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ARTICLE INFO ABSTRACT

Keywords: Lithology and geologic structure are important controls on landslide susceptibility and are incorporated into
Landsli(‘ie_s- many regional landslide hazard models. Typically, metrics for mapped geologic units are used as model input
Susc?ptlbllilw variables and a single set of values for material strength are assumed, regardless of spatial heterogeneities that
Stratlgr'ap Y may exist within a map unit. Here we describe how differences in bedding thickness, grain size, inferred uniaxial
Geologic structure . . . . [ . s

Lithology compressive strength, and bedding dip control the inherent susceptibility of slopes to deep-seated failure within a
Geomorphology single mapped geologic unit - the Tyee Formation of Oregon, USA. The Tyee, which covers over 15,000 km? and
Hazards underlies much of the Oregon Coast Range, comprises gently folded alternating beds of sandstone and siltstone

deposited as turbidites, forming a 2-km thick Eocene submarine fan which has been uplifted and exhumed
through the Cenozoic. Deep-seated landslides are widespread in the Tyee, but form a complex spatial pattern
such that landslide density ranges from 0 to 24% of the total landscape area. These slides are often extensive and
sufficiently deep to reduce local hillslope gradients, resulting in a strong negative correlation between landslide
density and mean local slope. Mean annual precipitation and predicted strong ground motions from Cascadia
earthquake scenarios also fail to explain the spatial distribution of deep-seated landslides. Consequently, land-
slide stability models, which are strongly influenced by landscape slope, pore-water pressure, and seismic ac-
celeration, yield landslide susceptibility maps which are broadly anti-correlated with mapped deep-seated
landslide density. Through a multivariable linear regression model, we show that much of the variance in deep-
seated landslide density can be explained by variability of intra-unit stratigraphic and structural characteristics,
which we measure at 128 sites across two study areas totaling ~3000 km?. Our results suggest bedding dip is
only weakly correlated to landslide density, but strongly influences landslide failure style. Subtle increases in
bedding dip, even in the gently folded Tyee Formation, result in a substantially higher likelihood of a landslide
being cataclinal, or parallel to bedding. Overall, we find a slight majority of landslides fail within these cataclinal
slopes, and that these landslides tend to be larger than non-cataclinal landslides. We also show that the litho-
logical and structural properties that influence landslide susceptibility are distinct for these two populations of
landslides. Our results demonstrate how localized, intra-unit, geologic variability can exert strong control on
landslide susceptibility and failure style. This suggests that in some locations, landslide hazard models could be
significantly improved by incorporating detailed, spatially variable, geologic properties rather than relying solely
on generalized geologic map units.

1. Introduction for slope instability through the creation of topographic relief via uplift

and erosion (Montgomery and Brandon, 2002; Larsen and Montgomery,

1.1. Background, study area, and previous work

The frequency and scale of landslides in a region are determined by
external forcing and inherent, site-specific susceptibility. Tectonics and
climate control the timing and location of landslides by setting the stage
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2012) and providing landslide triggering mechanisms like earthquakes
and rainfall (Keefer, 1984; Dai and Lee, 2001). However, the intact
strength, geologic structure, and fracture density of the underlying
bedrock govern whether a hillslope fails in a deep-seated landslide
during a potential triggering event and control the landslide failure style
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and kinematics. These material properties ultimately set the maximum
relief of landscapes (Schmidt and Montgomery, 1995) and determine the
scale and type of landslide hazards associated with them. Understanding
the underlying susceptibility of a landscape to landslides is a critical
need for reducing landslide-driven risk and losses, especially consid-
ering the potentially enormous impacts of large, deep-seated landslides.
To account for the effect of lithology, landslide susceptibility models
often rely on geologic maps as an input variable (Van Westen et al.,
2008). These landslide susceptibility models can be statistical (e.g.,
Garcia-Rodriguez et al., 2008; Lee et al., 2008; Nowicki Jessee et al.,
2018; Reichenbach et al., 2018) or physics-based (e.g., Grant et al.,
2016; Hess et al., 2017; Mathews et al., 2019) and have been widely
used in landslide prone regions. Statistical models require knowledge of
where hillslopes have failed in the past, relying on statistical methods
including regression analysis to determine the importance of different
landscape variables (surface slope, peak ground acceleration or velocity,
lithology, etc.) derived from landslide inventories. Physics-based land-
slide susceptibility models require knowledge of bedrock frictional
strength, cohesion, and density parameters that are often broadly
generalized across a region, and for a limited number of rock types. Such
models often rely on existing geologic maps and rarely account for
variability within mapped geologic units, despite evidence that litho-
logic and structural differences have been shown to exert strong control
on landslide occurrence (Guzzetti et al., 1996; Roering et al., 2005; Chen
et al., 2011; Henriques et al., 2015; Perkins et al., 2017; Bhandari and
Dhakal, 2018) and size (Valagussa et al., 2019). In many places this
modeling simplification is not due to a lack of detailed geologic
knowledge on the intra-unit variability of materials (e.g., variability in
the Tyee Formation by Roering et al., 2005; or glacial sediments by
Perkins et al., 2017), but rather stems from the convenience of using
mapped geologic units for regional-scale landslide modeling. The
conflation of mapped geologic units, which are often grouped by genetic
history, and their geotechnical properties should be approached with
caution as we demonstrate below.

To explore the effect of within-unit lithologic and structural vari-
ability on landslide susceptibility, we focus this study on the Eocene
Tyee Formation in the central Oregon Coast Range (OCR), where
widespread deep-seated bedrock landslides have been documented and
studied for many decades (e.g., Baldwin, 1958; Roering et al., 2005;
Burns, 2020; LaHusen et al., 2020; Struble et al., 2021). The Tyee For-
mation is composed of approximately 2 km of rhythmically alternating
beds of sandstone and siltstone deposited as an Eocene submarine fan off
the coast of present-day Oregon state in the Pacific Northwest United
States (Diller, 1898; Snavely et al., 1964; Chan and Dott Jr, 1983; Santra
et al., 2013). This fan has since been rotated 50°-70° clockwise such that
the proximal fan facies underlie the southernmost portion of the mapped
extent of the Tyee (Simpson and Cox, 1977). The proportion and
bedding thickness of sandstone and siltstone varies, with lithological
facies becoming generally more siltstone dominated in the more distal
deposits to the north (Lovell, 1969; Chan and Dott Jr, 1983; Roering
et al., 2005; Sweet et al., 2007). Despite having been uplifted from its
original submarine position by at least two km to form the present-day
OCR, most of the formation has been only minimally deformed into a
series of broad, open folds, where dips rarely surpass 20 degrees (Vokes
etal., 1951; Baldwin, 1955; Baldwin, 1961; Hoover, 1963; Snavely et al.,
1972). Deep-seated landslides are ubiquitous in much of this region, and
thousands of these landslides have been mapped in the last decade as the
availability and quality of lidar data have dramatically improved our
ability to identify and delineate large landslides under the characteris-
tically dense forest canopy of the OCR (Burns, 2020; LaHusen et al.,
2020).

The first comprehensive examination of the role of geologic structure
and lithology in setting the stage for deep-seated failures in the OCR was
published before lidar elevation data existed for the region. Roering
et al. (2005) developed an automated landslide terrain identification
tool which revealed widespread bench-like topography interpreted to be
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large deep-seated landslide deposits. Having identified these deposits,
the authors pointed to a dramatic increase in landslide terrain from
south to north, which they attributed to northward increasing siltstone
content in the Tyee Formation. Further, they found the percentage of
landslide prone terrain increases with dip angle, and this relationship is
more pronounced in the silt-dominated facies of the northern Tyee.
Comparisons between assumed landslide displacement vectors and
bedding orientation led the authors to conclude that the vast majority of
deep-seated landslides in the Tyee are structurally controlled and fail
along weak siltstone beds.

This study tests the conclusions of Roering et al. (2005) and builds
upon this foundational work in meaningful ways. We start by exploring
how some of the most common drivers of landslides, and physical slope
stability models (Section 1.2), fail to adequately explain the complex
spatial patterns of landslides in the OCR. Rather than using an auto-
mated landslide detection tool with a coarse DEM, we rely on the
manually mapped landslide inventory of LaHusen et al. (2020), which
includes 9938 rotational and translational deep-seated bedrock land-
slide deposits mapped on 0.91-m resolution bare-earth lidar across
15,000 km? of the Tyee Formation of the central OCR. Each of these
landslides has an estimated age of failure, derived from a calibrated
surface roughness-age function, which opens the door for more accurate
assessments of spatial and temporal patterns of deep-seated landsliding.
The landslide inventory of LaHusen et al. (2020) was used to compute
landslide areal densities throughout the Tyee, revealing a complex
spatial pattern of landslides (Fig. 1, and Section 2.2). We add detailed
rock mass characterization data (LaHusen and Grant, 2023) from
bedrock outcrops in the field, then use a multivariable linear regression
model to test for correlation between different geologic properties and
deep-seated landslide density across space. Finally, we calculate the
angular difference between each landslide in our study area and the
orientation of the underlying bedrock to parse landslides into those that
fail parallel to bedding (cataclinal landslides) and those that do not
(non-cataclinal landslides).

1.2. Discordance in mapped landslides and physics-based stability models

To demonstrate the discordance between the measured areal density
of deep-seated landslides and the modeled stability of deep-seated slip
surfaces when homogenous geotechnical parameters are assumed, we
use Scoops3D version 1.1 to calculate the lowest global factor of safety
(FS) values for thousands of potential slip surfaces across two subsets of
our study area. Scoops3D, a three-dimensional limit equilibrium model,
is intentionally designed for deep-seated rotational failures, but is able
to test thousands of potential spherical slip surfaces, such that the largest
radius spherical surfaces come close to approximating translational or
planar sliding (Reid et al., 2015). We assume the following geotechnical
parameters, which fall within a reasonable range for sandstones: friction
angle, 30°; cohesion, 500 kPa; and unit weight, 26 kN/m? (e.g. Wines
and Lilly, 2003; Bandyopadhyay and Abdullah, 2013). Because recent
studies have concluded that most of the deep-seated landslides in this
region are triggered by rainfall rather than earthquakes (LaHusen et al.,
2020; Grant et al., 2022), we use a ratio of pore-water pressure to ver-
tical overburden stress (R,) of 0.38, which approximates a fully-
saturated scenario. Using these parameters, we run Scoops3D for two
distinct 2 km? swaths of the study area: one characterized by widespread
deep-seated landslides (high areal landslide density) and the other with
only a single identifiable landslide (low areal landslide density).

Results from Scoops3D predict higher FS values in the areas of pro-
lific landslides, and lower FS values in areas of few to no landslides
(Fig. 1B — C). We tested different geotechnical parameters within a
reasonable range and found that although the magnitude of FS across the
landscape shifted, the spatial pattern did not, and changing these pa-
rameters did not change the generally discordant result between model
output and mapped landslides. Alternative physics-based models, e.g.,
infinite slope stability for translational slides, also predict lower FS in
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Fig. 1. Overview of deep-seated landslide patterns in the Tyee Formation of the
Central OCR and selected slope stability modeling results using Scoops3D (Reid
et al., 2015). Hillshade generated from lidar elevation data (Oregon Department
of Geology and Mineral Industries). A. Landslide density across the Tyee For-
mation, measured as the percent of total area in a circular, 5-km radius moving
window composed of landslide deposits from the manually mapped inventory
of LaHusen et al. (2020). Rocks overlying the Tyee Mountain Member of the
Tyee Fm. are not considered in this study (hatched pattern). Training Area A,
Training Area B, and the Testing Area are outlined, with training points plotted
as circles and testing points plotted as triangles. B. Bare-earth lidar hillshade of
a selected region of high measured landslide density, colored by minimum FS
(FS) calculated using Scoops3D (30° friction angle, 500 kPa cohesion, ru =
0.38), with mapped deep-seated landslides outlined in black. C. bare-earth lidar
hillshade of region of low measured landslide density, colored by minimum FS
calculated using Scoops3D (same model parameters as panel B), with a single
mapped deep-seated landslide outlined in black.

regions with no deep-seated landslides, and high FS in regions with
widespread landslides (see Fig. A2 in LaHusen, 2019). Overall, when
homogenous rock strength parameters are assumed rather than ac-
counting for variations in layered sedimentary rock, physical slope
stability model results are inversely related to observed landslide density
in our study area, suggesting the simplifying assumption of constant
rock properties within the same geologic unit may be flawed.

Much of this discordance between modeled stability and mapped
landslide locations can be attributed to the lack of correlation between
landscape slope and landslide density (Fig. 2C). Slope is an important
factor in all physics-based stability models, and higher slopes drive
lower calculated FS values. This likely explains why such models fail to
predict where deep-seated landslides are likely to occur in greater
number. Studies of similar deep-seated landslides in New Zealand have
also found enigmatic negative correlations between slope and landslide
susceptibility, and these authors point to geologic structure and river
incision as more important drivers of instability (Williams et al., 2021).
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Furthermore, in some portions of the OCR, deep-seated landslides are
large and prolific enough that they measurably reduce mean hillslope
gradients (Roering et al., 2005).

We also explored the correlation between landslide density and two
major landslide triggers: earthquake strong ground motions and in-
creases in pore-water pressure from rainfall. We find landslide density is
negatively correlated with estimated ground shaking during past Cas-
cadia Subduction Zone earthquakes from Wirth et al. (2021), which
generally decreases with distance inland, away from the subduction
megathrust fault (Fig. 2E). The relationship between rainfall and deep-
seated landslides in the Tyee Formation is more complicated than that
of slope or ground shaking. Although precipitation has been shown to be
the dominant trigger for landslides that initiated here during the last
1000 years (LaHusen et al., 2020; Struble et al., 2021; Grant et al., 2022;
Fig. 2B), there is no correlation between mean annual precipitation
(MAP) and deep-seated landslide density over longer timescales (R? =
0.00), such as when all landslides in the mapped inventory are consid-
ered (Fig. 2D). This type of split-timescale analysis is possible using the
roughness-age estimates in the landslide inventory. Although some of
this discordance between the recent (1000 yr) and longer timescale
landslide records could be due to changing spatial patterns of precipi-
tation, we propose that variability in the inherent susceptibility within
the same mapped geologic formation must exert some control on land-
slide density. In this study, we define inherent susceptibility as the
propensity for a slope to fail in a deep-seated landslide during a trig-
gering event, controlled by the physical properties of the underlying
bedrock. Theoretically, if the entire study area was impacted by the
same precipitation intensity and duration during a prolonged winter
rainstorm or experienced the same strong ground motions during an
earthquake, sites with higher inherent susceptibility would be most
likely to fail. Rather than aim to develop a comprehensive model to
predict landslide likelihood, we instead use a multivariable linear
regression (MVR) model to determine how much of the spatial vari-
ability in deep-seated landslide occurrence is controlled by lithological
and structural variability within the same mapped geologic unit.

2. Methods
2.1. Field observations and data collection

To examine the effects of local lithological and structural bedrock
variability on landslide susceptibility, we collected rock mass and
structural data from 128 bedrock outcrop sites within the Tyee Moun-
tain Member of the Tyee Formation (Baldwin, 1974; Fig. 1; Fig. 3). In
order to ensure an appropriate spatial density of points, we selected
three areas to focus our data collection within the geographically
expansive Tyee Formation: 105 sites from a large 40 x 80- km rectan-
gular swath which spans the width of the central OCR (Training Area A
in Fig. 1), 10 sites from a smaller 10 x 11-km swath ~100 km to the
north of Training Area A (Training Area B in Fig. 1), and 13 sites from a
separate area south of and adjacent to Training Area A where points
were used only during the testing and validation steps of our analysis
(Testing Area in Fig. 1). Field observations were primarily focused
within the larger Training Area A to maximize dense data collection at
locations accessible from the road network that spanned a wide range of
observed landslide densities. The smaller Training Area B to the north
was included because it captures some of the highest landslide densities
observed in the Tyee Formation and represents a distal and finer-grained
portion of the ancient submarine fan (Roering et al., 2005). Training
Area B also takes advantage of excellent roadcut outcrops along a newly
re-routed section of Oregon’s Highway 20, which is particularly prone to
deep-seated landslides (Hammond et al., 2009). With the exception of
some roughly E-W trending volcanic dikes (Vokes et al., 1951; Struble
and Roering, 2021a) both training areas are exclusively underlain by the
Tyee Mountain Member of the Tyee Formation. The Testing Area,
located directly south of Training Area A, also includes portions of the
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Fig. 2. A. Map of landslide areal density (calculated as the percentage of landslide terrain within a 5-km radius moving window) within the Eocene Tyee Mountain
(Mt.) Member of the Tyee Formation and for overlying members of the Tyee Formation (hatched pattern). Corresponding histogram shows distribution of landslide
density values. B. Map of areal density of only recent landslides estimated to be <1000 years old using surface roughness dating. C. Landscape slope (calculated as the
mean slope within a 2-km diameter moving window after excluding cells <5°) and a corresponding plot of slope vs. landslide areal density, with best fit linear
regression shown in red. D. Mean annual precipitation (PRISM Climate Group, 2019), averaged over a 30 year span ending in 2018) and a corresponding plot of
precipitation vs. landslide areal density, with best fit linear regression shown in red. E. Modeled peak ground acceleration during a magnitude 9.0 Cascadia Sub-
duction Zone earthquake (we use the mean of dozens of synthetic earthquake scenarios from Wirth et al. (2021)) and a corresponding plot of modeled PGA vs.
landslide areal density, with best fit linear regression shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

Baughman and Elkton Siltstone Members of the Tyee Formation (Bald-
win, 1974; Madin, 2016), rocks that are overlying the Tyee Mountain
Member of the Tyee Formation, though these members are not consid-
ered in this study. The overlying Elkton Siltstone Member of the Tyee,
does not uniformly exhibit the alternating pattern of rhythmically
bedded sandstone and siltstone beds like the Tyee Mountain Member. To
further constrain our study to the effects of variability within the Tyee
Formation, and specifically the Tyee Mountain Member, we omit re-
gions of the Testing Area with surficial overlying Elkton Siltstone and
Baughman Members.

Prior work suggests the ratio of fine-grained beds to coarse-grained
beds exerts strong control on landslide susceptibility in the Tyee
(Roering et al., 2005) and elsewhere (Schmidt and Montgomery, 1996;
Henriques et al., 2015; Perkins et al., 2017) so we collected a set of
measurements specific to rhythmically-bedded sedimentary rock rather
than adopt more generalized rock mass characterization techniques such
as geological strength index (GSI), rock mass rating (RMR), rock mass
quality (RMQ), or rock mass strength (RMS). We selected sites where at
least 2 m of stratigraphic section was exposed and prioritized sites with
>10 m of exposed, unweathered stratigraphic section, relying primarily
on roadcuts which are ubiquitous in the OCR due to a vast network of
past and present logging roads. We assume that the lithologic charac-
teristics of these bedrock outcrops are representative of the immediate
vicinity as well as the subsurface, where landslide slip surfaces may

form. The most extensive outcrops included in this study, with bedrock
exposures of >20 m tall and hundreds of meters wide, showed no evi-
dence of substantial variability, suggesting assumptions of local simi-
larity in lithological characteristics are reasonable.

At each outcrop site, we recorded the proportion of siltstone to
sandstone measured in the total exposed section, the maximum thick-
ness of the sandstone and siltstone beds, the strike and dip of bedding,
and Schmidt Hammer rebound values for sandstone beds which provide
an estimated proxy for uniaxial compressive strength (Aydin and Basu,
2005). Although shear strength along a slip surface is more directly
related to slope stability, we use compressive strength in this study
because it can be readily estimated in-situ using the Schmidt Hammer
with no need for geotechnical lab testing, is related to shear strength and
can be used in conjunction with GSI to estimate cohesion and friction
angle if desired (Hoek et al., 2002), and provides an indirect measure of
the induration of the sandstone beds. Schmidt Hammer measurements
were used as a proxy for intact sandstone strength, but we acknowledge
the likely effect of surficial weathering on our measured values (Retal-
lack and Roering, 2012), even at bedrock sites only recently (tens of
years) exposed in roadcuts (Stock et al, 2005), as a source of
uncertainty.

We focus on the properties and orientation of stratigraphic bedding
rather than other discontinuities like fractures because we observe a low
density of fractures outside of bedding, and very few regularly oriented
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Fig. 3. Photos of three field sites showing variability in thickness and pro-
portions of sandstone and siltstone beds. Select sandstone and siltstone beds are
outlined using brackets. A. Site ‘Tyee_0821_3" is characterized by relatively
high siltstone content (50%), which appears as darker beds, B. Site
‘Tyee_0714_6’ has a moderate proportion of siltstone (15-20%), C. Site
‘Tyee_0714_15" is massive sandstone (~1% siltstone), with individual sand-
stone beds up to 5-m thick. Photographs by Sean LaHusen, U.S. Geological
Survey, 2020.
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joint sets, although bedding forms a prominent discontinuity at all
outcrops. To minimize error from single point measurements of bedding
attitudes in gently dipping rock with sometimes wavy bedding contacts,
we combined our own bedding attitude measurements (LaHusen and
Grant, 2023) with 843 strike and dip points digitized from geologic
maps (Vokes et al., 1951; Baldwin, 1955; Baldwin, 1961; Snavely et al.,
1972), which we used to create an interpolated surface of bedrock strike
and dip. Additional details on this interpolation are provided in Section
2.3.

2.2. Modeling inherent landslide susceptibility using multivariable linear
regression

To correlate these variables to inherent landslide susceptibility, we
assume that landslide areal density correlates to inherent susceptibility.
Although significant landslide triggering events like great earthquakes
or major atmospheric rivers may have signals imbedded in the landslides
of the Tyee Formation, we assume the lack of correlation between pre-
cipitation, earthquake shaking, and slope (Fig. 2) implies much of the
landslide density pattern in the Tyee Formation is driven primarily by
variability in the inherent susceptibility of the bedrock. Although
landslide number-density would reveal more about discrete landslide
events and triggering, we chose to use areal density to reflect the un-
derlying susceptibility more accurately, because larger, continuous re-
gions of high susceptibility may be conducive to larger landslides. For
this study, we calculated landslide density as the percent of area within a
5-km radius moving circular window composed by deep-seated land-
slide deposits, using the LaHusen et al. (2020) inventory of 9938 land-
slides. We tested moving window radii from 3 to 9 km, and found that,
while the coefficient of determination (Rz) for our MVR model slightly
increased with expanding window size, window sizes larger than 5 km
failed to sufficiently capture the complex nature of changing landslide
susceptibility across the study areas (SM Fig. 1). This loss of spatial in-
formation with larger window sizes is expected, because as window sizes
get larger, the variance in landslide density decreases by effectively
smearing the high-density zones into the low-density zones. A large
enough window size would simply capture the entire study area in a
single window and yield the mean value of landslide density across the
study area. Meanwhile, smaller window sizes were not appropriate for
the scale of landforms considered in this study, where individual land-
slide deposits are up to 2 km long in one dimension. Moreover, the
furthest distance between our field measurement points is 10 km, so
choosing a moving window of 5-km radius ensured that our moving
windows should contain multiple field sites.

Following data collection, we examined correlation plots between
variable pairs to test for correlation between predictor variables and
landslide areal density and collinearity amongst predictor variables for
all data collected at the 115 sites within the training areas (SM Fig. 2).
These plots and statistical tests helped with variable selection for the
MVR model. For each variable pair, we calculated the correlation co-
efficient (r) and p-value to gauge the strength and statistical significance
of a linear relationship between the variables. We adopted the conven-
tional p-value threshold of <0.05 as the p-value that signifies a statis-
tically significant linear relationship. Variable pairs with p < 0.05 reject
the null hypothesis that there is no linear correlation between variables,
so we consider these variable pairs to have a statistically significant
linear correlation. We exclude any predictor variables that do not have a
statistically significant correlation with landslide density, our indepen-
dent variable. To limit the effects of collinearity amongst predictor
variables, if two predictor variables showed a statistically significant
monotonic relationship, the variable with the weaker correlation with
landslide density was not considered in the MVR model. After excluding
collinear predictor variables, we selected all predictor variables with
statistically significant linear correlations with landslide density as in-
puts to our MVR model.

We assessed our model performance in three ways. First, we
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calculated standard statistical measures of R% and p-value for the entire
MVR model. R? describes the proportion of variance in landslide density
explained by the MVR model, whereas the p-value tests whether the
model is statistically significant. Second, we visually inspected the
predicted landslide density from the model in map view and compared
this predicted density with the measured density to examine model
performance across space. To construct a continuous 2D MVR output,
we interpolate each predictor variable via Kriging in ArcGIS Pro (v3.1.1,
Esri) from measured values within Training Area A (Fig. 4). We focus
these variable interpolations on Training Area A alone because Training
Area A is larger and contains far more field sites (105 of 115 total sites)
than Training Area B, and the distance between the two sites precludes
reasonable interpolation. We tested both Simple and Ordinary Kriging
interpolation methods and selected the model that provided the lowest
absolute error for each variable. Ordinary Kriging, with no data trans-
formation, was used for all variables except Bedding Dip, for which
Simple Kriging yielded better fit. During this step, dip direction was
decomposed into northing and easting components, which were inde-
pendently interpolated via Simple Kriging. Each of the 2D predictor
variable interpolations were then used as an input for a 2D MVR model
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raster, which we compared to measured landslide density to evaluate the
accuracy of spatial trends and identify locations where the model over or
under-predicted landslide density (Fig. 5). We subtract the measured
landslide density from our MVR-predicted landslide density to make an
error map which highlights where our model overestimates or un-
derestimates actual landslide density (Fig. 5). Third, we evaluated
model performance by testing the model’s ability to predict landslide
density at 13 sites in the separate Testing Area. We calculated the pre-
diction error at each test point by taking the difference between the
model-predicted landslide density and the measured landslide density.
More qualitatively, we also assessed the ability of the model to correctly
predict spatial patterns in landslide density.

2.3. Landslide failure style from 2D geologic structure interpolation

Detailed geologic information can also be used to assess structural
controls on landslide failure mechanics. Alignment of surface slope
relative to underlying bedding can be a strong predictor of deep-seated
landslides because weak beds can act as slip surfaces for translational
bedrock landslides (Schmidt and Montgomery, 1996; Guzzetti et al.,
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1996; Williams et al., 2021). Roering et al. (2005) demonstrated how the
gentle folds of the Tyee Formation controlled landslide failure direction
by revealing the propensity for bench-like landslide terrain to form on
cataclinal hillslopes, where the landscape slope gradient parallels
bedding dip direction. To expand on the kinematic findings of Roering
etal. (2005), we developed a continuous model of bedding dip direction
and magnitude within the Tyee Formation to compare against the
mapped landslide inventory of LaHusen et al. (2020).

Dip direction and magnitude were interpolated using Kriging (Sec-
tion 2.2) from a compilation of 971 bedding attitude measurements
across a continuous swath encompassing both Training Area A and the
Test Area. Because no regression models in this study use bedding atti-
tude data, we combined Training Area A and the Test Area into a single
Kriging interpolation to better leverage the available data. Like before,
Training Area B was intentionally excluded from this interpolation
because it is geographically distant from training area A and the Testing

Area (Fig. 1). We digitized 843 strike and dip measurements from
multiple geologic maps (Vokes et al., 1951; Baldwin, 1955; Baldwin,
1961; Snavely et al., 1972) to supplement our field observations
(LaHusen and Grant, 2023) and greatly improve the resolution of our
interpolated bedding attitude estimates. Minimal faulting, the long-
wavelength nature of folding, and a high density of existing bedding
attitude data from regional geologic maps and new data points from this
study allowed us to create detailed interpolated maps of dip direction
and magnitude. Although this method may be inappropriate for places
underlain by more highly deformed bedrock, we argue that it is a
powerful tool to construct relatively accurate, continuous interpolations
of geologic structure in modestly deformed rocks like the Tyee Forma-
tion. Previous workers used remotely mapped bedding orientations to
construct similar interpolations, which underscores the importance of
the interaction between bedrock and landscape orientation in control-
ling deep-seated bedrock instabilities (Santangelo et al., 2015).
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To better understand the role of geologic structure in deep-seated
landslide formation, we compared underlying geologic structure with
landslide orientations. To do this, we calculated the mean aspect for
each of the 3096 mapped deep-seated landslide deposits within the
structural interpolation area. We assume that the present-day landslide
deposit aspect is roughly parallel to the landslide slip surface aspect, and
therefore reflects the direction of landslide displacement. To calculate
mean landslide aspect, we performed the same steps as with bedding:
first parsing each DEM cell contained within a landslide deposit into its
northing and easting components, then using the average northing and
easting value in each landslide polygon to calculate mean aspect for the
entire deposit. Although surficial features like gullies and hummocks
may add noise to this mean aspect calculation, we assume that, given the
large size of landslide deposits considered here, these features do not
systematically bias the mean aspect calculation. The difference between
landslide aspect and underlying bedding dip direction (rake) was then
calculated for each landslide in the inventory. We assume computed
rake angles represent the map-view angle between slide displacement
direction and bedding dip direction. A rake value of 0° would imply
landslide displacement parallel to bedding (cataclinal), with 90° rake
reflecting displacement perpendicular to bedding dip direction, and
180° perfectly anaclinal landslide displacement opposite of bedding dip
direction. For this study, we define a threshold rake value of 45° below
which landslides are deemed cataclinal and above which they are
considered non-cataclinal failures. We assume cataclinal landslides are
most often structurally controlled, translational bedrock landslides
failing at least partially along a slip surface parallel to bedding, whereas
non-cataclinal slides (including but not limited to landslides on anacli-
nal slopes) have subsurface geometries that are unlikely to be influenced
by the orientation of bedding, and may be more likely to be rotational in
style. Although 45° is an arbitrary cutoff, it means that the landslide slip
direction and bedding dip direction lie within a 90° quadrant window.
Parsing the landslide inventory into cataclinal and non-cataclinal fail-
ures allows landslide density to be calculated separately for both of these
implied failure styles. We then repeat the MVR analysis (Section 2.2) for
both cataclinal and non-cataclinal landslide density layers to test
whether landslide failure style affects the relative importance of each of
the geologic predictor variables we measured in the field.

3. Results
3.1. Multivariable regression model and performance
Using the LaHusen et al. (2020) deep-seated landslide inventory, we

found areal landslide density is highly variable across the Tyee Forma-
tion, ranging from 0 to 24% (Fig. 1A). As in Roering et al. (2005), we

Table 1
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observe a general northward increase in landslide density. However, this
analysis also highlights additional complexity in the spatial patterns of
landslides not explained by a simple 1-dimensional south to north
gradient (Fig. 1). For example, there is little existing evidence to explain
the observed heterogeneity in east-west landslide density across the
Tyee Formation (Heller and Dickinson, 1985; Roering et al., 2005).

Stratigraphic and structural measurements were collected at 115
training points and 13 testing points, which collectively represent the
variability of bedrock characteristics that define the Tyee Formation
(Fig. 3; see also SM Table 1 and LaHusen and Grant, 2023). Landslide
density sampled at all 115 training points varies from 0.22%-13%. The
proportion of siltstone ranges from 1% to 55% with a mean of 9.3%,
sandstone bedding maximum thickness ranges from 100 cm — 800 cm
with a mean of 250 cm, siltstone bedding maximum thickness ranges
from 0 cm — 250 cm with a mean of 26 cm, Schmidt Hammer R-value
(Sy), calculated as a mean of 10 point measurements on sandstone facies
only, ranges from 12 to 56 with a mean of 42, and interpolated bedrock
dip at each point ranges from 3° — 13°. S, values for siltstone facies were
attempted at several locations but the siltstone was extremely friable
and below the sensitivity of the Schmidt Hammer used in this study. We
instead assume siltstone represents a substantially weaker lithology than
sandstone across the study area but do not report quantitative strength
estimates.

While collecting Schmidt Hammer measurements, we omitted any
strikes that sounded atypically hollow or where a rock fragment visibly
broke, as these strikes were often associated with surficial fractures. We
did observe signs of physical weathering on many sandstone surfaces
throughout the study area, including surface parallel fractures and
surficial crumbling and sandy coatings, so we intentionally targeted less
weathered surfaces where possible. Specifically, we tried to measure dry
faces without signs of near-surface fractures or faces where the fractured
outer layer appeared to have spalled off the surface, revealing relatively
unfractured intact sandstone beneath (SM Fig. 3). Inclement weather
meant that some locations were measured when wet. For most sites, the
low standard deviation in S, (average SD = 4.2, SM Table 1; LaHusen
and Grant, 2023) suggests we were able to target mostly uniform intact
rock for Schmidt Hammer strikes. At 4 sites, we observed universally
high surficial weathering, and we could not avoid measuring these
crumbling surfaces (See ‘notes’ column in SM Table 1; LaHusen and
Grant, 2023). However, we posit that outcrops with lower intact
strength may also weather more rapidly (e.g. a poorly-cemented sand-
stone may fracture or disintegrate into sand more rapidly than a well-
indurated and strongly-cemented sandstone), such that surficial
weathering may be somewhat reflective of intact strength. Still, the
weathering process likely introduces uncertainty to a variable that
would ideally be measured on totally fresh surfaces.

Results table for three multivariable linear regression analyses: All Landslide Density (blue), Cataclinal Landslide Density (green), and Non-cataclinal
Landslide Density (yellow). For each predictor variable (Pg;: percentage siltstone, Tsang: max sandstone bedding thickness, Sg: mean Schmidt Hammer
R-value as defined in Eq. (1)), p-values and correlation coefficient (r) describe the linear relationship between the predictor variable and each independent
variable (landslide density). If the predictor variable passes the p-test to be included in the MVR regression, its coefficient in the MVR model is also listed.
Variables not used in a model are white (not colored). Statistics that describe the goodness of fit for each multivariable regression - error variance, p-value,
and R? - are also listed.

Independent Predictor Variable Statistics . MVR results

Variable Psm Tmnd SR Dip

MVR coefblp—value ]r MVR coef b [p—value r MVR coef b |p-value [r MVR coef b |p-value ]r Intercept ErrorVariancevaalue |R7

g:r::i’t‘:fl/:)‘;e 1.11E-01/8.8E-10 0.53| -9.81E-02 4.6E-06 |-0.41|-6.65E-03| 1.5E-05 -0.39|2.79E-01|9.6E-06 040 | 7.7 57 |19E-14 047
Cataclinal ‘
Landslide 1.02E-01|5.2E-20 0.72| -1.44E-03 1.5E-03 |-0.29|-5.26E-02| 4.7E-05 -0.37|2.61E-01|1.9E-10| 0.55 25 13 1.1E-25 0.67
Density (%)
Non-cataclinal
Landslide Not used 6.0E-02 0.18| -5.58E-03 2.7E-06 |-0.42|-5.54E-02| 5.0E-04 -0.32|Not used|2.8E-01| 0.10 5.7 58 6.5E-07 0.22
Density (%)




S.R. LaHusen and A.R.R. Grant

All of the variables measured in the field show a statistically signif-
icant linear correlation with areal landslide density (p-value <0.05).
Siltstone percentage, siltstone maximum bed thickness, and bedding dip
magnitude are all positively correlated to landslide density with corre-
lation coefficients (r) of 0.53, 0.48, and 0.40, respectively, whereas
sandstone bedding thickness and S, are both negatively correlated with
landslide density with correlation coefficients of —0.41 and — 0.39,
respectively (Fig. 4, and SM Fig. 2). During model selection, we tested
for covariance and interaction between predictor variables to remove
strongly collinear inputs and improve model performance. We removed
siltstone maximum thickness from the MVR model because it is highly
collinear with siltstone percentage (r = 0.92) and showed less single-
variate correlation to landslide density. The only notable interaction
term was sandstone maximum bed thickness in cm (Tsq,q) and sandstone
facies compressive strength (S;), i.e., Tsgng * Sy, ¥ = —0.47, but this
variable was not included because it did not improve overall model
performance. We use each of these remaining predictor variables to
calculate a best-fit multivariable linear regression to landslide density:

prs =77+ (1117107 Py — (9.81%107%) Ty — (6.65%1077) S,

1
+ (2.79*107") Dip W

Where: p;; is the density of deep-seated landslide calculated as a
percent of total area within a 5-km radius moving window, Py, is the
percentage of siltstone facies beds of the total exposed outcrop, Dip is the
magnitude of bedding dip, in degrees, and Ts4,q and S, are defined above.

With an R? value of 0.47 and a p-value of 1.9%107 %4, this model for
landslide density is statistically significant and explains nearly half of
the measured variance in landslide density within our 115 training
points (Table 1). Our spatially continuous model results, calculated
using interpolated variable maps, shows model prediction is within 2%
of the measured density for much of the study area (Fig. 5). However,
this analysis highlights a large swath of modest overestimation in the
central portion of the training area (2-4% absolute error), and a roughly
circular zone of substantial underestimation in the NE quadrant of the
training area with >4% absolute error (Fig. 5C). Other smaller zones of
high error are found in the extreme corners of Training Area A are likely
a product of edge effects during interpolation of input data and the lack
of observation sites to accurately interpolate at those extremes.

The Testing Area shows a pronounced trend in landslide density -
with the east side of the area characterized by much higher landslide
density than the west, making it ideal to assess the ability of the MVR
model to correctly predict spatial patterns (Fig. 6). When applied to the
Testing Area, predicted landslide density values range from 0.20% to
7.8%, compared to a measured range of 0.94% to 12%. Overall, our
predicted values have a smaller range and tend to overestimate the
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measured density by 1.6%, with a standard error of 2.4%, and a
maximum error of 6.7% at a single point (Fig. 6). The MVR model
correctly identifies the overall spatial pattern of observed landslides
across the Test Area, predicting lower deep-seated landslide suscepti-
bility in the west, and higher susceptibility in the east (Fig. 6).

3.2. Evaluating structural controls on landslide style

By assuming the landslide deposit orientations approximate the slip
surface beneath, we examine trends in landslide directionality and
compare landslide slip surface orientation with underlying bedding
orientation to test for structural control on landslide failure style
(Fig. 7). Plotting landslide orientations and bedding orientations (for
each cell in the interpolated bedding dip direction raster) on a rose di-
agram for comparison reveals a strong bimodal trend in bedding attitude
(Fig. 8A). Two general bedding orientations underlie much of the study
area: S through WNW facing beds (180° -300°) and ENE through SE
facing beds (60° — 120°), which align with the many broad, southward-
plunging fold hinges mapped in the study area. Landslides follow a
similar, but slightly less bimodal azimuthal distribution to bedding, with
the highest proportion of landslides occurring on southwest aspects.

We identify 1734 cataclinal landslides (rake <45°) with a total de-
posit area of 91.7 km?, representing just over half (56%) of the total
number of landslides and 63% of the total landslide area within the
bedding interpolation (Fig. 7). Non-displope failures comprise 1362
landslides but just 37% of the total landslide area, due to the smaller
average size of non-cataclinal landslide deposits: 39,500 m? vs. 52,900
m? for cataclinal landslide deposits. Though they represent a minority of
landslides in the study area, the proportion of non-cataclinal slides is not
insignificant and was previously unrecognized (Roering et al., 2005).
Having parsed the landslide inventory by cataclinal and non-cataclinal
landslides, we calculate new MVR models specific to these distinct
landslide sets (Table 1). This exercise illuminates the disparity in the
ability of our stratigraphic and structural input variables to predict
cataclinal slides versus non-cataclinal slides. Our regression perfor-
mance improves dramatically for cataclinal failure density, compared
with the regression for all landslides - resulting in an R? value of 0.67
and a p-value of 1.1¥10725, However, when we regressed the same
variables to non-cataclinal failure density, the resulting correlation was
quite poor, with an R? value of just 0.22. Moreover, while all of the
predictor variables show a statistically significant correlation with cat-
aclinal landslide density, only sandstone maximum thickness and
Schmidt hammer R-value were correlated with non-cataclinal density.
Siltstone percent, the variable with the strongest correlation with all
landslide density and cataclinal landslide density, was only weakly
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Fig. 6. Map of the regression Testing Area (limits shown on Fig. 1), comparing measured landslide density with predicted landslide density. Map is colored by
measured landslide density, and test points are plotted as triangles colored by predicted landslide density using the multivariable regression which was developed in
the training areas using a separate set of points. Error, calculated as the predicted density minus the measured density, is labeled at each point.
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correlated with non-cataclinal density and is not significant (p-value
>0.05, Table 1).

Although bedding dip is quite shallow throughout the testing and
training areas (95% of the bedding measurements are <17° and the
interpolation never exceeds 20°), there is a strong correlation between
dip magnitude and landslide rake (Fig. 8B). After binning mapped
landslides into 2° dip magnitude bins, we plot dip against average
landslide rake per bin. Because the maximum theoretical rake value is
180°, a mean of 90° would suggest totally random landslide orientations
relative to bedding, and 0° would suggest a preferential landslide
orientation parallel to that of the underlying bedrock structure. A strong
negative correlation exists between dip magnitude and landslide rake
(Fig. 8B). At dips below 7° - 9°, the average landslide rake exceeds 60°,
while landslide rake drops to 20°- 40° at dips above 13°.

10

4. Discussion
4.1. MVR model nuances and the importance of intra-unit variability

Our MVR model explains nearly half of the variability in deep-seated
landslide density across the training areas (R> = 0.47) and accurately
predicts regional patterns in landslide density within the separate
Testing Area, despite some relatively high errors at individual test
points. This model is not meant to be a comprehensive landslide hazard
model, but rather a test of the relative influence of structural and
stratigraphic bedrock properties on the inherent susceptibility to deep-
seated landslides across space in a particularly enigmatic region. Only
simplified geologic factors are considered in this analysis (structure, li-
thology, and an estimate of intact compressive strength). Although
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preliminary correlations show no statistically significant relationship
between factors promoting landslides, like slope, shaking, and precipi-
tation, we expect additional variability in landslide density could be
explained through the incorporation of similar factors. Our results sug-
gest that both intact rock strength (estimated by Schmidt Hammer) and
outcrop scale stratigraphic properties are important. Both the pro-
portions and maximum thickness of facies in bimodal layered rocks
correlate with landslide density across space, which supports past work
linking siltstone proportion to increasing deep-seated landslide density
(Roering et al., 2005), and adds new information that suggests thick
sandstone beds potentially act to obstruct the formation of landslide slip
surfaces due to their substantially higher strength.

Although our model explains much of the variance in overall deep-
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seated landslide density, and most of the variance in cataclinal land-
slide density, it performs relatively poorly at predicting the density of
non-cataclinal failures (Table 1). In one particularly problematic area in
the NE corner of the training area, our combined (all landslides) model
significantly underpredicted the real, measured landslide density
(Fig. 5). When we examined the orientations of landslides relative to the
underlying bedding attitudes in this zone, we found that landslides tend
to be randomly oriented, with a high proportion of non-cataclinal
landslides. This could potentially be due to the generally shallow dip
of the bedding in this region (Fig. 7). This is also a zone characterized by
a high density of igneous dikes (Vokes et al., 1951; Struble and Roering,
2021a), the presence of which have been linked to higher landslide
density in the Tyee Formation (Roering et al., 2005). However, although
detailed mapping of these dikes has been completed for some areas, this
level of detail is not comprehensive and may introduce a bias if we
attempted to include proximity to these dikes as a variable in our model.
Comprehensive mapping of these dikes across the central OCR may
serve to improve models by providing a key input to explain even more
of the variance in non-cataclinal landslide density.

Overall, our model of landslide density tended to slightly overpredict
landslide density in many places and did not exhibit as wide a range of
predicted values as the measured values in the training or testing areas
(Fig. 5, Fig. 6). Although this lack of extreme values predicted by our
model may be an expected effect of any linear regression model, much of
this error is likely due to factors that we do not account for in our model,
both in terms of inherent material properties and patterns in landslide
triggering events.

4.2. Geologic structure controls deep-seated landslide failure style and
influences susceptibility

Like Roering et al. (2005), we find that structure plays an important
role in determining landslide failure style and setting the inherent sus-
ceptibility for landslides. However, while Roering et al. (2005) identify
structural control on cataclinal landslides in the Tyee Formation, we
identify two distinct populations of landslides, cataclinal and non-
cataclinal, that respond to distinct drivers of inherent landslide sus-
ceptibility and are highly sensitive to dip magnitude. We were able to
explain much more of the total variance in landslide density for cata-
clinal landslides (R2 = 0.67) than for non-cataclinal slides (R2 = 0.22)
and found that, of the variables we measured, only sandstone maximum
thickness and sandstone strength measured by Schmidt Hammer (S;)
were statistically correlated with non-cataclinal landslide density. This
further supports the idea that thick, hard, sandstone beds act as barriers
to shear surface development, especially in non-cataclinal slopes where
such shear surfaces must cut across many beds. The correlation is
weaker, but still statistically significant when cataclinal landslides are
considered, perhaps due to the sandstone beds providing tensile strength
that must be overcome before any potential landslide mass can begin
sliding. Sandstone maximum bedding thickness was not as strongly
correlated with the percentage of siltstone in outcrop as siltstone
maximum bedding thickness was, and thus it adds an important
parameter beyond simple lithologic proportions that helps characterize
the rock mass and determine the inherent susceptibility to deep-seated
landslides.

We show that while dip magnitude is correlated to increasing deep-
seated landslide density, it is a much stronger predictor of landslide type
(cataclinal or non-cataclinal landslide). This further confirms the work
of Roering et al. (2005), who found deep-seated landslides in the Tyee
Formation often fail parallel to the dip direction of fold limbs. Even for
shallow dips (>20°), small increases in dip result in a far higher likeli-
hood of landslides failing parallel to bedding. The relatively modest
correlation between dip magnitude and landslide density further sug-
gests that deep-seated landslides in the Tyee Formation may occur in
flat-lying beds with sufficiently weak rock and may not occur in dipping
beds with sufficiently strong rock. However, within dipping beds,
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landslides that do occur are much more likely to be parallel to bedding,
failing along continuous, weak siltstone beds at depth. Similar landslides
were triggered after an intense rainstorm in 2014 in Chongqing, China,
where bedding contacts between very gently dipping sandstones and
mudstones provided slip surfaces for deep (tens of meters) translational
bedrock failures (Li et al., 2022). In our study area, deep-seated land-
slides that occur in bedding dipping at 16° + 1° have a 92% likelihood to
be cataclinal failures - twice as high as landslides that occur in dipping
beds of 6° + 1° (Fig. 8). Subtle changes in dip magnitude result in dra-
matic changes in landslide behavior, making them larger and much
more likely to be structurally controlled, which further underscores the
importance of weak, continuous siltstone beds in regulating landslide
susceptibility and determining whether slopes fail as large translational
slides or smaller rotational slides. This simple relationship between
geologic structure and deep-seated landslide failure style, and the ability
to interpolate continuous estimates of bedding orientation from dense
point measurements, offers promise for further refining hazard models
on a more localized scale by identifying which aspects of a drainage are
prone to which types of landslide failure.

4.3. Implications for landscape erosional processes

Our analysis reveals some regions with few to no deep-seated land-
slides, which typically exhibit regularly spaced, deeply incised dendritic
stream networks and, enigmatically, some of the steepest slopes in the
entire study area (Fig. 2). A wealth of literature points to the widespread
occurrence of precipitation-driven shallow landslides and debris flows in
many of the same regions (Benda, 1990; Schmidt et al., 2001; Coe et al.,
2011; Burns, 2020). This prevalence of shallow slope failures in areas
with few to no deep-seated failures may suggest distinct erosional pro-
cess domains are present within the same geologic unit and in the same
mountain range, often separated by only a few kms. It is possible that the
intra-unit variability we describe in this study is one factor driving the
separation of these process domains — perhaps flat lying to gently-
dipping portions of the Tyee Mountain Member dominated by thick
sandstone beds are able to be eroded into steeper, more highly dissected
landscapes. These landscapes would inherently be more prone to
shallow landslides and debris flows — processes controlled by factors like
slope, precipitation, and root cohesion (Baum et al., 2011), and less
dependent on stratigraphic bedrock architecture many meters beneath
the landscape surface. In other words, the same geologic and structural
factors that would lead to a low inherent susceptibility for deep-seated
landsliding may indirectly lead to a higher susceptibility for shallow
landsliding by allowing a steeper, more rugged landscape to evolve. This
study corroborates the conclusions of Roering et al. (2005), who found
local relief decreased as deep-seated landslide density increased. These
distinct landslide process domains, separated by hillslope gradient, have
also been noted in the folded sandstones and shales that comprise the
Chuckanut Formation in Washington State (Schmidt and Montgomery,
1996). This finding has implications for landslide mitigation and risk
reduction strategies, which should be specific to the types of landslides
affecting different regions and the factors controlling those failure styles
(e.g., Grant et al., 2016).

Finally, though not directly considered in this study, lithology and
stratigraphic architecture have been shown to play a dominant role in
subsurface hydrology, in particular groundwater routing, in ways that
promote shallow or deep-seated landslides (Perkins et al., 2017; Marc
et al.,, 2019). In our study area, for example, a hillslope underlain by
dipping, thinly bedded, siltstone-rich strata may channel groundwater
more quickly to depths at which deep-seated landslides initiate
compared to a hillslope underlain by thick, flat-lying sandstone beds.
Certain bedding contacts may also act as impermeable hydrologic bar-
riers upon which groundwater may perch, raising local pore-water
pressure conditions in the subsurface. Variability in subsurface
groundwater routing and conductivity across space may also explain the
weak correlation between mean annual precipitation and landslide
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density (Fig. 2), which only becomes compelling when recent (>1000
year old) landslides are considered (LaHusen et al., 2020). Noting a
similarly poor correlation between typhoon rainfall amounts and land-
slides in Japan, Marc et al. (2019) find that anomalous rainfall (i.e.
normalizing event rainfall by 10-year return period rainfall), is far more
strongly correlated with landslides. They argue that if hillslopes
coevolved with climate, exceeding some statistically extreme, site-
specific rainfall amount is the most likely scenario to trigger land-
sliding. This more nuanced examination of precipitation as a landslide
trigger may help explain the variability in landslide density not
explained by our model of inherent susceptibility. Though outside the
scope of this study, synthesizing data on geologic variability, subsurface
groundwater conditions in the Tyee Formation, and an analysis of
locally extreme precipitation events may yield a more thorough un-
derstanding of the complex drivers of deep-seated landslides in the OCR.

4.4. Considering landslide preservation

A potentially important effect that we do not account for in this study
is the preservation timescale of deep-seated landslide deposits, and
whether that may vary across our study area. After a deep-seated
landslide occurs, assuming a single catastrophic failure, the surround-
ing landscape continues to uplift and erode, eventually removing land-
slide deposit mass and, with it, the topographic signature of the
landslide. In general, we expect the types of landslide deposits we
consider in this study to persist for thousands to hundreds of thousands
of years (Reneau and Dietrich, 1991; Roering et al., 2001). However, this
total preservation time depends on both landscape-wide erosion rates
and the depth of the landslide deposit. So, any persistent spatial het-
erogeneity in erosion rates or landslide depth could influence the
number of landslides we map, and therefore the areal landslide density
that we regress for in the model presented here. There is some evidence
to suggest that bedrock uplift and erosion rates vary within the OCR,
despite the lack of mapped crustal faults (Penserini et al., 2017; Struble
and Roering, 2021b), and if these rates could be further constrained, we
may be able to apply a spatially variable ‘preservation factor’ to our
measured density to account for this effect.

5. Conclusions

We find subtle variations in lithology and structure explain much of
the spatial pattern of deep-seated bedrock landslide density and failure
style within the Tyee Formation of the central OCR, where traditional
drivers of landslide hazards like slope, strong ground motions, and
precipitation cannot. The failure of physics-based models to accurately
identify deep-seated, landslide-prone terrain in the Tyee Formation
when homogenous rock strength parameters are assumed likely reflects
a problem unique to deep bedrock landslides. Existing physics-based
models developed in the same study area perform well in predicting
shallow landslide susceptibility (Montgomery and Dietrich, 1994; Baum
etal., 2011) and even forecasting runout and sediment inundation (Reid
et al., 2016). However, when landslide failure surfaces extend to tens or
hundreds of meters depth - well beyond surficial regolith and soil - bulk
rock mass strength and throughgoing heterogeneities may exert as much
or more control over landslide hazards than landscape form (e.g., slope,
curvature, relief, distance to stream) or soil properties (friction, cohe-
sion, modification by vegetation, etc.). Moreover, in landscapes domi-
nated by large, deep-seated landslide deposits, such as in the Tyee
Formation, these topographic factors may be controlled by the presence
of landslides, rather than controlling the susceptibility of landslides.
Therefore, topography-based models of landslide susceptibility in such
environments may effectively identify the forms associated with large
deep-seated landslides—reduced surface slope, bench-like terrain, low
absolute curvature, occurring in the upper reaches of the drainages, far
from streams (e.g., Roering et al., 2005)—without shedding new light on
the causal factors actually driving susceptibility.
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Although this study targeted a single geologic unit with substantially
different rock strengths between facies, similar turbidite sequences un-
derlie many coastal mountain belts around the world and these tech-
niques could also be applied to other sedimentary (e.g., prograding fan)
environments conducive to forming rhythmically alternating beds. We
show simple field measurements of bedding attitude and characteristics
of bedrock outcrops greatly improved our understanding of the drivers
and behaviors of deep-seated bedrock landslides within the Tyee For-
mation. These observations could be adopted quite easily in future local
to regional-scale landslide hazard and risk analyses to improve the
characterization of spatially variable levels of landslide susceptibility.
We demonstrate the emergence of two distinct landslide populations in
response to geologic structure, despite the modestly-dipping, gently
folded bedrock, where cataclinal landslides become the dominant style
of failure above ~8° bedding dip, and account for nearly all landslides
when bedding dips exceeds 13°. In more intensely deformed rock than
the Tyee Formation, other rock mass characterization schemes such as
GSIL, RMR, Q, or RMS, as well as joint orientation and spatial density,
may further improve landslide type and susceptibility characterization.
Ultimately, this work reinforces how heterogeneous bedrock sets the
inherent susceptibility to bedrock landsliding and suggests that ac-
counting for intra-unit variability instead of relying solely on mapped
geology may be useful in future landslide susceptibility analyses,
regardless of the underlying lithology.
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