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Abstract
This paper presents a methodology to evaluate life safety risk of coastal communities vul-
nerable to seismic and tsunami hazards. The work explicitly incorporates two important 
aspects in tsunami evacuation modeling: (1) the effect of earthquake-induced damage to 
buildings on building egress time, (2) the effect of earthquake-induced debris on horizon-
tal evacuation time. The city of Seaside, Oregon, is selected as a testbed community. The 
hazard is based on a megathrust earthquake and tsunami from the Cascadia Subduction 
Zone that was defined in a previous study. The built environment consists of buildings and 
the transportation network for the city. Fragility analysis is used to estimate the seismic 
damage to buildings and resulting debris that covers portions of the road network. The 
horizontal evacuation time is determined based on the shortest path to shelters, including 
the increased travel time due to the earthquake-generated debris. The effects of different 
mitigation strategies are quantified. Results indicate the fatality and life safety risk of a 
near-field tsunami increases by 4.2–8.3 times when the effects of building egress and earth-
quake-induced debris are considered. The choice of population layer affects the life safety 
risk and thus the maximum risk is obtained when daytime populations are considered. Use 
of mitigation strategies result in a significant decrease in the number of fatalities. For haz-
ards with recurrence intervals larger than 500- to 1000-years, the seismic retrofit is com-
parable to vertical evacuation and an effective strategy in reducing fatalities and associated 
risks. Implementing all mitigation strategies reduces the life safety risk by 90%.
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1  Introduction

1.1 � Background

Tsunamis are devastating natural disasters primarily triggered by major earthquakes, which 
not only impose direct and indirect economic losses, but also result in a remarkable loss 
of life. Tsunamis can be low-probability and high-consequence events that have greatly 
threatened many coastal communities throughout the world (Ritchie and Roser 2014). For 
example, the 2010 Chile tsunami caused about $30 million in economic losses and nearly 
645 deaths (Fritz et al. 2011; Salazar and Marcia 2011). The 2004 Indian Ocean and the 
2011 East Japan tsunamis are estimated to have caused a loss of life of over 225,000 and 
24,000 people, respectively (Mimura et al. 2011; Okal 2015; Shuto and Fujima 2009; Sup-
pasri et  al. 2013). Off the western coast of the United States and Canada, the Cascadia 
Subduction Zone (CSZ) is a major source that has the potential to generate strong ground 
shaking and tsunami inundation in many coastal communities of the Pacific Northwest 
and Northern California regions (Goldfinger et al. 2012; Heaton and Hartzell 1987; Wood 
2007; Wood et al. 2013) with the probability of occurrence of earthquake ranging from 10 
to 14% in the next 50 years (Petersen et al. 2002; Witter et al. 2013). In addition, the risk is 
expected to increase in the future due to the population and urban growth in coastal areas 
(Cremen et al. 2022; Neumann et al. 2015). For communities affected by near-field events 
that have both strong seismic ground motion and subsequent tsunami inundation, the num-
ber of casualties can be still devastating due to uncertainties in both tsunami inundation 
and human behavior, particularly during the evacuation process. Therefore, understanding 
potential challenges in the tsunami evacuation plan and corresponding mitigation strategies 
can significantly reduce the number casualties in coastal communities.

Unlike a far-field tsunami, a near-field tsunami is likely to reach the onshore within 
20–40 min after the initial earthquake, which can impose a greater risk and threaten the life 
safety in coastal communities (Henry et al. 2017; Katada et al. 2006). Due to short arrival 
time of the near-field tsunami, a rapid evacuation that is more likely to be on foot can con-
siderably increase the probability of surviving (Fraser et al. 2014; Katada et al. 2006). Due 
to the pressing need to mitigate the life safety risk, several researchers and state agencies 
have focused their studies on the impact of near-field tsunamis on life safety to develop 
effective tsunami evacuation plans that minimize the casualties (e.g., Makinoshima et al. 
2020; Priest et al. 2016; Wilson and Miller 2014). While the findings have revealed that 
an efficient evacuation plan is essential to minimize casualties, there remains a lack of suf-
ficient understanding of the life safety risk for coastal communities vulnerable to seismic 
and tsunami events (Mas et al. 2015; Wang et al. 2016; Xie and Muraki 2017) due to lack 
of integration of impacts of debris due to the damage infrastructure and buildings on the 
evacuation modeling (Castro et al. 2019; Kameshwar et al. 2021; Mostafizi et al. 2017).

1.2 � Study scope

This paper presents a methodology to simulate tsunami evacuation of people, estimate cas-
ualties, and ultimately assess the life safety risk due to seismic and subsequent tsunami 
hazards at the community level. The city of Seaside, Oregon, vulnerable to the seismic and 
near-field tsunami due to the CSZ, is selected as an example community to illustrate the 
application of the methodology. The methodology explicitly incorporates two important 
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aspects in the tsunami evacuation modeling: (1) the effect of earthquake-induced damage 
to buildings on building egress time, (2) the effect of earthquake-induced debris on hori-
zontal evacuation time. The population layers account for residents, workers that commute 
to the city, and tourists at the parcel level. The casualty rates are calculated for each par-
cel considering different community preparedness levels as well as daytime and nighttime 
population layers. The horizontal evacuation time is determined based on the shortest path 
to safety, in which it has been assumed that all evacuees will follow evacuation signs. In 
addition, the behavioral interaction among evacuees is not considered since it is compu-
tationally expensive, particularly when a large population is considered. The results are 
compared in terms of the number of casualties and associated risks to quantify the effect of 
different mitigation strategies, namely improving tsunami readiness, using vertical evacua-
tion shelters, and seismic retrofitting methods on the life safety. Finally, a sensitivity analy-
sis is performed to evaluate the effect of different levels of tsunami preparedness and debris 
models on the tsunami casualty results. The open-source Interdependent Networked Com-
munity Resilience Modeling Environment (IN-CORE) developed by Center for Risk-Based 
Community Resilience Planning is utilized for the building damage analyses in this study. 
All other models were implemented in python on a Jupyter notebook.

The paper is organized as follows. In Sect.  2, the literature review about earthquake 
and tsunami evacuation models are presented. In Sect.  3, the proposed methodology is 
presented. In Sect. 4, the proposed methodology is applied to the testbed community. In 
Sect. 5, simulation inputs depending on the selected testbed are presented. Section 6 pro-
vides the results and comparisons, including earthquake and tsunami casualties, mitiga-
tion strategies, and the sensitivity analysis. Section 7 presents the discussion of the results, 
limitations, and future research suggestions. Finally, in Sect. 8, conclusions are presented.

2 � Literature review

In this section we review casualty models for both earthquakes and tsunamis. Observa-
tions from earthquake events demonstrate that direct seismic damage to the infrastructure 
such as buildings is responsible for almost 75% of casualties (Rahman 2018; Zuccaro and 
Cacace 2011). There are primarily two types of earthquake casualty models (Chaoxu et al. 
2022). In this first model, damage to buildings is not considered, and casualties are esti-
mated based on earthquake parameters such as the magnitude and intensity. Based on vari-
ous earthquake parameters, there are different models (e.g., Badal et al. 2005; Christoskov 
and Samardjieva 1984; Liu and Lin 2012), of which the US Geology Survey (USGS) is the 
most well-known model. In the second model, casualties are estimated based on different 
levels of damage to buildings and corresponding casualty rates (e.g., Furukawa et al. 2010; 
Ma and Xie 2000; Urrutia et al. 2014). In this regard, HAZUS earthquake casualty model 
has been extensively adopted to assess the earthquake casualty in vulnerable communities 
(e.g., Levi et al. 2015; Nastev and Todorov 2013; Shapira et al. 2018). Apart from that, his-
torical seismic data has been utilized to validate casualty models (e.g., Aguirre et al. 2018; 
Remo and Pinter 2012; Rozelle 2018). It should be noted that although earthquake casualty 
models do not include human interaction at the same level of complexity as tsunami casu-
alty models, earthquake evacuation and associated human interactions such as grouping 
behavior and information sharing remains critical to life safety (Bernardini et al. 2019; Gu 
et al. 2016; Spence and Scawthorn 2011; Zhu et al. 2020).
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Early studies about the tsunami evacuation have been carried out in Japan due to its 
extensive experience with tsunamis, and then later expanded to other vulnerable communi-
ties (Pishief 2007; Shuto and Fujima 2009). Tsunami evacuation models are mainly clas-
sified into macroscopic or microscopic models (e.g., Hamacher and Tjandra 2002; Pidd 
et  al. 1996). Modeling is straightforward and computationally efficient in macroscopic 
models that include static and dynamic networks (e.g., least-cost distance, shortest dis-
tance, and quickest flow models); however, these models are not able to fully describe the 
decision-making behavior and interaction between evacuees (Fraser et al. 2014; Lammel 
2011; Muhammad et  al. 2017; Priest et  al. 2016; Wood and Schmidtlein 2012). On the 
other hand, microscopic models, such as agent-based models (ABM) integrated with net-
work analyses can simulate the interaction between evacuees but require expensive com-
putational resources, particularly when large populations and their temporal (daily and/
or seasonal) fluctuations are considered (Macal and North 2010; Na and Banerjee 2019; 
Wang et al. 2016; Wang and Jia 2021; Wijerathne et al. 2013). Makinoshima et al. (2020) 
conducted a literature review to better understand the evacuation behavior in tsunamis. The 
study demonstrated that evacuees’ behavior during the tsunami evacuation can be catego-
rized into four stages, namely receiving notification, risk recognition, response activity, and 
evacuation movement. Therefore, understanding human behavior such as evacuees’ cog-
nitive, emotional behaviors, or levels of stress is critical, and can significantly affect the 
decision-making process during the evacuation (e.g., Charnkol and Tanaboriboon 2006; 
Mas et al. 2015; Takabatake et al. 2017). For example, Buylova et al. (2020) performed 
a household survey to realistically evaluate the effects of socio-environmental and demo-
graphic variables on tsunami risk recognition. Surprisingly, the outcomes indicated that 
experiencing past extreme events does not necessarily result in a higher likelihood of hav-
ing immediate evacuation behavior since those experiences have various levels of impact 
on behavioral responses depending on several factors such as the time of the event, inten-
sity and the extent of damage, and the level of casualty experienced by residents. Although 
several studies have shown that neglecting the evacuees decision-making behavior underes-
timates the evacuation time (Lammel 2011; Mas et al. 2012; Muhammad et al. 2021; Wang 
et al. 2016), the ABM requires critical inputs to fully consider evacuee’s behavior result-
ing in several levels of complexity, particularly for emergency planners who often require 
information for a variety of potential events (Mls et al. 2022). Therefore, given the scope 
of this paper, the literature review mainly focuses on macroscopic models for the near-field 
tsunami evacuation.

Sugimoto et al. (2003) assessed the effect of early evacuation on the number of casu-
alties in coastal regions of Shikoku Island, Japan. They concluded that early evacuation 
significantly reduces the number casualties. Katada et al. (2006) developed an integrated 
GIS-based tsunami evacuation model to systematicity evaluate the vulnerability of coastal 
communities. Freire et al. (2013) conducted a tsunami risk assessment based on the cost-
weighted distance model to evaluate the effect of daytime and nighttime populations on 
tsunami evacuation modeling in the Lisbon Metropolitan Area. The results showed the 
population at risk can significantly increase from nighttime to daytime populations. Fraser 
et al. (2014) developed a tsunami evacuation framework based on a hypothetical near-field 
tsunami scenario utilizing the least-cost distance model to evaluate the vulnerability of 
coastal communities in Napier City, New Zealand. The results highlighted the significance 
of considering the uncertainty in population exposure characteristics such as evacuation 
preparation time and pedestrian walking speed. Wood and Schmidtlein (2012) assessed the 
sensitivity of the least-cost distance model to various input variables for pedestrian tsunami 
evacuation in Long Beach Peninsula, Washington. The results showed that several factors 
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can affect the evacuation travel time, including the anisotropic path assumption, land-cover 
resolution, and initial walking speeds. Wood and Schmidtlein (2013) conducted a vulner-
ability assessment to understand how variations in population exposure to a given tsunami 
can affect the pedestrian travel time. They focused on multiple coastal communities in 
Grays Harbor and Pacific Counties, WA, which are threatened by CSZ near-field tsunamis. 
The results demonstrated that communities face a wide range of vulnerabilities so that peo-
ple in several communities are unable to successfully evacuate on foot due to short tsunami 
arrival time and large distances to safety zones. Similar studies have been carried out for 
multiple coastal communities in the Northern California region (Wood et al. 2017, 2020a). 
Frucht et al. (2021) developed a tsunami risk assessment based on a worst-case scenario 
for a vulnerable community in Haifa, Israel. They utilized the HAZUS Tsunami Model to 
estimate the casualty losses considering the resident population with different preparedness 
levels, where the transportation mode was only horizontal evacuation on foot. They con-
cluded that increasing the community preparedness level and seismic retrofitting of exist-
ing structures are two main effective mitigation strategies, which can significantly decrease 
the casualty. In this regard, Bernardini and Ferreira (2022) showed that implementing a 
targeted seismic retrofitting plan for vulnerable historical buildings in urban regions is an 
effective mitigation strategy to reduce the building damage, facilitate the evacuation pro-
cess, and improve the community’s safety. Recently Wood et  al. (2020b) incorporated a 
probabilistic tsunami hazard model in the tsunami evacuation model to understand the 
effect of uncertainties in hazards on evacuation variables such as wave-arrival time, inun-
dated lands, and ultimately life safety. The results indicated that given the pedestrian evac-
uation modeling, increasing the tsunami recurrence interval results in a significant increase 
in the number of parcels with insufficient evacuation time.

As mentioned earlier, since the CSZ is a major source of the earthquake and near-field 
tsunami, several studies have been carried out to assess life safety for vulnerable coastal 
communities, particularly the city of Seaside, Oregon, located in the vicinity of the CSZ 
that has the highest vulnerability to tsunami hazards among Oregon coastal communities 
(Priest et al. 2015; Wood 2007). Priest et al. (2016) utilized the worst-case scenario for tsu-
nami hazards along with least-cost distance model to evaluate the pedestrian evacuation for 
tsunamis and its potential challenges. The results indicated that the pedestrian evacuation 
in Seaside strongly depends on the functionality of bridges that are already vulnerable to 
seismic damage. Wang et al. (2016) developed an ABM framework to investigate the effect 
of various decision-making variables on the tsunami evacuation in Seaside. They consid-
ered a peak summer weekend as a worse-case scenario with total 2500 evacuees impacted 
by a scenario-based tsunami inundation with the 500-year recurrence interval. The results 
of study lead to the conclusion that the fatality rate is significantly sensitive to different fac-
tors, including the mode of transportation (walking versus car), departure time (immediate 
versus delayed evacuation), evacuation speed (slow walk versus fast walk), choice of the 
evacuation route, and the evacuation mode (horizontal versus vertical shelters). Capozzo 
et  al. (2019) implemented the HAZUS methodology to assess direct losses, including 
the casualty for Seaside with a population layer of 6500 people due to 1000-year seismic 
and tsunami recurrence intervals. The results indicated that the joint seismic and tsunami 
hazard dramatically increases the number of fatalities mainly due to seismic damage to 
bridges, which can adversely affect the tsunami evacuation. One step further, Mostafizi 
et al. (2017) developed an ABM framework to assess the network vulnerability and iden-
tify critical links during the tsunami evacuation in Seaside. They concluded that alternative 
approaches to allocate resources for bridge retrofitting can significantly affect life safety 
outcomes. Furthermore, Mostafizi et  al. (2019) extended the framework to evaluate the 
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vertical evacuation strategies for a scenario-based near-field tsunami in Seaside. The results 
indicated that while the logical location of the vertical shelter is at the city center with the 
high density of population, the fatality rate is significantly sensitive to other factors such 
as walking speed, preparation time, and the percentage of people who intend to evacuate 
using the vertical shelter. Given the high vulnerability of Seaside, although several stud-
ies have been performed to estimate seismic damage to the infrastructure (e.g., Park et al. 
2017b; Sanderson et  al. 2021; Wiebe and Cox 2014) and associated debris (Kameshwar 
et al. 2021; Park and Cox 2019), additional efforts are needed to consider the effect of such 
damage and associated debris on the tsunami evacuation modeling.

The above literature review has identified several research gaps, particularly in assess-
ing the earthquake and tsunami life safety within coastal communities. First, to the authors’ 
knowledge, there is no study investigating the impacts of earthquake on the tsunami evac-
uation, including the earthquake-induced damage to buildings on building egress time 
and associated debris on horizontal evacuation time. Second, most studies reviewed here 
adopted a deterministic approach in their earthquake and tsunami hazard characterization, 
focusing on simulations considering historical or hypothetical worst-case scenarios, which 
do not lend themselves to compute the life safety risk, which incorporates both the prob-
ability of occurrence of the hazards and their consequences. Third, most studies to date 
have focused on the census derived population characteristics; thus, resident, employee, 
and tourist populations as well as their daytime and nighttime variations have not been con-
sidered. Therefore, this paper proposes a methodology to address these research gaps and 
assess the life safety risk due to earthquake and tsunami hazards at the community scale. 
The results could assist stakeholders, decision makers, and urban planners to better under-
stand the tsunami evacuation plan and estimate the associated life safety risk.

3 � Methodology

Figure  1 shows the overall methodology utilized in this study to evaluate life safety for 
near-field earthquakes and tsunamis, and to investigate various mitigation strategies. The 
methodology is adapted based on the decision-support framework proposed by Kameshwar 
et al. (2019) for the community resilience assessment. As shown in Fig. 1, the first com-
ponent, “decision support options” proposes several decision criteria, namely hazards and 
severity, infrastructure systems, social systems, resources, ex-ante strategies (mitigation), 
and ex-post (response) that can be adopted by stakeholders, decision makers, and urban 
planners. The first step in decision and support options is to identify hazards and severity 
that threaten the community (Fig. 1, Step 1). As the recurrence interval and severity of the 
hazard increases, the annual probability of occurrence decreases. Probabilistic seismic and 
tsunami hazards are required to conduct risk assessment, estimate the number of casual-
ties, and associated risks. The second step is to select the infrastructure systems that are 
important to the community and have considerable impacts on selected resilience metrics. 
The third step entails identifying the social system, in this example, the population that is 
at risk due to earthquake and tsunami hazards. Finally, communities can evaluate differ-
ent mitigation strategies and decide to implement the selected strategy based on resilience 
metrics such as life safety and associated risks. The second component, “hazard descrip-
tion” includes probabilistic seismic and tsunami hazards for several recurrence intervals. 
These hazards are utilized as inputs for the probabilistic simulations. The third component, 
“built environment” includes data and information about infrastructure systems, such as 
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buildings, the transportation network (roadways and bridges), as well as other lifeline sys-
tems such as water, power, gas, and telecommunication. For example, building character-
istics such as construction material, design level (e.g., pre-code, low-code, moderate-code, 
and high-code), year of construction, and number of stories can be estimated using various 
datasets and methods, including tax lot data, field survey, and Google Street View. In addi-
tion, mitigation strategies such as using a vertical evacuation shelter can directly impact 
the built environment. The built environment is utilized as one of the inputs that directly 
inform the social environment.

The fourth component, “social environment” consists of population layers, including 
residents, employees, and tourists with different spatial and temporal distributions (e.g., 
daytime versus nighttime). The resident population can be estimated based on the US Cen-
sus. Since the US Census data provides demographic characteristics at the block level, a 
probabilistic method is needed to inform housing unit characteristics at the parcel level 
(e.g., Rosenheim et al. 2019). The employee population can be estimated based on differ-
ent resources, such as the Data Axle USA Database (2020), which determines the num-
ber of employees for all business based on North American Industry Classification Sys-
tem (NAICS) codes at the parcel level. Unlike resident and employee populations, it is 
more challenging to estimate the tourist population due to limited resources. For example, 
the temporal fluctuation of visitors for daytime and nighttime population is essential to 
accurately evaluate the life safety risk for communities that attract a large number of tour-
ists. In addition, certain allocation strategies are required to develop the high-resolution 
tourist population layer for daytime and nighttime. For example, for the daytime popula-
tion, tourists need to be allocated in hotels, near the beach, and downtown areas. There-
fore, given that methods for developing the tourist population need to be tailored to the 
selected community, details of the procedure for the testbed are presented in Sect.  5.4. 
Social environment.

The fifth component, “probabilistic simulation” consists of four main modules, 
namely building damage model, debris model, earthquake and tsunami casualty models. 

Fig. 1   Proposed methodology for the life safety risk assessment of near-field earthquake and tsunami
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The damage model estimates ground shaking-induced damage to buildings, through the 
application of appropriate structural and non-structural fragility curves (Attary et  al. 
2016, 2017, 2021; Alam et al. 2018). The debris model estimates the earthquake-induce 
debris due to both structural and non-structural damage to buildings. The earthquake 
casualty model is based on the HAZUS methodology, which employs the outputs from 
earthquake-induced damage to buildings along with indoor/outdoor casualty rates to 
estimate the total casualty (Federal Emergency Management Agency 2015). The model 
excludes casualties due to other factors such as heart attack, car accidents, fire, and post-
earthquake activities. The casualty is estimated based on four severity levels of inju-
ries, namely light injuries (Severity 1), hospitalized injuries (Severity 2), life threatening 
injuries (Severity 3), and deaths (Severity 4). Given the severity level, the casualty is 
calculated from two inputs, including damage state probabilities and associated indoor/
outdoor casualty rates. The direct physical damage is determined using HAZUS seismic 
fragility curves representing the probability of exceeding different damage states for a 
given hazard intensity (Federal Emergency Management Agency 2015). Similarly, casu-
alty rates are assigned based on severity levels, building types, and damage states. Addi-
tional details about the earthquake casualty model are provided in the HAZUS earth-
quake technical manual (Federal Emergency Management Agency 2015).

The tsunami casualty model was initially adopted from the HAZUS methodology 
(Federal Emergency Management Agency 2013), but then was extended to explicitly 
incorporates: (1) the effect of earthquake-induced damage to buildings on building 
egress time, (2) the effect of earthquake-induced debris on horizontal evacuation time. 
The HAZUS tsunami casualty model estimates the number of casualties (fatalities and 
injuries) due to only tsunami hazards, in which fatality rates are determined based on 
several parameters, including hazards, warning time, preparation time, travel time, and 
fatality boundary. The hazard includes information such as maximum inundation, tsu-
nami arrival time, and maximum runup time. The preparation time is determined based 
on the level of community preparedness (Good, Poor, and Fair) depending on factors 
such as shore-protection structures, emergency loudspeakers, evacuation signs, and the 
education level for tsunami awareness (Federal Emergency Management Agency 2013). 
According to previous studies, the preparation time for tourists is more likely to be less 
than residents (Carlos-Arce et al. 2017; Charnkol and Tanaboriboon 2006; Takabatake 
et al. 2018). Regarding fatalities, the HAZUS model distinguishes between travel time 
to safety (regions with no inundation) and travel time to partially safety (regions where 
the inundation depth is less than or equal to 2 m). The travel time is calculated based on 
the macroscopic model and shortest distance to tsunami shelters using the transporta-
tion network and the selected evacuee speed. Therefore, as mentioned earlier, interac-
tions among evacuees such as social and psychological factors are not considered here 
(e.g., Bernardini et al. 2019; Makinoshima et al. 2020). The model assumes that there 
is a 50% chance of fatality and 50% of injury for the partially safety regions. The fatal-
ity rate increases to 99%, and the injury rate decreases to 1% where the inundation is 
greater than 2 m. Additional details on the tsunami casualty model are provided in the 
HAZUS tsunami technical manual (Federal Emergency Management Agency 2013). It 
should be mentioned that while selecting the macroscopic model based on the shortest 
distance to tsunami shelters can negatively affect the outcomes (e.g., underestimating 
the travel time), it is computationally efficient, and given the scope of this study, the 
model can provide valuable insights about the tsunami life safety, particularly to bet-
ter understand the effect of earthquake damage and the resulting debris on the tsunami 
evacuation modeling.
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To incorporate building egress time in the model, the HAZUS model was initially adopted 
as a baseline to evaluate the life safety risk due to tsunami hazards. The critical time ( Tcrit ) 
represents the time difference between the available time and the evacuation time to evacuate 
at the parcel level. Therefore, Tcrit is calculated as:

where Tmax = maximum runup time; T
w
= time to issue warning; Tprep = estimated prepa-

ration time; Ttravel = travel time to safety; and Tbe = building egress time. The variable Tbe 
was added to the baseline model to account for the effect of earthquake-induced damage on 
building egress time. Liu et al. (2016) developed an agent-based model to study the effect 
of building damage due to the earthquake ground shaking on human evacuation behavior 
during the evacuation. As a result, building egress time for each building type (normal 
and overcrowded buildings) and damage scenario was estimated based on selected prob-
ability distributions. Note that, given the agent-based model used by Liu et al. (2016), the 
crowding effects have been originally considered in the estimation of building egress time, 
but no interaction among evacuees is considered in this study. The building egress time is 
assigned based on the occupancy type, building elevation, and damage level and does not 
explicitly consider the number of occupants (no crowding effect). The horizontal evacu-
ation along the streets for traveling to the shelters does not consider the number of occu-
pants and their interactions since the density is low, and the tsunami evacuation is only 
considered on foot.

To incorporate the effect of seismic debris in the model, the reduction coefficients affect-
ing the walking speed were calculated from debris generated from damaged buildings. The 
debris weight (in tons) generated from each building due to the earthquake was calculated 
based on the HAZUS earthquake manual. According to this model, the total debris weight 
stems from both structural and non-structural damage for various building types, which results 
in both heavy debris (steel and reinforced concrete members) and light debris (brick, wood, 
and other materials). As the next step, a simplified model proposed by Argyroudis et al. (2015) 
was adopted to estimate the geometry of debris resulted from a damaged building. A similar 
approach was employed by Castro et al. (2019) to simulate the impact of earthquake-induced 
debris on the horizontal tsunami evacuation time. Figure 2 shows the simplified model with 
associated parameters to estimate the debris width ( Wd

 ), which is given by:

with k
v
= (WH

d
+ 0.5W

d
H

d
)∕(WH) , and where H and W are height and width of the 

undamaged building, respectively; k
v
 is the ratio of the volume of damaged building to 

the volume of undamaged building, H
d
 is the debris height, and � is the angle of collapsed 

debris. As shown in Fig. 2, the undamaged and damaged buildings are depicted in solid and 
dashed lines, respectively. In the model, it is assumed that the debris volume will resemble 
a triangular prism with a larger height next to the building. Given the building height and 
width, the values of k

v
 and � were considered as random variables, which resulted in a cer-

tain level of uncertainty in the value of the debris width ( W
d
 ). Finally, pieces of debris were 

(1)Tcrit = Tavailable − Tevacuation

(2)Tavailable = Tmax − T
w

(3)Tevacuation = Tprep + Ttravel + Tbe

(4)W
d
=

√

W2 +
2k

v
WH

tan�
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located randomly around the building, such that the total debris volume was accounted for. 
Then, given the width of street, the percentage of debris coverage was calculated as the 
total surface area of debris divided by the area of street adjacent to the building.

As the final step, the model proposed in Lu et al. (2019) was utilized to calculate the 
reduction coefficients affecting the walking speed. Lu et  al. (2019) conducted experi-
mental tests to quantify the effect of falling debris on the pedestrian movement. The vol-
unteers traveled the designated route with different levels of debris coverage, in which 
walking and running time were recorded to estimate the corresponding reduction coeffi-
cient. It was found that as the debris coverage exceeds 25%, individuals can hardly pass 
through the obstacles. Note that the reduction coefficient is based on the percentage of 
debris coverage associated with each building. The final reduction coefficient for each 
link or street was calculated based on the average reduction coefficient computed for 
buildings associated to that link. Finally, the total number of casualties and associated 
annualized risks are calculated under different policy alternatives resulting in selected 
decisions for the community. Note that although response and mitigation measures are 
often constrained by the availability of financial resources, this is not considered here as 
indicated by the dash decision box.

According to Modarres et al. (2016), the risk analysis consists of three main compo-
nents: (1) selecting the hazardous event (2) determining likelihood or the probability of 
the occurrence of the event, (3) evaluating consequences or losses. As a result, in this 
study, the life safety risk is defined as the number of casualties multiplied by the prob-
ability of occurrence calculated as the inverse of the recurrence interval. The risk pro-
vides insight into events that result in both significant losses and have a high probability 
of occurrence. The proposed methodology is designed to be implemented within the 
Interdependent Networked Community Resilience Modeling Environment (IN-CORE), 
but for this paper the earthquake casualty, debris, and tsunami casualty algorithms were 
external to IN-CORE. IN-CORE is a robust, open-source computational platform devel-
oped by Center for Risk-Based Community Resilience Planning to integrate engineering 
and socioeconomic algorithms and model the impact of natural hazards to communi-
ties as well as their recovery, evaluate community resilience, and ultimately optimize 

Fig. 2   Simplified debris model for a building at collapse adapted from Argyroudis et al. (2015)
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resilience strategies (Gardoni et al. 2018; van de Lindt et al. 2019). IN-CORE is freely 
available online and a Python library (pyIncore) is available for a variety of researchers 
from different disciplines.

4 � Description of the example testbed

In this study, the city of Seaside, Oregon, is selected as an example community to illustrate 
the application of the methodology. Seaside is a city in Clatsop County, Oregon, located in 
the vicinity of CSZ and vulnerable to both seismic and tsunami hazards (Goldfinger et al. 
2012; Oregon Seismic Safety Policy Advisory Commission 2013; Wood 2007). Previous 
studies have shown that Seaside has the highest vulnerability to tsunami hazards among 
Oregon coastal communities (Wood 2007; Wood et al. 2010). According to the 2020 US 
Census (2020), the total population of Seaside is estimated as 7115 people. However, simi-
lar to other coastal communities, since the tourism industry is the mainstay of the econ-
omy, the tourist population can be substantial in a single day, especially during the peak 
of summer hours (Connor 2005; Venturato 2005). Thus, in such circumstances, the tour-
ist population fluctuation must be taken into account to achieve a realistic life safety risk 
assessment (Kellen et al. 2012; Mostafizi et al. 2017).

For Seaside, there have been a few historically recorded far-field tsunamis with the earth-
quake origin being in Alaska (1952 and 1964), Chile (1960), and Japan (2011). While there 
were no substantial human losses, the city has experienced economic losses. For example, the 
Alaska (1964) earthquake and tsunami caused $276 K damage to the city and private sectors 
(NHMP 2015). Recently, an official evacuation warning was issued in Seaside in 2011 due 
to the Japan (2011) earthquake that led to a mandatory city evacuation (Buylova et al. 2020). 
Following the 2011 Seaside evacuation warning, the Oregon Department of Geology and 
Mineral Industries (DOGAMI) has conducted extensive studies on the evacuation planning 
in Seaside leading to the tsunami evacuation map for the community (Priest et al. 2015). Sea-
side has a fairly flat topography, and the existing evacuation plan for areas inside the tsunami 
inundation zone requires the horizontal evacuation on foot to minimize the potential traffic 
congestion, and alternative options such as the vertical evacuation has only recently been dis-
cussed (Chen et al. 2020; Wang et al. 2016). This can be a major issue since most residents 
live on the west side of the Necanicum River, where they need to travel up to 1.5 km, passing 
one or more bridges to surpass the tsunami inundation zone.

Figure  3 shows the geographic location of Seaside with tsunami shelters (eight hori-
zontal and one vertical shelters), transportation network (roads and bridges), buildings at 
the parcel level, and two street views of the area. It should be noted that while the existing 
tsunami evacuation plan for Seaside does not include the vertical evacuation, in this study, 
one vertical shelter located in the downtown area is considered among other mitigation 
strategies.

5 � Simulation inputs

5.1 � Decision support options

In this study, given the vulnerability of Seaside to the earthquake and near-field tsunami, 
the first step in decision and support option is to select the threatening probabilistic 
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hazards with associated severity in terms of the recurrence interval. Regarding the infra-
structure system, the building and transportation network are selected as the vulnerable 
infrastructures that have considerable impacts on the life safety risk. Regarding the pop-
ulation layer, residents, employees, and the tourist population with different spatial dis-
tributions, namely, daytime and nighttime are considered. Finally, to reduce the casualty 
results and associated risks, several mitigation strategies can be evaluated. In this study, 
three mitigation strategies, namely seismic retrofitting, tsunami readiness, and vertical 
evacuation shelters are considered.

5.2 � Hazard description

In this study, the results of the Probabilistic Seismic and Tsunami Hazard Analysis 
(PSTHA) performed in Park et  al. (2017a) for the city of Seaside, Oregon are utilized. 
The PSTHA used a logic-tree-based approach to consider a full-rupture of the CSZ, and 

Fig. 3   Relative Location of Seaside, OR: a transportation network and tsunami shelters; b downtown area 
enclosed by the red box (building type and corresponding code level); c street view 1 (downtown area); d 
street view 2 (Seaside beach)
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consisted of three main models, including the earthquake source model, earthquake simu-
lation model, and tsunami model. The earthquake fault source models and their character-
istics were obtained using a tapered Gutenberg-Richer distribution (Rong et al. 2014). The 
seismic intensity measures were obtained through the earthquake simulation model using 
ground motion prediction equations (Abrahamson et  al. 2016). Finally, given the earth-
quake source modeling, the tsunami hazards were obtained by solving the nonlinear shal-
low water equations (Lynett et al. 2002; Titov et al. 2011). The annual exceedance prob-
abilities of both earthquake and tsunami hazards, such as peak ground acceleration (PGA), 
elastic spectral acceleration, maximum flow depth, and tsunami momentum flux were com-
puted at the specific location. This analysis resulted in seismic and tsunami hazard maps 
associated with seven recurrence intervals, namely 100-, 250-, 500-, 1000-, 2500-, 5000-, 
and 10,000-years. Table 1 shows seven recurrence intervals and certain hazard information 
at the coast that are utilized as the simulation inputs for earthquake and tsunami casualty 
models.

5.3 � Built environment

The built environment for Seaside consists of four infrastructure systems, including build-
ings, transportation network, electric power network, and water supply network (e.g., 
Kameshwar et al 2021; Sanderson et al. 2022a). In this study, buildings and transportation 
network (e.g., roads and bridges) were considered, and additional complications due to the 
other networks (e.g., loss of power, water leaks, potential for fire following earthquake) 
were not included. The building characteristics were primarily identified using tax lot data 
from Clatsop County. Secondary means of verification were done through a field survey 
of limited number of buildings and by spot-checking using Google Street View (Cox et al. 
2022; Park et al. 2017b). A total of 4679 buildings were identified and classified as light 
frame wood buildings with the floor area less than 5000 sq. ft. (W1: 2446 parcels), any 
wood buildings with the floor area greater than 5000 sq. ft. (W2: 731 parcels), low-rise 
concrete moment frame buildings (C1L: 1039 parcels), and mid-rise concrete moment 
frame buildings (C1M: 465 parcels). Figure  4 shows the layout of building types at the 
parcel level in Seaside, Oregon.

Table 1   Recurrence intervals 
and corresponding hazard 
information

RI: recurrence interval; AEP: annual exceedance probability (1/RI); 
PGA: peak ground acceleration; S

A
 : spectral acceleration for W1 

buildings (period = 0.35); T
0
 : arrival time (at the shoreline); T

Max
 : Max 

runup time (at the center line); H
max

 : maximum flow depth

RI AEP (%) Seismic Tsunami

PGA (g) S
A
(g) T

0
(min) T

Max
(min) H

max
(m)

100 1 0.10 0.17 39.0 40.0 3.0
250 0.4 0.43 0.87 38.5 41.5 4.4
500 0.2 0.60 1.25 38.0 45.0 7.3
1000 0.1 0.72 1.45 38.0 48.0 10.2
2500 0.04 0.9 1.8 37.2 46.0 12.2
5000 0.02 1.0 2.0 37.0 45.5 13.6
10,000 0.01 1.15 5.7 36.3 43.0 14.5
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5.4 � Social environment

In this study, nighttime and daytime population layers consisted of three population-related 
variables, including (1) residents, (2) employees, and (3) tourists. The resident population 
of Seaside was estimated as 6457 people according to the 2010 US Census. The method 
developed by Rosenheim et  al. (2019) was adopted to assign demographic characteris-
tics such as the number of people, tenure status, and race to individual household units, 
although not all characteristics were incorporated for this study. The process is based on 
the probabilistic housing unit allocation algorithm using US Census data at the block level 
to inform housing unit characteristics at the parcel level. The results consist of the number 
of people in housing units and information about the land use types, namely vacant, resi-
dential, commercial, and seasonal rental (Rosenheim 2021). The employee population for 
all businesses at the parcel level was estimated using Data Axle USA Database (2020).

The tourist population was estimated from combination of three sources: the Hatfield 
Marine Science Center (HMSC), Oregon State Parks (OSP), and overnight visitors (Dean 
Runyan Associates 2021). The HMSC, located in Newport, Oregon, operates a visi-
tor center for public outreach on marine science and attracts a large number of tourists, 
particularly in summer months and on weekends between late Spring and early Fall. We 
assume that the seasonal (e.g., higher visitor counts in summer) and weekly (e.g., higher 
visitor counts on weekends) variation of daytime visitors is qualitatively similar to Seaside. 
The HMSC Visitor Center is closed on some occasions, and the average value of adjacent 
days was utilized to fill in the gaps. Weekly and daily ratios of visitors were calculated 
based on revised temporal data. The total number of daily visitors for Seaside was calcu-
lated based on the monthly OSP data for that area, which provided a means to scale the 
HMSC data. Finally, using the total monthly visitors from OSP combined with weekly and 
daily ratios from HMSC, the temporal fluctuation of visitors for daytime population was 
estimated.

Regarding nighttime population, Dean Runyan Associates (2021) provides a total 
estimate of overnight visitors for the Clatsop County in 2018, from which the monthly 

Fig. 4   Layout of building types at Seaside, Oregon (W1 is light framed wood buildings with the floor area 
less than 5000 sq. ft., W2 is any wood buildings with the floor area greater than 5000 sq. ft., C1L is low-rise 
concrete moment frame buildings, and C1M is mid-rise concrete moment frame buildings)
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overnight visitors for Seaside was calculated based on its population compared to other cit-
ies in the county such as Astoria, Cannon Beach, Gearhart, and Warrenton. Finally, given 
similar weekly and daily ratios of visitors obtained from HMSC, the daily temporal fluc-
tuation of overnight visitors for Seaside was estimated. Figure 5 shows the results in terms 
of the temporal fluctuation of visitors for daytime and nighttime population in Seaside. 
The maximum daytime and nighttime tourist population were estimated about 20,000 and 
10,000, respectively, which appear to be reasonable based on previous studies (e.g., Connor 
2005; Venturato 2005; Wang and Jia 2021; Wojahn 1976). Moreover, while the estimates 
could be refined in future studies, we emphasize that the intention of this work is to under-
stand the overall life safety risk considering the addition of a realistic tourist population for 
a typical coastal city. We note that other cities for which tourism is a major industry may 
have different trends. Arrighi et al. (2022), for example, studied the flood risk for Florence, 
Italy, and assumed a constant annual influx of tourists.

Note that the maximum daytime and nighttime tourist populations of 20,000 and 
10,000 were selected as the worst-case scenario to estimate the highest life safety risk. 
While the uncertainty in the initial population distribution is essential for the casualty 
model, it will be addressed in future studies where yearly population fluctuations will 
be considered. To develop the high-resolution population layer for the selected daytime 
and nighttime, certain allocation strategies were considered. For the daytime popula-
tion, we assumed that 20% of residents would remain at home (Rosenheim et al. 2019; 
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Rosenheim 2021). Second, according to Data Axle USA Database (2020), there were 
5103 employees who were allocated to target parcels. Finally, tourists were allocated 
in hotels with an occupancy rate of 45%, and the remaining tourist population was ran-
domly distributed with 40% placed near the beach distributed normally around the cen-
troid of the downtown area, 30% in the downtown area, and 30% in seasonal rentals. 
Note that we did not consider any person on the sand beach or in the water. For the case 
of Seaside, the water is generally too cold for swimming, and the number of tourists on 
the beach is typically much smaller than the number on the boardwalk or in the town. 
Future iterations of this model could consider the beach population since this group 
would have the greatest exposure to the tsunami hazard. Regarding the nighttime popu-
lation, firstly, it assumed that 100% of residents would remain at home. Secondly, the 
tourists were randomly allocated in hotels (hotel occupancy = 90%), and seasonal rentals 
identified by the housing unit allocation method (Rosenheim 2021). Online data were 
used to determine the approximate number of rooms in 40 hotels and vacation homes in 
Seaside. Regarding the hotel capacity, it was assumed that there were on average 3 per-
sons in each room. Figure 6 shows the heatmap for daytime and nighttime population at 
the parcel level including numbers of residents, employees, and tourists (peak summer 
weekend). As shown in Fig. 6a, the downtown area has a higher population during the 
daytime, which the maximum of density is 1.8 person∕m2 . As shown in Fig. 6b, during 
the nighttime, the population layer is more uniform, and the maximum of density is 0.4 
person∕m2 driven by multi-story hotels and seasonal rentals.

5.5 � Probabilistic simulations

The probabilistic simulation consisted of four main modules (Fig. 1, Step 5), namely the 
building damage model, debris model, earthquake and tsunami casualty models. In this 

Fig. 6   The heatmap for the population distribution (residents, employees, and tourists) for city of Seaside, 
Oregon: a daytime population, b nighttime population
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study, building damage due to earthquake and the subsequent debris were estimated and 
then utilized as the input for casualty models. Therefore, for the sake of brevity, these mod-
els are included in the scope of the casualty model and are not discussed individually. First, 
the earthquake casualty model was developed based on the HAZUS methodology. In this 
study, only buildings with associated indoor casualties were considered for the earthquake 
casualty model due to its higher vulnerability compared to bridges. Second, the tsunami 
casualty model was developed to explicitly incorporate two important variables, includ-
ing the effect of earthquake-induced damage to buildings on building egress time, and the 
effect of earthquake-induced debris on the evacuation speed. The output of this study con-
sists of the number of casualties (fatality and injury) for the selected population layer (day-
time and nighttime) due to earthquake and tsunami hazards at the parcel level. The results 
were also compared to quantify the effect of different mitigation strategies on the resilience 
metrics for the community.

5.5.1 � Earthquake casualty model

The HAZUS earthquake casualty model applies an event tree model to estimate the num-
ber of casualties due to only direct physical damage to buildings and bridges. It should be 
noted that the HAZUS classifies damage states into five categories: none, slight, moder-
ate, extensive, and complete; however, IN-CORE is used for the damage analysis herein 
and is limited to four damage states: none/insignificant (DS0), moderate (DS1), extensive 
(DS2), and complete (DS3). Figure 7 shows an example of probabilities of exceeding DS0 
and DS1 for the 500-year earthquake hazard corresponding to limit states LS0 and LS1, 
respectively. In this study, the casualties are estimated due to only direct physical dam-
age to buildings in terms of the number of injury (Severity 1 and Severity2) and fatality 
(Severity 3 and Severity 4) at the parcel level and then aggregated in the study region. It 
should be noted that considering both Severity 3 and Severity 4 as the fatality is a conserva-
tive assumption, and it presumes that immediate treatment would not be available after the 
earthquake.

Fig. 7   Probability of exceeding specific damage state for the 500-year earthquake hazard: a LS0, b LS1
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5.5.2 � Tsunami casualty model

As mentioned earlier, the critical time in the tsunami casualty model consists of five vari-
ables, namely maximum runup time ( Tmax ), time to issue warning ( T

w
 ), estimated prepa-

ration time ( Tprep ), travel time to safety ( Ttravel ), and building egress time ( Tbe ). For the 
city of Seaside, the variable Tmax was estimated based on the PSTHA for different recur-
rence intervals (Table 1). The variable T

w
 was selected to be zero since currently there is 

no operational warning system for the near-field tsunami in Seaside. Regarding the vari-
able of Tprep , given a good tsunami awareness program in Seaside (Connor et  al. 2005), 
the level of preparedness was selected as fair (15 min) and good (10 min) for residential 
and tourist populations, respectively. There are other factors for the preparation time such 
as the choice of transportation mode and knowledge of the route that are not considered 
here (e.g., Mostafizi et al. 2019; Muhammad et al. 2021). The variable Ttravel was estimate 
based on the shortest path to safety. Given the current evacuation plan for Seaside, the tsu-
nami evacuation was only considered on foot, in which a normal distribution with a mean 
speed and standard deviation of 1.5 m/s and 0.2 m/s was selected, respectively (Wang et al. 
2016). This would cover a range of speed from slow walking, fast walking, to slow running 
(TBR 2010). Note that given implementing a macroscopic model for the tsunami evacua-
tion simulation, interactions among evacuees when traveling from the outside of buildings 
to shelters were neglected. Regarding the building egress time, the results of the agent-
based model developed by Liu et al. (2016) were utilized to estimate the Tbe for buildings 
impacted by the earthquake during the tsunami evacuation at the parcel level, in which 
the human evacuation behavior was considered in the estimated time. To estimate Tbe as a 
random variable (see Eq. 3), the lognormal distribution was used as the probability distri-
bution. Table 2 shows results of building evacuation time (minute per story) for two types 
of structure, including residential/seasonal rentals and hotels/commercial buildings. The 
variable Tbe is determined for buildings based on the expected value utilizing the probabil-
ity of being in each damage state (Fig. 7) multiplied by corresponding building evacuation 
time (Table 2).

As mentioned earlier, the effect of seismic debris was incorporated in the tsunami 
evacuation model as the reduction coefficients affecting the walking speed. Therefore, 
the weight of debris (in tons) from each building due to the earthquake was calculated. 
The model requires several inputs, including unit weight of structural/nonstructural ele-
ments, damage state probabilities for both structural and nonstructural elements, square 
footage of each building, and debris generated from different damage states (% of unit 
weight of element). Figure 8 shows debris weights for 500- and 5000-year earthquake 
at the parcel level. As shown in Fig. 8, the concrete moment frame buildings that are 

Table 2   Building egress time 
(minute per story) for residential/
seasonal rental and hotels/
commercial buildings

Residential and seasonal 
rental buildings

Hotels and commer-
cial buildings

Damage state Mean Standard 
deviation

Mean Standard 
deviation

DS0 (slight) 1.56 0.09 2.44 0.15
DS1 (moderate) 1.59 0.25 2.48 0.21
DS2 (extensive) 3.28 1.6 4.61 1.47
DS3 (complete) 3.28 1.6 4.61 1.47
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densely located in the downtown area are responsible for most of the debris weight 
(larger than 300 tons).

As the next step, given the debris weight, the total debris volume was calculated at 
the parcel level utilizing the density for heavy and light debris as 1.91 ton∕m3 and 0.45 
ton∕m3 , respectively. Similar to Fig.  8, the spatial distribution of the debris volume 
at the parcel level was calculated. Then, the debris volume was distributed randomly 
around the perimeter of the building. According to method proposed by Argyroudis 

Fig. 8   Debris weight for selected recurrence intervals at the parcel level: a 500-year earthquake; b 5000-
year earthquake

Fig. 9   Simplified illustration of the spatial distribution of debris pieces around buildings and the ones 
affecting the street area and the walking speed
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et al. (2015), W
d
 was estimated using a normal distribution, and k

v
 and � were assumed 

to be statistically independent (Eq.  4). The statistics of k
v
 and � are: �

kv
= 0.5 , 

�
kv
= 0.15 , �� = 45

◦ , �� = 13.5
◦ . Finally, pieces of debris were located randomly around 

the building, with L2 (see Fig. 2) set equal to 0.5 m, such that the total debris volume 
was accounted for. Noted that while the sensitivity analysis showed that selecting L2 as 
a deterministic variable does not significantly affect the casualty results, such compari-
sons have not been presented for the sake of brevity. Figure 9 shows a simplified exam-
ple of the spatial distribution of debris around buildings. Even though pieces of debris 
are randomly distributed around buildings, as shown in Fig. 9, the ones adjacent to the 
street are considered to affect the walking speed of evacuees. Finally, given the percent-
age of debris coverage with each building and the model proposed by Lu et al. (2019), 
the reduction coefficients for each link or street were calculated. Figure 10 shows the 
experimental results for the walking condition as black dots and models fitted in this in 
study. While the original model included a logarithmic-based regression, for our study, 
multiple debris models with different thresholds were investigated due to experimental 

Fig. 10   Reduction coefficient versus percentage of debris coverage and fitted models (Lu et al. 2019)

Fig. 11   The effect of earthquake-induced debris on the evacuation speed based on debris model M2: a 
reduction coefficients for 500-year earthquake; b reduction coefficients for 5000-year earthquake
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uncertainty and inherent uncertainty in human behavior. The sensitivity analysis was 
conducted to understand the effect of different debris models shown in Fig. 10 (M1, M2, 
and M3) on the casually results (Sect. 6.4 Sensitivity analysis). While the debris models 
M1 and M3 represent upper and lower bounds, the debris model M2 was selected as a 
representative case (the best fit) for most of the results and discussion in this paper.

Figure 11a, b shows the reduction coefficient for 500- and 5000-years earthquakes based 
on the debris model M2, respectively. The majority of links in the downtown area with 
a high concentration of concrete building constructed at low to moderated seismic code 
(Fig. 3b) have a reduction coefficient below 0.4 due to extensive earthquake damage (red 
links) resulting in a large amount of debris. As the intensity of the hazard increases, the 
reduction coefficient increases as expected. However, residential regions to the north and 
south of the central area have a majority wood-frame structures, which are less affected by 
seismicity and therefore generate less debris and less impact on the evacuation (green and 
yellow links). Figure 12 shows the number of people evacuating at each link during the 
daytime and nighttime. Clearly there are three streams of evacuees from the north, central 
and southern portions of the city. The central portion coincides with the downtown area 
where the reduction in walking speed is high due to debris (Fig. 11). The model estimates 
3771 people in downtown area evacuate using one bridge where the corresponding reduc-
tion coefficients are 0.43 and 0.25 for 500- and 5000-years earthquakes, respectively.

6 � Simulation results

6.1 � Casualty modeling

Figure 13 shows the total number of casualties and associated risks due to the earthquake 
and tsunami for the baseline model with the nighttime population (no effect of earthquake 
damage on the tsunami evacuation). As shown in Fig. 13, the number of casualties (both 
fatalities and injuries) caused by the earthquake, as well as maximum associated risks, are 
significantly lower than those caused by the tsunami. This is because most buildings in 
Seaside are light-wood frame and are less vulnerable to earthquake compared to concrete 

Fig. 12   The critical links and the number of people evacuation: a during the daytime; b during the night-
time
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buildings and because many of the concrete buildings were constructed with some level of 
seismic code. The number of injuries is higher than fatalities for all earthquake recurrence 
intervals as expected, and the maximum numbers of casualties occurring for the 10,000-
year recurrence interval are 44 fatalities (0.3%) and 564 injuries (3.5%). Figure 13b shows 
that the highest casualty risk is associated with the 500-year recurrence interval. Note that 
since the total number of casualties due to the earthquake is insignificant, the population 
layer is assumed to be intact for the tsunami casualty model. While this assumption is justi-
fied for the city of Seaside, it can be adjusted for other case studies.

In contrast, Fig. 13c shows that for the tsunami, the number of fatalities is higher than 
injuries, particularly when the recurrence interval exceeds the 500-year recurrence inter-
val. The maximum number of fatalities is 2127 persons (13.1%) occurring for the 10,000-
year recurrence interval. This percentage is not unexpected for a nearfield tsunami. Sup-
pasri et al. (2013) for example shows that fatality ratios were typically less than 15% for 
the Tohoku tsunami in Japan in 2011. Figure 13d shows that the maximum fatality and 
injury risks are 1.2 person/year and 0.75 person/year, respectively, which occurs also for 
the 500-year recurrence interval. At this recurrence interval, the tsunami life-safety risk is 
approximately 50 times larger for the tsunami compared to the earthquake, highlighting the 
importance of planning for evacuation for the tsunami. These results are based on the base-
line model, in which the effect of earthquake-induced damage to buildings and associated 
debris are not considered. In addition, while similar results have been developed for the 
daytime population, the results are not presented here for the sake of brevity.

6.2 � Impact of building evacuation and debris

Figure 14 compares the number of fatalities and associated annualized risk for the base-
line case, the improved model considering the effect of the building damage on egress, 

Fig. 13   Total number of casualties for the baseline model with nighttime population: a earthquake casual-
ties, b earthquake risks, c tsunami casualties, d tsunami risks
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and further improvement considering egress and horizontal evacuation. Similar to 
Fig.  13, the top panel shows the fatality count, and the lower panel shows the annu-
alized risk. Figure  14 also compares two population layers for nighttime and daytime 
populations. As expected, the number of fatalities is negligible for the 100- and 250-
year recurrence intervals since the tsunami inundation is almost negligible. The number 
of fatalities increases steadily as the recurrence interval increases, and the maximum 
risk is generally for the 500-year recurrence interval, although the 1000-year recurrence 
interval shows the ‘worst risk case’ when both egress and debris are included. The risk 
is higher for the daytime population since there are more people concentrated in the 
downtown area with concrete frame buildings that are more vulnerable to earthquake 
damage compared to wood frame buildings and because this area has a great exposure 
to the tsunami hazard. For example, for the 1000-year recurrence interval, the number 

Fig. 14   The comparison between different models and population layer: a number of fatalities, b annualized 
fatality risk
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of fatalities during daytime population for baseline model is 1151 persons and increases 
to 3538 persons when the effect of earthquake-induced damage to the building is con-
sidered (33% increase). As the hazard intensity increases, the effect earthquake-induced 
damage to the building on the building evacuation and ultimately the number of fatali-
ties become more significant.

The maximum number of fatalities occurs when the effect of earthquake-induced debris 
on the evacuation travel time is also considered, and the difference between daytime and 
nighttime population become more substantial (baseline + building evac + debris). For 
example, the number of fatalities for the 1000-year recurrence interval during the nighttime 
and daytime population is 5180 persons and 9577 persons, respectively. The substantial 
increase in the number of fatalities (85% for the 1000-year recurrence interval) is because 
the downtown area has the highest population density during the daytime and has highest 
reduction coefficients on the walking speed due to the large amount earthquake-induced 
debris. Similarly, as the hazard intensity increases, the effect earthquake-induced debris 
on the number of fatalities plays a larger role. Figure  14b shows the comparison of the 
annualized fatality risk for different models and population layers. The results indicate that 
although higher recurrence interval and magnitude results in a higher number of fatalities, 
the highest risks are associated with mid-range recurrence intervals. As the casualty model 
is improved in terms of considering effects of earthquake-induced damage to buildings and 
subsequent debris, the annual fatality risk increases, particularly for mid-range recurrence 
intervals. As a result, the highest fatality risks are 9.2 person/year and 9.6 person/year asso-
ciated with the 500- and 1000-year recurrence intervals. Overall, Fig. 14b shows that when 
building egress and debris are considered for the worst risk cases (500- and 1000-year 
recurrence intervals), the annualized fatality risk increases by 4.2–8.3 times compared to 
the baseline case.

6.3 � Mitigation strategies

Our model can be used to evaluate how different mitigation strategies, namely seismic ret-
rofitting, tsunami readiness, and vertical evacuation shelters, can reduce the life safety risk. 
Mitigation measures are compared in terms of the number of fatalities and associated risks 
for the nighttime and daytime population. For the seismic retrofit of buildings, we assume 
that the design level of all building increases to the high code to decrease the level of seis-
mic damage and subsequently amount of debris. For the tsunami readiness, we assume 
that there is a 5 min decrease in preparation time for both residents and tourists. Therefore, 

Fig. 15   Average of structural damage state probabilities observed for buildings grouped by the structure 
type: a status quo; b seismic retrofit



Natural Hazards	

1 3

the residents and tourists start to evacuate in 10 min and 5 min, respectively. For the third 
alternative, we consider the construction of a vertical evacuation in the downtown area to 
reduce the travel time for the population based (e.g., Mostafizi et al. 2019). For this pre-
liminary analysis, we do not consider relative costs for implementation, zoning regulations, 
or other social factors related to tsunami awareness or changes to risk perception.

Figure  15 shows the average of structural damage state probabilities for buildings 
grouped by the structure type between status quo and the seismic retrofit mitigation. As 
expected, the seismic retrofit mitigation decreases the number of structures of all types 
in the high damage states (DS2 and DS3). For example, regarding the RC buildings, the 
sum of averaged values of DS2 and DS3 for status quo and seismic retrofit are 0.36 and 
0.18, resulting in a 50% reduction. Similarly, for the W1 and W2 buildings, the sum of 
averaged values of DS2 and DS3 is reduced by 70% and 58%, respectively.

Figure  16 shows the implication of seismic retrofit for the 500-year earthquake in 
terms of the debris generated at the parcel level and the subsequent reduction coeffi-
cients on the walking speed on specific links. When the design level of all buildings 
increases to high-code, the earthquake ground shaking damage to buildings and sub-
sequent debris weight decrease significantly, particularly for reinforced concrete frame 
buildings with a high density in the downtown areas (Fig. 16a, b). Similarly, as shown 

Fig. 16   The outputs of seismic retrofit for 500-year earthquake: a debris weight (status quo); b debris 
weight (seismic retrofit); c reduction coefficient (status quo); d reduction coefficient (seismic retrofit)
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in Fig. 16c, d, there is a significant impact on the reduction coefficient, particularly for 
links in the downtown area.

Figure 17 shows the effect of three mitigation strategies on the number of fatalities and asso-
ciated risks for nighttime (a and b) and daytime (c and d) populations. Note that the scales are 
not the same between Fig. 17a, c and between Fig. 17b, d, and that the daytime population has 
significantly more risk for the reasons stated earlier. The results show that the seismic retrofit of 
buildings and the tsunami readiness have a similar reduction in the number of fatalities and risk 
for both nighttime and daytime populations. The vertical evacuation strategy is slightly more 
effective for recurrence intervals higher than 500-year. Considering all mitigation strategies 
together, the life safety risk for nighttime and daytime populations can be reduced substantially 
by 90% for the 500-year recurrence interval and by 92% reduction for 1000-year recurrence 
interval, respectively. As shown in Fig. 17c, d, a similar trend has been observed for the daytime 
population. The vertical evacuation strategy plays a more effective role in reducing the overall 
number of fatalities because the daytime population has a higher density in the downtown area 
where the vertical shelter is located. This exercise shows that multiple strategies may be neces-
sary to reduce life safety risk in the event of a nearfield tsunami for urban coastal cities.

6.4 � Sensitivity analysis

We conduct a sensitivity analysis to evaluate the effect of different levels of preparedness 
and earthquake debris models on the tsunami casualty results. As mentioned earlier, each 
level of preparedness corresponds to a specific preparation time for the community. Fig-
ure  18 shows the effect of the level of preparedness, namely Good ( Tprep=10  min), Fair 
( Tprep=15 min), and Poor ( Tprep=20 min) on the number of fatalities and casualties for the 
nighttime population. For the sensitivity analysis, the preparation time for the resident and 
tourist populations is considered the same. As shown in Fig. 18a, the number of fatalities 

Fig. 17   The effect of different mitigation strategies: a number of fatalities for nighttime population b fatal-
ity risk for nighttime population; c number of fatalities for daytime population d the fatality risk for daytime 
population
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is sensitive to the selected level of preparedness for all recurrence intervals higher than 
250-year. For example, regarding the 1000-year tsunami, the number of fatalities for Good, 
Fair, and Poor levels of preparedness are 132 (0.8% of population), 1595 (9.8% of popula-
tion), and 3788 (23.3% of population), respectively. This result is expected because the 
preparation level is essentially equated with the milling time, and there have been several 
studies to show how life safety correlates to milling time (e.g., Chen et  al. 2022; Wang 
et al. 2016). For this case, milling time is the time between the ground shaking and the start 
of the evacuation. As mentioned earlier, there are other factors for preparedness such as the 
choice of transportation mode and knowledge of the route that are not considered here.

Figure 19 shows the effect of the debris model on the number of fatalities and casu-
alties for the nighttime population. As it was expected, for 100- and 250-years seismic 
and tsunami recurrence intervals, the number of casualties is negligible due to the overall 
low amplitude of tsunami inundation. As shown in Fig.  19a, the number of fatalities is 
dependent on the selected debris model so that the its maximum belongs to the model M3, 
which reflects the highest reduction coefficient based on the percentage of debris cover-
age (Fig. 10). For example, for 1000-year recurrence intervals, the number of fatalities for 
models M1, M2, and M3 are 12%, 20%, and 30% of the nighttime population, respectively.

7 � Discussion

This paper proposes a methodology to evaluate the effect of earthquake-induced damage 
to buildings and subsequent debris in the tsunami casualty modeling. The methodology 
includes several modules, namely decision support options, hazard description, social 

Fig. 18   The effect of preparedness level (Good: 10 min, Fair: 15 min, Poor: 20 min) on the casualty for the 
nighttime population: a number of fatalities; b number of injuries

Fig. 19   The effect of debris model on the casualty for nighttime population with Fair level of preparedness: 
a number of fatalities; b number of injuries
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environment, probabilistic simulations, annualized casualty risk, and finally selected deci-
sions (Fig. 1). The city of Seaside, Oregon, vulnerable to the seismic earthquake and near-
field tsunami due to CSZ, is selected as an example community to illustrate the application 
of the methodology. The results are compared in terms of the number of casualties and 
associated risk to quantify the effect of different mitigation strategies, namely seismic ret-
rofitting, tsunami readiness, and vertical evacuation shelters.

The results indicate that the fatality and life safety risk of a near-field tsunami signif-
icantly increases when the effects of building egress and earthquake-induced debris are 
considered. The choice of population layer affects the life safety risk so that the maximum 
risk belongs to the daytime population. Furthermore, the number of fatalities is signifi-
cantly reduced by using mitigation strategies. Interestingly, the seismic retrofit of build-
ings and the tsunami readiness have a similar mitigation effect on the number of fatalities, 
which indicates that investing in educating people to evacuate early is more cost-effective 
compared to the seismic retrofit of buildings. The findings not only aid in understanding 
the tsunami evacuation modeling, but also provide better insight for decision makers and 
emergency planners in coastal communities. Note that although socio-environmental and 
demographic variables for both nearfield and far-field tsunamis are beyond the scope of 
this paper, there are several studies for the reference (e.g., Buylova et al. 2020; Chen et al. 
2021, 2022; Demuth et al. 2016; Lindell and Perry 2011).

This study has several limitations in the methodology and its application. First, given 
implementing a macroscopic model for the tsunami evacuation simulation, interactions 
among evacuees are neglected, which can negatively affect the outcomes (e.g., Wang et al. 
2016; Mostafizi et al. 2019; Muhammad et al. 2021). For example, unlike the ABM, the 
evacuation curve including time along the horizontal axis cannot be developed in the mac-
roscopic model due to its limitations. Second, the tsunami evacuation is only considered 
on foot and other modes of transportation are not considered in this study. This assumption 
can be justified for the case study since the current evacuation plan for Seaside requires 
only the horizontal evacuation on foot to minimize the potential traffic congestion dur-
ing the evacuation (Wang et al. 2016; Chen et al. 2020). Third, although the earthquake-
induced damage on bridges is not considered here, this topic has been covered in the past 
(e.g., Capozzo et al. 2019; Mostafizi et al. 2017; Priest et al. 2016). Finally, although differ-
ent types of uncertainty are considered here in the casualty model, more studies are needed 
to identify the effect of potential uncertainties in the initial population distribution and the 
distribution of debris on the casualty results.

As potential highlights for future research, first, yearly population fluctuation should 
be considered to assess the casualty and associated risks. Second, a cost–benefit analy-
sis needs to be implemented for different mitigation strategies in order to provide better 
insight for decision makers. Third, a targeted seismic retrofit of selected vulnerable build-
ings needs to be included to minimize the cost and maximize the effect of mitigation strat-
egy. For example, the same level of life safe may be achieved by retrofitting only vulner-
able buildings that are mostly concrete buildings located in the downtown area. Fourth, the 
casualty model can be coupled with models of urban change to evaluate life safety risks 
resulting from policy choices in coastal communities (Sanderson et al. 2022b). Last, future 
studies need to include behavioral interactions among evacuees such as congestion effects, 
panic, and herding behavior to represent a more realistic evacuation model (e.g., Wang 
et al. 2016; Mostafizi et al. 2017, 2019; Na and Banerjee 2019).
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8 � Conclusions

This study proposed a methodology to evaluate the life safety risk of coastal commu-
nity vulnerable to earthquake and tsunami hazards. The work explicitly incorporated two 
important aspects in the tsunami evacuation modeling, including the effect of earthquake-
induced damage to buildings on building egress time and associated earthquake-induced 
debris on horizontal evacuation time. The city of Seaside, Oregon, vulnerable to near-field 
earthquakes and tsunamis due to CSZ, was selected for the case study. Given the impor-
tance of the tourist industry in Seaside, the population layer accounted for not only resi-
dents, but also employees and tourists at the parcel level. The casualty rates were calculated 
for each parcel considering different community preparedness levels as well as daytime and 
nighttime population layers. The number of casualties and associated risks were compared 
to investigate the effect of different mitigation strategies, namely improving tsunami readi-
ness, using vertical evacuation shelters, and seismic retrofitting methods on the life safety. 
Finally, a sensitivity analysis was performed to evaluate the effect of different levels of 
tsunami preparedness and earthquake debris models on tsunami casualty results. The main 
conclusions from this work are:

1.	 The results show that given the built environment characteristics in Seaside, in which the 
majority of buildings are wood-frame structures, the number of casualties and associated 
risk caused by the tsunami are significantly higher than those caused by the earthquake. 
The life safety risk of the tsunami significantly increases by 4.2–8.3 times when the 
effect of seismic damage to buildings on building egress time and earthquake-induced 
debris on horizontal evacuation time are considered (Fig. 14b). Note that even though 
the choice of population layer affects, namely nighttime and daytime populations can 
affect the life safety risk, its peaks occur at mid-range recurrence intervals, namely 500- 
and 1000-year recurrence intervals, respectively.

2.	 The number of fatalities is significantly reduced by using mitigation strategies; for 
example, as the tsunami readiness is improved, the highest fatality risk for the nighttime 
population is reduced by 48% associated with the 500-year recurrence interval. While 
the seismic retrofit of buildings and the tsunami readiness have similar mitigation effects, 
for extreme hazard intensities, with a recurrence interval larger than 500-year, the verti-
cal evacuation strategy is most effective in reducing fatalities. Remarkably, considering 
all mitigation strategies together, the highest fatality risks for nighttime and daytime 
populations are reduced considerably by 90% and 92% associated with the 500- and 
1000-year recurrence intervals, respectively.

3.	 The sensitivity analysis indicates that the choice of tsunami preparedness levels and 
corresponding preparation time (Good: 10 min, Fair: 15 min, Poor: 20 min) and debris 
models (M1, M2, and M3) in the casualty modeling can significantly affect the fatal-
ity results. For example, regarding the 1000-year tsunami, the number of fatalities for 
Good, Fair, and Poor levels of preparedness are 132 (0.8% of population), 1595 (9.8% 
of population), and 3788 (23.3% of population), respectively.

The methodology presented in this paper highlights the severe effect of seismic damage 
to building and resulting debris on the tsunami evacuation. Note that while this paper con-
sidered the impact of the CSZ on the city of Seaside, the methodology presented is gener-
alizable to other communities with specific social characteristics.
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