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Abstract

In a genetically admixed population, admixed individuals possess genealogical and genetic ancestry from multiple source groups. Under
a mechanistic model of admixture, we study the number of distinct ancestors from the source populations that the admixture represents.
Combining a mechanistic admixture model with a recombination model that describes the probability that a genealogical ancestor is a genetic
ancestor, for a member of a genetically admixed population, we count genetic ancestors from the source populations—those genealogical
ancestors from the source populations who contribute to the genome of the modern admixed individual. We compare patterns in the numbers
of genealogical and genetic ancestors across the generations. To illustrate the enumeration of genetic ancestors from source populations in an
admixed group, we apply the model to the African-American population, extending recent results on the numbers of African and European
genealogical ancestors that contribute to the pedigree of an African-American chosen at random, so that we also evaluate the numbers of
African and European genetic ancestors who contribute to random African-American genomes. The model suggests that the autosomal
genome of a random African-American born in the interval 1960-1965 contains genetic contributions from a mean of 162 African (standard
deviation 47, interquartile range 127 to 192) and 32 European ancestors (standard deviation 14, interquartile range 21 to 43). The enumeration
of genetic ancestors can potentially be performed in other diploid species in which admixture and recombination models can be specified.
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Introduction

The genealogical pedigree of any individual person can be
viewed as a structure that has been shaped by demographic
events such as migrations and population admixtures. The
pedigree contains the individual’s recent ancestors, who have
contributed in a genealogical sense to the individual, and with
increasing probability as time proceeds toward the most recent
generations, in a genetic sense as well.

The distinction between genealogical and genetic ancestry is
inconsequential in recent generations: an individual necessarily
contains genetic material from both parents, and almost certainly
from all four grandparents and eight great-grandparents as well.
However, genetic transmission involves chromosomal segments,
the number of which is finite. Hence, going back in time, the
number of genealogical ancestors increases rapidly, and propor-
tionally fewer of them are genetic ancestors: individuals who
contribute to the genetic material of the modern individual. In
the memorable description of Donnelly (1983), “This means that
someone descended from the Scottish poet Robert Burns (born 1759)
probably carries some of his genes, but that someone unilineally de-
scended from the English playwright William Shakespeare (born 1564)
is unlikely to have any genes in common with him.”

A number of studies have explored the peculiar conse-
quences of the distinction between genealogical and genetic
ancestors (Wiuf and Hein 1997; Baird et al. 2003; Matsen and
Evans 2008; Gravel and Steel 2015; Buffalo et al. 2016; Kelleher

et al. 2016). For example, one simulation study (Rohde et al.
2004), based on earlier mathematical work (Chang 1999), argued
that the most recent genealogical ancestor shared by all living
humans might have lived as few as 5000 years ago, even though
the most recent genetic ancestor lived much earlier. The rate at
which recent genealogical ancestors dissipate from an individ-
ual’s genetic ancestry has been studied by Coop (2013), who used
approximations to the human recombination process in order
to calculate the number of autosomal fragments a genealogical
ancestor passes to a descendant. Through that quantity, Coop
(2013) computed the probability that a genealogical ancestor k
generations ago is also a genetic ancestor. This analysis finds
that although the number of genealogical ancestors grows ex-
ponentially in the number of generations back from the present,
the number of genetic ancestors grows only linearly.

Recent admixture introduces a new dimension to the chal-
lenge of understanding the distinction between genealogical and
genetic ancestry. In a recently admixed population, genealogical
ancestors ultimately trace to two or more source populations.
Some of these genealogical ancestors are genetic ancestors and
some are not, so that the fraction of the genetic ancestors that
trace to a specific source group need not equal the corresponding
fraction of the genealogical ancestors that trace to that source.

Building on a mechanistic admixture model (Verdu and
Rosenberg 2011), we have devised a model for counting
genealogical ancestors in an admixed individual’s pedigree
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(Mooney et al. 2023), evaluating the numbers of individuals that
enter the pedigree from each specific source population. Our
goal here is to extend this genealogical model of an admixed
pedigree to count the genetic ancestors that enter the pedigree.
That is, we seek to count genetic ancestors from a certain source
population that contribute to an individual’s genome, consider-
ing genetic ancestors in each generation in the pedigree.

To answer the new question posed by the study—how many
genetic ancestors from the source populations does the genetic admix-
ture of a random member of an admixed population represent?—we
combine two mathematical approaches. The first is the exten-
sion of the admixture model studied by Mooney et al. (2023).
The second is the method of Coop (2013) for approximating
the probability that a genealogical ancestor is also a genetic an-
cestor. We develop a model that counts across the generations
both genealogical and genetic ancestors from a certain source
population of an admixed individual. We apply it to the African-
American population, elaborating on the strictly genealogical
approach of Mooney et al. (2023).

For this purpose, extending the work of Mooney et al. (2023),
for a member of the admixed population, we study the random
number of admixed genealogical ancestors in the pedigree in
each generation by proceeding recursively back in time. From
this random variable, we evaluate properties of the number of
genetic ancestors from the admixed population and the number
of genetic ancestors from the source populations, as well as the
number of genealogical ancestors from the source populations
as studied by Mooney et al. (2023).

The model

Admixture process
We build upon the model of Verdu and Rosenberg (2011)
and Mooney et al. (2023), which considers the formation of a
new admixed population. Two source populations that were
present in generation 0 form the new admixed population in
generation 1. After the initial admixture event, in each sub-
sequent generation after generation 1, individuals from both
source populations and the admixed population can be parents
of an individual in the admixed population. Our interest is in an
admixed individual in generation g after the initial admixture.

We call the source populations “source 1” and “source 2.” For
each n = 1, 2, . . . , g, we denote by s1,n−1 the probability that
for an admixed individual in generation n (n generations after
members of generation 0 admix to form generation 1), a specific
parent is from source population 1. We denote by hn−1 the
probability that the parent is from the admixed population, and
by s2,n−1 the corresponding probability for source 2. Therefore,
for each n = 1, 2, . . . , g, we have s1,n−1 + hn−1 + s2,n−1 = 1,
recalling that h0 = 0 (Figure 1). The two parents are independent
and identically distributed, amounting to an assumption that
they are exchangeable members of the previous generation. The
population is large, so that the chance that a particular individual
is sampled twice can be ignored.

Genealogical ancestors in a pedigree
Consider Figure 2A, describing the pedigree of an admixed in-
dividual. Tracing back from the admixed individual on each
genealogical line, we eventually reach genealogical ancestors
from the source populations. In each lineage that reaches an-
cestors who are only in source populations, we tabulate only
the most recent one in our count of genealogical ancestors from
source populations.

Figure 1 The general admixture model. Starting from genera-
tion 0, two source populations form an admixed population
in generation 1, with admixture proportions s1,0 and s2,0. In
the following generations, n = 2, 3, . . . , g, the admixed popu-
lation receives contributions from both the source populations
and the admixed population, in proportions s1,n−1, s2,n−1, and
hn−1.

In the figure, some genealogical ancestors are genetic ances-
tors and some are not. In Mooney et al. (2023), we counted
genealogical ancestors; the mathematical strategy followed pre-
vious studies (Verdu and Rosenberg 2011; Goldberg et al. 2014;
Goldberg and Rosenberg 2015; Goldberg et al. 2020; Kim et al.
2021), in which source ancestry proportions were calculated re-
cursively, beginning with the count of ancestors one generation
after the initial admixture (n = 1), and moving forward in time.

To count genetic ancestors, the approach of Mooney et al.
(2023) is not straightforward to apply, because the probability
that a genealogical ancestor is a genetic ancestor depends on
that ancestor’s number of generations back from the present,
even if the admixture process itself is constant in time. Further, a
genetic ancestor of an individual in some generation g − n, with
0 < n ≤ g, is not necessarily a genetic ancestor of the individual
of interest in generation g.

To address these problems, we develop a model in which we
count genealogical and genetic ancestors by proceeding back-
ward in time (Figure 2B,C). Tracing back from the admixed indi-
vidual of interest in generation g, we examine, in each step, the
parents of all the admixed individuals present in the pedigree.
We tabulate those who are from a certain source population in
our count of genealogical ancestors from that source population
(Figure 2B). We tabulate as genetic ancestors those who, in ad-
dition to being genealogical ancestors from the source, are also
genetic ancestors (Figure 2C). For this step, we use the calcula-
tions of Coop (2013) for generation-wise probabilities of genetic
ancestry.
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Figure 2 Counting genealogical and genetic ancestors from the source populations for an admixed individual. (A) Pedigree of an
admixed individual. Ancestors can be from source populations (red, blue) or from the admixed population itself (pink). Ancestors
from the source populations can be both genealogical and genetic ancestors (solid color), or genealogical ancestors only (striped).
Along each genealogical line that reaches a source population, we count the most recent ancestor (dark color). (B) Counting ge-
nealogical ancestors from source populations. For the pedigree in (A), this panel goes back in time from an admixed individual in
generation g (circled), on each line stopping when a source population is reached. The number of individuals from source 1 is 4
(red), and the number from source 2 is 3 (blue). (C) Counting genetic ancestors from source populations. As in (B), we traverse all
admixed individuals in the pedigree, irrespective of genetic ancestry status. However, if a source-1 or 2 ancestor is not a genetic an-
cestor, then that individual is not tabulated. Note that for ease of interpretation, the figure contains a higher number of genealogical
but non-genetic ancestors than is likely in real pedigrees.
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Genetic ancestors and recombination
Coop (2013) used a model of recombination in humans to eval-
uate the probability that two individuals with an ancestor–
descendant relationship share at least one piece of DNA. In
other words, the model gives an approximate probability that
a descendant separated by k generations from a genealogical
ancestor possesses at least one genomic fragment from the an-
cestor. The model takes into account approximations to the
recombination process.

In the model of Coop (2013), the number of genomic frag-
ments that a genealogical ancestor passes to a descendant k
generations forward in time is treated as a random variable Nk.
This random variable is approximated as Poisson-distributed
owing to an assumption that recombination breakpoints are
Poisson-distributed. The probability pk that a genealogical an-
cestor is a genetic ancestor to a k-generation descendant then
equals 1 − P[Nk = 0] = 1 − e−λk , where λk is the Poisson mean
E[Nk].

Considering the autosomal genome, the mean number of
genomic pieces that a parent passes to its offspring, λ1, is 22,
the number of autosomes. Each generation, on average ev-
ery 100 megabases (Mb) a crossover event occurs, adding one
piece. Because the haploid genome is about 3300 Mb long, each
generation after the first, 33 pieces are added on average. In
each generation back in time after the first, those pieces are dis-
tributed between two parents. Hence, in generation k ≥ 2, the
total number of pieces for one of an individual’s two genomic
copies, maternal or paternal, is 22 + 33(k − 1). Those pieces
trace to 2k−1 genealogical ancestors k generations back from
the present. Hence, the mean number of fragments contributed
by a specific ancestor k generations back from the present is
λk = [22 + 33(k − 1)]/2k−1. The Poisson probability that at least
one fragment traces to such an ancestor then equals 1 minus the
probability that no fragments trace to the ancestor, or for k ≥ 2,

pk = 1 − e−
22+33(k−1)

2k−1 . (1)

We also define p1 = 1.
Figure 3 shows pk across the generations, illustrating its de-

cline as k increases. With a 25-year generation time, the claim
(Donnelly 1983) that an individual living in 1983, say, born in
1960, probably possesses genetic material from a randomly cho-
sen genealogical ancestor born in 1759 corresponds to 8 genera-
tions and p8 = 0.8615. The claim that the individual probably
does not possess genetic material from a randomly chosen ge-
nealogical ancestor born in 1564 corresponds to 16 generations
and p16 = 0.0157. Interestingly, the period in which this prob-
ability of sharing genetic material with an ancestor decreases
from a high to a low number corresponds to the period of in-
terest in the founding of the African-American population, on
which our example analysis focuses.

The human-specific Eq. 1 can be written in a more general
form suitable for other diploid organisms. Denote the number
of pairs of autosomes by q and the haploid genome length in
megabases by ℓ. Denote by m the distance in megabases over
which the mean number of crossover events is 1. As in the special
case for humans, p1 = 1. The probability that a k-generation
(k > 1) genealogical ancestor is also a genetic ancestor is

pk = 1 − e−
q+(ℓ/m)(k−1)

2k−1 . (2)

The computation requires basic parameters of genomes and
recombination maps, quantities that are available for diverse
organisms (Milo and Phillips, 2015; Stapley et al., 2017).

Figure 3 The probability pk that a genealogical ancestor is an
(autosomal) genetic ancestor as a function of the number of
generations back in time from the present. This plot is based
on Eq. 1.

Results for the general model

To count genetic ancestors from source populations in a pedigree
of a random admixed individual, we first trace the pedigree
back, counting admixed individuals. We then use the count
of admixed genealogical ancestors to count genetic ancestors.
We also show how this approach can be used to recover the
distribution of the number of genealogical ancestors from source
populations in each generation, extending beyond calculations
from Mooney et al. (2023) that focused on the expectation.

Counting admixed individuals in a pedigree
Continuing to consider a model with g generations, we now
index generations by k, setting k = 0 in generation g, with k
increasing backward in time. Let Xk be the random number of
admixed individuals in the pedigree at step k. When k = 0, we
consider a random admixed individual of interest in generation
g, and X0 = 1. For 1 ≤ k ≤ g, we proceed backward in time.
At step k, or generation g − k, a randomly chosen parent of
an admixed individual in the previous step, or generation g −
(k − 1), has probability hg−k of being an admixed individual.
Consequently, because an individual has two parents, Xk ∼
Bin(2Xk−1, hg−k).

The number of admixed individuals in the pedigree is a non-
homogeneous branching process going back in time. It follows
from Appendix A that for 0 ≤ k ≤ g,

E[Xk] = 2k
k

∏
i=1

hg−i, (3)

Var[Xk] =
k

∑
i=1

2k−1+i[1 − hg−(k+1)+i]

×
[(

g−1

∏
j=g−(k+1)+i

hj

)(
g−(k+2)+i

∏
ℓ=g−k

h2
ℓ

)]
. (4)

For the sum of the number of admixed genealogical ancestors
across all generations, computing the variance of the sum in
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Appendix A, we have

E

[ g

∑
k=1

Xk

]
=

g

∑
k=1

E[Xk], (5)

Var
[ g

∑
k=1

Xk

]
=

g

∑
k=1

Var[Xk]

+
g−1

∑
m=1

g

∑
n=m+1

(
2n−m+1

n−m

∏
i=1

hg−(m+i)Var[Xm]

)
.

(6)

Genealogical ancestors

In step k, 1 ≤ k ≤ g, let Ui
k be the random number of source-1

genealogical ancestors of the generation-g admixed individual
who are parents of individual i, one of the Xk−1 admixed ge-
nealogical individuals in step k − 1. Proceeding back in time,
after step k, ∑k

ℓ=1 ∑Xℓ−1
i=1 Ui

ℓ genealogical ancestors from source 1
have been counted (Figure 2B).

Random variable Ui
k takes values 0, 1, and 2, with probabili-

ties as follows:

Ui
k =


0, h2

g−k + 2hg−ks2,g−k + s2
2,g−k,

1, 2s1,g−khg−k + 2s1,g−ks2,g−k,
2, s2

1,g−k.
(7)

In fact, Ui
k ∼ Bin(2, s1,g−k), as 1 − s1,g−k = hg−k + s2,g−k. The

number of source-2 genealogical ancestors can be counted sym-
metrically by transposing subscripts 1 and 2 in Eq. 7.

The {Ui
k}

Xk−1
i=1 are independent and identically distributed.

Therefore, using Uk = ∑Xk−1
i=1 Ui

k to sum across all Xk−1 admixed
genealogical ancestors in step k − 1, we have for each k, 1 ≤ k ≤
g,

Uk ∼ Bin(2Xk−1, s1,g−k). (8)

Indeed, considering all parents of the admixed individuals
in generation g − k − 1, the distribution of the vector of counts
of genealogical ancestors in source population 1, the admixed
population, and source population 2 can be summarized by
a multinomial distribution. If we denote by U′

k the number of
source-2 genealogical ancestors reached in generation g− k, then

(Uk, Xk, U′
k) ∼ Mult3[2Xk−1, (s1,g−k, hg−k, s2,g−k)]. (9)

By Eq. 3,

E[Uk] = E
[
E[Uk|Xk−1]

]
= 2s1,g−kE[Xk−1]

= 2ks1,g−k

k−1

∏
i=1

hg−i. (10)

This equation accords with the summand in Eq. 12 of Mooney
et al. (2023), noting that generation i in that equation is equivalent
to generation g − k in Eq. 10. If we consider all 2k genealogical
ancestors of the generation-g admixed individual present in step
k, 1 ≤ k ≤ g, then the expected fraction of them who are source-1
individuals who are parents of step-(k − 1) admixed individuals
is E[Uk]/2k.

We calculate the variance using the law of total variance
together with Eqs. 3 and 4:

Var[Uk] = E
[
Var[Uk|Xk−1]

]
+ Var

[
E[Uk|Xk−1]

]
= 2s1,g−k(1 − s1,g−k)E[Xk−1]

+(2s1,g−k)
2Var[Xk−1]

= 2ks1,g−k(1 − s1,g−k)
k−1

∏
i=1

hg−i

+s2
1,g−k

k−1

∑
i=1

2k+i(1 − hg−k+i)

×
[(

g−1

∏
j=g−k+i

hj

)(
g−(k+1)+i

∏
ℓ=g−(k−1)

h2
ℓ

)]
. (11)

We write s̃1,g−k = s1,g−k/(1 − hg−k) for convenience. Summing
genealogical ancestors across generations in Eqs. 10 and 11 and
computing the variance in Appendix B, we have

E

[ g

∑
k=1

Uk

]
=

g

∑
k=1

E[Uk], (12)

Var
[ g

∑
k=1

Uk

]
=

g−1

∑
k=1

[2s̃1,g−(k+1) − s̃1,g−k]
2 Var[Xk]

+

[ g−2

∑
m=1

g−1

∑
n=m+1

2n−m+1[2s̃1,g−(m+1) − s̃1,g−m]

×[2s̃1,g−(n+1) − s̃1,g−n]

×
n−m

∏
i=1

hg−(m+i) Var[Xm]

]

+
g−1

∑
k=0

2s1,g−(k+1)[1 − s̃1,g−(k+1)]E[Xk].

(13)

Genetic ancestors
Next, we count genetic ancestors. Let Yi

k be the number of
source-1 genetic ancestors of the generation-g admixed indi-
vidual who are parents of individual i, one of the admixed ge-
nealogical ancestors in step k − 1. Proceeding back in time, after
step k, ∑k

ℓ=1 ∑Xℓ−1
i=1 Yi

ℓ genetic ancestors from source 1 have been
counted. We have for 1 ≤ k ≤ g probabilities

Yi
k =



0, h2
g−k + 2hg−ks2,g−k + s2

2,g−k

+s2
1,g−k(1 − pk)

2 + 2s1,g−khg−k(1 − pk)

+2s1,g−ks2,g−k(1 − pk),

1, 2s1,g−ks2,g−k pk + 2s1,g−khg−k pk

+2s2
1,g−k pk(1 − pk),

2, s2
1,g−k p2

k .

Here, pk is the probability that a genealogical ancestor k genera-
tions ago is also a genetic ancestor (Eq. 1). The count of genetic
ancestors from source 2 is obtained symmetrically.

We can also see that Yi
k ∼ Bin(2, s1,g−k pk), as

P[Yi
k = 1] = 2s1,g−k pk(1 − s1,g−k pk),

P[Yi
k = 2] = (s1,g−k pk)

2.
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We write Yk = ∑Xk−1
i=1 Yi

k for the number of genetic ancestors tab-
ulated in step k. By analogy with the tabulation of genealogical
ancestors, we conclude by Eqs. 3 and 4 that for 1 ≤ k ≤ g,

Yk ∼ Bin(2Xk−1, s1,g−k pk), (14)

E[Yk] = 2ks1,g−k pk

k−1

∏
i=1

hg−i, (15)

Var[Yk] = 2ks1,g−k pk(1 − s1,g−k pk)
k−1

∏
i=1

hg−i

+(s1,g−k pk)
2

k−1

∑
i=1

2k+i(1 − hg−k+i)

×
[(

g−1

∏
j=g−k+i

hj

)(
g−(k+1)+i

∏
ℓ=g−(k−1)

h2
ℓ

)]
. (16)

For the sum of the number of genetic ancestors across all
generations, computing the variance in Appendix B, we have

E

[ g

∑
k=1

Yk

]
=

g

∑
k=1

E[Yk], (17)

Var
[ g

∑
k=1

Yk

]
=

g−1

∑
k=1

[2s̃1,g−(k+1)pk+1 − s̃1,g−k pk]
2

×Var[Xm] +

[ g−2

∑
m=1

g−1

∑
n=m+1

2n−m+1

×[2s̃1,g−(m+1)pm+1 − s̃1,g−m pm]

×[2s̃1,g−(n+1)pn+1 − s̃1,g−n pn]

×
n−m

∏
i=1

hg−(m+i) Var[Xm]

]

+
g−1

∑
k=0

2s1,g−(k+1)pk+1

×[1 − s̃1,g−(k+1)pk+1]E[Xk]. (18)

Among all 2k genealogical ancestors of the generation-g ad-
mixed individual who are present in step k, 1 ≤ k ≤ g, the
expected fraction of them who are source-1 individuals who
are parents of step-(k − 1) admixed individuals and are genetic
ancestors is E[Yk]/2k.

In the same way that we count genetic ancestors among
the genealogical ancestors from the source populations, we can
count the number of admixed genealogical ancestors who are
also genetic ancestors. Denoting the random number of ad-
mixed genetic ancestors in step k by X∗

k , this random variable is
binomially distributed for 1 ≤ k ≤ g, so that

X∗
k ∼ Bin(2Xk−1, hg−k pk), (19)

E[X∗
k ] = 2khg−k pk

k−1

∏
i=1

hg−i, (20)

Var[X∗
k ] = 2khg−k pk(1 − hg−k pk)

k−1

∏
i=1

hg−i

+(hg−k pk)
2

k−1

∑
i=1

2k+i(1 − hg−k+i)

×
[(

g−1

∏
j=g−k+i

hj

)(
g−(k+1)+i

∏
ℓ=g−(k−1)

h2
ℓ

)]
. (21)

The expected fraction of the 2k genealogical ancestors of the
generation-g admixed individual who are themselves admixed
individuals and who are also genetic ancestors is E[X∗

k ]/2k.
Considering all parents of the admixed individuals in genera-

tion g − k − 1, the distribution of the vector of counts of genetic
ancestors in source population 1, the admixed population, and
source population 2 follows a multinomial distribution. If we
denote by Y′

k the number of source-2 genealogical ancestors
reached in generation g − k, then

(Yk, X∗
k , Y′

k) ∼ Mult3[2Xk−1, (s1,g−k pk, hg−k pk, s2,g−k pk)]. (22)

For the sum of the number of genetic ancestors across gener-
ations, we have

E

[ g

∑
k=1

X∗
k

]
=

g

∑
k=1

E[X∗
k ], (23)

Var
[ g

∑
k=1

X∗
k

]
=

g

∑
k=1

Var[X∗
k ] +

g−1

∑
m=1

g

∑
n=m+1

2n−m+1

×
n−m

∏
i=1

hg−(m+i)pm+i Var[X∗
m]. (24)

A single admixture event

We now consider two specific cases of the admixture model,
where after the initial generation of admixture, the contributions
from the two sources and from the admixed population are con-
stant across generations. First, we study the case in which the
constants are 0. We examine the situation in which no subse-
quent admixture occurs after the admixed population is founded:
in other words, s1,0, s2,0 > 0 and for all n, 1 ≤ n ≤ g − 1,
s1,n = s2,n = 0 and hn = 1.

For each k = 1, 2, . . . , g − 1, the random number of admixed
individuals in the pedigree of a randomly chosen admixed in-
dividual follows Xk ∼ Bin(2Xk−1, 1). Recalling that X0 = 1 for
the single admixed individual in generation g, we have Xk = 2k

for all k = 0, 1, 2, . . . , g − 1: all 2k ancestors of an individual k
generations back from the present are admixed.

To consider genealogical ancestors from the source popula-
tions, we separate between two cases, 1 ≤ k ≤ g − 1 and k = g.
For 1 ≤ k ≤ g − 1, Uk ∼ Bin(2k, 0) and no individuals from
sources 1 and 2 are reached. Consequently, Uk = 0 for all k with
1 ≤ k ≤ g − 1.

Next, we proceed one generation back from the case of k =
g − 1. If k = g, then by Eq. 8, Ug ∼ Bin(2 · 2g−1, s1,0). Therefore,
E[Ug] = 2gs1,0 and Var[Ug] = 2gs1,0(1 − s1,0).

For genetic ancestors, we again separate 1 ≤ k ≤ g − 1
from k = g. For 1 ≤ k ≤ g − 1, Yk ∼ Bin(2k, 0), and the
count of genetic ancestors is Yk = 0 for all k with 1 ≤ k ≤
g − 1, as is seen with genealogical ancestors. For k = g, by
Eq. 14, Yg ∼ Bin(2g, s1,0 pg). Therefore, E[Yg] = 2gs1,0 pg and
Var[Yg] = 2gs1,0 pg(1− s1,0 pg). The numbers of genetic ancestors
from the source populations, like the corresponding numbers
of genealogical ancestors, are determined by parameters of the
initial admixture, as tabulated by n = 0 looking forward in time,
or by k = g looking backward.

Constant positive admixture

We now examine the situation in which s1,0, s2,0 > 0, after which
the contributions from the sources are constant and positive. We
denote s1,n = s1 and s2,n = s2 for all n, 1 ≤ n ≤ g − 1, with
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s1, s2 > 0. Then hn = 1 − s1,n − s2,n is also constant for all n,
1 ≤ n ≤ g − 1; we denote this constant by hn = h.

Mathematical results
The number of admixed genealogical ancestors Xk follows a
homogeneous branching process. For k = 0, E[Xk] = 1. By Eq. 3,
for k = 1, 2, . . . , g − 1,

E[Xk] = (2h)k. (25)

For k = g, E[Xk] = 0.
For the variance of the number of admixed genealogical an-

cestors, by Eq. 4, Var[X0] = 0 and for 1 ≤ k ≤ g − 1,

Var[Xk] =
k

∑
i=1

2k−1+i(1 − h)

×
[(

g−1

∏
j=g−(k+1)+i

h

)(
g−(k+2)+i

∏
ℓ=g−k

h2

)]

=
k

∑
i=1

(1 − h)2k−1+ihk−1+i

=


1−h
1−2h (2h)k[1 − (2h)k], h ̸= 1

2 ,
k
2 , h = 1

2 .
(26)

For k = g, Var[Xk] = 0.
To count genealogical and genetic ancestors, we again sep-

arate 1 ≤ k ≤ g − 1 from k = g. When k = g, by Eq. 8,
Ug ∼ Bin(2Xg−1, s1,0). Hence, by Eqs. 10 and 25, for genealogi-
cal ancestors, we have

E[Ug] = 2ghg−1s1,0. (27)

For the variance, starting from Eq. 11 and applying Eqs. 25 and
26, we have

Var[Ug] = 2s1,0(1 − s1,0)E[Xg−1] + (2s1,0)
2Var[Xg−1]

=


2s1,0(1 − s1,0)2g−1hg−1

+(2s1,0)
2( 1−h

1−2h )(2h)g−1[1 − (2h)g−1], h ̸= 1
2 ,

2s1,0(1 − s1,0)2g−1( 1
2 )

g−1 + (2s1,0)
2(

g−1
2 ), h = 1

2 .

=


2s1,0(2h)g−1

×{1 − s1,0 + 2s1,0(
1−h
1−2h )[1 − (2h)g−1]}, h ̸= 1

2 ,

2s1,0[1 + s1,0(g − 2)], h = 1
2 .

(28)

For 1 ≤ k ≤ g − 1, by Eq. 8, Uk ∼ Bin(2Xk−1, s1). By Eqs. 10 and
25,

E[Uk] = 2khk−1s1. (29)

We then obtain, by Eqs. 11, 25, and 26,

Var[Uk] =


2s1(2h)k−1

×{1 − s1 + 2s1(
1−h

1−2h )[1 − (2h)k−1]}, h ̸= 1
2 ,

2s1[1 + s1(k − 2)], h = 1
2 .

(30)

For genetic ancestors, when k = g, similarly to the cal-
culations for genealogical ancestors, we use Eq. 14 to obtain
Yg ∼ Bin(2Xg−1, s1,0 pg). By Eqs. 15 and 25,

E[Yg] = 2ghg−1s1,0 pg. (31)

Following the reasoning underlying Eq. 16 with Eqs. 25 and 26,

Var[Yg] = 2s1,0 pg(1 − s1,0 pg)E[Xg−1] + (2s1,0 pg)
2Var[Xg−1]

=


2s1,0 pg(2h)g−1

×{1 − s1,0 pg + 2s1,0 pg(
1−h

1−2h )[1 − (2h)g−1]}, h ̸= 1
2 ,

2s1,0 pg[1 + s1,0 pg(g − 2)], h = 1
2 .

(32)

For 1 ≤ k ≤ g − 1, by Eq. 14, Yk ∼ Bin(2Xk−1, s1 pk). Hence,
by Eqs. 15 and 25,

E[Yk] = 2khk−1s1 pk. (33)

By Eqs. 16, 25, and 26,

Var[Yk] =


2s1 pk(2h)k−1

×{1 − s1 pk + 2s1 pk(
1−h

1−2h )[1 − (2h)k−1]}, h ̸= 1
2 ,

2s1 pk[1 + s1 pk(k − 2)], h = 1
2 .

(34)

Analysis of temporal trends
In the case of constant positive admixture, we analyze the way
in which genealogical and genetic ancestors accumulate across
the generations of the admixture process. Comparing generation
k, 2 ≤ k ≤ g − 1, to the generation k − 1 of its offspring, Eq. 29
gives

E[Uk]

E[Uk−1]
= 2h.

If h < 1
2 , then 2h < 1 and E[Uk] decreases with increasing k and

hence decreasing n = g − k (Figure 4A). The number of admixed
ancestors is small, so that the source populations are likely to be
reached in a small number of generations back from the present;
hence, the numbers of genealogical ancestors from the source
populations are also small. The contribution from the admixed
population is low enough and the contributions from the source
populations are high enough that the number of genealogical
ancestors from the source populations is greatest in the most
recent generations.

If, on the other hand, h > 1
2 , then 2h > 1 and E[Uk] increases

with increasing k and decreasing n = g − k (Figure 4B). The
number of admixed genealogical ancestors is larger than with
h < 1

2 , so that the number of genealogical ancestors from the
source populations is also larger. With a high contribution from
the admixed population to itself, the number of genealogical
ancestors from the source populations is greatest farther back in
time. A transition occurs at h = 1

2 , where 2h = 1 and E[Uk] is
constant in time, equaling 2s1 by Eq. 29 (Figure 4C).

For genetic ancestors, for 2 ≤ k ≤ g − 1, Eq. 33 gives

E[Yk]

E[Yk−1]
= 2h

pk
pk−1

.

Although the admixture process is constant in time after the
founding of the admixed population, the dependence of pk on
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Figure 4 Genealogical and genetic ancestors in a model of constant admixture with g = 15, evaluated forward in time from gener-
ation n = 0 to generation n = g − 1 = 14. The forward-time generation n corresponds to the backward-time generation k = g − n.
(A-C) Expected number of source-1 genealogical ancestors (Eqs. 27, 29) and genetic ancestors (Eqs. 31, 33). The three panels use
s1,0 = s2,0 = 0.5 and s1 = s2 with different values of h. (A) h = 0.4. (B) h = 0.6. (C) h = 0.5. (D) The ratio of the conditional
probabilities of genetic ancestry given genealogical ancestry for generations k and k − 1, pk/pk−1 (Eq. 1), where k = 0 in generation
g = 15 and n = g − k. Note that this plot stops at n = 13 and k = 2 with the value of p2/p1.

k (Eq. 1) affects the time at which genetic ancestors from the
sources accumulate.

We now examine pk/pk−1. Denote the event “a k-generation
genealogical ancestor is a k-generation genetic ancestor” by Ak,
k ≥ 1. Irrespective of the form chosen for P[Ak], we argue that

1
2
≤ P[Ak]

P[Ak−1]
=

pk
pk−1

≤ 1. (35)

For the right-hand side of Eq. 35, a necessary condition for a
k-generation genealogical ancestor of a descendant to be a k-
generation genetic ancestor is that it is a (k − 1)-generation ge-
netic ancestor of the parent of the descendant. In other words,
Ak ⊆ Ak−1 and P[Ak] ≤ P[Ak−1].

For the left-hand side of Eq. 35, because Ak ⊆ Ak−1,

P[Ak]

P[Ak−1]
=

P[Ak ∩ Ak−1]

Ak−1
= P[Ak|Ak−1].

Ak|Ak−1 is the event that conditional on a k-generation ancestor
transmitting at least one genomic segment to the parent of a
descendant, the k-generation ancestor transmits at least one
segment to the descendant itself. The probability that a parent

transmits a certain segment to an offspring is 1
2 , and therefore

1
2 ≤ P[Ak|Ak−1].

For the functional form of P[Ak] used by Coop (2013), Eq. 1,
a proof that 1

2 < pk < 1 for all k ≥ 2 appears in Appendix C. An
example of pk/pk−1 appears in Figure 4D, illustrating a decrease
in pk/pk−1 with increasing k and decreasing n = g − k.

Application to African-Americans

Model and methods
We apply our model to count genetic ancestors for a random
individual in the African-American population in the United
States. In Mooney et al. (2023), relying on demographic data
on the history of the population, we considered a model with
g = 14 generations, ending in 1960-1965. Using information on
current patterns of genetic admixture, we inferred admixture pa-
rameters (s1,n, hn, s2,n), with source 1 representing Africans and
source 2 representing Europeans. The model divided the demo-
graphic history of the population into three epochs: 1619-1808,
during which the population was founded, with importation of
enslaved African captives and admixture with Europeans; 1808-
1865, during which enslavement and admixture continued but
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Table 1 Generation-specific expectations of the numbers of African-American genealogical and genetic ancestors across accepted
parameter sets.

Number of African-American ancestors

Genealogical Genetic

Mean Standard Mean of Mean Standard Mean of

Generation Birth of deviation of standard of deviation of standard

(n) year expectation expectation deviation expectation expectation deviation

0 1610-1615 - - - - - -

1 1635-1640 0.07 0.03 0.27 0.01 0.00 0.08

2 1660-1665 2.32 0.98 1.83 0.40 0.17 0.66

3 1685-1690 8.93 3.38 4.41 2.60 0.98 1.88

4 1710-1715 33.30 11.15 12.71 15.44 5.17 6.60

5 1735-1740 83.09 24.37 28.93 55.91 16.39 20.05

6 1760-1765 97.93 25.08 33.17 84.36 21.61 28.99

7 1785-1790 62.39 14.22 21.05 60.39 13.76 20.57

8 1810-1815 34.43 6.97 11.51 34.33 6.95 11.52

9 1835-1840 19.04 3.52 6.28 19.04 3.52 6.28

10 1860-1865 10.55 1.87 3.40 10.55 1.87 3.40

11 1885-1890 5.84 0.77 1.83 5.84 0.77 1.83

12 1910-1915 3.24 0.28 0.94 3.24 0.28 0.94

13 1935-1940 1.80 0.08 0.42 1.80 0.08 0.42

Total - 362.93 90.16 119.94 293.89 69.66 99.54

Suppose θi denotes an accepted parameter set and θ = {θi}|θ|i=1 denotes the collection of all accepted parameter sets. For each generation n = g − k with g = 14
(k = 1, 2, . . . , g), the mean of the expectation of the genealogical ancestors is Meanθ{E[Xk(θi)]} (Eq. 3; Eq. 20 for genetic ancestors); the standard deviation of the expecta-
tion is σθ{E[Xk(θi)]}; the mean of the standard deviation is Meanθ{

√
Var[Xk(θi)]} (Eq. 4; Eq. 21 for the genetic ancestors). For the total, the mean of the expectation of

the genealogical ancestors is Meanθ{E[∑
g
k=1 Xk(θi)]} (Eq. 5; Eq. 23 for the genetic ancestors); the standard deviation of the expectation is σθ{E[∑

g
k=1 Xk(θi)]}; the mean

of the standard deviation is Meanθ{
√

Var[∑
g
k=1 Xk(θi)]} (Eq. 6; Eq. 24 for genetic ancestors). The table shows the generation-wise values plotted in Figure 5B for the

mean and standard deviation of the expectation.
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Figure 5 Generation-specific genealogical and genetic ancestry
features for African-Americans. (A) Generation-wise mean ad-
mixture contributions s1 (African), h (African-American) and
s2 (European) across accepted parameter sets. Error bars show
standard deviations. (B) Means across accepted parameter sets
of the expected numbers of African-American genealogical
and genetic ancestors possessed by a random individual, as
calculated by Eqs. 3 and 20. Error bars show the standard de-
viations of these expected numbers across accepted parameter
sets. The values plotted in (A) are obtained by summarizing
the distributions underlying Figure 4 of Mooney et al. (2023).
The values in (B) are given in Table 1.

importation of enslaved persons was illegal; and 1865-1965, after
the end of legal enslavement. The 1965 endpoint for the model
was chosen to accord with the approximate timing of the birth of
individuals in whom genetic ancestry has been measured, and
to precede subsequent major demographic changes.

The model considered 25-year generations, initializing the
population solely with Africans (s1,0 = 1, s2,0 = 0). The first
epoch had seven generations (1635-1640, 1660-1665, 1685-1690,
1710-1715, 1735-1740, 1760-1765, 1785-1790; n = 1 to 7), the
second epoch had three (1810-1815, 1835-1840, 1860-1865; n = 8
to 10) and the third had four (1885-1890, 1910-1915, 1935-1940,
1960-1965; n = 11 to 14). In the first epoch, s2,n was kept constant,
and the values of s1,n and hn were specified by estimating the
value of s1,n/(s1,n + hn) using demographic data (Hacker 2020)
about newly transported enslaved individuals from Africa and
births in the African-American populations. In both the second
and third epochs, s1,n, hn, and s2,n were maintained as constants
for all generations in the epoch.

Mooney et al. (2023) identified sets of parameter values that
recovered features of genetic ancestry measured in African-

Americans: an expected African genetic ancestry in [0.75, 0.85]
with standard deviation in [0.08, 0.15]. A summary of generation-
wise mean parameter values across all accepted parameter sets
appears in Figure 5A. The figure reports mean values of s1,
h, and s2, summarizing distributions that appear in Figure 4
of Mooney et al. (2023). It shows the high African contribution
to the African-American population in the earliest generations
(s1), with an increasing contribution of the African-American
population to itself (h), and with European contributions oc-
curring across the generations (s2). For each set of accepted
parameters, Mooney et al. (2023) calculated the generation-wise
expected numbers of African and European genealogical ances-
tors associated with the set.

Here, using these parameter sets, we calculate the generation-
wise expected numbers of African-American genealogical an-
cestors and the expected numbers of African, European, and
African-American genetic ancestors (Eq. 15), in a pedigree of a
person drawn randomly from the African-American population
born between 1960-1965. We also show the distribution across
parameter sets, in each generation, of the expected numbers of
genealogical ancestors from each population.

Genealogical ancestors
For each accepted parameter set, using Eq. 3, we evaluated the
generation-wise expected number of African-American ances-
tors that appear in a random genealogy, represented by E[Xk].
The mean across accepted parameter sets is shown in Figure
5B and Table 1. Forward in time, the mean number of African-
American genealogical ancestors is initially small, increasing to a
peak in generation 6 (1760-1765) with a value of 98. It decreases
toward the end of the admixture process.

At each generation n, genealogical ancestry is split across five
groups: Africans reached in generation n, African-Americans
present in generation n, Europeans reached in generation n,
Africans who are ancestors to Africans reached subsequent to
generation n, and Europeans who are ancestors to Europeans
reached subsequent to generation n. The first and third of these
categories were studied by Mooney et al. (2023). The fourth and
fifth are individuals who are genealogical ancestors of individ-
uals who contributed directly to the African-American popula-
tion, but who are not themselves parents of African-Americans;
the expected number of Africans who are ancestors to African
genealogical ancestors reached only subsequent to generation
n is obtained from Eq. 10 by ∑13

i=n+1 2i−nE[U14−i]. A similar
computation can be performed for Europeans.

Figure 6A plots the fractions among all genealogical ancestors
assigned to the five categories, and the values plotted appear
in Table 2. In the earliest generations, all genealogical ancestors
are Africans and Europeans who do not directly contribute to
the African-American population. As the admixture continues,
African and European genealogical ancestors who directly con-
tribute are reached, and eventually, African-Americans represent
most of the genealogical ancestors. In generation 0 (1610-1615),
∼79% of genealogical ancestors are African and ∼21% are Eu-
ropean, reflecting the fractions of an African-American genome
that trace to African genetic ancestry and to European genetic
ancestry.

Genetic ancestors
Considering the accepted parameter sets from Mooney et al.
(2023), we used Eq. 15 to calculate generation-wise expected
numbers of African and European genetic ancestors. These val-
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Figure 6 Generation-specific genealogical and genetic ances-
try fractions for African-Americans. (A) Generation-wise ge-
nealogical ancestry for a random African-American individ-
ual, partitioned across five categories and averaged across
accepted parameter sets. The fraction of genealogical ancestors
who are Africans in generation n who contribute directly to
the African-American population is obtained from Eq. 10 as
E[U14−n]/214−n; the fraction of genealogical ancestors who
are African but who only contribute to the African-American
population through their subsequent African descendants
is (∑13

i=n+1 2i−nE[U14−i])/214−n. Similar calculations are per-
formed for Europeans. The fraction of genealogical ancestors
who are African-American is E[X14−n]/214−n, calculated us-
ing Eq. 3. The values plotted appear in Table 2. (B) Generation-
wise expected African genetic ancestry contributed to a de-
scendant as a fraction of the total expected African genetic
ancestry in the descendant, and expected European genetic
ancestry contributed to the descendant as a fraction of the total
expected European genetic ancestry in the descendant. The
values are obtained from Eq. 36, with n = 14 − k. Error bars
represent standard deviations of the values from Eq. 36 across
accepted parameter sets.

Table 2 Generation-specific expectations of the fractions of ge-
nealogical ancestry assigned to five categories, across accepted
parameter sets.

Fraction of genealogical ancestors

Generation Birth African African- European African, European,

(n) year American not counted not counted

0 1610-1615 0.0000 - - 0.7934 0.2066

1 1635-1640 0.0005 0.0000 0.0000 0.7929 0.2066

2 1660-1665 0.0035 0.0006 0.0003 0.7894 0.2062

3 1685-1690 0.0257 0.0044 0.0024 0.7637 0.2038

4 1710-1715 0.1171 0.0325 0.0127 0.6466 0.1911

5 1735-1740 0.1890 0.1623 0.0313 0.4575 0.1599

6 1760-1765 0.0632 0.3825 0.0417 0.3944 0.1182

7 1785-1790 0.0320 0.4874 0.0186 0.3624 0.0996

8 1810-1815 0.0362 0.5380 0.0208 0.3262 0.0788

9 1835-1840 0.0409 0.5950 0.0234 0.2853 0.0554

10 1860-1865 0.0584 0.6593 0.0118 0.2269 0.0436

11 1885-1890 0.0663 0.7296 0.0130 0.1606 0.0305

12 1910-1915 0.0752 0.8088 0.0145 0.0854 0.0161

13 1935-1940 0.0854 0.8985 0.0161 - -

The table shows the values plotted in Figure 6A.

ues enable evaluation of expected fractions of the total African
and European ancestry that have contributed to a descendant
genome by each generation of genetic ancestors. For example,
the fraction of the genome that traces to a specific African genetic
ancestor from k generations before the descendant is, on average,
1/Wk, where Wk is the number of genetic ancestors in that gen-
eration. Wk has expectation 2k pk, the product of the number of
genealogical ancestors k generations ago and the probability that
a genealogical ancestor is a genetic ancestor. Therefore, the ex-
pected contribution to the African genetic ancestry fraction from
all African genetic ancestors k generations before the present
can be approximated by E[Yk]/(2k pk), the ratio of the expected
number of African genetic ancestors k generations prior to the
descendant and the expected total number of genetic ancestors
in that generation. By Eqs. 10 and 15, E[Yk]/(2k pk) = E[Uk]/2k.

Figure 6B shows the expected African and European genetic
ancestry contributed by the genetic ancestors from each gen-
eration as fractions of the total African and European genetic
ancestry, or

E[Yk]/(2k pk)

∑14
ℓ=1 E[Yℓ]/(2ℓpℓ)

. (36)

The figure converts between the backward-time perspective in-
dexed by k and the forward-time n = g − k. Because a genetic
ancestor from the more recent generations (large n) contributes
more genetic ancestry on average than a genetic ancestor in
previous generations (small n), we observe non-negligible con-
tributions from these later generations. However, ∼40% of the
African genetic ancestry traces to generations 4 and 5, and ∼35%
of the European genetic ancestry traces to generations 5 and 6,
with an additional ∼30% of European genetic ancestry tracing
to generations 7, 8, and 9.

The generation-wise mean values across parameter sets of
the expected numbers of genetic ancestors appear in Figure 7,
alongside expected numbers of genealogical ancestors for com-
parison. Replotting values from Figure 7 of Mooney et al. (2023),
the numbers of genealogical ancestors are greater for Africans
than for Europeans, and the expected total numbers of genealog-
ical ancestors, summing across generations, are 314 Africans and
51 Europeans (Tables 3 and 4). Looking forward in time from
the founding of the population, the numbers of genealogical an-
cestors increase to peak values and then decrease. The numbers
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Table 3 Summary statistics for the expected numbers of African, European, and African-American genealogical and genetic ances-
tors for a random individual from the African-American population across the accepted parameter sets.

Quantity Mean Standard Minimum 1st Median 3rd Maximum

deviation quartile quartile

African genealogical ancestors 314 99 124 240 299 376 680

African genetic ancestors 162 47 72 127 155 192 332

European genealogical ancestors 51 24 4 32 51 69 125

European genetic ancestors 32 14 4 21 32 42 77

African-American genealogical ancestors 363 90 202 294 345 418 709

African-American genetic ancestors 294 70 172 240 280 336 566

The estimates consider random individuals in the 1960-1965 birth cohort, assumed to be generation g = 14 in a 3-epoch model. The standard deviations are standard
deviations of the means across accepted parameter sets; means and standard deviations are rounded from Tables 4 and 1. The values for African and European ge-
nealogical ancestors appear in Table 3 in Mooney et al. (2023).

Figure 7 Generation-specific expectations of the numbers of African and European genealogical and genetic ancestors. The ex-
pected number of African genealogical ancestors is calculated according to Eq. 10 (standard deviation, Eq. 11). The expected num-
ber of African genetic ancestors is calculated according to Eq. 15 (standard deviation, Eq. 16). Similar calculations are performed
for Europeans. The plot shows means of the expectation and standard deviation across expected parameter sets. The values plotted
appear in Table 4.
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of genetic ancestors also reach peaks and decrease toward the
present. The expected total numbers of genetic ancestors are 162
Africans and 32 Europeans.

By a similar computation, Figure 5B provides the generation-
wise expected numbers of African-American genetic ancestors,
comparing them to corresponding numbers of genealogical an-
cestors. The expected total number of African-American ge-
nealogical ancestors, summing from generations 0 to 13, is 363,
and the expected total for genetic ancestors is 294 (Tables 1 and
3).

In Figure 7, the peak expected number of African genealogi-
cal ancestors appears in generation 4 (1735-1740). However, the
corresponding peak for genetic ancestors occurs in generation 5.
The difference occurs because the peak for African genealogical
ancestors occurs far enough back in time that the probability of
genetic ancestry for those genealogical ancestors is well below 1
(p10 = p14−4 ≈ 0.4637 by Eq. 1); the number of genetic ancestors
among the smaller number of generation-5 genealogical ances-
tors is greater than among the larger number of generation-4
genealogical ancestors.

For Europeans, the peak of genealogical ancestors occurs later
than for Africans, in generation 5 (1760-1765). In that later gener-
ation, the fraction of genealogical ancestors who are also genetic
ancestors is greater than in generation 4 (p9 = p14−5 ≈ 0.6728 by
Eq. 1). Because the peak in genealogical ancestors occurs later for
Europeans, the fraction of all European genealogical ancestors
who are genetic ancestors ( 32

51 ≈ 0.63) exceeds the corresponding
fraction for Africans ( 162

314 ≈ 0.52).
This observation can be illustrated in a computation shown

in Figure 8, which compares the ratio of African and Euro-
pean genetic ancestors to the ratio of African and European
genealogical ancestors across accepted parameter sets. The
African:European ratio of genetic ancestors is consistently lower
than the African:European ratio of genealogical ancestors. The
comparative recency of the European genealogical ancestors—
and the resulting increased probability of genetic ancestry for
those genealogical ancestors—produces a greater value for the
fraction of all genetic ancestors who are European compared to
the fraction of all genealogical ancestors who are European.

In Figure 5B, the peak number of African-American genealog-
ical ancestors appears still later than the peaks for African and
European genealogical ancestors, in generation 6 (1785-1790). In
that generation, the fraction of genealogical ancestors who are
also genetic ancestors is p8 = p14−6 ≈ 0.8615 (by Eq. 1). Hence,
the fraction of African-American genealogical ancestors who
are also genetic ancestors ( 294

363 ≈ 0.81) exceeds corresponding
fractions for Africans and Europeans.

Discussion

We have developed an approach to counting genetic ancestors
of an admixed individual, estimating the number of genetic
ancestors who contributed directly to the admixed population
and the number of genetic ancestors belonging to the admixed
population itself. The approach proceeds by recursively treating
the number of such ancestors in a given generation as a random
variable that is binomially distributed based on a correspond-
ing random variable for the subsequent generation. We used an
admixture model together with a model of African-American de-
mographic history to estimate that a random African-American
born between 1960 and 1965 has an estimated mean of 162 for
the number of African genetic ancestors (standard deviation

Figure 8 Ratios of the number of African ancestors to the
number of European ancestors. The x-axis shows the ratio
for genealogical ancestors, and the y-axis shows the ratio
for genetic ancestors. For each of 45,189 accepted parame-
ter sets, we calculated ((∑13

n=0 E[U14−n])/(∑13
n=0 E[U′

14−n]),
(∑13

n=0 E[Y14−n]))/(∑13
n=0 E[Y′

14−n])), visualizing the ordered
pair of ratios in a density plot. The 89% of the pairs (40,201)
that have both ratios below 20 are presented in the plot, with
the color of a 1

2 × 1
2 square representing the number of pairs

located in that square. The mean ratios across all accepted
parameter sets are (9.99, 7.07), and the standard deviations
are (11.87, 6.32), with covariance 73.56. For the 89% of points
shown, the mean ratios are (6.74, 5.36), with standard devi-
ations (4.18, 2.96) and covariance 12.15. The y = x line is
shown for comparison. Among the accepted parameter sets,
the ratio we observed for genetic ancestors was always smaller
than the ratio for genealogical ancestors; hence, for squares
along the diagonal, only the lower triangle is colored. Note
that although a smaller value for the ratio of genetic ancestors
compared to the ratio of genealogical ancestors was always
observed, such a relationship need not hold in principle.

47) and 32 for the number of European genetic ancestors (stan-
dard deviation 14) who contributed to the African-American
population directly from the source populations, and 294 total
African-American genetic ancestors (standard deviation 70).

Genetic and genealogical ancestors
In population-genetic studies of genetically admixed popula-
tions, genetic ancestry that traces to the source populations has
generally been analyzed by evaluation of estimated admixture
fractions in members of an admixed population. The statistical
models used for this estimation consider admixture in terms of
the fractions of genomes contributed rather than via contribu-
tions of specific ancestors. With the increasing use of these ge-
nomic contributions to report information to individuals about
their own genealogies, the meaning of concepts of genetic ances-
try and admixture—and their estimates—have been increasingly
queried (Weiss and Long 2009; Lawson et al. 2018; Mathieson and
Scally 2020). Our use of mechanistic admixture models enables
new perspectives on the interpretation of genetic admixture and
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Table 4 Generation-specific expectations of the numbers of African and European genealogical and genetic ancestors across ac-
cepted parameter sets.

Number of African ancestors

Genealogical Genetic

Mean Standard Mean of Mean Standard Mean of

Generation Birth of deviation of standard of deviation of standard

(n) year expectation expectation deviation expectation expectation deviation

0 1610-1615 0.14 0.07 0.54 0.01 0.00 0.09

1 1635-1640 4.25 1.99 3.41 0.41 0.19 0.71

2 1660-1665 14.27 6.04 7.28 2.45 1.03 1.93

3 1685-1690 52.70 19.95 20.47 15.33 5.80 6.91

4 1710-1715 119.90 40.15 42.22 55.60 18.62 20.50

5 1735-1740 96.76 28.37 33.45 65.10 19.09 23.12

6 1760-1765 16.18 4.14 6.60 13.94 3.57 5.88

7 1785-1790 4.10 2.71 2.50 3.97 2.62 2.45

8 1810-1815 2.31 1.57 1.70 2.31 1.57 1.70

9 1835-1840 1.31 0.91 1.20 1.31 0.91 1.19

10 1860-1865 0.94 0.39 0.99 0.94 0.39 0.99

11 1885-1890 0.53 0.23 0.72 0.53 0.23 0.72

12 1910-1915 0.30 0.14 0.53 0.30 0.14 0.53

13 1935-1940 0.17 0.08 0.39 0.17 0.08 0.39

Total - 313.86 98.58 102.62 162.37 46.72 52.66

Number of European ancestors

Genealogical Genetic

Mean Standard Mean of Mean Standard Mean of

Generation Birth of deviation of standard of deviation of standard

(n) year expectation expectation deviation expectation expectation deviation

0 1610-1615 - - - - - -

1 1635-1640 0.32 0.14 0.61 0.03 0.01 0.18

2 1660-1665 1.28 0.61 1.31 0.22 0.10 0.48

3 1685-1690 4.98 2.52 3.10 1.45 0.73 1.36

4 1710-1715 12.98 7.07 6.50 6.02 3.28 3.53

5 1735-1740 16.01 9.44 7.80 10.77 6.35 5.60

6 1760-1765 10.67 6.85 5.58 9.19 5.90 4.96

7 1785-1790 2.38 1.84 1.84 2.30 1.78 1.81

8 1810-1815 1.33 1.04 1.27 1.33 1.04 1.27

9 1835-1840 0.75 0.60 0.90 0.75 0.60 0.90

10 1860-1865 0.19 0.12 0.44 0.19 0.12 0.44

11 1885-1890 0.10 0.06 0.32 0.10 0.06 0.32

12 1910-1915 0.06 0.03 0.24 0.06 0.03 0.24

13 1935-1940 0.03 0.02 0.18 0.03 0.02 0.18

Total - 51.08 24.32 18.68 32.44 14.31 12.18

Values are calculated as in Table 1. The mean of the expectation for African genealogical ancestors is obtained by averaging values of Eq. 10 across accepted parameter
sets (Eq. 15 for genetic ancestors); the standard deviation of the expectation takes the standard deviation of those values. The mean of the standard deviation for African
genealogical ancestors is obtained as the mean of Eq. 11 across accepted parameter sets (Eq. 16 for genetic ancestors). For the total, the mean of the expectation of
the sum of the African genealogical ancestors is calculated by averaging values of Eq. 12 across accepted parameter sets (Eq. 17 for genetic ancestors); the standard
deviation of the expectation takes the standard deviation of those values. The mean of the standard deviation for the total African genealogical ancestors is obtained
as the mean of Eq. 13 across accepted parameter sets (Eq. 18 for genetic ancestors). Corresponding quantities for European ancestors are calculated by replacing each
s1,g−k with s2,g−k . The values of the total means for the expectation and standard deviation of African and European genealogical ancestors are those that appear in Table
3 of Mooney et al. (2023). The table shows the generation-wise values plotted in Figure 7 for the means and standard deviations of the expectation across the accepted
parameter sets.
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ancestry estimates, seeking to describe the timing at which the
ancestors entered pedigrees of individuals and to count genetic
ancestors across the length of the admixture process.

The number of genetic ancestors is bounded above by the
number of genealogical ancestors, as each genetic ancestor must
also be a genealogical ancestor. Both for genealogical and for
genetic ancestors, the number of ancestors in a given generation
is binomially distributed based on the number of genealogical
ancestors in the subsequent generation (Eqs. 3, 10, 15, 20). The
difference between the distributions of genealogical and genetic
ancestors is in the binomial probability of success. For genealogi-
cal ancestors, the distribution depends only on parameters of the
admixture process (Eqs. 3, 10), whereas for genetic ancestors, it
depends also on a genetic ancestry probability for a genealogical
ancestor separated from a descendant by a specified number of
generations (Eqs. 15, 20). Depending on the features of the ad-
mixture process, the number of genetic ancestors from a source
population can be close to the number of genealogical ancestors,
or far smaller (Figure 4).

The evaluation of genetic ancestors extends the mechanistic
admixture of model of Mooney et al. (2023). From a mathematical
perspective, the focus on genealogical ancestors by Mooney et al.
(2023) proceeded by adding a well-placed factor of 2 to the work
of Verdu and Rosenberg (2011), converting a genomic fraction in
a single-generation recursion into a genealogical ancestor count.
The mathematical extension here is substantial, incorporating
into the admixture model not only the factor of 2 but also the
time-varying probability that a genealogical ancestor is a genetic
ancestor.

Viewed from the perspective of the recombination-based ge-
netic ancestry model of Coop (2013), our approach extends the
analysis of genetic ancestors by separating them across source
populations. If we were to follow Coop (2013) and consider
all populations together as one, then Eq. 3 would reduce to
E[Xk] = 2k, and our count of the random number of genetic an-
cestors in generation k would reduce Eq. 20 to X∗

k ∼ Bin(2k, pk).
In other words, with no ancestry proportion considered—or al-
ternatively, with all genealogical ancestors treated as members
of the admixed population—the number of genealogical ances-
tors in generation k is 2k, and the probability that a genealogical
ancestor is tabulated as a genetic ancestor depends only on the
genetic ancestry probability pk. The expectation of this random
variable gives the Coop (2013) calculation of the expected num-
ber of genetic ancestors in generation k, E[X∗

k ] = 2k pk (Eq. 1,
Figure 3).

African-American demographic history
With the Mooney et al. (2023) 14-generation model of African-
American demographic history, we examined the expected num-
bers of genetic ancestors from Africa, Europe, and the African-
American population itself, for random African-Americans born
1960-1965. We found for the mean numbers of genetic ances-
tors 162 Africans and 32 Europeans (Figure 7, Table 3), smaller
than the corresponding numbers of genealogical ancestors, 314
Africans and 51 Europeans (Mooney et al. 2023). Tabulating
ancestors within the African-American population itself, the ex-
pected numbers of genealogical and genetic ancestors are 363
and 294, respectively (Figure 5B, Table 1).

The peak number of genealogical ancestors occurs in genera-
tion 4 for Africans (1710-1715), generation 5 for Europeans (1735-
1740), and generation 6 for African-Americans (1760-1765, Ta-
bles 4 and 1). Tracing genealogical ancestors back in time, noting

that the total number of genealogical ancestors doubles in each
generation, we find that the proportion of African-Americans
among genealogical ancestors is greatest in generation 13, de-
creasing back in time (Figure 6A, Table 2). The highest propor-
tion occurs for Africans in generation 5 and for Europeans in
generation 6. Eventually, African and European genealogical
ancestors are reached who are parents solely of Africans or of
Europeans; the proportions of these Africans and Europeans
increase back in time until all genealogical ancestors are in these
categories, in an approximate ratio of 79% Africans to 21% Eu-
ropeans (Table 2). These quantities, which estimate fractions of
all genealogical ancestors tracing to Africans and Europeans, lie
in the range of permissible mean empirical genomic ancestry
coefficients (Mooney et al. 2023).

For genetic ancestors, the contribution to African genetic an-
cestry is greatest for generations 4 and 5; the European genetic
ancestry is highest in generations 5 and 6 (Figure 6B). The peak
number of genetic ancestors occurs in generation 5 for Europeans
and generation 6 for African-Americans, matching correspond-
ing peaks for genealogical ancestors (Tables 1 and 4). However,
the peak for African genetic ancestors occurs in generation 5, one
generation later than for African genealogical ancestors (Table
4). Many African genealogical ancestors are far enough back in
time that many of them are not genetic ancestors—so that the
peak for genetic ancestors occurs later for genealogical ancestors.
The fact that African genealogical ancestors occur on average
farther in the past than European genealogical ancestors means
that the 314:51 ratio of the mean numbers of African and Euro-
pean genealogical ancestors is smaller than the 162:32 ratio of
the mean numbers of African and European genetic ancestors
(Figure 8), as a larger fraction of the African genealogical ances-
tors have been lost as genetic ancestors. In effect, the fact that the
European genealogical ancestors are later on average than the
African genealogical ancestors has the result that the probability
that a European genealogical ancestor is also a genetic ancestor
exceeds the corresponding probability for Africans.

An interesting difference occurs between the peak of the
African ancestor counts and the subsequent peak of the Transat-
lantic Slave Trade. The fraction of Africans transported by 1760
is about half of the total (Hacker 2020, Table 1); however, the
comparable fraction of African genealogical ancestors, individ-
uals born in generation 5 (born 1735-1740, reproductive age at
1760) or earlier, is 92% (Table 4). Hence, although the many
transported Africans born in generations 6 and 7 certainly con-
tributed in great numbers to the African-American population,
a typical pedigree likely contains multiple lines that trace to the
earlier enslaved migrants of generations 5 and earlier. In other
words, by the time of the birth of generations 6 (1760-1765) and 7
(1785-1790), the African-American population was large enough
that among all genealogical lines of a person born 1960-1965,
many trace to genealogical ancestors who were already resident
in the African-American population at the time of those genera-
tions. Indeed, for generation 6 onward and even for generation
5, African-Americans are a nontrivial fraction of the genealogical
ancestors of a modern person (Figure 6), from ∼38% in gener-
ation 6 up to ∼90% in generation 13 (Table 2). The other major
component in generation 6 onward is African genealogical an-
cestors who did not contribute directly to the African-American
population. These Africans are the genealogical ancestors of
Africans newly contributing to the African-American popula-
tion. The substantial fraction for this category results from the
accumulation of many African genealogical ancestors who con-
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tributed to pedigrees in generations later than generation 5.

Limitations and extensions
As our approach follows the assumptions of Mooney et al. (2023),
it is subject to many of the same limitations. For example, we
do not consider a Native American component of admixture in
African-Americans. Our treatment of a “random African Ameri-
can” born in the 1960-1965 window does not take into consider-
ation regional variation across the African-American population
in admixture processes or other demographic phenomena. We
also disregard the possibility that the same genealogical ances-
tor might occur in multiple positions in a pedigree, so that our
count of the number of ancestors might double-count some in-
dividuals; the time over which this assumption is sensible is
the period in wnich the number of genealogical ancestors in
a pedigree is small in relation to the pool of potential ances-
tors. Our discretization of the generations oversimplifies the
demographic history, as does our three-epoch model, though
this model does accord with the perspective of one of the most
comprehensive empirical analyses of African-American genetic
admixture (Baharian et al. 2016). Another limitation is that our
model in principle allows an unlikely scenario in which the two
parents of an African-American are two Europeans. We also do
not consider distinct ancestry parameters for males and females.
Each of these limitations is shared between the assessment of
genealogical ancestors by Mooney et al. (2023) and our analysis
of genetic ancestors here. As is discussed by Mooney et al. (2023,
p. 13), each is possible to address by extensions and modifica-
tions of the model, potentially leading to further understanding
of both genealogical and genetic ancestors.

Additional limitations not shared in the work of Mooney et al.
(2023), which focused solely on genealogical ancestors, arise
from the use of the Coop (2013) model to evaluate the proba-
bility that a genealogical ancestor is a genetic ancestor. This
approach does not account for recombination phenomena such
as recombination-rate variation across the genome, gene conver-
sion, the particular sizes of chromosomes, crossover interference
that perturbs the Poisson distribution assumed for the num-
ber of new genomic segments each generation, differing male
and female recombination rates, or the X chromosome. With its
simple treatment of the recombination process, the Coop (2013)
model ignores many complexities that affect the probability that
some segment from a genealogical ancestor might be retained
in a descendant. Although extensions to accommodate such
phenomena could be developed, in a single simple equation
(Eq. 1), the Coop (2013) recombination model does capture the
basic phenomenon—as explained by Donnelly (1983)—that as
the time between ancestor and descendant increases, the proba-
bility that the descendant retains a segment from the ancestor
decreases (Figure 3), and a steep drop in probability occurs when
the separation increases from 7-8 generations (Robert Burns and
descendants born 1960-1965) to 15-16 generations (descendants
of William Shakespeare).

Our empirical focus has been on an example from human
populations, but the model can be applied more generally to
diploid species in which mechanistic admixture models and
recombination models can be specified. To take one example,
Armstrong et al. (2023) have studied genetic variation in captive
tigers, a population formed through admixture of wild source
populations from several different parts of Asia. Armstrong
et al. (2023) have estimated genomic proportions that trace to
the various source populations. With a generalization to permit

more than two sources, our model can assist in understanding
the properties of the genetic ancestors that have given rise to
typical individual captive tigers.

Conclusions
Further study of a mechanistic admixture model has deepened
the analysis of the number of genealogical ancestors who con-
tribute from a source population to an admixed pedigree, and
it has also introduced an approach to evaluating the number
of contributing genetic ancestors. For African-Americans, the
distinction between genealogical and genetic ancestors suggests
that although the number of African genealogical ancestors in
a pedigree greatly exceeds the number of European genealogi-
cal ancestors, because the African genealogical ancestors are on
average earlier in time than the European genealogical ances-
tors, the number of African genetic ancestors does not exceed
the number of European genetic ancestors by as great a margin.
More generally, the calculations contribute to understanding the
relationship between an admixed population’s demographic his-
tory, its ancestral individuals who have given rise to the modern
population, and the genomes of its current members.

Data availability

The 45,189 sets of accepted parameter values (s1,0, h0, s2,0),
(s1,1, h1, s2,1), . . ., (s1,13, h13, s2,13) from Mooney et al. (2023), on
which the analysis of the African-American population is based,
are available in File S1.
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Appendix A. Proofs of Eqs. 3, 4 and 6

We prove Eq. 3, describing E[Xk], by induction. For k = 0,

Xk = 1 = 20
0

∏
i=1

hg−i.

We assume that for k − 1,

E[Xk−1] = 2k−1
k−1

∏
i=1

hg−i.

Using the inductive hypothesis and the fact that Xk ∼
Bin(2Xk−1, hg−k) for 1 ≤ k ≤ g, we obtain

E[Xk] = E
[
E[Xk | Xk−1]

]
= 2hg−kE[Xk−1]

= 2hg−k2k−1
k−1

∏
i=1

hg−i = 2k
k

∏
i=1

hg−i.

Next, we prove Eq. 4, again by induction. For k = 0, X0 = 1
has variance 0; Eq. 4 holds trivially, as it is an empty sum. For
k = 1, X1 ∼ Bin(2, hg−1), and therefore,

Var[X1] = 2hg−1(1 − hg−1)

=
1

∑
i=1

21−1+i[1 − hg−(1+1)+i]

×
[(

g−1

∏
j=g−(1+1)+i

hj

)(
g−(1+2)+i

∏
ℓ=g−1

h2
ℓ

)]
.

We assume that for k − 1,

Var[Xk−1] =
k−1

∑
i=1

2k−2+i(1 − hg−k+i)

×
[(

g−1

∏
j=g−k+i

hj

)(
g−(k+1)+i

∏
ℓ=g−(k−1)

h2
ℓ

)]
.

We use the law of total variance with Eq. 3 and the inductive

hypothesis. We have

Var[Xk] = E
[
Var[Xk | Xk−1]

]
+ Var

[
E[Xk | Xk−1]

]
= E[2hg−k(1 − hg−k)Xk−1] + Var[2hg−kXk−1]

= 2hg−k(1 − hg−k)2
k−1

(
k−1

∏
i=1

hg−i

)

+(2hg−k)
2

k−1

∑
i=1

2k−2+i(1 − hg−k+i)

×
[(

g−1

∏
j=g−k+i

hj

)(
g−(k+1)+i

∏
ℓ=g−(k−1)

h2
ℓ

)]

= 2k(1 − hg−k)

(
g−1

∏
j=g−k

hj

)

+
k

∑
i=2

22+k−2+i−1(1 − hg−k+i−1)

×
[(

g−1

∏
j=g−k+i−1

hj

)(
g−(k+1)+i−1

∏
ℓ=g−k

h2
ℓ

)]

=
k

∑
i=1

2k−1+i[1 − hg−(k+1)+i]

×
[(

g−1

∏
j=g−(k+1)+i

hj

)(
g−(k+2)+i

∏
ℓ=g−k

h2
ℓ

)]
.

Finally, we prove Eq. 6. First, we prove that if 0 ≤ m < n ≤ g,
then

Cov[Xn, Xm] = 2n−m
n−m

∏
i=1

hg−(m+i)Var[Xm].

Fixing m with 0 ≤ m ≤ g − 1, we proceed by induction on n.
For n = m + 1, we have

Cov[Xm+1, Xm] = E[Xm+1Xm]− E[Xm+1]E[Xm]

= E
[
E[Xm+1Xm|Xm]

]
−2hg−(m+1)E[Xm]E[Xm]

= E[2hg−(m+1)X
2
m]− 2hg−(m+1)E[Xm]E[Xm]

= 2m+1−mhg−(m+1)Var[Xm].

We now assume that for (n, m) with 0 ≤ m < n ≤ g and n ≥
m + 2,

Cov[Xn−1Xm] = 2n−1−m
n−1−m

∏
i=1

hg−(m+i)Var[Xm].

Then

Cov[Xn, Xm] = E[XnXm]− E[Xn]E[Xm]

= E
[
E[XnXm|Xm, Xn−1]

]
−2hg−nE[Xn−1]E[Xm]

= 2hg−n(E[Xn−1Xm]− E[Xn−1]E[Xm])

= 2hg−n2n−1−m
n−1−m

∏
i=1

hg−(m+i)Var[Xm]

= 2n−m
n−m

∏
i=1

hg−(m+i)Var[Xm].
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Having obtained the covariance Cov[Xn, Xm], we conclude

Var
[ g

∑
k=1

Xk

]
=

g

∑
k=1

Var[Xk]

+2
g−1

∑
m=1

g

∑
n=m+1

Cov[Xn, Xm]

=
g

∑
k=1

Var[Xk]

+
g−1

∑
m=1

g

∑
n=m+1

2n−m+1
n−m

∏
i=1

hg−(m+i)Var[Xm].

Appendix B. Proofs of Eqs. 13 and 18

We prove Eq. 13, starting with the law of total variance.

Var
[ g

∑
k=1

Uk

]
(i)
= Var

[
E

[ g

∑
k=1

Uk|X0, X1, . . . , Xk

]]

+ E

[
Var
[ g

∑
k=1

Uk|X0, X1, . . . , Xk

]]
(ii)
= Var

[ g

∑
k=1

s̃1,g−k(2Xk−1 − Xk)

]

+ E

[ g

∑
k=1

s̃1,g−k(1 − s̃1,g−k)(2Xk−1 − Xk)

]
(iii)
= Var

[ g−1

∑
k=1

[2s̃1,g−(k+1) − s̃1,g−k]Xk

]

+
g

∑
k=1

s̃1,g−k(1 − s̃1,g−k)E

[
E[2Xk−1 − Xk|Xk−1]

]
(iv)
=

g−1

∑
k=1

[2s̃1,g−(k+1) − s̃1,g−k]
2 Var[Xk]

+
g−2

∑
m=1

g−1

∑
n=m+1

2n−m+1[2s̃1,g−(m+1) − s̃1,g−m]

× [2s̃1,g−(n+1) − s̃1,g−n]
n−m

∏
i=1

hg−(m+i) Var[Xm]

+
g

∑
k=1

s̃1,g−k(1 − s̃1,g−k) (1 − hg−k) (2E[Xk−1])

(v)
=

g−1

∑
k=1

[2s̃1,g−(k+1) − s̃1,g−k]
2 Var[Xk]

+
g−2

∑
m=1

g−1

∑
n=m+1

2n−m+1[2s̃1,g−(m+1) − s̃1,g−m]

× [2s̃1,g−(n+1) − s̃1,g−n]
n−m

∏
i=1

hg−(m+i) Var[Xm]

+
g−1

∑
k=0

2s1,g−(k+1)[1 − s̃1,g−(k+1)]E[Xk].

For line (ii), given X0, . . . , Xk−1, Xk, Uk depends only on Xk−1
and Xk. Among the genealogical ancestors in step k of the
descendant from step 0, 2Xk−1 are parents of admixed indi-
viduals from step k − 1, and Xk are admixed individuals in
step k; 2Xk−1 − Xk reach a source population in step k, with
binomial probabilities s1,g−k/(s1,g−k + s2,g−k) = s1,g−k/(1 −

hg−k) = s̃1,g−k for source 1 and s2,g−k/(s1,g−k + s2,g−k) =

s2,g−k/(1 − hg−k) = s̃2,g−k for source 2, respectively. In other
words, Uk|Xk−1, Xk ∼ Bin(2Xk−1 − Xk, s̃1,g−k).

For line (iii), in the sum ∑
g
k=1 s̃1,g−k(2Xk−1 − Xk), for k =

1, 2, . . . , g − 1, X0 = 1 and Xg = 0 are constants and have zero
variance. We also use the law of total expectation. Line (iv) fol-
lows from Eq. 6 and from the binomial distribution of Xk|Xk−1,
so that E[2Xk−1 − Xk|Xk−1] = 2E[Xk−1] − 2hg−kE[Xk−1] =

(1 − hg−k) (2E[Xk−1]). Finally, for (v), we simplify s̃1,g−k(1 −
hg−k) = s1,g−k.

Similarly, we also use the law of total variance to prove Eq. 18:

Var
[ g

∑
k=1

Yk

]
= Var

[
E

[ g

∑
k=1

Yk|X0, X1, . . . , Xk

]]

+E

[
Var
[ g

∑
k=1

Yk|X0, X1, . . . , Xk

]]
.

The proof is entirely analogous, except that s̃1,g−k pk appears in
place of s̃1,g−k.

Appendix C. Proof of Eq. 35

We prove inequalities concerning pk/pk−1: (i) pk/pk−1 < 1 for
k ≥ 2; (ii) pk/pk−1 > 1

2 for k ≥ 2.
(i) By Eq. 1, pk/pk−1 = [1 − e−a(k)]/[1 − e−b(k)] for k ≥ 3,

where a(k) = (33k − 11)/2k−1 and b(k) = (33k − 44)/2k−2. For
k ≥ 3, 0 < a(k) < b(k), and hence, 1 − e−a(k) < 1 − e−b(k) and
pk/pk−1 < 1. For k = 2, pk/pk−1 < 1 as pk < 1 by Eq. 1 and
pk−1 = 1.

(ii) For k = 2, pk/pk−1 = p2 = 1 − e−55/2 > 1
2 . For k ≥ 3,

we rearrange Eq. 1 to find that the inequality pk/pk−1 > 1
2 is

equivalent to

e
66

2k−1 e
33k−77
2k−1 + e−

33k−77
2k−1 > 2. (37)

The inequality ex + e−x ≥ 2 holds for all x, as it is equivalent
to cosh x ≥ 1. Hence, for c > 1, cex + e−x > ex + e−x ≥ 2. We
see that Eq. 37 then follows, with(

e
66

2k−1 ,
33k − 77

2k−1

)
in place of (c, x). As Eq. 37 holds, we conclude pk/pk−1 > 1

2 .


