Journal of Controlled Release 365 (2024) 412-421

ontrolled
release

Contents lists available at ScienceDirect “@ " journal of

Journal of Controlled Release

ELSEVIER

journal homepage: www.elsevier.com/locate/jconrel | ===
Review article A
Targeting diffuse midline gliomas: The promise of focused

ultrasound-mediated blood-brain barrier opening

Payton J. Martinez®"", Adam L. Green ¢, Mark A. Borden *"

2 Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, United States

Y Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80303, United States

¢ Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United
States

ARTICLE INFO ABSTRACT

Keywords:

Diffuse midline gliomas
Focused ultrasound
Microbubbles

Drug delivery

State of the art

Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine glioma, have among the highest mortality
rates of all childhood cancers, despite recent advancements in cancer therapeutics. This is partly because, unlike
some CNS tumors, the blood-brain barrier (BBB) of DMG tumor vessels remains intact. The BBB prevents the
permeation of many molecular therapies into the brain parenchyma, where the cancer cells reside. Focused
ultrasound (FUS) with microbubbles has recently emerged as an innovative and exciting technology that non-
invasively permeabilizes the BBB in a small focal region with millimeter precision. In this review, current
treatment methods and biological barriers to treating DMGs are discussed. State-of-the-art FUS-mediated BBB
opening is then examined, with a focus on the effects of various ultrasound parameters and the treatment of

DMGs.

1. Introduction

In 1926, Wilfred Harris first described diffuse intrinsic pontine gli-
oma (DIPG) as an important tumor affecting the pontine area of the
brain stem. DIPG remains one of the most difficult brain tumors to treat
[1]. Through genetic sequencing of biopsies and autopsies from patients,
it has been shown that over 80% of DIPG have a similar somatic gain-of-
function mutation, where a missense substitution of lysine 27 to
methionine in either histone variant HIST1H3B (H3.1) or H3F3A (H3.3),
is found [2-4]. The World Health Organization (WHO) recently classi-
fied DMGs with this mutation as “diffuse midline glioma, H3 K27M-
altered [5]. Thus, a distinction was made with DMGs that lack the
H3K27M mutation, although they may still exhibit a loss of the H3K27
trimethylation [5]. The proposed mechanism behind this variation is the
overexpression of EZH inhibitory protein, which acts similarly to the
K27M mutation that inhibits the polycomb repressive complex 2 [6,7].
With this information, considerable research has been done to find
targetable epigenetic modifiers. These strategies include EZH2 in-
hibitors [8,9], histone deacetylase inhibitors [10,11], and H327 deme-
thylase or methyltransferase inhibitors to target trimethylation [12].
Novel drugs have been developed to target and regulate the immune
system’s contribution to the tumor microenvironment [13,14].

However, many of these drugs cannot permeate the tumor BBB. Focused
ultrasound complemented with microbubbles (MBs) has materialized as
a promising non-invasive technique for opening the BBB temporarily.
This review summarizes the obstacles associated with DMG treatments,
examines the use of MB-mediated FUS to provide a noninvasive means
to treat DMGs, and proposes further research on MB + FUS to treat
DMGs with greater safety and efficacy.

1.1. DIPG overview

DIPG is mainly diagnosed in children, with the most common inci-
dence at 6 to 9 years old [15-17]. A similar distribution is found be-
tween males and females [16]. Currently, DIPG accounts for 80% of all
brainstem tumors [18]. Even though DIPG is prominent, with approxi-
mately 200-400 children diagnosed each year in the United States [19],
the median survival has remained only 8-12 months, with under 10% of
all patients surviving two years past their diagnosis date [20]. DIPG
typically comprises at least 50% of the pons. The pons sits in the middle
of the brainstem between the midbrain, medulla, and cerebellum [21].
The pons’ function is divided at the coronal plane. The pontine
tegmentum (dorsal pons) contains cranial nerve nuclei (CN V-VIII) and
their associated tracts and is responsible for bridging the gap between
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the medulla and thalamus [21-23]. The basis pontis (ventral pons)
contains the white matter fibers of the corticospinal tract connecting the
cerebral cortex to the spinal cord [21,23]. Therefore clinical symptoms
often include cranial neuropathies and ataxia [24,25].

2. Current treatments of DIPG

The location and diffuse nature of DIPG make resection impossible.
For over 50 years now, the most common treatment has remained ra-
diation therapy. Photon therapy only marginally improves survival by
an average of 3 months at the recommended dose of 54 Gy over 6 weeks
[16,26]. As treatments have become more targeted, neuroaxis (axis of
the CNS) spread has become more prevalent. Beyond radiation therapy,
clinical trials have been done to test the ability of various chemothera-
peutics to treat DIPG more effectively. Some of these clinical trials are
summarized in Table 1. Each therapeutic targets a different aspect of
DIPG biology, including epigenetics, cell metabolism, cellular signaling,
DNA repair, and the cell cycle. The main class of chemotherapeutics that
have been used to treat DIPG include HDAC inhibitors (panobinostat,
vorinostat), proteasome inhibitors (marizomib, bortezomib), kinase in-
hibitors (ribociclib), topoisomerase II inhibitors (etoposide). Unfortu-
nately, none of these clinical trials have shown an improvement in
survival. Lin et al. conducted a large screening of all clinical chemo-
therapeutics, proteasome, and HDAC inhibitors where they found that
panobinostat and marizomib showed the most promise in combination

Table 1
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[27]. During this study drugs were ranked based on their ability to
bypass the BBB. The limitation put on these drugs has led many groups
to turn to drug delivery methods. There are three major methods to
achieve this: convection-enhanced delivery (CED), nanoparticles, and
chemical disruption of the BBB.

2.1. Issues with current treatments

One major obstacle to the efficacy of current treatments is the low
accumulation of chemotherapeutic drugs in the tumor region. Similar to
other regions of the brain, the pons, where DIPG is located, has an intact
blood-brain barrier that prevents drugs from entering the parenchyma.
One current approach to address this issue is convection-enhanced de-
livery (CED). CED involves the insertion of a catheter or catheters
through the skull into the pons region, from which drugs are pumped
using positive pressure and an engineered catheter tip to enhance fluid
flow and convective mass transport into the surrounding tissue [28,29].
This method has shown higher therapeutic concentrations at the target
site with less systemic toxicity [28,29]. However, CED has a few prob-
lems, especially in the treatment of solid tumors. Many tumors are
highly vascularized and therefore are less susceptible to the positive
pressure-driven flow [30]. Additionally, quickly growing tumors can
develop areas of necrosis, in which CED is less effective as drugs can pool
in this area preventing delivery to the faster-growing cells on the pe-
riphery [31]. Of course, the invasiveness of this technique is also a

Table showing all clinical trials started since 2020 involving the delivery of chemotherapeutics to patients with DIPG or DMG. Highlighted rows show trials using
focused ultrasound or convection-enhanced delivery. Data was obtained from clincaltrials.gov on May 10th, 2023.

Title NCT Status Interventions Phase Start Location
Number Date
A Study of Low Dose Bevacizumab With . Drug: Bevacizumab Tata Memorial Hospital, Mumbai, Maharashtra,
Conventional Radiotherapy Alone in DIPG NCT04250064 | Reoruiting Radiation: Ultra-low-dose RT 2 4-Feb-20 India
INCB7839 in Treating Children With . i ol Children's Hospital Los Angeles, Los Angeles,
Recurrent/Progressive High-Grade Gliomas NCT04295759 | Recruiting Drug: INCB7839 1 27-Jul-20 California, United States...
Phase | Study of Marizomib + Panobinostat Active, not i . . . Boston Children's Hospital, Boston,
for Children With DIPG NCT04341311 recruiting Drug: Marizomib/ Panobinostat 1 10-Aug-20 Massachusetts, United States...
A Study of BXQ-350 in Children With Newly . . g | ~ Children's Hospital Colorado, Aurora, Colorado,
Diagnosed DIPG or DMG NCT04771897 | Recruiting Drug: BXQ-350 1 24-May-21 United States...
Non-Invasive Focused Ultrasound (FUS) A, Drug: Panobinostat Device: FUS Columbia University Irving Medical Center / New
With Oral Panobinostat in Children With NCTO04804709 with neuro-navigator-controlled 1 28-Jul-21 | York-Presbyterian Hospital, New York, New York,
i recruiting A H
Progressive DMG sonication United States
ONC206 for Treatment of Newly Diagnosed, Drug: ONC206 University of California, San Francisco, San
or Recurrent Diffuse Midline Gliomas, and | NCT04732065 | Recruiting Ragi-ation' RT 1 23-Aug-21 | Francisco, California, United States; University of
Other Recurrent Malignant CNS Tumors i Michigan, Ann Arbor, Michigan, United States...
Combination Therapy for the Treatment of . Drug: ONC201 / Paxalisib Ot University of Alabama at Birmingham,
DMG NCT05009992 | Recruiting Radiation: RT 2 20-Oct-21 Birmingham, Alabama, United States...
CBL0137 for the Treatment of Relapsed or Active. not| Drug: FACT Complex-targetin Children's Hospital of Alabama, Birmingham,
Refractory Solid Tumors, Including CNS NCT04870944 g: A P geting 1/2 18-Jan-22 | Alabama, United States; Children's Hospital Los
recruiting Curaxin CBL0137 o }
Tumors and Lymphoma Angeles, Los Angeles, California, United States...
A Study of the Drug Selinexor With Radiation Procedure: Biopsy / MRI Children's Hospital of Alabama, Birmingham,
Therapy in Patients With Newly-Diagnosed | NCT05099003 | Recruiting Radiation: RT 1/2 5-May-22 Alabama, United States; Banner Children's at
DIPG and HGG Drug: Selinexor Desert, Mesa, Arizona, United States...
A Phase 1/2 Study of Sonodynamic Therapy Combination Product: SONALA- lvy Brain Tumor Center, Phoenix, Arizona, United
Using SONALA-001 + Exablate 4000 Type 2 | NCT05123534 | Recruiting 001 (ALA) and MR-Guided 2 12-Aug-22 States; University of California, San Francisco,
in Patients With DIPG Focused Ultrasound device San Francisco, California, United States...
A Drug-drug Interaction Study of Avapritinib . . . . Mayo Clinic Florida, Jacksonville, Florida, United
and Midazolam NCT04908176 | Recruiting | Drug: Avapritinib / midazolam 1 24-Aug-22 States...
Biological Medicine for DIPG Eradication 2.0 | NCT05476939 | Recruiting | Dru9" Everolimus/ ONC201 3 | 20-5ep22 Gustave Roussy, Villejuif, Val De Marne,
Radiation: RT France...
Oral AMXT 1501 Dicaprate in Combination . i Cincinnati Children's Hospital Medical Center,
With IV DFMO NCT05500508 | Recruiting Drug: AMXT1501 / DFMO 1/2 29-Nov-22 Cincinnati, Ohio, United States. ..
BBB Disruption Using Exablate FUS With . Device: Exablate Sunnybrook Research Institute, Toronto, Ontario,
Doxorubicin for Treatment of Pediatric DIPG NSRS | Remulig Drug: Doxorubicin iz e Canada
BBB Disruption Using Exablate FUS With - Device: Exblate Children's National Medical Center, Washington,
Doxorubicin for Treatment of Pediatric DIPG INSTTREEIA) || [Reailiilig Drug: Doxorubicin iz AR District of Columbia, US
131l-omburtamab Delivered by Convection- Not yet Drug: 1311-Omburtamab
Enhanced Delivery in Patients With DIPG | NCT05063357 | o iting Device: CED i 2 N
Drug: Etoposide (Oral) " . ’ " .
FUS Etoposide for DMG - A Feasibility Study | NCT05762419 | Recruiting | Device: FUS with neuro- 1 Mar-23 C°'“"‘b'?(grfvﬁfxy\('g;(”gu“r’]'i?:écg'ta(fee:‘e" NS
navigator-controlled sonication ’ ’
Loc3CAR: Locoregional Delivery of B7-H3- . , ) .
CAR T Cells for Pediatric Patients With | NCT05835687 | Recruiting Drug: B7-H3-CAR T cells 1 25.Apr-23 | St Jude Children's Research Hospital, Memphis,
Pri Tennessee, United States
rimary CNS Tumors
Study of Ribociclib and Everolimus in HGG NCT05843253 Not _y_et Drug: Ribocidlib / Everolimus 2 15-Aug-23 Children's HospltaI_CoIorado, Aurora, Colorado,
and DIPG recruiting United States...

DIPG = diffuse intrinsic pontine glioma; CED = convection-enhanced delivery; FUS = Focused Ultrasound; HGG = High-Grade Glioma; BBB = Blood-Brain Barrier;

RT = Radiation Therapy.
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concern, as it requires stereotactic surgery to place the catheter(s).
Clinical trials have shown the potential for an increase in neurological
issues at CED higher flow rates [32].

Nanoparticles have become a common method to deliver drugs
across the BBB. Nanoparticles are modular, allowing for the engineering
of various characteristics to utilize specific biological mechanisms.
Nanoparticles have been used successfully to deliver drugs into solid
tumors [33,34]. Nanoparticles can be engineered to cross the BBB via
different pathways, including endocytosis or transcytosis (active trans-
port using a surface receptor) and the enhanced permeability and
retention (EPR) effect [35]. Once past the BBB, nanoparticles release
their drug cargo into the tissue extracellular matrix (where they can be
taken up by the cells) or directly into the cytoplasm of the target cells.
Although nanoparticles have shown promising effects in animal models,
there has been little success in human clinical trials because they cannot
reach the minimal effective dose within the tumor interstitium [34,36].
Since nanoparticle accumulation may depend on the EPR effect, they
may require the BBB to be opened for drug accumulation to be observed.
While many gliomas have leaky vessels, DIPG, and several other high-
grade gliomas have an intact blood-brain barrier. Overall, nano-
particle technology could be significantly improved if methods are
developed to open the BBB noninvasively, locally, and transiently
[37,38].

Other ways groups have tried to disrupt the BBB is through intra-
arterial vasoactive agents that cause an inflammatory reaction in the
endothelial cells. One class of these drugs is alkylglycerols which can
temporarily destabilize the cell membrane of endothelial cells, opening
the BBB between 3 and 15 min [39]. Although these methods have had
great success at increasing the delivery of large-molecule drugs, their
non-selectivity to the tumor site causes problems when the chemother-
apeutic is also toxic to health cells. Bradykinin and its analog RMP-7 are
more specific to some tumor types that overexpress the By receptor [40].
Although RMP-7 was not shown to be effective with lipophilic chemo-
therapies. When taken to clinical trials in combination with carboplatin,
which showed effectiveness in rats, the study was shown to be ineffec-
tive [41].

2.1.1. The blood brain barrier (BBB)

As previously discussed, one major hurdle for drug delivery to DIPG
and other neurological diseases is the BBB [42,43], which serves as a
defense against harmful chemicals or biological agents. The BBB is
tightly regulated by the vascular system of the brain and comprises
highly polarized endothelial cells that are firmly connected via tight
junctions. These tightly bound endothelial cells are surrounded by per-
icytes and astrocytic foot processes, which further contribute to the

Journal of Controlled Release 365 (2024) 412-421

barrier function [44,45] (Fig. 1). The astrocytic end feet cover around
99% of all capillaries in the brain and are vital in regulating the extra-
cellular matrix (ECM) composition surrounding the endothelial cells
[46]. They also regulate the amount of immune cell infiltration and the
integrity and permeability of the BBB [46,47]. Pericytes are one of the
main supporting cells that regulate vessel formation and growth
[36,48]. All three, astrocytic end feet, pericytes, and tightly joined
endothelial cells surround the basal lamina that consists of an ECM and
provides a space for regulation of the molecular transport [36]. Within
the endothelium, the tight junctions in conjunction with adherence
proteins (occludins, tricellulins, claudins, and junctional adhesion
molecules) prevent paracellular diffusion of large (400 Da) molecules
[48,49]. Therefore, any therapeutics needing to enter the brain must
pass through the luminal plasma membrane of these endothelial cells.
Some endothelial cells contain efflux transporters that allow the move-
ment of substrates into the parenchyma [50]. Therefore, to pass through
the BBB, drugs must be engineered with the following properties: high
lipophilicity, low molecular mass, low hydrogen bonding potential, and
noninteraction with efflux transporters. Once past the BBB, molecular
drugs or drug-loaded nanoparticles must contend with microglia, which
are the main immune cells within the brain parenchyma [51,52].

2.1.2. Blood-brain tumor barrier (BBTB)

In some CNS tumors, the integrity of the blood-brain tumor barrier
(BBTB) is often disrupted either biochemically or physically. The use of
magnetic resonance imaging (MRI) using a gadolinium-based contrast
agent is the most common way to confirm BBB disruption, as these
contrast agents are normally unable to pass the BBB or BBTB. This
disruption usually occurs at the center of the tumors, where the inter-
stitial pressure is greater, while the BBB in the margins remains intact.
This phenomenon has led to incomplete tumor reduction, where ma-
lignant tumor cells can develop through other parts of the brain [53]. In
contrast to some CNS tumors, which demonstrate a leaky BBTB, DMGs in
particular do not possess this quality [54-56]. An impermeable BBTB
also limits the tumor margin visibility on T1-weighted contrast-
enhanced MRI scans, which can make it difficult to diagnose the early
stages of tumor growth [57]. Moreover, the pons and brainstem possess
a more unyielding BBTB, further complicating the penetration of phar-
maceuticals [58]. A study by McCully et al. showed that the BBTB is
inhomogeneous, as there was a difference in temozolomide penetration
between the brainstem region and the cortex [58]. Like other CNS tu-
mors, DMG can show some enhancement at the center of the tumor
illustrating necrosis. Some studies have shown decreased BBTB perme-
ability due to an upregulated Sonic Hedgehog (SHH) signaling [59].
SHH is from the Hedgehog family of morphogens that orchestrates
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branching morphogenesis and therefore vascularization. Other groups
have shown the presence of P-glycoprotein/MDR1 (P-gp), and Breast
Cancer Resistance Protein 1 found directly on DIPG cells on both the
glioma cells and surrounding tissue [60]. P-gp can reduce drug accu-
mulation within cells by actively removing drugs using ATP [61].
Deligne et al. studied in vitro models of the DIPG BBB to determine the
reason for its chemoresistance. The authors found over a week of DIPG
cell development no change in the integrity of the drug penetration or
the amount of efflux transporters [56]. However, we still do not have
direct evidence of why the BBTB in DIPG presents differently than for
healthy tissue in vivo.

3. Focused ultrasound meditated blood-brain barrier opening

Focused ultrasound (FUS) complemented with microbubbles (MBs)
has materialized as a non-invasive technique to momentarily open the
BBB [62-65]. MBs utilized for this technique were originally developed
as ultrasound contrast agents. They are 1-10 um in diameter, with a
shell (typically lipid or protein) that encapsulates a high-molecular-
weight internal gas (e.g., perfluorocarbons) [66-68]. The physical
mechanism that has been proposed is that circulating microbubbles are
forced to expand and contract (cavitate) under ultrasound (0.2-2 MHz).
As a result, the local mechanical forces cause the separation of tight
junctions, opening the BBB [69,70]. Two types of cavitation can occur:
harmonic and inertial. Harmonic cavitation is characterized by small
oscillations of the microbubble and can produce an acoustic response at
regular fractions and multiples of the driving frequency [71,72]. Har-
monic (specifically the sub and ultra-harmonic) responses are caused by
the nonlinear and asymmetric response of the microbubbles as they
expand and contract [71]. Inertial cavitation can be described by violent
expansion and contraction, eventually reaching the critical point of
implosion, shock wave formation, and production of a broadband
acoustic frequency response [71,72]. Both regimes of cavitation produce
mechanical forces (e.g., fluid shear, shock waves, and micro-jetting) to
the endothelium within the focal zone of the FUS, causing disruption of
the bonds between the tight junction proteins [71,72]. FUS-mediated
BBB opening is safe with no significant neuronal damage, apoptosis,
ischemia, or longer-term damage to the vessels [63]. Localized BBB
opening can remain for a period of 3 to 24 h, depending on the intensity
of the focused ultrasound [73]. The reversibility of BBB opening, and the
small focal zone makes MB + FUS a good candidate for targeted delivery
of drugs that cannot otherwise pass the BBB.

Beyond the initial effects of BBB opening, a cascade of events occurs
along with the opening. First, there is a resulting immune response from
opening the BBB. Previous work has shown that FUS-mediated BBB
opening can induce sterile inflammation [74]. This may also contribute
to the recruitment of active T cells to the site, leading to a strong immune
infiltration into tumors [75]. Microglia can also respond to any damage
to the vascular system by releasing inflammatory cytokines and vascular
growth factors [52,76]. Secondly, FUS has been shown to suppress the
Pgb (P-glycoprotein) transporter found in endothelial cells making up
the BBB by 50-60% [77,78]. As previously discussed, this multidrug
resistance protein can also be present in DIPG tumors and can lead to
resistance to chemotherapeutics. Therefore, the use of FUS-mediated
drug delivery may also reduce the risk of resistance and increase the
drug concentrations in these tumors.

3.1. Using focused ultrasound to deliver drugs to DIPG tumors

In 2001, Hynynen et al. first showed that BBB opening was possible
in a rabbit using MB + FUS [62]. Since then, we have seen the field
rapidly expand to encompass a variety of neurological diseases in
several animal models and humans. Within the past decade, there has
been an interest in using MB + FUS to better target and treat tumors that
are located in non-resectable areas of the brain. Among these, DIPG has
stood out as a prime candidate for this technology due to its diffuse and
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intrinsic nature. These preclinical studies are summarized in Table 2.
3.2. Characterization of FUS-induced BBB opening, and agents used

As FUS-meditated BBB opening has developed, there has been a wide
range of therapeutics developed with this method. Smaller chemother-
apeutic drugs that range from 150 Da to 1 kDa have been delivered,
including BCNU (Carmustine) [64,85-87], cisplatin [79], etoposide
[88,89], irinotecan [90], carboplatin [91], and doxorubicin [79,92-95].
Larger therapeutics delivered by MB + FUS include antibodies, viruses,
nanoparticles, and protein-based therapeutics, such as trastuzumab
(Herceptin), pertuzumab [96-98], adeno-associated virus (AAV) [99],
the immunomodulating agent IL-12 [100], and %%Ga-labeled bev-
acizumab (Avastin) (a humanized antiangiogenic monoclonal antibody)
[101]. These molecules range from 70 to 150 kDa. Overall, there has
been great success in the delivery of even the largest therapeutics,
showing the versatility of MB + FUS as a drug delivery mechanism.
However, due to the different drug administration methods (intraperi-
toneally, intravenously, etc.), we are unable to directly compare
extravasation across all studies.

Most studies use MRI confirmation and quantification of the extent of
BBB opening. As stated earlier, MRI is used with gadolinium-based
contrast agents for T1-weighted imaging. Table 3 shows these contrast
agents and their molecular weights. Most of the contrast agents range
from 510 to 950 Da when not bound to serum proteins. Those that do not
bind are relevant for small-molecule drug kinetics. MR contrast agents
that strongly bind to serum proteins can provide insight into how larger
drug molecules and particles may pass through the BBB (represented in
Table 3 by a *). Nuclear imaging using radioactive isotopes can also be
used to track molecules moving past the BBB. The two main modalities
are positron emission tomography (PET) and Single-photon emission
computerized tomography (SPECT). Nuclear imaging has a variety of
radiopharmaceuticals that can show different aspects of BBB dysfunc-
tion including [®8Ga]DTPA and [°®Ga]EDTA for BBB opening, [*8F]FDG
for glucose transport, and [llC]Verapamil and [*1C] Loperamide for p-gp
transport. For a more comprehensive list of PET tracers for P-gp, we refer
to Syvanen and Eriksson [102] and for their use particularly with FUS-
mediated BBBO, we refer to Arif et al. [103]. All of these radiophar-
maceuticals can also be seen in Table 3. Fluorescently labeled dextrans
and liposomes with a wide range of molecular weights have been used to
mimic drug extravasation past the BBB [104-106], although this must
be determined ex vivo. Evans blue dye is the most common ex vivo
marker of BBB opening. Other fluorescent dyes can be used that are not
as toxic as Evans Blue [107].

3.3. FUS technology and sonication parameters

FUS has a wide variety of parameters, including frequency, pressure
amplitude, pulse waveform, pulse length, and pulse repetition fre-
quency, that relate to its energy applied over time. Table 2 shows the
reported technical specifications for each study employing FUS-
mediated drug delivery to DIPG tumors. The most widely used metric
to determine the extent of BBB opening is the mechanical index (MI) due
to its strong correlation to cavitation inception and inertial cavitation
[127]. MI is a unifying ultrasound parameter that combines the ultra-
sound fundamental frequency (f in units of MHz) and peak negative
pressure (PNP in units of MPa). The relationship is [128]:

_ PNP

i
Many of the preclinical systems use a single-element spherically
focused transducer that ranges from 0.2 to 2 MHz in the pulse center
frequency. This range of frequencies has been shown to effectively
penetrate the skull of small animals (mice, rats, and rabbits)

[79,88,89,65,130,131] and larger mammals (primates and humans)
[132,133], allowing focusing within the brain.

MI
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Table 2
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Table of FUS-mediated BBBD drug delivery studies that were specifically done to more effectively treat DIPG. *Pressure was increased at this increment until PCD data

showed sub and ultra-harmonic response. NR means not reported in the literature.

Study (Year) Animal Drug / Vehicle FUS Parameters Microbubble parameters Results
Strai
ram Frequency PNP PRF PL Time Size Dose Type
(MHz) (MPa) (Hz) (ms) (s) (pm)
Alli et al. (2018) . Doxorubicin 0.25 + 20 pl/ . . .
[79] NSG mice (5 mg/kg) 1.68 0.025* 1 10 120 1-10 kg Definity 50-fold increase
DSPC- . .
Ye et al. (2018) C§7BL/6 40 kDa dextran 15 056 5 0.67 120 45 2.4E7 PEG2000; PFB 3-fold 1nFreaS§ in
[80] mice (2 mg) MBs gas dextran intensity
Ishida et al. . Doxorubicin 20 pl/ - 4-fold increase; no
(2021) [81] NSG mice (5 mg/kg) 1.78 NR 0.67 10 180 1-10 kg Definity survival benefit
Englander et al. . Etoposide SonoVue / 8-fold increase; no
(2021) [82] B6 mice (20 mg/kg) L5 0.7 5 10 120 1-10 200 4 Definity survival benefit
Haumann et al. Foxnl Doxorubicin . )
(2022) [83] mice (5 mg/kg) 1.5 0.2-0.4 NR NR 160 1-10 60 pl SonoVue no survival benefit
3-fold increase;
Martinez et al. Nu/nu Panobinostat 25 pl/ DSPC-PEGA40s; >,
(2023) [84] mice (10 mg/kg) 1.5 0.615 1 10 180 3 kg PFB gas prolonged survival

from 21 to 31 days

Table 3

Model drugs used to determine BBB permeability during FUS-mediated BBBD. *MW moves 69 kDa when attached to albumin in the blood.
Agent Imaging Modality Molecular Weight (Da) Dose Translatable Model Uses
MultiHance (Gd-BOPTA) MR 513.5* 5.29 mg/kg Yes [108]
Omniscan (Gadodiamide) MR 573.7* 0.2 mmol/kg Yes [74,88,89,109,110]
Gadovist (Gd-DO3A-butrol) MR 604.7 0.1-0.125 mmol/kg Yes [79,90,91,111]
Dotarem (Gd-DOTA) MR 753.9 50 pl Yes [106]
Magnevist (Gd-DTPA) MR 938.0* 0.1-0.25 mmol/kg Yes [97,101,112,113]
[°®Ga] DTPA PET 1502.3 30-50 MBq Yes [114,115]
[*mTc] DTPA SPECT 485.21 130-150 MBq Yes [114,115]
['5F] FDG PET 181.26 37 MBq Yes [116,117]
ey Loperamide PET 477.05 0.76 + 0.3 nmol/kg Yes [102,118,119]
[*1C] Verapamil PET 491.07 6-10 nmol Yes [102,118,120-123]
Evans Blue Fluorescence 960.8* 2-100 mg/kg No [74,86,101,124-126]
Dextrans Fluorescence 3-1000 k Varies No [80,101]

Although pulse length and pulse reptation frequency have not
received as much attention as peak negative pressure and frequency,
they still play an important role in the energy delivered. Initially burst
length alone was thought to have an effect on BBBO [130]. Later it was
realized that there is an interplay between the two parameters. Choi
et al. showed that there is a window of pulse repetition frequencies that
had an effect on BBBO. Less than 0.1 Hz did not open the BBB, and above
10 Hz did not have a significant difference [134]. The same group also
showed a similar trend with pulse length seeing a small amount of
dextran delivery at pulse lengths as low as 0.033 ms and a saturation
above 10 ms [134]. Recently Morse et al. showed that using rapid short-
pulses to obtain a more uniform BBBO at lower MIs [135,136]. Lim Kee
Chang et al. employed a pulse sequence of 5 ps long pulse and 1.25 kHz
pulse repetition frequency for 10 ms then repeated with a frequency of
0.5 Hz [137]. The group was able to deliver model agents ranging from
3 kDa to 66.5 kDa at a relatively low pressure of 0.35 MPa [137].

Passive cavitation detectors (PCDs) provide valuable real-time
feedback on the MB acoustic response. Within the past 5 years, many
FUS systems have incorporated a PCD into their setup to either record
microbubble response or to provide feedback to better tailor treatment
intensities [138]. Using PCDs and high-frequency optical imaging of
microbubbles under ultrasound, the threshold for inertial cavitation was
found to be around 0.4 MI [71,91,131]. A feedback mechanism was first
put in place to provide a better safety index, as inertial cavitation has
been associated with an increased probability of vascular and tissue
damage [139,140]. These closed-loop systems use data collected from
the previous pulse to make any necessary changes on the next pulse.
Between each pulse, analysis methods usually give a “cavitation dose”
via a Fourier transform analysis [71,139]. Depending on the pulse
length and pulse repetition frequency (also can be found in Table 2),
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there can be issues with the analysis method used between pulses. These
include high computation power for extremely high pulse repetition
frequencies and overly long pulses that can lead to over-saturated FFTs,
making the diagnosis of inertial cavitation more difficult.

Given the range of parameters that can be used during FUS-mediated
BBB opening, a variety of clinical devices are available. There are three
types of clinical devices: implantable devices, MRI-guided, and
neuronavigation-guided. Carthera’s SonoCloud is a nine-transducer
system that is implanted under the skull usually after a brain tumor
resection [141]. Although DIPG patients rarely receive a tumor resection
increasing the invasiveness of this treatment option. The major upside to
this device is the removal of uncertainty with the skull. Normally sim-
ulations have to be run to account for the heterogeneity of the bone.
Insightec’s Exablate was initially built for treatment to other parts of the
body although they have produced a system for the brain. This clinical
system uses a helmet-shaped multielement (~1000) transducer to focus
the beam through the skull to the tumor [142]. Due to the penetration
through the bone, MRI guidance is necessary throughout the treatment.
One downside to this system is the fixed skull pins needed to maintain
head position. Given the young average age of DIPG patients, this may
be a concern for procedures. Finally, the latest device to enter the
clinical scene is NaviFUS [143], and Columbia University’s TheraWave.
Using infrared cameras tracking the position of the head and transducer,
targeting can be achieved without a fixed head. Similar to Exablate, a
simulation using previously obtained MRI or CT scans is required to
accurately target regions in the brain. Overall, the neuronavigation
system looks the most promising for the DMG community.
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3.4. Microbubble parameters

The second half of this technology is the use of MBs to provide an
acoustic amplification point for the ultrasound. There are two specific
MB parameters that provide an estimation of BBB opening. The first and
most straightforward metric is the dose injected during treatments.
Table 2 also illustrates the microbubble doses given during each pre-
clinical study completed using DIPG as the model. Song et al. have
shown that BBB opening is not only dependent on the number of
microbubbles injected, which previously had been the only metric used
but also based on the size of microbubbles used [65]. Microbubble
volume dose (MVD) is the unifying dose metric of microbubble number
and size injected. MVD is calculated by taking the average volume of
each microbubble in the injection sample and multiplying it by the
concentration injected per kg of body weight [65]. Clinically approved
microbubbles for contrast-enhanced ultrasound imaging have a range of
recommended doses, as they are polydisperse in size distribution and
exhibit significant vial-to-vial variability. Typical dose ranges used for
MB + FUS range from 0.16 to 0.44 pl/kg (SonoVue and Definity
respectively) [70,144]. There have only been a few studies looking into
the effects of microbubble dose on BBB opening. McMahon et al. looked
into the effects of microbubble dose on the inflammatory response post
BBB opening [145].

Secondly, the microbubble composition is vital in its success and
safety during BBB opening (Fig. 2). There are three main FDA-approved
and commercially available microbubble compositions which include
SonoVue (Bracco, Milan, Italy) DSPC lipid-shelled microspheres with an
internal gas of sulfur hexafluoride; Definity (Lantheus Medical Imaging,
USA) DPPC-shelled microspheres containing a perfluoropropane inter-
nal gas; and Optison (GE Healthcare, USA) albumin-shelled micro-
spheres with perfluoropropane inside. Many groups also use engineered
microbubbles [108,65,146,147]. Many of these MB formulations use
similar compositions to the commercially available ultrasound contrast
agent microbubbles, but they are tailored to the treatment, including the
addition of drug within or on the bubble surface that can be released
during sonication [86,148-150]. These microbubbles have also been
shown to improve targeting by conjugating shells with peptides [151] or
antibodies [86]. Oxsonics’ SonoTran Particles are nanocups that were
specifically engineered to be cavitation nuclei improving the effect of
low-intensity focused ultrasound. Bing et al. have reported that the
microbubble composition has an effect on both BBB opening and
acoustic feedback through a passive cavitation detector [152]. Overall,
there lacks cohesion in the current literature reporting of microbubble
parameters, making it more difficult to correlate MB doses across
studies. Dauba et al. recently published a review of contrast agents used

Microbubble

€7 Protein

—@ Lipid
Surfactant

== Polymer

Fig. 2. Illustration of a variety of commonly used microbubble compositions.

417

Journal of Controlled Release 365 (2024) 412-421

for BBB opening, where this issue was more clearly illustrated [153].
More work is necessary to correlate MB composition, microstructure,
and physical properties (such as size, shell elasticity and viscosity, and
surface architecture) to in vivo performance.

3.5. Discussion of limitations and advantages of preclinical FUS

The use of FUS and MBs to temporarily open the blood-brain barrier
has been shown to be an effective way to noninvasively increase the
effectiveness of systemic drug delivery to a small focal region of the
brain. As with any technology, there are limitations and advantages to
this drug delivery method. These fit within three categories: ultrasound,
microbubbles, and overall pathophysiology of the model.

Focused ultrasound parameters are a vital part of completing BBB
opening safely and effectively. As previously discussed, lower fre-
quencies (0.2 to 2 MHz) are primarily used during BBB opening for two
reasons. First, the penetration through the skull is more effective at
lower frequencies as the ultrasound wavelength is on the same length
scale as the skull thickness (1 mm). Lower frequencies have also been
associated with less microvasculature damage [130]. Staying within the
lower frequency range, the mechanical index is a predictive metric for
BBB opening, where it was found that at 0.46 MI the probability of
opening was 50% [127]. A challenge remains where ultrasound pa-
rameters cannot be solely investigated, as we must also account for
tissue damage, which increases as a function of MI. One way to account
for acoustic pressure and MI is the use of PCD feedback control during
treatments.

Microbubble parameters are also important and highly modular.
Microbubbles can be controlled by manipulating composition, size,
concentration, and infusion rate. The microstructure and properties of
MBs can also be influenced by their synthesis method, processing his-
tory, storage conditions, and handling. For example, Definity micro-
bubbles showed a wide range of size distributions solely based on their
activation temperature [154]. Microbubbles can also degrade over time,
eventually losing concentration and leading to a shift in the size distri-
bution [71].

It is also important to consider the anatomy and physiology of the
animal being treated. Most studies, in particular those studying DIPG,
target regions within the brainstem. These tumors can have different
vasculature than healthy brain tissue. Although we consider the BBB to
remain intact for DMG, its location (most commonly pons and thalamus)
has different vasculature than other brain regions (cortex, cerebellum).
Furthermore, small animal models do not fully replicate brain anatomy
in humans and therefore need to be carefully considered as research
moves from preclinical models to the clinic [155].

4. Conclusion

Diffuse intrinsic pontine glioma is a very troubling disease that has
had very few treatment options. One of the major challenges is the
blood-brain barrier. Focused ultrasound-mediated blood-brain barrier
opening with microbubbles is a modern image-guided way to effectively
deliver drugs to a mm-scale spot in the brain, with excellent accuracy,
precision, and control. There have been few preclinical studies treating
DIPG using MB + FUS, and more work is needed to better define
microbubble and ultrasound parameters to more effectively and safely
treat DIPG.
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