two dimensions and validate the per-
formance using a range of standard benchmark problems for the Dirichlet problem.
This new formulation of the Monge-Ampere equation holds particular promise for
the development of computationally practical methods in three dimensions, as it pro-
vides a dimension-reduction as compared with a typical variational formulation of
the three-dimensional Monge—-Ampere equation. It also extends naturally to more
general Monge—-Ampeére type equations in optimal transport, including equations that
are posed on the sphere [23].

2. Background.

2.1. Elliptic equations. The Monge-Ampere equation is an example of a de-
generate elliptic partial differential equation, which takes the general form

(2.1) F(z,u(z), Vu(z), D*u(z)) =0, 2€Q.
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DEFINITION 2.1 (degenerate elliptic). Let @ C R™ and denote by S™ the set of
symmetric n X n matrices. The operator F' : @ x R x R™ x §" — R is said to be
degenerate elliptic if

F(z,u,p,X) < F(z,v,p,Y)

whenever u<wv and X =Y.

We note that the operator is defined on the closure of 2 and takes on the value
of the relevant boundary conditions at 0f2. For the Dirichlet problem, which is the
setting implemented in this article, the PDE operator at the boundary is defined as

(2.2) F(z,u(z), Vu(z), D*u(z)) = u(x) — g(x), x¢c .

The Monge-Ampere equation (1.1) does not immediately satisfy this definition of
an elliptic equation; in fact, it holds only on the restricted class of convex functions.
Going hand in hand with this difficulty is the fact that the solution of the Monge—
Ampere equation is not expected to be unique; the additional constraint that wu is
convex is needed in order to select a unique solution. A common remedy to these
challenges is to define a globally elliptic extension of the Monge—Ampeére equation
that automatically enforces solution convexity [19]. This can be accomplished by
considering the convexified Monge-Ampere operator

(2.3) F(x,u(z), Vu(z), D*u(x)) = —det T (D?*u(x)) + f(z), z€.

Here the modified determinant det™ should agree with the usual determinant when
operating on the Hessian of a convex function and should return a negative value
otherwise. The particular choice utilized in this article is

(2.4) det™ (M) = {det(M)’ M =0,
M (M)  otherwise,
where A (M) <--- <\, (M) are the eigenvalues of the symmetric matrix M.

In general, degenerate elliptic equations need not have classical solutions, and
some notion of weak solution is required. The Aleksandrov solution provides a geo-
metric interpretation in terms of the subgradient measure, which allows for very gen-
eral right-hand sides, including measures that do not have an associated density [17].
Though slightly less general, the viscosity solution has proved to be particularly use-
ful for this class of equations [9] and forms the foundation for most of the recently
developed numerical convergence proofs for the Monge-Ampeére equation. The idea
of the viscosity solution is to use a maximum principle argument to pass derivatives
onto smooth test functions that lie above or below the semicontinuous envelopes of
the candidate weak solution.

DEFINITION 2.2 (semicontinuous envelopes). Let u: € — R be a bounded func-

tion. Then for x € Q, the upper and lower semicontinuous envelopes are defined,
respectively, as

u*(z) =limsupu(y), u«(x)=Iliminfu(y).
y—x y—z
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DEFINITION 2.3 (viscosity subsolutions (supersolutions)). A bounded upper (lower)
semicontinuous function u is a viscosity subsolution (supersolution) of (2.1) if for ev-
ery ¢ € C?(Q), whenever u— ¢ has a local mazimum (minimum) at x € §), then

F (a,u(z), Vo(z), D¢ (x)) < (2)0.

DEFINITION 2.4 (viscosity solution). A bounded function u:Q — R is a viscosity
solution of (2.1) if u*(x) is a viscosity subsolution and u.(x) is a viscosity supersolu-
tion.

An important characteristic of many elliptic operators, which immediately yields
solution uniqueness, is the comparison principle.

DEFINITION 2.5 (comparison principle). The operator (2.1) satisfies a strong
comparison principle if whenever u is an upper semicontinuous subsolution and v a
lower semicontinuous supersolution, then u <v on Q.

We remark that the Dirichlet problem for the Monge-Ampeére equation (1.1),
(1.2) does satisfy a comparison principle under reasonable assumptions on the data.
However, this is no longer true when the right-hand side depends on the solution
gradient or when the second type boundary condition (1.3) is considered [19, 20].

2.2. Convergence framework. A fruitful technique for numerically solving
fully nonlinear elliptic equations involves finite difference schemes of the form

(2.5) Fh(z,u(x),u(x) —u(-)) =0

defined on a finite set of discretization points G C 2. Many key results on the con-
vergence of finite difference methods to the viscosity solution of a degenerate elliptic
PDE are based upon a set of criteria developed by Barles and Souganidis [1].

DEFINITION 2.6 (consistency). The scheme (2.5) is consistent with (2.1) if, for
any test function ¢ € C*1(Q) and x € Q, we have

(2.6) limsup  F"(y,é(y) + &, 0(y) — o() < F*(z,¢(z), Vo(z), D*¢()),

h—0t ,y—z,6—0

(2.7) liminf  F"(y,¢(y) + & ¢(y) — ¢(-)) > Fulz, ¢(z), Vo(z), D*¢(z)).

h—0t,y—z,6—0

To a consistent scheme we can also assign a local truncation error.

DEFINITION 2.7 (truncation error). The truncation error of a scheme (2.5) on a
set of admissible functions ® is a function T(h) such that for any ¢ € ® there exists a
constant C >0 such that

|F" (2, 6(2), ¢(x) = 6(-)) = F(x,¢(x), Vo(a), D*p(x))| < Cr(h)
for every x € G and sufficiently small h > 0.

DEFINITION 2.8 (monotonicity). The scheme (2.5) is monotone if F" is a non-
decreasing function of its last two arguments.

DEFINITION 2.9 (stability). The scheme (2.5) is stable if there exists some M >0,
independent of h, such that every solution u" satisfies ||u"||o < M.

These simple concepts lead immediately to convergence of finite difference meth-
ods, provided the underlying PDE satisfies a strong comparison principle.
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THEOREM 2.10 (convergence [1]). Let u be the unique viscosity solution of the
PDE (2.1), where F is a degenerate elliptic operator with a strong comparison prin-
ciple. Let u" be any solution of (2.5) where F" is a consistent, monotone, stable
approzimation scheme. Then u" converges uniformly to u as h — 0.

This result does apply to the Monge—Ampeére equation (1.1) with Dirichlet bound-
ary conditions (1.2) under mild assumptions on the data. However, many other
Monge-Ampere equations of interest do not possess the strong comparison princi-
ple required by the theorem. In recent years, the convergence proof has been adapted
to include discontinuous solutions of the nonclassical Dirichlet problem [19] and the
second boundary value problem [3, 5, 20].

2.3. Wide stencil methods. Several monotone finite difference approximations
have been proposed for the Monge-Ampere operator [2, 5, 8, 16, 27]. These hinge
upon different reformulations of the Monge-Ampere operator, which typically take a
variational form

(2.8) det(D?*u) = min G (Upyuyy-- s Uy ) -
(v1,...,vK)EA

Here u,, denotes the second directional derivative in the direction v € R", A is
some admissible set, and G is a nondecreasing function. Generating a monotone
approximation then requires (1) an appropriate discretization of the relevant second
directional derivatives and (2) an appropriate discretization of the admissible set.

On a structured grid, where aligned points x, = +h*v, and x — h~v are available
for some h=,h* >0, a simple (negative) monotone approximation is

2h*u(x +htv)+ htu(z —h~v) — (W + h7)u(x)
h+h=(h* + h-)
=, (2) +O(hT —h7)+ O((hT)* + (h7)?).

(2.9) Dou(z) =

These approximations are typically allowed to have a wide-stencil flavor, with the
spacing h™, h™ being potentially larger than the characteristic spacing h of grid
points. See Figure 1. We also remark that in the special case of equispaced neighbor-
ing points (b =h7), such as on a uniform Cartesian grid, this reduces to the usual
centered difference approximation with second-order truncation error. Monotone ap-
proximations are also possible on unstructured grids, though they are typically less
accurate [15].
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Fic. 1. Wide finite difference stencils.
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The width of stencils required by the approximations of (2.8) is determined by
the discretization of the admissible set A. Optimal discretization of this set is itself a
nontrivial problem and evaluating (2.8) may involve minimization over a prohibitively
large set of candidate directions, particularly in three dimensions [21]. A typical
scaling for the maximal stencil width that optimizes truncation error is at least O(v/h)
[15], though in some cases it is not clear what the optimal choice is.

3. Integral formulation. In this section, we present an integral representation
of det(D?u(x)) which can be used to create a monotone discretizaton through the use
of quadrature.

To motivate this, we recall a well-known result about the integrals of multivariate
Gaussians:

(3.1) det(M) = 7" (/ e_”TM”dV) _2,

where M is a symmetric positive-definite n x n matrix.

This provides an alternate characterization of the Monge—Ampere operator if we
let M = D?u(x) be the Hessian of the potential function u. Provided u is strictly
convex, its Hessian is positive definite and we can write

-2
(3.2) det(D?u(z)) = " ( / e—vTDqudv) .

To express this in a form that is easily discretized, we convert to spherical coordi-
nates. Let 7 = |v] and © = v/r and denote by ugs = 97 D?u(x)d the second directional
derivative of u in the direction of . Then the Monge—Ampére operator in R™ can be
expressed as

n

oo -2
(3.3) det(D?*u(x)) =" (/ / pi—lemr uss drdV) .
vesn—1.J0

Integrating out the radius r, we obtain

(3.4) det(D?u(x)) = % ( /S . (ugo) ™™ 2dV) - :

For simplicity, the results in the remainder of this paper are presented in two
dimensions. However, they are certainly generalizable to higher dimensions. We
introduce the notation

0%u )
uge =55, V= (cos@,sin6)

and note that

Upp = Uh+m,04m-

Then we easily obtain the two-dimensional version of (3.4) in terms of polar coordi-
nates.

THEOREM 3.1 (integral representation). Let Q2 C R? be conver and u € C?(2) be
strictly convex. Then for every x € €,

(3.5) det(D%u(z)) = (1 /0 ! de) -

T ugg ()
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The characterization in Theorem 3.1 holds only when D?u(z) = 0. However, we
are also interested in degenerate cases where det(D?u(z)) = 0. In these cases, we
know that D?u(z) has at least eigenvalue equal to zero, and the integrand in (3.5)
becomes singular.

We introduce the following relaxation to approximate the integral in these cases:

(3.6) det .. (Du(z)) = (; /0 i de) -

max(ugg(x),e1)

This, in turn, is used to construct a relaxed version of the convexified Monge-Ampere
operator:

(3.7) det! . (D*u(z))=det., (D*u(x)) + Gn[lgn ){min(u(gg, €2)}.

€|0,m
Here we have represented \; (D?u) as min{ugg}, which is equivalent via the minimax
principle.

4. Quadrature scheme. In this section, we describe a very general framework
for utilizing the integral formulation (3.3) to produce a consistent, monotone approxi-
mation of the two-dimensional Monge—Ampeére equation. In section 5, we will describe
two particular implementations.

4.1. Approximation scheme. We introduce the following notation.

DEFINITION 4.1 (notation).

(N1) Q CR? is a bounded, open, convex domain with Lipschitz boundary OS).

(N2) G CQ is a finite set of discretization points x;, i=1,...,N.

(N3) h=sup,cqomingeg |z —y| is the spatial resolution of the grid. In particular,
every ball of radius h contained in Q contains at least one discretization point
Zi.

(N4) r > h is a stencil width associated to the grid.

(N5) 0< 6y <---<Op < is a finite set of angles discretizing [0,).

(N6) db; = 0,41 — 0; is the local angular resolution of the discretization, where we
define dfyr =0p+ 7 — 0y

(N7) df =max;—q, .. m{d0;} is the angular resolution of the discretization.

(N8) Q = —— is the quasi-uniformity constant of the angular discretiza-
min;—o,...,M d91
tion.
(N9) wq,...,wpr s a collection of nonnegative quadrature weights summing to

and satisfying
wy, > cdb

for some constant ¢ >0 that depends only on the quasi-uniformity constant.
(N10) €1 >0 and e2 > 0 are reqularization parameters associated with the grid.
(N11) M(z) C {1,...,N} is the set of neighboring indices for x € G N Q such that
for every j € N(z) we have 0 < |z; —z| <r.
(N12) Dggu(x) described in (2.9) has the form

Dogu(w) = Y a;(6) (ulx;) —u())

JEN (z)

for every x € GNQ, where all a; > 0.
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(N13) 79(r) is the truncation error of the finite difference scheme Dggu for ap-
proximating the second directional derivative ugg on the admissible set ® =
C?1(Q).

(N14) 7pp(r) =max;=1,. am To,(r) is the mazimal truncation error of the finite dif-
ference approximations.

(N15) 7g(d0) is the truncation error of the quadrature scheme

M
Z wzf(ez)
1=0

for approzimating the integral [ f(0)d0 on the admissible set ® = {f €
C>=([0,7]) | f is periodic}.

Then we propose the following scheme for approximating the convexified Monge—
Ampere operator at interior points x € G N Q.
(4.1)

wy

h iy (1 -
G (I,U(IE),U(I) ’ZL( ))* Z ( ) 61} i min {’Deieiu(x)7€2}'

7 <= max{Dy,p, u(x =0,...,M
1=

4.2. Convergence. We now provide conditions under which the scheme (4.1)
is consistent and monotone. As an immediate consequence, it fits directly into the
convergence proofs developed in [3, 5, 16, 19, 20, 29].

THEOREM 4.2 (monotonicity). The approxzimation scheme (4.1) is monotone.
Proof. We note that the operator that appears in (4.1) can be written in the form

-2
M

1
h
G"(z,u,2)=— - E - Z —i:g}.ln g @ij2j, €2 0

A azjzja 61}
i=0 JeN (@) JEN (z)

where z; = u(z) — u(x;) and the a;; are nonnegative by the (negative) monotonicity
of the approximations Dy, g, u(x).
Let 6 € RN have nonnegative components. We notice that

— Z a;j(z; +0;) Z a;j2;.
JEN () JEN (z)
Since the max and min operators preserve monotonicity and the weights w; are

nonnegative, we can immediately conclude that

GM(z,u, 2+ 6) > G (x,u, 2).

Since G" has no dependence on its second argument, this completes the proof of
monotonicity. ]

THEOREM 4.3 (consistency). Consider discretizations G" of Q such that the
corresponding parameters
€1 7rp(r)
PR
as h — 0 and the corresponding quasi-uniformity constants @ are bounded uniformly.
Then the approxzimation scheme (4.1) is consistent with the convezified Monge—Ampére
operator (2.3).

7o (df),e2 =0
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We will break this result into three separate cases (Lemmas 4.4-4.6), depending
on the sign of A\;(D?u), the smallest eigenvalue of the Hessian. We note that the
scheme G"(x,u,z) appearing in (4.1) has no dependence on the first two arguments,
which allows us to simplify slightly the verification of consistency.

LEMMA 4.4 (consistency with positive eigenvalues). Under the assumptions of
Theorem 4.3, let uw € C*1(Q) and consider x € Q such that \y(D?u(z)) > 0. Then the
scheme (4.1) satisfies

lim  G"(y,uly),uly) - u() = —det* (D?u(z)).

yeG—x,h—0

Proof. Since the smallest eigenvalue A\ (D?u(x)) is strictly positive and u € C?1,
we are assured that

M (Du(y)) > %Al(DQU(x)) > en + O(ren(r), ke{l,2),

for all y sufficiently close to z and sufficiently small €1, €2, 7. Then using the consistency
error in the components of this scheme, we can compute

y)vu(y) —ul- )
1 H w: -2 .
; ; maX{De 0; ’LL( ) 61}) o Z:I&lll}M {Deieiu(y)7 62}

Wi mln {ue 0, (Y)+O(trp (1)), €2}

G"(y, u(
1Y -
B Egomax{uag( )+ O(rep(r )),q}> =0,

i
i
i

Since wug, g, (y) is continuous in # and bounded away from zero, the two sums in
the last line can both be interpreted as consistent quadrature schemes. Thus we can
further estimate

G () uls) =) == (3 [ s dh + Orolah) +7e0(r))) e

T Jo uee(y)

Recalling now the integral formulation of the Monge-Ampere operator (3.5), we
conclude that

G" (y, u(y), uly) — u(-) = —det(D*u(y)) + O(1q(d0) + Trp(r) + €2).

Since u € C?! and all eigenvalues of the Hessian are strictly positive, we conclude
that

G"(y, u(y), uly) — u(-)) = —det* (D?u(x)).

lim
yeG—x,h—0 |

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/17/23 to 128.235.12.252 by Brittany Hamfeldt (bdfroese@njit.edu). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A1106 JAKE BRUSCA AND BRITTANY FROESE HAMFELDT

LEMMA 4.5 (consistency with a negative eigenvalue). Under the assumptions of
Theorem 4.3, let uw € C*1(Q) and consider x € Q such that \(D?u(z)) <0. Then the
scheme (4.1) satisfies

lim  G"(y,uly),uly) - u() = —det* (D?u(z)).

yeG—x,h—0

Proof. Suppose without loss of generality that the coordinates are chosen so that
the eigenvector corresponding to the smallest eigenvalue \;(D?u(y)) is v1 = (1,0).
Then the second directional derivative of u in the direction 8 can be expressed as

ugo(y) = A1 (y) cos® 0 + Aa(y) sin” 6.

Let us consider in particular the first angle 8y < df in the angular discretization.
Since u € C%1, the second directional derivative of  in this direction satisfies

UGy 00 (y) = )\1(D2u(y)) + O(d92)
=\ (D?u(z)) + O(d6* + |z — y|).

Since A1 (D?u(z)) is strictly negative, it is certainly the case that for y sufficiently
close to x and small enough r,df,

Daoyoou(y) = ugy0,(y) + O(Trp(r))
=X (D*u(x)) + O(rep(r) + db? + |z — y|)
<0
< €k, ke {1, 2}.

Now we perform a crude estimate on the sum in (4.1) by considering only a single
term:

| M -
w;

0| =

= <7r Z max{Dy,s,u(y), 61})

—2
S s e
~ \m max{Dy,g,u(y), €1}

7T2€1 2
=2
Wy
7T2€12
< .
c2dp?
Using the same estimates on the discrete second directional derivatives, we can
also estimate the term

_min (Do, ea} = min A (DPu(e) + Olrpp(r) + d6° + o — ) 2}
=M (D*u(z)) + O(tpp(r) + do* + |z — yl).
By combining these estimates and recalling that €;/df — 0, we conclude that
lim  G"(y, u(y), uly) — u(-)) = A (D?u(x))

y€G,h—0
= —det™ (D%u(x)). o
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LEMMA 4.6 (consistency with a vanishing eigenvalue). Under the assumptions of
Theorem 4.3, let uw € C*1(Q) and consider x € Q such that \1(D?*u(z)) =0. Then the
scheme (4.1) satisfies

lim  G"(y,uly),uly) - u() = —det* (D?u(z)).

yeG—x,h—0
Proof. By the regularity of u, we know that
M(D?u(y)) = O(|z — y)).

Suppose without loss of generality that the coordinates are chosen so that the
eigenvector corresponding to the smallest eigenvalue A\ (D?u(y)) is v1 = (1,0). Then
the second directional derivative of u in the direction € can be expressed as

ugo(y) = M (y) cos® 0 + Aa(y) sin® 0.

Now we are going to estimate the sum in (4.1) by considering only the angles
that are close to zero, which corresponds to the direction of the eigenvector v;. To
this end, we define

s=max{dl,/|z — y|}

and let K =O(s/df) > 1 be the number of nodes 6y,...,0k_1 in the interval [0, s].
We notice that for any ¢ =0,..., K — 1 we have

maX{Deieiu(y)7 61} < Ug,0,; (y) +TrFD (7‘) +e€
=A(y) cos? 0; + s (y) sin6; + Trp (r)+e
=O(lx —y|+ s>+ Trp(r) + €1).

Then using the lower bound w; > cdf allows us to obtain the following bounds
on the sum:

M w K-1 w
3 > 3
iz:; maX{Deieiu(y>761} - ; maX{Deieiu(y>761}
cdf
>K
T O(r—y|+s2+TED(T) +€1)
5 cdf
CdOO(|x —y| + 52+ Trp(r) +€1)
cs

- Oz —y| + 82 +7rp(r) +€1)

This allows us to obtain bounds on the following value appearing in the scheme:

M -2 2 4 2 2
EZ o <oyl &  Teol] | o
7 4~ max{Dg,g,u(y), €1} - 52 52 s? s? )]
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Recalling from the definition of s that s > df and s > +/|x —y| allows us to
simplify this as follows:

1 ”
W;

o< =

N <7T z; ma’X{DGiGiu(y)v 61}>

|z —y[® 2 mrp(r)? | &’
<Ol ———+m do — —_— 1 — .
- <|a:y Fmax{dd fe =y} + =+ g

Thus under the conditions of Theorem 4.3, we find that

| M w. -2
li — L =0.
YEG— T h—s0 <7r Zo maX{Dgigiu(y),€1}>

1=

We also observe that

€2 > minM {Deiei u(y)7 62}

=0,

:giiﬁM{/\l(DZU(y)) c0s20; + Ao (D?u(y))sin? 0; — O(rrp (1)), 2}

V

> BninM{—(’)(|x —yl) cos? 0; + Ao (D?u(y)) sin?6; — O(1rp(r)), €2}

.....

\%

—O(lz —yl+7rD(7)),
which implies that

li i Dy .o. =0.
oo, o min {Do,pu(y),e2} =0

We conclude that

G"(y,u(y), u(y) —u(-)) =0,

lim
yeG—x,h—0

which coincides with the value of

det™ (D?u(z)) = A (D?*u(x)) A2 (D?u(z)) = 0. O

4.3. Quadrature rules. In designing a scheme of the form (4.1), the choice of
quadrature rule

M T
> w0 /0 £(0)do

is a key factor that will influence the overall cost and accuracy.
A simple choice is the trapezoid rule, which utilizes the weights

Og+m— 0y
s =0

(4.2) w; = %, i=1,...,M—1,
77_9MQ*1+907 Y
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As required, the weights are all positive. As required by (N8) (Definition 4.1),
they can also be bounded from below in terms of the quasi-uniformity constant via

_ db;—1 +db; S db

In general, the truncation error of the trapezoid rule is 7¢(df) = d6*. However,
in the special case of a uniform angular discretization (df; = df for all i =0,..., M),

the trapezoid rule is spectrally accurate. In this case, the truncation error satisfies
T (df) < dbP for every p >0 given a C™ integrand.

Higher-order quadrature is also possible on nonuniform angular discretizations.
In fact, as we will demonstrate in section 5, this can be exploited in order to design
approximation schemes that simultaneously improve the formal consistency error and
reduce the required stencil width.

As an example, we consider Simpson’s rule. Suppose that M + 1, the number of
angles in the angular discretization, is even. Then Simpson’s rule takes the form

n (M-1)/2
/of(e)dm 2 T HIKQ_ d202+-1)f(92i)
(4.3) =0 !

(dO2; + d921‘+1)2 o
~— = 77 f(# i 2—— 0 7 )
0sd0s 11 J(O2i41) + dboi 1 f(02i42)

where we identify 043711 =0; + 7 and df; = df;4 41 because of the periodicity of
f

Rearranging, we find that the corresponding quadrature weights are

(d6;_1 + dbh;)?

7 j odd,
(44) w; = 6d0;_1d0;

Do) Wi i (o iy | dbja b () dOima

6 do), 6 doj—1)’ '

The truncation error associated with Simpson’s rule is 7¢(df) = d6*.

However, unlike with the trapezoid rule, these quadrature weights are not au-
tomatically positive. Instead, positivity is guaranteed only if the quasi-uniformity
constant of the angular discretization is not too large. In particular, we note that
@ < 2 is sufficient to guarantee that

df;q de
2——21=—>2-—>2-Q>0.
dtgj - dej - @
Under the same assumption on quasi-uniformity, we use the fact that
de
— <df; <db
Q~ 7~

to verify that

[ (2d0/Q)* 2d0/Q o \\_ . [ 4 2
wjzmm{ 6dez > 6 <2_dH/Q)}_mm{?@?”?@(z_Q)}de’

as required by (N8) (Definition 4.1).

Similar results can be obtained using other higher-order quadrature schemes,
which will place differing requirements on the quasi-uniformity constant ¢ in order
to ensure positivity of the weights.
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4.4. Truncation error. As an immediate consequence of the consistency proofs
(in particular, Lemma 4.4), we obtain the formal truncation error of the scheme as
points where the function is “locally” strictly convex. This will be used to inform and
optimize the particular implementations of this method in section 5.

COROLLARY 4.7 (truncation error). Under the assumptions of Theorem 4.3, let
u € C*YQ) and consider x € Q such that A\;(D?u(z)) > 0. Then there exists a
constant C' >0 such that for all sufficiently small h >0,

‘Gh(x,u(;v)m(x) —u(-)) + det+(D2u($))‘ <C(rg(do)+ trp(r) +€2).

We are also interested in approximating functions that are convex, but not nec-
essarily strictly convex. In this case, the integrand in (3.5) is singular and we cannot
directly use the formal truncation error 7o (df) of the quadrature rule. However, we
can easily bound the resulting sums directly in the case where at least one eigen-
value A1 (D?u(z)) is known to vanish. We consider two separate cases: (1) the fully
degenerate case (A1(D?*u(z)) = Xo(D?u(x)) = 0) and (2) the semidegenerate case
(M (D?u(x)) =0 < Ao (D?u(z))).

LEMMA 4.8 (truncation error (fully degenerate)). Under the assumptions of The-
orem 4.3, let u € C*1(Q) and consider x € Q such that \1(D*u(z)) = A2(D?*u(x)) =0.
Then there exists a constant C >0 such that for all sufficiently small h >0,

’Gh(x,u(x),u(x) —u(-)) + det™ (D*u(x))| < C (trp(r)* +e1).

LEMMA 4.9 (truncation error (semidegenerate)). Under the assumptions of The-
orem 4.3, let u € C*1(Q) and consider x € Q such that A (D?*u(x)) =0 < Aa(D?u(z)).
Then there exists a constant C >0 such that for all sufficiently small h >0,

TFD (T’)2 612

|Gh(x,u(x), u(z) —u(-)) + det+(D2u(:c))| <C (d92 + a0 + §7E) + 62> .

Finally, we observe that with appropriate symmetry in the discretization, our
quadrature-based schemes can sometimes result in even better formal consistency
error than that predicted by Corollary 4.7. This observation motivates one of the
implementations (on hexagonal grids) that will be introduced in section 5.

We consider the special case of applying the trapezoid rule using equally spaced
angles (df; = df for all i =0,..., M), which is spectrally accurate as discussed pre-
viously. We suppose that we use grid-aligned differences, which may be centered or

uncentered, to discretize the finite difference operators. That is, the error in (2.9)
takes the form

1
Deioiu = ug,;0, + §u9i9i9i (T(gl) - T(9i+‘ﬂ')) + O(Tz)ﬂ

where |r(6;)] < r for all ¢ =0,..., M. Notice that by symmetry and periodicity, we
have that

Uotr,04m = UGH, Uotr,04m 047 = —Ugos, T(0+2m)=1(0).

For ease of notation, we extend the indexing such that 6, p;41 =6;+7 fori=0,..., M.
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p=1,M=2 p=1,M=4 p=1,M=6
r(0) = 2h

r(03) = 2h
2 () = h

r(f5) =2h

(b)

F1G. 2. Ezamples of sequences of stencils corresponding to (a) p=1 and (b) p=2.

Now we assume there is sufficient symmetry in the grids G" so that, for some fixed
p € N and every h >0, we have r(6,1,) —7(0;4p+m) = —(r(0;) —r(; +7)). Note that
this condition requires that M + 1, the number of terms in the angular discretization
of [0,7), is an odd multiple of p for each grid G" and corresponding stencil. See
Figure 2. We argue that if A\;(D?u) > 0, we can expect the formal truncation error of
(4.1) to be O(1g(df) + r* + €2) despite the fact that the underlying finite difference
approximations have only O(r) accuracy.

We first note that under this symmetry condition, there are at most p possible
values that |r(6;) — r(6; + 7)| can take. To access these, we rewrite the indices i =
0,...,2M+1 in the form ¢ = kp+j where j =0,...,p—land k=0,...,(2M+2)/p—1.
Then by p-periodicity, we find that

7 (Okp+5) = r(Okpj +m)| = [r(0;) —r(6; + )|

Because the sign alternates every p steps, we can further characterize

"(Okpts) = 7(Orprs + ) = (=1)F(r(60;) = r(0; + 7)),

which can take at most 2p distinct values.
In the setting A;(D?u) > 0 (so that all ugg > A1 (D?u) > 0), we have that for
sufficiently small r,e > 0, the summation appearing in (4.1) can be expressed as

M M

D ey = 1 1
—max{Dyg,u,er} M+ 1 ugg, + guo,0.0,(r(0;) — 1(0i1r)) + O(r2)

M

M
T 1 T ug,0,0,(r(0;) —r(0; + ) 9
— _ 1YY O
M+1 ; Ug,0, 3(M+ 1) ; Up, 0, + (’I“ ),

where the last line here follows from a binomial expansion.
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Now we exploit symmetry and the fact that 1/ugg is smooth (since A\;(D?u) > 0)
to re-express this as

M

> —
- max{Dy,p,u, €1 }

B s M
:/ Lcl@—&-(?(TQ(d@)—i—7"2) — T Z (Ue,-eiei(r(ei) —r(i +m))
0

Uge G(M + 1) i—0 Up,;0;
_|__u9i+7r,91:+7r,91+7r(7"(9i +2m) —7r(0; + 71')))
UG +,0;+
2M+1
i 1 s Up. 6.0 (7"(074)77"(01+7T))
= [ —df+O(1g(df) +r?) — :
/0 Uge ( Q( ) ) 6(M+1) Z Ug,6,

Next, we utilize the periodicity of the terms r(6;) —r(0; +7) with respect to shifts
of 2p in the index. This allows us to rewrite the sum as

M

> Dy
— max{Dy,9,u,€1}

1
:/ —df + O(1g(do) + %)
o Ueo

—1(2M+2)/p—1
- Z ZP U0 00y Oy (— ) (r(0;) = 7(0; + 7))
6(M +1) P

j=0 UOpkt50pits

1

= / ——df + O(1g(dB) +r?)
0 Ueo

o SRR (B T

J J
op j=0 M+1 koven  Opk+iOpt;
__™ UphtOphtsOphts
M1 a0y

Now we notice that each of the sums in the last line can be interpreted as the
trapezoid rule applied to integral
2w
U
/ %49 =0
o Uss

using equally spaced angles with df = 2pdf. Thus formally, we expect that

M

w; ™1
= [ —df + O(rq(df) +r* +r7q(do)).
;max{Deieiu,el} A Ugp ( Q( ) Q( ))

Substituting this into the quadrature scheme (4.1) for the Monge—Ampére equa-
tion, we obtain an expected consistency error of O(1g(df) +r? + €3), which is better
than the truncation error predicted by Corollary 4.7.

5. Implementation. We now present three specific implementations of a quad-
rature scheme based upon the formulation of (4.1).
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The first two implementations rely on a hexagonal and a triangular tiling of
the domain, respectively. The underlying structure of the grid allows us to design
an angular discretization of [0,27] involving 12 equispaced angles. The use of the
trapezoid rule then leads to a compact finite difference stencil that in practice achieves
spectral accuracy in the angular parameter df (which is held fixed).

The third implementation relies on a simple Cartesian grid combined with Simp-
son’s rule for quadrature. As required by the convergence analysis (Theorems 4.24.3),
the stencil does grow wider as the grid is refined. However, the optimal stencil width
is asymptotically narrower than that required by existing monotone schemes, while
simultaneously improving the order of the formal consistency error [15].

5.1. Discretization of domain. The implementations we describe rely on a
discretization of the domain that consists of two components: (1) a structured mesh
restricted to the interior of the domain and (2) a list of boundary points chosen to
preserve the desired angular resolution. Hand in hand with this grid, we include the
list of angles 6; used to discretize the integral in (3.5).

We begin by presenting an algorithm for discretizing the domain, which applies
to all types of mesh structure (hexagonal, triangular, and Cartesian) considered in
this work. In the subsequent subsections, we will fill in the remaining details about
each specific implementation of the quadrature scheme.

As a starting point, suppose we are given a structured mesh M that tiles R? and
a set of angles 0 < 0y < --- < #p < mw. Moreover, the angles are chosen such that for
every x € M and j=0,..., M, we have

x+ rji(m)(cosej,sinej) eM

for some r]i (z) > 0. That is, we are able to identify neighboring grid points aligned
with all the directions in our angular discretization. To this underlying grid, we
associate a stencil width defined by

r:max{rf(x)|x6M;j=0,...,M}.

From this tiling of R?, we generate a set of discretization points G by (1) including
all mesh points lying in the interior of the domain © and (2) supplementing with points
in 0f2 in order to preserve the existence of grid points perfectly aligned with the given
set of angles. That is, given any interior node t € GNQ and 7=0,..., M, we have

x+ rji(a:)(cosf)j,sinf)j) €g

for some rji(x) > 0.

As an example, consider the case where the domain € is a square, M is either
a hexagonal or a triangular tiling of R?, and the desired angles are §; = %r for
j=0,...,5. The resulting meshes are pictured in Figure 3. An example involving an
underlying Cartesian grid is shown in Figure 4.

The meshing of the domain can be easily accomplished if the domain {2 is repre-
sented through the signed distance function dgq () to its boundary 9. See Algorithm

5.1.
5.2. Implementation on hexagonal or triangular grids. The first imple-
mentation we suggest is motivated by a desire to exploit the spectral accuracy of the

trapezoid rule when applied to a uniform discretization of the angles (df; = df for all
j=0,....,M).
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(d) (e) ()

F1G. 3. (a) A hexagonal mesh, discrete set of angles, and neighboring mesh points aligned with
those angles. (b) An example of boundary points that are added to the grid. (c) Meshing of a square
domain using a heragonal mesh augmented with boundary points. (d) A triangular mesh, discrete
set of angles, and neighboring mesh points aligned with those angles. (e) An example of boundary
points that are added to the grid. (f) Meshing of a square domain using a triangular mesh augmented
with boundary points.
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Fic. 4. (a) A stencil with L' width r = 3h on a Cartesian grid and (b) an example set of grid
points used to discretize a disc.

In order to obtain as many equispaced angles as possible, we propose to let the
underlying mesh M be a tiling of R? with either regular hexagons or equilateral
triangles. Then we can achieve a grid-aligned scheme using the uniform angular
discretization 6; = &~ for j=0,...,5. See Figure 3.
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Algorithm 5.1 Discretization of the domain ).
1: g(—{.%‘e./\/l |daQ(.’L‘)<O}

2: for x € G such that 0 < |dapq(x)| <r do

3: for j=0,...,M do

4: 7% < min{h > 0|z & h(cosb;,sin ;) € M}
5: if 7% (cosf;,sin6;) ¢ G then

6: t*+ < Positive solution of

doq(z £t(cosb;,sinb;)) =0

7 G« GU{z £t(cosb;,sinb;)}
8: end if

9: end for

10: end for

The resulting angular resolution is df = §. Applying the trapezoid rule (4.2), we
obtain equal quadrature weights w; = %.

We notice that fixing df also has the effect of fixing the stencil width r = O(h).
We recall that second directional derivatives in the directions v = (cosf,sinf) are

discretized by (2.9) as follows:

_Jhu(z+htv)+htu(z —hmv) — (BT + b7 )u(x)
Duyulw) =2 Wb (ht +h-) '

In general, the use of narrow stencils on a hexagonal mesh leads to stencils that are
aligned but not necessarily centered (h* # h™); see Figure 3(a). Thus the truncation
error of these finite differences satisfies 7pp(r) = h. An improvement to centered
stencils with 77p(r) = h? is possible by allowing each stencil to extend across the
width of two hexagons. However, we also note that the compact stencils illustrated in
Figure 3(a) satisfy the symmetry condition discussed in section 4.4 with p =2. Thus
we choose to limit our implementation to the uncentered compact stencils with the
expectation (which is confirmed by numerical experiments) that the resulting scheme
for approximating Monge—Ampere will nevertheless display second-order accuracy in
the spatial resolution parameter. The use of narrow stencils on the triangular mesh
leads to stencils that are both aligned and centered so that 7pp(r) = h? automatically;
see Figure 3(d).

Finally, we choose the regularization parameters €; > 0, €5 > 0. From the perspec-
tive of consistency error, choosing these to be as small as possible (e; < h, e2 = 0)
might seem ideal. However, allowing e < €; is undesirable for many solution methods
such as Newton’s method. In the regime where ex] < D?u(x) < €11, the resulting
scheme F" would be insensitive to perturbations in u and the corresponding Jacobian
VF" would be singular. Moreover, larger values of €1, €5 are preferable in this regime
since increasing these parameters tends to improve the conditioning of the scheme
and its Jacobian. With these factors in mind, we suggest a choice of €; = €3 = h?,
which is smaller than the other terms appearing in the truncation error and will not
impact the overall order of scheme.

From Corollary 4.7, the overall formal truncation error of the quadrature scheme
(4.1) is O(h+dbP) for every p > 0, though in our implementation df is held fixed and
the scaling constant depends on p.
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We notice that with a fixed stencil, the truncation error 7¢(df) of the quadrature
scheme does not converge to zero. Nevertheless, at points = € 2 where u is smooth, we
expect the overall truncation error of the scheme to be dominated by the remaining
terms 7pp(r) and e unless the grid is very highly resolved. Thus in principle the
scheme (4.1) is not consistent. It is certainly possible to create wider-stencil extensions
of this as h — 0, though at the expense of a uniform angular discretization. However,
in practice we expect that these wider stencils will not need to be engaged until
the grid spacing h is very small. Thus we do expect to see this scheme outperform
lower-order schemes (O(h?), p < 2) for most practical refinements of the grid when
solutions are smooth enough. Indeed, this is what we observe for all but the most
singular and/or degenerate of our computational examples; see section 6.

5.3. Implementation on Cartesian grids. The second implementation we
propose is based upon a uniform Cartesian grid. In order to achieve true consistency
and convergence, we will allow for stencils that grow wider as the grid is refined.
To maintain grid-alignment, we are then forced to utilize a nonuniform angular dis-
cretization. This prevents the use of a spectrally accurate trapezoid rule. However, by
exploiting higher-order quadrature schemes, we can still produce monotone schemes
with improved consistency error on more compact stencils.

Our particular implementation will perform quadrature using Simpson’s rule, as
outlined in (4.3)—(4.4). The truncation error of this quadrature rule is 7¢(df) = d6*.

Given a desired stencil width r = Kh for some K € N, we select an angular
discretization by considering neighboring grid points that are a distance r from the
reference point z as measured by the L' norm.

Specifically, we consider a set of angles 8y < --- <y, where M =2K — 1 is odd.
Letting h be the standard grid point spacing in the Cartesian grid, we let r; and 6;
be the polar coordinates of the grid points

(5.1) rj(cosb;,sinb;)=h(K —j,K —|K —j|), j=0,...,2K —1.

See Figure 4.

An important consequence of this choice of angles is that it has a uniformly
bounded quasi-uniformity constant, as required for consistency (Theorem 4.3). More-
over, as df — 0 the ratios

dbj+1
do;

This ensures that the quadrature weights (4.4) are strictly positive, as required for
monotonicity (Theorem 4.2).

LEMMA 5.1 (quasi-uniformity). The angular discretization defined in (5.1) has a
uniformly bounded quasi-uniformity constant.

Proof. We bound the ratio df/df; for j = 0,...,K. The remaining cases are
identical by symmetry.
Notice that the local stencil width is given by

This is bounded by
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We can also compute the local angular resolution via

Sindaj = sin(9j+1 — Gj)

=sinfj4q1cosf; —cosb;iqsinb;
h? ‘ . . ,
= (G +D(E = j) = (K =5 —1)j)
TiTi+1

_ Kh?

TiTi+1

Bounds on r; imply that for every j,
sin df < 2/K
sindf; ~ 1/K

Thus the upper bound on the quasi-uniformity constant ) converges to 2 as

K — oo. a
LEMMA 5.2 (ratios of angles). The angular discretization defined in (5.1) satisfies
do;
1
df;ji1
as K — oo.

Proof. As in the proof of the previous lemma, we can use symmetry to limit
ourselves to considering 7 =0,..., K and compute

sindd;  rj0  (K—j—2)24(j+2)? 14 8 — 4K + 8j
sindeH_ ’I"j o (K—])2+]2 N (K_])2+]2
We notice that

|8 —4K +8j| = 20K
< )
(K =7+~ K22
which converges to zero as N — oo.
Therefore

sin dHJ
sin d9j+1
as K — oo. d
From the proofs of the previous lemmas, we notice that df = O(1/K). Since we

initially chose the search radius r = Kh, we find the following relationship between
the grid parameters described in Definition 4.1:

o-o(?)

The uniform Cartesian grid allows us to use centered differences to discretize the
second derivatives (2.9), so that 7pp(r) = 72. We recall also that Simpson’s rule
satisfies 7¢ (df) = db*.

Combining these terms, we find that the formal truncation error of the quadrature

scheme (Corollary 4.7) is given by

O(1g(d0) +trp(r) +¢) = O Jrt + 1% + ).
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An optimal choice is obtained by the stencil width
r=0(h*?),

which leads to an angular resolution of df = O(h'/?). Choosing € <r? = O(h*/3), we
find that the formal consistency error of the scheme is given by

O(h*3).

Moreover, these choices satisfy all the requirements of consistency (Theorem 4.3).

We should remark that in a small band of radius r near the boundary of €2, it
may not be possible to use centered finite differences. Instead, we must fall back on
uncentered differences in (2.9) (b # h™) so that 7pp(r) = = O(h?/3). This reduces
the overall truncation error of the scheme to O(h?/?). However, we emphasize that
this occurs only in a narrow band, which vanishes as A — 0. In our computational
experiments (section 6), we found that the reduced accuracy at a small number of
points had no impact on the global accuracy of the method.

We notice that with a careful selection of grid parameters, the quadrature-based
scheme can produce substantial improvements over monotone schemes such as the
work of [15], which requires a much larger stencil width » = O(v/h) and produces
a significantly worse truncation error O(\/E) This is possible because higher-order
quadrature rules allow for substantial improvements in the component of the error
coming from the angular resolution df, which can be made arbitrarily small with the
use of higher-order quadrature schemes.

The formal convergence of our quadrature scheme is superlinear in h, which is
of great value when the goal is to approximate solution gradients (which is common
in problems related to optimal transport). Moreover, higher-order quadrature rules
could be substituted in place of Simpson’s rule to provide even greater improvements
in both stencil width and truncation error. In general, a quadrature rule satisfying
7o(df) = hP can be combined with a stencil width r = h'=2/? to produce a scheme
with a formal truncation error of O(h?~4/?).

6. Computational results. In this section, we present numerical results for the
Monge-Ampere equation (det™ (D?u(x)) = f(z)) with Dirichlet boundary conditions
(u(z) = g(x)). To accomplish this, we solve a system of the form
(6.1)

P (@), (@) — () = {G:«v,uh(x),uh(x) —ut() + fl@), wEGNQ
u"(z) — g(x), r€eGNo,

where G" is a consistent, monotone approximation of the convexified Monge-Ampere
operator.
We will compare the results of the following four schemes:

e the quadrature scheme on a hexagonal grid described in section 5.2,

e the quadrature scheme on a triangular grid described in section 5.2,

e the quadrature scheme on a Cartesian grid described in section 5.3,

e the method of [22], which relies on a variational formulation of the Monge—

Ampere operator,

V1~l/2:0 n

2
dett(D?u) = min Hmax{ul,jyj,O},
j=1
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discretized using centered differences on the Cartesian grid described in sec-
tion 5.3.

6.1. Numerical implementation. To discretize the domain using a Cartesian
grid (for either the quadrature or variational schemes), we begin with an underlying
N x N grid that contains the domain. To discretize the domain using a hexagonal
tiling, we begin with a tiling covering the domain that contains N points along the
vertical dimension, with (approximately) %N points along the horizontal dimension
at each fixed nodal value of y. To discretize the domain using a triangular tiling,
we begin with a tiling covering the domain that contains N points along the vertical
dimension, with (approximately) N points along the horizontal dimension at each
fixed nodal value of y. The grids are then restricted to the interior and augmented
with boundary points using Algorithm 5.1. In every case, we have N ~ %, where the
constant k depends only on the size of the domain.

Each of the three discretizations we consider results in a nonlinear algebraic sys-
tem of equations. We solve these using a damped Newton’s method

VF"un)yn = —(f + F"[un)),

Up+1 = Up + AnYn,

where the value of «, is chosen at each step to ensure that the residual r, =
| F*un] + flloo is always decreasing. We run Newton’s method until the residual
falls below the threshold r, < h? since, for a more degenerate/singular example,
quadratic convergence is not always observed until the residual is very small.

To obtain an initial guess ugy for the Newton solver, we first solve the follow-
ing Poisson equation, which is obtained through linearization of the Monge—Ampere
equation [4, 16]:

Au(z)=+/2f(z), €,
u(z) =g(x), x € 0N.

The solution process can be accelerated slightly by first solving the linearized
problem (6.2) on a coarse N x N grid, solving the nonlinear problem via Newton’s
method on the same coarse grid, then interpolating onto the desired refined grid to
initialize the final Newton solver.

6.2. Representative examples. We test our methods using four representative
benchmark examples. For simplicity of comparison, each example is posed on a square
domain. However, we should note that this is not a simplifying assumption for the
quadrature method, which performs equally well on general convex domains.

The first example is defined on the domain = (—1,1)? and has a smooth, radially
symmetric solution u € C*°(Q):

|x/”

(62) ) =exp( 5 ) 700= (17 Joxp(ixl).

The second example is defined on the domain = (0,1)? and includes a “fully
degenerate” region where both eigenvalues of D?u are 0. The solution u € C*(Q) is
only continuously differentiable. We introduce the constant x¢ = (0.5,0.5) and let

(6.3) u(x) =

N

((Jx = x0| — 0.2)7)*, f(x):<1 0-2)+.

 x—xq
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FiG. 5. Numerical solutions for (a) C? example, (b) C1 example, (c) exzample with gradient
blow-up, and (d) semidegenerate example.

The third example has domain € = (0,1)2, and the solution is twice differentiable
in the interior of the domain. However, the solution gradient becomes unbounded
near the boundary point (1,1):

(6.4) ux) = —\/2— %, flx)=2(2—[x*)""

)2 and the solution u €
L and let

The final example is defined on the domain Q = (—1,1
1
(51— %)

C?(Q) is in fact a polynomial. We introduce the vector § =

(6.5) u(x)=(7-x)*  f(x)=0.

The solution is “semidegenerate” on the entire domain, with D?u(x) having one pos-
itive and one vanishing eigenvalue at each point in the domain. This fully semidegen-
erate example, while somewhat artificial, should be viewed as an “edge case” for the
quadrature scheme since the truncation error degrades in this setting (Lemma 4.9).

See Figure 5 for graphs of the solutions u, which were obtained using the Cartesian
quadrature scheme.

6.3. Numerical results. The maximum error for each test is displayed in Fig-
ure 6. We find that the hexagonal and triangular implementations display effectively
quadratic convergence for smooth enough tests and small enough values of N. As ex-
pected, the error eventually levels off for less regular examples and larger values of N,
though these implementations continue to outperform the others over a large range
of refinements. The Cartesian implementation of the quadrature scheme displays the
expected superlinear O(N —4/ 3) convergence; surprisingly, this continues to be true
even for the less regular examples. On the semidegenerate example, we observe non-
monotonic convergence of the Cartesian scheme as the grid is refined. This is likely
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108

108

(c)

FiG. 6. Convergence tests for the (a) C? ezample, (b) C1 example, (c) ezample with gradient
blow-up, and (d) semidegenerate example.

due to the fact that the parameter ¥ is non-grid-aligned; a coarser resolution can, by
chance, include an angle that aligns closely to 7, leading to improved accuracy.

Comparison with the variational scheme demonstrates the clear superiority of the
quadrature-based method that is made possible by reducing the angular component of
the error. Because the variational implementation has limited accuracy in the angular
component (truncation error is O(d#? + r?)), while df itself goes to zero very slowly
in the wide-stencil schemes (df = O(h/r) > h), solution error is at best O(h).

The improvement achieved by the quadrature schemes becomes even more pro-
nounced when the improvement in computational cost is factored in. See Figure 7
for plots of solution error as a function of computation time. It is clear that for
smooth, and even moderately nonsmooth, examples, the hexagonal and triangular
implementations provide the best results despite the fact that they are not techni-
cally consistent in the limit N — co. On the most singular examples (e.g., blow-up
in the gradient), the Cartesian implementation takes over as the most efficient. All
quadrature schemes dramatically outperform the variational scheme, which requires
a much wider stencil (r = O(v/h)) to optimize truncation error. The only exception
to this trend is the semidegenerate example. As noted before, this can be viewed
as an “edge case” where the variational scheme will sometimes perform unusually
well because (1) the centered finite difference approximations are exact on quadrat-
ics and (2) chance near-alignment between the eigenvectors of the Hessian and the
underlying Cartesian grid can drastically reduce the truncation error. Indeed, the

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/17/23 to 128.235.12.252 by Brittany Hamfeldt (bdfroese@njit.edu). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A1122 JAKE BRUSCA AND BRITTANY FROESE HAMFELDT
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FiG. 7. Efficiency results for the (a) C? example, (b) C1 example, (c) example with gradient
blow-up, and (d) semidegenerate example.

performance of the Cartesian quadrature scheme is still good even on this challenging
test problem.

7. Conclusion. In this paper we presented a new integral representation of the
Monge-Ampere operator. We showed that this can be combined with different quad-
rature rules to produce a family of monotone finite difference methods. Importantly,
these methods fit directly into existing convergence proofs for the Dirichlet [16, 19,
27, 29] or optimal transport problems [3, 5, 20].

Existing monotone methods for the Monge—Ampeére equation rely on wide finite
difference stencils. The resulting truncation error depends upon several factors: the
typical spacing of grid points h, the width of the stencil r, and the angular resolution of
the stencil df. The use of higher-order quadrature schemes allows us to substantially
reduce the component of the error coming from the angular resolution. This, in turn,
allows for significant reductions in both the stencil width r and the overall truncation
error of the scheme. The end result is a monotone (convergent) method that achieves
significant gains in both accuracy and efficiency.

We provided three implementations of this method. The first two combined the
spectrally accurate trapezoid rule with an underlying hexagonal or triangular mesh.
The resulting methods involved a simple nearest-neighbors scheme which is highly ef-
ficient and achieves second-order convergence in practice for smooth enough solutions
and reasonable grid refinements. The third method utilized a nonuniform Simpson’s
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rule on a Cartesian mesh. The method is provably convergent, relies on relatively nar-
row stencils of width ~ = O(h?/3), is highly robust with respect to solution regularity,
and provides superlinear convergence of order O(h4/ 3). Moreover, this implementa-
tion could easily be adapted to accommodate other higher-order quadrature rules,
making possible a formal convergence rate of O(h?>~*/) for any p > 0.

This approach holds particularly great promise for the three-dimensional Monge—
Ampere equation, for which existing discretizations can be prohibitively expensive
[21]. Typical schemes rely on some variational form of the Monge-Ampere equation,
which requires performing optimization over a three-dimensional set at each point
in the three-dimensional domain. A method based upon the integral reformulation
would reduce this to the cost of integrating over the sphere, which is two-dimensional.
We also expect this approach to adapt well to generalized Monge—Ampere equations
arising in optimal transport problems in the plane [14] or on the sphere [23].
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