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A B S T R A C T   

Lithology and geologic structure are important controls on landslide susceptibility and are incorporated into 
many regional landslide hazard models. Typically, metrics for mapped geologic units are used as model input 
variables and a single set of values for material strength are assumed, regardless of spatial heterogeneities that 
may exist within a map unit. Here we describe how differences in bedding thickness, grain size, inferred uniaxial 
compressive strength, and bedding dip control the inherent susceptibility of slopes to deep-seated failure within a 
single mapped geologic unit - the Tyee Formation of Oregon, USA. The Tyee, which covers over 15,000 km2 and 
underlies much of the Oregon Coast Range, comprises gently folded alternating beds of sandstone and siltstone 
deposited as turbidites, forming a 2-km thick Eocene submarine fan which has been uplifted and exhumed 
through the Cenozoic. Deep-seated landslides are widespread in the Tyee, but form a complex spatial pattern 
such that landslide density ranges from 0 to 24% of the total landscape area. These slides are often extensive and 
sufficiently deep to reduce local hillslope gradients, resulting in a strong negative correlation between landslide 
density and mean local slope. Mean annual precipitation and predicted strong ground motions from Cascadia 
earthquake scenarios also fail to explain the spatial distribution of deep-seated landslides. Consequently, land
slide stability models, which are strongly influenced by landscape slope, pore-water pressure, and seismic ac
celeration, yield landslide susceptibility maps which are broadly anti-correlated with mapped deep-seated 
landslide density. Through a multivariable linear regression model, we show that much of the variance in deep- 
seated landslide density can be explained by variability of intra-unit stratigraphic and structural characteristics, 
which we measure at 128 sites across two study areas totaling ~3000 km2. Our results suggest bedding dip is 
only weakly correlated to landslide density, but strongly influences landslide failure style. Subtle increases in 
bedding dip, even in the gently folded Tyee Formation, result in a substantially higher likelihood of a landslide 
being cataclinal, or parallel to bedding. Overall, we find a slight majority of landslides fail within these cataclinal 
slopes, and that these landslides tend to be larger than non-cataclinal landslides. We also show that the litho
logical and structural properties that influence landslide susceptibility are distinct for these two populations of 
landslides. Our results demonstrate how localized, intra-unit, geologic variability can exert strong control on 
landslide susceptibility and failure style. This suggests that in some locations, landslide hazard models could be 
significantly improved by incorporating detailed, spatially variable, geologic properties rather than relying solely 
on generalized geologic map units.   

1. Introduction 

1.1. Background, study area, and previous work 

The frequency and scale of landslides in a region are determined by 
external forcing and inherent, site-specific susceptibility. Tectonics and 
climate control the timing and location of landslides by setting the stage 

for slope instability through the creation of topographic relief via uplift 
and erosion (Montgomery and Brandon, 2002; Larsen and Montgomery, 
2012) and providing landslide triggering mechanisms like earthquakes 
and rainfall (Keefer, 1984; Dai and Lee, 2001). However, the intact 
strength, geologic structure, and fracture density of the underlying 
bedrock govern whether a hillslope fails in a deep-seated landslide 
during a potential triggering event and control the landslide failure style 
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and kinematics. These material properties ultimately set the maximum 
relief of landscapes (Schmidt and Montgomery, 1995) and determine the 
scale and type of landslide hazards associated with them. Understanding 
the underlying susceptibility of a landscape to landslides is a critical 
need for reducing landslide-driven risk and losses, especially consid
ering the potentially enormous impacts of large, deep-seated landslides. 
To account for the effect of lithology, landslide susceptibility models 
often rely on geologic maps as an input variable (Van Westen et al., 
2008). These landslide susceptibility models can be statistical (e.g., 
García-Rodríguez et al., 2008; Lee et al., 2008; Nowicki Jessee et al., 
2018; Reichenbach et al., 2018) or physics-based (e.g., Grant et al., 
2016; Hess et al., 2017; Mathews et al., 2019) and have been widely 
used in landslide prone regions. Statistical models require knowledge of 
where hillslopes have failed in the past, relying on statistical methods 
including regression analysis to determine the importance of different 
landscape variables (surface slope, peak ground acceleration or velocity, 
lithology, etc.) derived from landslide inventories. Physics-based land
slide susceptibility models require knowledge of bedrock frictional 
strength, cohesion, and density parameters that are often broadly 
generalized across a region, and for a limited number of rock types. Such 
models often rely on existing geologic maps and rarely account for 
variability within mapped geologic units, despite evidence that litho
logic and structural differences have been shown to exert strong control 
on landslide occurrence (Guzzetti et al., 1996; Roering et al., 2005; Chen 
et al., 2011; Henriques et al., 2015; Perkins et al., 2017; Bhandari and 
Dhakal, 2018) and size (Valagussa et al., 2019). In many places this 
modeling simplification is not due to a lack of detailed geologic 
knowledge on the intra-unit variability of materials (e.g., variability in 
the Tyee Formation by Roering et al., 2005; or glacial sediments by 
Perkins et al., 2017), but rather stems from the convenience of using 
mapped geologic units for regional-scale landslide modeling. The 
conflation of mapped geologic units, which are often grouped by genetic 
history, and their geotechnical properties should be approached with 
caution as we demonstrate below. 

To explore the effect of within-unit lithologic and structural vari
ability on landslide susceptibility, we focus this study on the Eocene 
Tyee Formation in the central Oregon Coast Range (OCR), where 
widespread deep-seated bedrock landslides have been documented and 
studied for many decades (e.g., Baldwin, 1958; Roering et al., 2005; 
Burns, 2020; LaHusen et al., 2020; Struble et al., 2021). The Tyee For
mation is composed of approximately 2 km of rhythmically alternating 
beds of sandstone and siltstone deposited as an Eocene submarine fan off 
the coast of present-day Oregon state in the Pacific Northwest United 
States (Diller, 1898; Snavely et al., 1964; Chan and Dott Jr, 1983; Santra 
et al., 2013). This fan has since been rotated 50◦-70◦ clockwise such that 
the proximal fan facies underlie the southernmost portion of the mapped 
extent of the Tyee (Simpson and Cox, 1977). The proportion and 
bedding thickness of sandstone and siltstone varies, with lithological 
facies becoming generally more siltstone dominated in the more distal 
deposits to the north (Lovell, 1969; Chan and Dott Jr, 1983; Roering 
et al., 2005; Sweet et al., 2007). Despite having been uplifted from its 
original submarine position by at least two km to form the present-day 
OCR, most of the formation has been only minimally deformed into a 
series of broad, open folds, where dips rarely surpass 20 degrees (Vokes 
et al., 1951; Baldwin, 1955; Baldwin, 1961; Hoover, 1963; Snavely et al., 
1972). Deep-seated landslides are ubiquitous in much of this region, and 
thousands of these landslides have been mapped in the last decade as the 
availability and quality of lidar data have dramatically improved our 
ability to identify and delineate large landslides under the characteris
tically dense forest canopy of the OCR (Burns, 2020; LaHusen et al., 
2020). 

The first comprehensive examination of the role of geologic structure 
and lithology in setting the stage for deep-seated failures in the OCR was 
published before lidar elevation data existed for the region. Roering 
et al. (2005) developed an automated landslide terrain identification 
tool which revealed widespread bench-like topography interpreted to be 

large deep-seated landslide deposits. Having identified these deposits, 
the authors pointed to a dramatic increase in landslide terrain from 
south to north, which they attributed to northward increasing siltstone 
content in the Tyee Formation. Further, they found the percentage of 
landslide prone terrain increases with dip angle, and this relationship is 
more pronounced in the silt-dominated facies of the northern Tyee. 
Comparisons between assumed landslide displacement vectors and 
bedding orientation led the authors to conclude that the vast majority of 
deep-seated landslides in the Tyee are structurally controlled and fail 
along weak siltstone beds. 

This study tests the conclusions of Roering et al. (2005) and builds 
upon this foundational work in meaningful ways. We start by exploring 
how some of the most common drivers of landslides, and physical slope 
stability models (Section 1.2), fail to adequately explain the complex 
spatial patterns of landslides in the OCR. Rather than using an auto
mated landslide detection tool with a coarse DEM, we rely on the 
manually mapped landslide inventory of LaHusen et al. (2020), which 
includes 9938 rotational and translational deep-seated bedrock land
slide deposits mapped on 0.91-m resolution bare-earth lidar across 
15,000 km2 of the Tyee Formation of the central OCR. Each of these 
landslides has an estimated age of failure, derived from a calibrated 
surface roughness-age function, which opens the door for more accurate 
assessments of spatial and temporal patterns of deep-seated landsliding. 
The landslide inventory of LaHusen et al. (2020) was used to compute 
landslide areal densities throughout the Tyee, revealing a complex 
spatial pattern of landslides (Fig. 1, and Section 2.2). We add detailed 
rock mass characterization data (LaHusen and Grant, 2023) from 
bedrock outcrops in the field, then use a multivariable linear regression 
model to test for correlation between different geologic properties and 
deep-seated landslide density across space. Finally, we calculate the 
angular difference between each landslide in our study area and the 
orientation of the underlying bedrock to parse landslides into those that 
fail parallel to bedding (cataclinal landslides) and those that do not 
(non-cataclinal landslides). 

1.2. Discordance in mapped landslides and physics-based stability models 

To demonstrate the discordance between the measured areal density 
of deep-seated landslides and the modeled stability of deep-seated slip 
surfaces when homogenous geotechnical parameters are assumed, we 
use Scoops3D version 1.1 to calculate the lowest global factor of safety 
(FS) values for thousands of potential slip surfaces across two subsets of 
our study area. Scoops3D, a three-dimensional limit equilibrium model, 
is intentionally designed for deep-seated rotational failures, but is able 
to test thousands of potential spherical slip surfaces, such that the largest 
radius spherical surfaces come close to approximating translational or 
planar sliding (Reid et al., 2015). We assume the following geotechnical 
parameters, which fall within a reasonable range for sandstones: friction 
angle, 30◦; cohesion, 500 kPa; and unit weight, 26 kN/m3 (e.g. Wines 
and Lilly, 2003; Bandyopadhyay and Abdullah, 2013). Because recent 
studies have concluded that most of the deep-seated landslides in this 
region are triggered by rainfall rather than earthquakes (LaHusen et al., 
2020; Grant et al., 2022), we use a ratio of pore-water pressure to ver
tical overburden stress (Ru) of 0.38, which approximates a fully- 
saturated scenario. Using these parameters, we run Scoops3D for two 
distinct 2 km2 swaths of the study area: one characterized by widespread 
deep-seated landslides (high areal landslide density) and the other with 
only a single identifiable landslide (low areal landslide density). 

Results from Scoops3D predict higher FS values in the areas of pro
lific landslides, and lower FS values in areas of few to no landslides 
(Fig. 1B – C). We tested different geotechnical parameters within a 
reasonable range and found that although the magnitude of FS across the 
landscape shifted, the spatial pattern did not, and changing these pa
rameters did not change the generally discordant result between model 
output and mapped landslides. Alternative physics-based models, e.g., 
infinite slope stability for translational slides, also predict lower FS in 
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regions with no deep-seated landslides, and high FS in regions with 
widespread landslides (see Fig. A2 in LaHusen, 2019). Overall, when 
homogenous rock strength parameters are assumed rather than ac
counting for variations in layered sedimentary rock, physical slope 
stability model results are inversely related to observed landslide density 
in our study area, suggesting the simplifying assumption of constant 
rock properties within the same geologic unit may be flawed. 

Much of this discordance between modeled stability and mapped 
landslide locations can be attributed to the lack of correlation between 
landscape slope and landslide density (Fig. 2C). Slope is an important 
factor in all physics-based stability models, and higher slopes drive 
lower calculated FS values. This likely explains why such models fail to 
predict where deep-seated landslides are likely to occur in greater 
number. Studies of similar deep-seated landslides in New Zealand have 
also found enigmatic negative correlations between slope and landslide 
susceptibility, and these authors point to geologic structure and river 
incision as more important drivers of instability (Williams et al., 2021). 

Furthermore, in some portions of the OCR, deep-seated landslides are 
large and prolific enough that they measurably reduce mean hillslope 
gradients (Roering et al., 2005). 

We also explored the correlation between landslide density and two 
major landslide triggers: earthquake strong ground motions and in
creases in pore-water pressure from rainfall. We find landslide density is 
negatively correlated with estimated ground shaking during past Cas
cadia Subduction Zone earthquakes from Wirth et al. (2021), which 
generally decreases with distance inland, away from the subduction 
megathrust fault (Fig. 2E). The relationship between rainfall and deep- 
seated landslides in the Tyee Formation is more complicated than that 
of slope or ground shaking. Although precipitation has been shown to be 
the dominant trigger for landslides that initiated here during the last 
1000 years (LaHusen et al., 2020; Struble et al., 2021; Grant et al., 2022; 
Fig. 2B), there is no correlation between mean annual precipitation 
(MAP) and deep-seated landslide density over longer timescales (R2 =

0.00), such as when all landslides in the mapped inventory are consid
ered (Fig. 2D). This type of split-timescale analysis is possible using the 
roughness-age estimates in the landslide inventory. Although some of 
this discordance between the recent (1000 yr) and longer timescale 
landslide records could be due to changing spatial patterns of precipi
tation, we propose that variability in the inherent susceptibility within 
the same mapped geologic formation must exert some control on land
slide density. In this study, we define inherent susceptibility as the 
propensity for a slope to fail in a deep-seated landslide during a trig
gering event, controlled by the physical properties of the underlying 
bedrock. Theoretically, if the entire study area was impacted by the 
same precipitation intensity and duration during a prolonged winter 
rainstorm or experienced the same strong ground motions during an 
earthquake, sites with higher inherent susceptibility would be most 
likely to fail. Rather than aim to develop a comprehensive model to 
predict landslide likelihood, we instead use a multivariable linear 
regression (MVR) model to determine how much of the spatial vari
ability in deep-seated landslide occurrence is controlled by lithological 
and structural variability within the same mapped geologic unit. 

2. Methods 

2.1. Field observations and data collection 

To examine the effects of local lithological and structural bedrock 
variability on landslide susceptibility, we collected rock mass and 
structural data from 128 bedrock outcrop sites within the Tyee Moun
tain Member of the Tyee Formation (Baldwin, 1974; Fig. 1; Fig. 3). In 
order to ensure an appropriate spatial density of points, we selected 
three areas to focus our data collection within the geographically 
expansive Tyee Formation: 105 sites from a large 40 × 80- km rectan
gular swath which spans the width of the central OCR (Training Area A 
in Fig. 1), 10 sites from a smaller 10 × 11-km swath ~100 km to the 
north of Training Area A (Training Area B in Fig. 1), and 13 sites from a 
separate area south of and adjacent to Training Area A where points 
were used only during the testing and validation steps of our analysis 
(Testing Area in Fig. 1). Field observations were primarily focused 
within the larger Training Area A to maximize dense data collection at 
locations accessible from the road network that spanned a wide range of 
observed landslide densities. The smaller Training Area B to the north 
was included because it captures some of the highest landslide densities 
observed in the Tyee Formation and represents a distal and finer-grained 
portion of the ancient submarine fan (Roering et al., 2005). Training 
Area B also takes advantage of excellent roadcut outcrops along a newly 
re-routed section of Oregon’s Highway 20, which is particularly prone to 
deep-seated landslides (Hammond et al., 2009). With the exception of 
some roughly E-W trending volcanic dikes (Vokes et al., 1951; Struble 
and Roering, 2021a) both training areas are exclusively underlain by the 
Tyee Mountain Member of the Tyee Formation. The Testing Area, 
located directly south of Training Area A, also includes portions of the 

Fig. 1. Overview of deep-seated landslide patterns in the Tyee Formation of the 
Central OCR and selected slope stability modeling results using Scoops3D (Reid 
et al., 2015). Hillshade generated from lidar elevation data (Oregon Department 
of Geology and Mineral Industries). A. Landslide density across the Tyee For
mation, measured as the percent of total area in a circular, 5-km radius moving 
window composed of landslide deposits from the manually mapped inventory 
of LaHusen et al. (2020). Rocks overlying the Tyee Mountain Member of the 
Tyee Fm. are not considered in this study (hatched pattern). Training Area A, 
Training Area B, and the Testing Area are outlined, with training points plotted 
as circles and testing points plotted as triangles. B. Bare-earth lidar hillshade of 
a selected region of high measured landslide density, colored by minimum FS 
(FS) calculated using Scoops3D (30◦ friction angle, 500 kPa cohesion, ru =

0.38), with mapped deep-seated landslides outlined in black. C. bare-earth lidar 
hillshade of region of low measured landslide density, colored by minimum FS 
calculated using Scoops3D (same model parameters as panel B), with a single 
mapped deep-seated landslide outlined in black. 
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Baughman and Elkton Siltstone Members of the Tyee Formation (Bald
win, 1974; Madin, 2016), rocks that are overlying the Tyee Mountain 
Member of the Tyee Formation, though these members are not consid
ered in this study. The overlying Elkton Siltstone Member of the Tyee, 
does not uniformly exhibit the alternating pattern of rhythmically 
bedded sandstone and siltstone beds like the Tyee Mountain Member. To 
further constrain our study to the effects of variability within the Tyee 
Formation, and specifically the Tyee Mountain Member, we omit re
gions of the Testing Area with surficial overlying Elkton Siltstone and 
Baughman Members. 

Prior work suggests the ratio of fine-grained beds to coarse-grained 
beds exerts strong control on landslide susceptibility in the Tyee 
(Roering et al., 2005) and elsewhere (Schmidt and Montgomery, 1996; 
Henriques et al., 2015; Perkins et al., 2017) so we collected a set of 
measurements specific to rhythmically-bedded sedimentary rock rather 
than adopt more generalized rock mass characterization techniques such 
as geological strength index (GSI), rock mass rating (RMR), rock mass 
quality (RMQ), or rock mass strength (RMS). We selected sites where at 
least 2 m of stratigraphic section was exposed and prioritized sites with 
>10 m of exposed, unweathered stratigraphic section, relying primarily 
on roadcuts which are ubiquitous in the OCR due to a vast network of 
past and present logging roads. We assume that the lithologic charac
teristics of these bedrock outcrops are representative of the immediate 
vicinity as well as the subsurface, where landslide slip surfaces may 

form. The most extensive outcrops included in this study, with bedrock 
exposures of >20 m tall and hundreds of meters wide, showed no evi
dence of substantial variability, suggesting assumptions of local simi
larity in lithological characteristics are reasonable. 

At each outcrop site, we recorded the proportion of siltstone to 
sandstone measured in the total exposed section, the maximum thick
ness of the sandstone and siltstone beds, the strike and dip of bedding, 
and Schmidt Hammer rebound values for sandstone beds which provide 
an estimated proxy for uniaxial compressive strength (Aydin and Basu, 
2005). Although shear strength along a slip surface is more directly 
related to slope stability, we use compressive strength in this study 
because it can be readily estimated in-situ using the Schmidt Hammer 
with no need for geotechnical lab testing, is related to shear strength and 
can be used in conjunction with GSI to estimate cohesion and friction 
angle if desired (Hoek et al., 2002), and provides an indirect measure of 
the induration of the sandstone beds. Schmidt Hammer measurements 
were used as a proxy for intact sandstone strength, but we acknowledge 
the likely effect of surficial weathering on our measured values (Retal
lack and Roering, 2012), even at bedrock sites only recently (tens of 
years) exposed in roadcuts (Stock et al., 2005), as a source of 
uncertainty. 

We focus on the properties and orientation of stratigraphic bedding 
rather than other discontinuities like fractures because we observe a low 
density of fractures outside of bedding, and very few regularly oriented 

Fig. 2. A. Map of landslide areal density (calculated as the percentage of landslide terrain within a 5-km radius moving window) within the Eocene Tyee Mountain 
(Mt.) Member of the Tyee Formation and for overlying members of the Tyee Formation (hatched pattern). Corresponding histogram shows distribution of landslide 
density values. B. Map of areal density of only recent landslides estimated to be <1000 years old using surface roughness dating. C. Landscape slope (calculated as the 
mean slope within a 2-km diameter moving window after excluding cells <5◦) and a corresponding plot of slope vs. landslide areal density, with best fit linear 
regression shown in red. D. Mean annual precipitation (PRISM Climate Group, 2019), averaged over a 30 year span ending in 2018) and a corresponding plot of 
precipitation vs. landslide areal density, with best fit linear regression shown in red. E. Modeled peak ground acceleration during a magnitude 9.0 Cascadia Sub
duction Zone earthquake (we use the mean of dozens of synthetic earthquake scenarios from Wirth et al. (2021)) and a corresponding plot of modeled PGA vs. 
landslide areal density, with best fit linear regression shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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joint sets, although bedding forms a prominent discontinuity at all 
outcrops. To minimize error from single point measurements of bedding 
attitudes in gently dipping rock with sometimes wavy bedding contacts, 
we combined our own bedding attitude measurements (LaHusen and 
Grant, 2023) with 843 strike and dip points digitized from geologic 
maps (Vokes et al., 1951; Baldwin, 1955; Baldwin, 1961; Snavely et al., 
1972), which we used to create an interpolated surface of bedrock strike 
and dip. Additional details on this interpolation are provided in Section 
2.3. 

2.2. Modeling inherent landslide susceptibility using multivariable linear 
regression 

To correlate these variables to inherent landslide susceptibility, we 
assume that landslide areal density correlates to inherent susceptibility. 
Although significant landslide triggering events like great earthquakes 
or major atmospheric rivers may have signals imbedded in the landslides 
of the Tyee Formation, we assume the lack of correlation between pre
cipitation, earthquake shaking, and slope (Fig. 2) implies much of the 
landslide density pattern in the Tyee Formation is driven primarily by 
variability in the inherent susceptibility of the bedrock. Although 
landslide number-density would reveal more about discrete landslide 
events and triggering, we chose to use areal density to reflect the un
derlying susceptibility more accurately, because larger, continuous re
gions of high susceptibility may be conducive to larger landslides. For 
this study, we calculated landslide density as the percent of area within a 
5-km radius moving circular window composed by deep-seated land
slide deposits, using the LaHusen et al. (2020) inventory of 9938 land
slides. We tested moving window radii from 3 to 9 km, and found that, 
while the coefficient of determination (R2) for our MVR model slightly 
increased with expanding window size, window sizes larger than 5 km 
failed to sufficiently capture the complex nature of changing landslide 
susceptibility across the study areas (SM Fig. 1). This loss of spatial in
formation with larger window sizes is expected, because as window sizes 
get larger, the variance in landslide density decreases by effectively 
smearing the high-density zones into the low-density zones. A large 
enough window size would simply capture the entire study area in a 
single window and yield the mean value of landslide density across the 
study area. Meanwhile, smaller window sizes were not appropriate for 
the scale of landforms considered in this study, where individual land
slide deposits are up to 2 km long in one dimension. Moreover, the 
furthest distance between our field measurement points is 10 km, so 
choosing a moving window of 5-km radius ensured that our moving 
windows should contain multiple field sites. 

Following data collection, we examined correlation plots between 
variable pairs to test for correlation between predictor variables and 
landslide areal density and collinearity amongst predictor variables for 
all data collected at the 115 sites within the training areas (SM Fig. 2). 
These plots and statistical tests helped with variable selection for the 
MVR model. For each variable pair, we calculated the correlation co
efficient (r) and p-value to gauge the strength and statistical significance 
of a linear relationship between the variables. We adopted the conven
tional p-value threshold of <0.05 as the p-value that signifies a statis
tically significant linear relationship. Variable pairs with p < 0.05 reject 
the null hypothesis that there is no linear correlation between variables, 
so we consider these variable pairs to have a statistically significant 
linear correlation. We exclude any predictor variables that do not have a 
statistically significant correlation with landslide density, our indepen
dent variable. To limit the effects of collinearity amongst predictor 
variables, if two predictor variables showed a statistically significant 
monotonic relationship, the variable with the weaker correlation with 
landslide density was not considered in the MVR model. After excluding 
collinear predictor variables, we selected all predictor variables with 
statistically significant linear correlations with landslide density as in
puts to our MVR model. 

We assessed our model performance in three ways. First, we 

Fig. 3. Photos of three field sites showing variability in thickness and pro
portions of sandstone and siltstone beds. Select sandstone and siltstone beds are 
outlined using brackets. A. Site ‘Tyee_0821_3’ is characterized by relatively 
high siltstone content (50%), which appears as darker beds, B. Site 
‘Tyee_0714_6’ has a moderate proportion of siltstone (15–20%), C. Site 
‘Tyee_0714_15’ is massive sandstone (~1% siltstone), with individual sand
stone beds up to 5-m thick. Photographs by Sean LaHusen, U.S. Geological 
Survey, 2020. 
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calculated standard statistical measures of R2 and p-value for the entire 
MVR model. R2 describes the proportion of variance in landslide density 
explained by the MVR model, whereas the p-value tests whether the 
model is statistically significant. Second, we visually inspected the 
predicted landslide density from the model in map view and compared 
this predicted density with the measured density to examine model 
performance across space. To construct a continuous 2D MVR output, 
we interpolate each predictor variable via Kriging in ArcGIS Pro (v3.1.1, 
Esri) from measured values within Training Area A (Fig. 4). We focus 
these variable interpolations on Training Area A alone because Training 
Area A is larger and contains far more field sites (105 of 115 total sites) 
than Training Area B, and the distance between the two sites precludes 
reasonable interpolation. We tested both Simple and Ordinary Kriging 
interpolation methods and selected the model that provided the lowest 
absolute error for each variable. Ordinary Kriging, with no data trans
formation, was used for all variables except Bedding Dip, for which 
Simple Kriging yielded better fit. During this step, dip direction was 
decomposed into northing and easting components, which were inde
pendently interpolated via Simple Kriging. Each of the 2D predictor 
variable interpolations were then used as an input for a 2D MVR model 

raster, which we compared to measured landslide density to evaluate the 
accuracy of spatial trends and identify locations where the model over or 
under-predicted landslide density (Fig. 5). We subtract the measured 
landslide density from our MVR-predicted landslide density to make an 
error map which highlights where our model overestimates or un
derestimates actual landslide density (Fig. 5). Third, we evaluated 
model performance by testing the model’s ability to predict landslide 
density at 13 sites in the separate Testing Area. We calculated the pre
diction error at each test point by taking the difference between the 
model-predicted landslide density and the measured landslide density. 
More qualitatively, we also assessed the ability of the model to correctly 
predict spatial patterns in landslide density. 

2.3. Landslide failure style from 2D geologic structure interpolation 

Detailed geologic information can also be used to assess structural 
controls on landslide failure mechanics. Alignment of surface slope 
relative to underlying bedding can be a strong predictor of deep-seated 
landslides because weak beds can act as slip surfaces for translational 
bedrock landslides (Schmidt and Montgomery, 1996; Guzzetti et al., 

Fig. 4. Interpolated maps and plots of each predictor variable against landslide density: A. Siltstone percentage, B. Bedding dip, C. Sandstone max bedding thickness, 
and D. Schmidt Hammer R. Maps of each predictor variable are interpolated across Training Area A using Ordinary Kriging. To the right of each interpolation, the 
predictor variable value at each observation site is plotted against areal density of all landslides (red) and areal density of just cataclinal (bedding-parallel) landslides 
(blue). Best-fit linear regressions and corresponding r and R2 values are reported. Interpolated maps of each predictor variable are used in the MVR model across the 
larger study area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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1996; Williams et al., 2021). Roering et al. (2005) demonstrated how the 
gentle folds of the Tyee Formation controlled landslide failure direction 
by revealing the propensity for bench-like landslide terrain to form on 
cataclinal hillslopes, where the landscape slope gradient parallels 
bedding dip direction. To expand on the kinematic findings of Roering 
et al. (2005), we developed a continuous model of bedding dip direction 
and magnitude within the Tyee Formation to compare against the 
mapped landslide inventory of LaHusen et al. (2020). 

Dip direction and magnitude were interpolated using Kriging (Sec
tion 2.2) from a compilation of 971 bedding attitude measurements 
across a continuous swath encompassing both Training Area A and the 
Test Area. Because no regression models in this study use bedding atti
tude data, we combined Training Area A and the Test Area into a single 
Kriging interpolation to better leverage the available data. Like before, 
Training Area B was intentionally excluded from this interpolation 
because it is geographically distant from training area A and the Testing 

Area (Fig. 1). We digitized 843 strike and dip measurements from 
multiple geologic maps (Vokes et al., 1951; Baldwin, 1955; Baldwin, 
1961; Snavely et al., 1972) to supplement our field observations 
(LaHusen and Grant, 2023) and greatly improve the resolution of our 
interpolated bedding attitude estimates. Minimal faulting, the long- 
wavelength nature of folding, and a high density of existing bedding 
attitude data from regional geologic maps and new data points from this 
study allowed us to create detailed interpolated maps of dip direction 
and magnitude. Although this method may be inappropriate for places 
underlain by more highly deformed bedrock, we argue that it is a 
powerful tool to construct relatively accurate, continuous interpolations 
of geologic structure in modestly deformed rocks like the Tyee Forma
tion. Previous workers used remotely mapped bedding orientations to 
construct similar interpolations, which underscores the importance of 
the interaction between bedrock and landscape orientation in control
ling deep-seated bedrock instabilities (Santangelo et al., 2015). 

Fig. 5. Linear multivariable regression model results: (A), measured landslide density (B), and error between model prediction and measured density (C) in Training 
Area A (limits shown in Fig. 1). On all maps, training points in area A are shown as white circles. 
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To better understand the role of geologic structure in deep-seated 
landslide formation, we compared underlying geologic structure with 
landslide orientations. To do this, we calculated the mean aspect for 
each of the 3096 mapped deep-seated landslide deposits within the 
structural interpolation area. We assume that the present-day landslide 
deposit aspect is roughly parallel to the landslide slip surface aspect, and 
therefore reflects the direction of landslide displacement. To calculate 
mean landslide aspect, we performed the same steps as with bedding: 
first parsing each DEM cell contained within a landslide deposit into its 
northing and easting components, then using the average northing and 
easting value in each landslide polygon to calculate mean aspect for the 
entire deposit. Although surficial features like gullies and hummocks 
may add noise to this mean aspect calculation, we assume that, given the 
large size of landslide deposits considered here, these features do not 
systematically bias the mean aspect calculation. The difference between 
landslide aspect and underlying bedding dip direction (rake) was then 
calculated for each landslide in the inventory. We assume computed 
rake angles represent the map-view angle between slide displacement 
direction and bedding dip direction. A rake value of 0◦ would imply 
landslide displacement parallel to bedding (cataclinal), with 90◦ rake 
reflecting displacement perpendicular to bedding dip direction, and 
180◦ perfectly anaclinal landslide displacement opposite of bedding dip 
direction. For this study, we define a threshold rake value of 45◦ below 
which landslides are deemed cataclinal and above which they are 
considered non-cataclinal failures. We assume cataclinal landslides are 
most often structurally controlled, translational bedrock landslides 
failing at least partially along a slip surface parallel to bedding, whereas 
non-cataclinal slides (including but not limited to landslides on anacli
nal slopes) have subsurface geometries that are unlikely to be influenced 
by the orientation of bedding, and may be more likely to be rotational in 
style. Although 45◦ is an arbitrary cutoff, it means that the landslide slip 
direction and bedding dip direction lie within a 90◦ quadrant window. 
Parsing the landslide inventory into cataclinal and non-cataclinal fail
ures allows landslide density to be calculated separately for both of these 
implied failure styles. We then repeat the MVR analysis (Section 2.2) for 
both cataclinal and non-cataclinal landslide density layers to test 
whether landslide failure style affects the relative importance of each of 
the geologic predictor variables we measured in the field. 

3. Results 

3.1. Multivariable regression model and performance 

Using the LaHusen et al. (2020) deep-seated landslide inventory, we 
found areal landslide density is highly variable across the Tyee Forma
tion, ranging from 0 to 24% (Fig. 1A). As in Roering et al. (2005), we 

observe a general northward increase in landslide density. However, this 
analysis also highlights additional complexity in the spatial patterns of 
landslides not explained by a simple 1-dimensional south to north 
gradient (Fig. 1). For example, there is little existing evidence to explain 
the observed heterogeneity in east-west landslide density across the 
Tyee Formation (Heller and Dickinson, 1985; Roering et al., 2005). 

Stratigraphic and structural measurements were collected at 115 
training points and 13 testing points, which collectively represent the 
variability of bedrock characteristics that define the Tyee Formation 
(Fig. 3; see also SM Table 1 and LaHusen and Grant, 2023). Landslide 
density sampled at all 115 training points varies from 0.22%–13%. The 
proportion of siltstone ranges from 1% to 55% with a mean of 9.3%, 
sandstone bedding maximum thickness ranges from 100 cm – 800 cm 
with a mean of 250 cm, siltstone bedding maximum thickness ranges 
from 0 cm – 250 cm with a mean of 26 cm, Schmidt Hammer R-value 
(Sr), calculated as a mean of 10 point measurements on sandstone facies 
only, ranges from 12 to 56 with a mean of 42, and interpolated bedrock 
dip at each point ranges from 3◦ – 13◦. Sr values for siltstone facies were 
attempted at several locations but the siltstone was extremely friable 
and below the sensitivity of the Schmidt Hammer used in this study. We 
instead assume siltstone represents a substantially weaker lithology than 
sandstone across the study area but do not report quantitative strength 
estimates. 

While collecting Schmidt Hammer measurements, we omitted any 
strikes that sounded atypically hollow or where a rock fragment visibly 
broke, as these strikes were often associated with surficial fractures. We 
did observe signs of physical weathering on many sandstone surfaces 
throughout the study area, including surface parallel fractures and 
surficial crumbling and sandy coatings, so we intentionally targeted less 
weathered surfaces where possible. Specifically, we tried to measure dry 
faces without signs of near-surface fractures or faces where the fractured 
outer layer appeared to have spalled off the surface, revealing relatively 
unfractured intact sandstone beneath (SM Fig. 3). Inclement weather 
meant that some locations were measured when wet. For most sites, the 
low standard deviation in Sr (average SD = 4.2, SM Table 1; LaHusen 
and Grant, 2023) suggests we were able to target mostly uniform intact 
rock for Schmidt Hammer strikes. At 4 sites, we observed universally 
high surficial weathering, and we could not avoid measuring these 
crumbling surfaces (See ‘notes’ column in SM Table 1; LaHusen and 
Grant, 2023). However, we posit that outcrops with lower intact 
strength may also weather more rapidly (e.g. a poorly-cemented sand
stone may fracture or disintegrate into sand more rapidly than a well- 
indurated and strongly-cemented sandstone), such that surficial 
weathering may be somewhat reflective of intact strength. Still, the 
weathering process likely introduces uncertainty to a variable that 
would ideally be measured on totally fresh surfaces. 

Table 1 
Results table for three multivariable linear regression analyses: All Landslide Density (blue), Cataclinal Landslide Density (green), and Non-cataclinal 
Landslide Density (yellow). For each predictor variable (Psilt: percentage siltstone, Tsand: max sandstone bedding thickness, SR: mean Schmidt Hammer 
R-value as defined in Eq. (1)), p-values and correlation coefficient (r) describe the linear relationship between the predictor variable and each independent 
variable (landslide density). If the predictor variable passes the p-test to be included in the MVR regression, its coefficient in the MVR model is also listed. 
Variables not used in a model are white (not colored). Statistics that describe the goodness of fit for each multivariable regression - error variance, p-value, 
and R2 - are also listed. 
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All of the variables measured in the field show a statistically signif
icant linear correlation with areal landslide density (p-value <0.05). 
Siltstone percentage, siltstone maximum bed thickness, and bedding dip 
magnitude are all positively correlated to landslide density with corre
lation coefficients (r) of 0.53, 0.48, and 0.40, respectively, whereas 
sandstone bedding thickness and Sr are both negatively correlated with 
landslide density with correlation coefficients of −0.41 and − 0.39, 
respectively (Fig. 4, and SM Fig. 2). During model selection, we tested 
for covariance and interaction between predictor variables to remove 
strongly collinear inputs and improve model performance. We removed 
siltstone maximum thickness from the MVR model because it is highly 
collinear with siltstone percentage (r = 0.92) and showed less single- 
variate correlation to landslide density. The only notable interaction 
term was sandstone maximum bed thickness in cm (Tsand) and sandstone 
facies compressive strength (Sr), i.e., Tsand * Sr, r = −0.47, but this 
variable was not included because it did not improve overall model 
performance. We use each of these remaining predictor variables to 
calculate a best-fit multivariable linear regression to landslide density: 

ρLS = 7.7 +
(
1.11*10−1)

Psilt −
(
9.81*10−2)

Tsand −
(
6.65*10−3)

Sr

+
(
2.79*10−1)

Dip
(1) 

Where: ρLS is the density of deep-seated landslide calculated as a 
percent of total area within a 5-km radius moving window, Psilt is the 
percentage of siltstone facies beds of the total exposed outcrop, Dip is the 
magnitude of bedding dip, in degrees, and Tsand and Sr are defined above. 

With an R2 value of 0.47 and a p-value of 1.9*10−14, this model for 
landslide density is statistically significant and explains nearly half of 
the measured variance in landslide density within our 115 training 
points (Table 1). Our spatially continuous model results, calculated 
using interpolated variable maps, shows model prediction is within 2% 
of the measured density for much of the study area (Fig. 5). However, 
this analysis highlights a large swath of modest overestimation in the 
central portion of the training area (2–4% absolute error), and a roughly 
circular zone of substantial underestimation in the NE quadrant of the 
training area with >4% absolute error (Fig. 5C). Other smaller zones of 
high error are found in the extreme corners of Training Area A are likely 
a product of edge effects during interpolation of input data and the lack 
of observation sites to accurately interpolate at those extremes. 

The Testing Area shows a pronounced trend in landslide density - 
with the east side of the area characterized by much higher landslide 
density than the west, making it ideal to assess the ability of the MVR 
model to correctly predict spatial patterns (Fig. 6). When applied to the 
Testing Area, predicted landslide density values range from 0.20% to 
7.8%, compared to a measured range of 0.94% to 12%. Overall, our 
predicted values have a smaller range and tend to overestimate the 

measured density by 1.6%, with a standard error of 2.4%, and a 
maximum error of 6.7% at a single point (Fig. 6). The MVR model 
correctly identifies the overall spatial pattern of observed landslides 
across the Test Area, predicting lower deep-seated landslide suscepti
bility in the west, and higher susceptibility in the east (Fig. 6). 

3.2. Evaluating structural controls on landslide style 

By assuming the landslide deposit orientations approximate the slip 
surface beneath, we examine trends in landslide directionality and 
compare landslide slip surface orientation with underlying bedding 
orientation to test for structural control on landslide failure style 
(Fig. 7). Plotting landslide orientations and bedding orientations (for 
each cell in the interpolated bedding dip direction raster) on a rose di
agram for comparison reveals a strong bimodal trend in bedding attitude 
(Fig. 8A). Two general bedding orientations underlie much of the study 
area: S through WNW facing beds (180◦ –300◦) and ENE through SE 
facing beds (60◦ – 120◦), which align with the many broad, southward- 
plunging fold hinges mapped in the study area. Landslides follow a 
similar, but slightly less bimodal azimuthal distribution to bedding, with 
the highest proportion of landslides occurring on southwest aspects. 

We identify 1734 cataclinal landslides (rake <45◦) with a total de
posit area of 91.7 km2, representing just over half (56%) of the total 
number of landslides and 63% of the total landslide area within the 
bedding interpolation (Fig. 7). Non-displope failures comprise 1362 
landslides but just 37% of the total landslide area, due to the smaller 
average size of non-cataclinal landslide deposits: 39,500 m2 vs. 52,900 
m2 for cataclinal landslide deposits. Though they represent a minority of 
landslides in the study area, the proportion of non-cataclinal slides is not 
insignificant and was previously unrecognized (Roering et al., 2005). 
Having parsed the landslide inventory by cataclinal and non-cataclinal 
landslides, we calculate new MVR models specific to these distinct 
landslide sets (Table 1). This exercise illuminates the disparity in the 
ability of our stratigraphic and structural input variables to predict 
cataclinal slides versus non-cataclinal slides. Our regression perfor
mance improves dramatically for cataclinal failure density, compared 
with the regression for all landslides - resulting in an R2 value of 0.67 
and a p-value of 1.1*10−25. However, when we regressed the same 
variables to non-cataclinal failure density, the resulting correlation was 
quite poor, with an R2 value of just 0.22. Moreover, while all of the 
predictor variables show a statistically significant correlation with cat
aclinal landslide density, only sandstone maximum thickness and 
Schmidt hammer R-value were correlated with non-cataclinal density. 
Siltstone percent, the variable with the strongest correlation with all 
landslide density and cataclinal landslide density, was only weakly 

Fig. 6. Map of the regression Testing Area (limits shown on Fig. 1), comparing measured landslide density with predicted landslide density. Map is colored by 
measured landslide density, and test points are plotted as triangles colored by predicted landslide density using the multivariable regression which was developed in 
the training areas using a separate set of points. Error, calculated as the predicted density minus the measured density, is labeled at each point. 
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correlated with non-cataclinal density and is not significant (p-value 
>0.05, Table 1). 

Although bedding dip is quite shallow throughout the testing and 
training areas (95% of the bedding measurements are <17◦ and the 
interpolation never exceeds 20◦), there is a strong correlation between 
dip magnitude and landslide rake (Fig. 8B). After binning mapped 
landslides into 2◦ dip magnitude bins, we plot dip against average 
landslide rake per bin. Because the maximum theoretical rake value is 
180◦, a mean of 90◦ would suggest totally random landslide orientations 
relative to bedding, and 0◦ would suggest a preferential landslide 
orientation parallel to that of the underlying bedrock structure. A strong 
negative correlation exists between dip magnitude and landslide rake 
(Fig. 8B). At dips below 7◦ - 9◦, the average landslide rake exceeds 60◦, 
while landslide rake drops to 20◦- 40◦ at dips above 13◦. 

4. Discussion 

4.1. MVR model nuances and the importance of intra-unit variability 

Our MVR model explains nearly half of the variability in deep-seated 
landslide density across the training areas (R2 = 0.47) and accurately 
predicts regional patterns in landslide density within the separate 
Testing Area, despite some relatively high errors at individual test 
points. This model is not meant to be a comprehensive landslide hazard 
model, but rather a test of the relative influence of structural and 
stratigraphic bedrock properties on the inherent susceptibility to deep- 
seated landslides across space in a particularly enigmatic region. Only 
simplified geologic factors are considered in this analysis (structure, li
thology, and an estimate of intact compressive strength). Although 

Fig. 7. A. Map comparing underlying bedrock dip direction with landslide aspect. Basemap colored by interpolated bedrock dip direction from 971 strike and dip 
measurements (LaHusen and Grant, 2023; Vokes et al., 1951; Baldwin, 1955; Baldwin, 1961; Snavely et al., 1972). Deep-seated landslides are shown as circles, scaled 
by landslide deposit area, and colored by landslide aspect using the same colour bar symbology as bedrock dip direction. Where landslide colors are similar to map 
colour, landslides are failing parallel to bedrock dip direction. B. Map comparing bedrock dip magnitude with landslide failure style. Landslides shown as circles, 
scaled by area, and colored by type: cataclinal failures (blue) and non-cataclinal failures (white). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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preliminary correlations show no statistically significant relationship 
between factors promoting landslides, like slope, shaking, and precipi
tation, we expect additional variability in landslide density could be 
explained through the incorporation of similar factors. Our results sug
gest that both intact rock strength (estimated by Schmidt Hammer) and 
outcrop scale stratigraphic properties are important. Both the pro
portions and maximum thickness of facies in bimodal layered rocks 
correlate with landslide density across space, which supports past work 
linking siltstone proportion to increasing deep-seated landslide density 
(Roering et al., 2005), and adds new information that suggests thick 
sandstone beds potentially act to obstruct the formation of landslide slip 
surfaces due to their substantially higher strength. 

Although our model explains much of the variance in overall deep- 

seated landslide density, and most of the variance in cataclinal land
slide density, it performs relatively poorly at predicting the density of 
non-cataclinal failures (Table 1). In one particularly problematic area in 
the NE corner of the training area, our combined (all landslides) model 
significantly underpredicted the real, measured landslide density 
(Fig. 5). When we examined the orientations of landslides relative to the 
underlying bedding attitudes in this zone, we found that landslides tend 
to be randomly oriented, with a high proportion of non-cataclinal 
landslides. This could potentially be due to the generally shallow dip 
of the bedding in this region (Fig. 7). This is also a zone characterized by 
a high density of igneous dikes (Vokes et al., 1951; Struble and Roering, 
2021a), the presence of which have been linked to higher landslide 
density in the Tyee Formation (Roering et al., 2005). However, although 
detailed mapping of these dikes has been completed for some areas, this 
level of detail is not comprehensive and may introduce a bias if we 
attempted to include proximity to these dikes as a variable in our model. 
Comprehensive mapping of these dikes across the central OCR may 
serve to improve models by providing a key input to explain even more 
of the variance in non-cataclinal landslide density. 

Overall, our model of landslide density tended to slightly overpredict 
landslide density in many places and did not exhibit as wide a range of 
predicted values as the measured values in the training or testing areas 
(Fig. 5, Fig. 6). Although this lack of extreme values predicted by our 
model may be an expected effect of any linear regression model, much of 
this error is likely due to factors that we do not account for in our model, 
both in terms of inherent material properties and patterns in landslide 
triggering events. 

4.2. Geologic structure controls deep-seated landslide failure style and 
influences susceptibility 

Like Roering et al. (2005), we find that structure plays an important 
role in determining landslide failure style and setting the inherent sus
ceptibility for landslides. However, while Roering et al. (2005) identify 
structural control on cataclinal landslides in the Tyee Formation, we 
identify two distinct populations of landslides, cataclinal and non- 
cataclinal, that respond to distinct drivers of inherent landslide sus
ceptibility and are highly sensitive to dip magnitude. We were able to 
explain much more of the total variance in landslide density for cata
clinal landslides (R2 = 0.67) than for non-cataclinal slides (R2 = 0.22) 
and found that, of the variables we measured, only sandstone maximum 
thickness and sandstone strength measured by Schmidt Hammer (Sr) 
were statistically correlated with non-cataclinal landslide density. This 
further supports the idea that thick, hard, sandstone beds act as barriers 
to shear surface development, especially in non-cataclinal slopes where 
such shear surfaces must cut across many beds. The correlation is 
weaker, but still statistically significant when cataclinal landslides are 
considered, perhaps due to the sandstone beds providing tensile strength 
that must be overcome before any potential landslide mass can begin 
sliding. Sandstone maximum bedding thickness was not as strongly 
correlated with the percentage of siltstone in outcrop as siltstone 
maximum bedding thickness was, and thus it adds an important 
parameter beyond simple lithologic proportions that helps characterize 
the rock mass and determine the inherent susceptibility to deep-seated 
landslides. 

We show that while dip magnitude is correlated to increasing deep- 
seated landslide density, it is a much stronger predictor of landslide type 
(cataclinal or non-cataclinal landslide). This further confirms the work 
of Roering et al. (2005), who found deep-seated landslides in the Tyee 
Formation often fail parallel to the dip direction of fold limbs. Even for 
shallow dips (>20◦), small increases in dip result in a far higher likeli
hood of landslides failing parallel to bedding. The relatively modest 
correlation between dip magnitude and landslide density further sug
gests that deep-seated landslides in the Tyee Formation may occur in 
flat-lying beds with sufficiently weak rock and may not occur in dipping 
beds with sufficiently strong rock. However, within dipping beds, 

Fig. 8. A. Rose diagram showing probabilistic distributions of bedding dip 
direction (orange) and landslide aspect (blue). Portions of the bedding dip di
rection plotted overlapping the aspect data appear dark blue. Probability values 
sum to 1. B. Plot of Tyee Formation bedding dip magnitude (2◦ bins breaking on 
odd integers, i.e. x = 4◦ represents the 3◦-5◦ bin) versus mean rake per dip bin 
(blue points with ±1 standard deviation whiskers and best fit linear regression) 
and percent cataclinal landslides within each dip bin (shown as red points and 
regression). Landslide rake is defined here as the angular difference between 
mean landslide aspect and dip direction of bedrock underlying landslide 
centroid. Cataclinal failures are approximately bedding-parallel, defined as 
landslides with a mean aspect within 45 degrees of the underlying bedrock dip 
direction. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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landslides that do occur are much more likely to be parallel to bedding, 
failing along continuous, weak siltstone beds at depth. Similar landslides 
were triggered after an intense rainstorm in 2014 in Chongqing, China, 
where bedding contacts between very gently dipping sandstones and 
mudstones provided slip surfaces for deep (tens of meters) translational 
bedrock failures (Li et al., 2022). In our study area, deep-seated land
slides that occur in bedding dipping at 16◦ ± 1◦ have a 92% likelihood to 
be cataclinal failures - twice as high as landslides that occur in dipping 
beds of 6◦ ± 1◦ (Fig. 8). Subtle changes in dip magnitude result in dra
matic changes in landslide behavior, making them larger and much 
more likely to be structurally controlled, which further underscores the 
importance of weak, continuous siltstone beds in regulating landslide 
susceptibility and determining whether slopes fail as large translational 
slides or smaller rotational slides. This simple relationship between 
geologic structure and deep-seated landslide failure style, and the ability 
to interpolate continuous estimates of bedding orientation from dense 
point measurements, offers promise for further refining hazard models 
on a more localized scale by identifying which aspects of a drainage are 
prone to which types of landslide failure. 

4.3. Implications for landscape erosional processes 

Our analysis reveals some regions with few to no deep-seated land
slides, which typically exhibit regularly spaced, deeply incised dendritic 
stream networks and, enigmatically, some of the steepest slopes in the 
entire study area (Fig. 2). A wealth of literature points to the widespread 
occurrence of precipitation-driven shallow landslides and debris flows in 
many of the same regions (Benda, 1990; Schmidt et al., 2001; Coe et al., 
2011; Burns, 2020). This prevalence of shallow slope failures in areas 
with few to no deep-seated failures may suggest distinct erosional pro
cess domains are present within the same geologic unit and in the same 
mountain range, often separated by only a few kms. It is possible that the 
intra-unit variability we describe in this study is one factor driving the 
separation of these process domains – perhaps flat lying to gently- 
dipping portions of the Tyee Mountain Member dominated by thick 
sandstone beds are able to be eroded into steeper, more highly dissected 
landscapes. These landscapes would inherently be more prone to 
shallow landslides and debris flows – processes controlled by factors like 
slope, precipitation, and root cohesion (Baum et al., 2011), and less 
dependent on stratigraphic bedrock architecture many meters beneath 
the landscape surface. In other words, the same geologic and structural 
factors that would lead to a low inherent susceptibility for deep-seated 
landsliding may indirectly lead to a higher susceptibility for shallow 
landsliding by allowing a steeper, more rugged landscape to evolve. This 
study corroborates the conclusions of Roering et al. (2005), who found 
local relief decreased as deep-seated landslide density increased. These 
distinct landslide process domains, separated by hillslope gradient, have 
also been noted in the folded sandstones and shales that comprise the 
Chuckanut Formation in Washington State (Schmidt and Montgomery, 
1996). This finding has implications for landslide mitigation and risk 
reduction strategies, which should be specific to the types of landslides 
affecting different regions and the factors controlling those failure styles 
(e.g., Grant et al., 2016). 

Finally, though not directly considered in this study, lithology and 
stratigraphic architecture have been shown to play a dominant role in 
subsurface hydrology, in particular groundwater routing, in ways that 
promote shallow or deep-seated landslides (Perkins et al., 2017; Marc 
et al., 2019). In our study area, for example, a hillslope underlain by 
dipping, thinly bedded, siltstone-rich strata may channel groundwater 
more quickly to depths at which deep-seated landslides initiate 
compared to a hillslope underlain by thick, flat-lying sandstone beds. 
Certain bedding contacts may also act as impermeable hydrologic bar
riers upon which groundwater may perch, raising local pore-water 
pressure conditions in the subsurface. Variability in subsurface 
groundwater routing and conductivity across space may also explain the 
weak correlation between mean annual precipitation and landslide 

density (Fig. 2), which only becomes compelling when recent (>1000 
year old) landslides are considered (LaHusen et al., 2020). Noting a 
similarly poor correlation between typhoon rainfall amounts and land
slides in Japan, Marc et al. (2019) find that anomalous rainfall (i.e. 
normalizing event rainfall by 10-year return period rainfall), is far more 
strongly correlated with landslides. They argue that if hillslopes 
coevolved with climate, exceeding some statistically extreme, site- 
specific rainfall amount is the most likely scenario to trigger land
sliding. This more nuanced examination of precipitation as a landslide 
trigger may help explain the variability in landslide density not 
explained by our model of inherent susceptibility. Though outside the 
scope of this study, synthesizing data on geologic variability, subsurface 
groundwater conditions in the Tyee Formation, and an analysis of 
locally extreme precipitation events may yield a more thorough un
derstanding of the complex drivers of deep-seated landslides in the OCR. 

4.4. Considering landslide preservation 

A potentially important effect that we do not account for in this study 
is the preservation timescale of deep-seated landslide deposits, and 
whether that may vary across our study area. After a deep-seated 
landslide occurs, assuming a single catastrophic failure, the surround
ing landscape continues to uplift and erode, eventually removing land
slide deposit mass and, with it, the topographic signature of the 
landslide. In general, we expect the types of landslide deposits we 
consider in this study to persist for thousands to hundreds of thousands 
of years (Reneau and Dietrich, 1991; Roering et al., 2001). However, this 
total preservation time depends on both landscape-wide erosion rates 
and the depth of the landslide deposit. So, any persistent spatial het
erogeneity in erosion rates or landslide depth could influence the 
number of landslides we map, and therefore the areal landslide density 
that we regress for in the model presented here. There is some evidence 
to suggest that bedrock uplift and erosion rates vary within the OCR, 
despite the lack of mapped crustal faults (Penserini et al., 2017; Struble 
and Roering, 2021b), and if these rates could be further constrained, we 
may be able to apply a spatially variable ‘preservation factor’ to our 
measured density to account for this effect. 

5. Conclusions 

We find subtle variations in lithology and structure explain much of 
the spatial pattern of deep-seated bedrock landslide density and failure 
style within the Tyee Formation of the central OCR, where traditional 
drivers of landslide hazards like slope, strong ground motions, and 
precipitation cannot. The failure of physics-based models to accurately 
identify deep-seated, landslide-prone terrain in the Tyee Formation 
when homogenous rock strength parameters are assumed likely reflects 
a problem unique to deep bedrock landslides. Existing physics-based 
models developed in the same study area perform well in predicting 
shallow landslide susceptibility (Montgomery and Dietrich, 1994; Baum 
et al., 2011) and even forecasting runout and sediment inundation (Reid 
et al., 2016). However, when landslide failure surfaces extend to tens or 
hundreds of meters depth - well beyond surficial regolith and soil - bulk 
rock mass strength and throughgoing heterogeneities may exert as much 
or more control over landslide hazards than landscape form (e.g., slope, 
curvature, relief, distance to stream) or soil properties (friction, cohe
sion, modification by vegetation, etc.). Moreover, in landscapes domi
nated by large, deep-seated landslide deposits, such as in the Tyee 
Formation, these topographic factors may be controlled by the presence 
of landslides, rather than controlling the susceptibility of landslides. 
Therefore, topography-based models of landslide susceptibility in such 
environments may effectively identify the forms associated with large 
deep-seated landslides—reduced surface slope, bench-like terrain, low 
absolute curvature, occurring in the upper reaches of the drainages, far 
from streams (e.g., Roering et al., 2005)—without shedding new light on 
the causal factors actually driving susceptibility. 
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Although this study targeted a single geologic unit with substantially 
different rock strengths between facies, similar turbidite sequences un
derlie many coastal mountain belts around the world and these tech
niques could also be applied to other sedimentary (e.g., prograding fan) 
environments conducive to forming rhythmically alternating beds. We 
show simple field measurements of bedding attitude and characteristics 
of bedrock outcrops greatly improved our understanding of the drivers 
and behaviors of deep-seated bedrock landslides within the Tyee For
mation. These observations could be adopted quite easily in future local 
to regional-scale landslide hazard and risk analyses to improve the 
characterization of spatially variable levels of landslide susceptibility. 
We demonstrate the emergence of two distinct landslide populations in 
response to geologic structure, despite the modestly-dipping, gently 
folded bedrock, where cataclinal landslides become the dominant style 
of failure above ~8◦ bedding dip, and account for nearly all landslides 
when bedding dips exceeds 13◦. In more intensely deformed rock than 
the Tyee Formation, other rock mass characterization schemes such as 
GSI, RMR, Q, or RMS, as well as joint orientation and spatial density, 
may further improve landslide type and susceptibility characterization. 
Ultimately, this work reinforces how heterogeneous bedrock sets the 
inherent susceptibility to bedrock landsliding and suggests that ac
counting for intra-unit variability instead of relying solely on mapped 
geology may be useful in future landslide susceptibility analyses, 
regardless of the underlying lithology. 
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