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ABSTRACT Inflammatory bowel disease (IBD) is characterized by complex etiology 
and a disrupted colonic ecosystem. We provide a framework for the analysis of multi-
omic data, which we apply to study the gut ecosystem in IBD. Specifically, we train 
and validate models using data on the metagenome, metatranscriptome, virome, and 
metabolome from the Human Microbiome Project 2 IBD multi-omic database, with 
1,785 repeated samples from 130 individuals (103 cases and 27 controls). After splitting 
the participants into training and testing groups, we used mixed-effects least absolute 
shrinkage and selection operator regression to select features for each omic. These 
features, with demographic covariates, were used to generate separate single-omic 
prediction scores. All four single-omic scores were then combined into a final regression 
to assess the relative importance of the individual omics and the predictive benefits 
when considered together. We identified several species, pathways, and metabolites 
known to be associated with IBD risk, and we explored the connections between data 
sets. Individually, metabolomic and viromic scores were more predictive than metage­
nomics or metatranscriptomics, and when all four scores were combined, we predicted 
disease diagnosis with a Nagelkerke’s R2 of 0.46 and an area under the curve of 0.80 
(95% confidence interval: 0.63, 0.98). Our work supports that some single-omic models 
for complex traits are more predictive than others, that incorporating multiple omic data 
sets may improve prediction, and that each omic data type provides a combination of 
unique and redundant information. This modeling framework can be extended to other 
complex traits and multi-omic data sets.

IMPORTANCE Complex traits are characterized by many biological and environmen­
tal factors, such that multi-omic data sets are well-positioned to help us under­
stand their underlying etiologies. We applied a prediction framework across multiple 
omics (metagenomics, metatranscriptomics, metabolomics, and viromics) from the gut 
ecosystem to predict inflammatory bowel disease (IBD) diagnosis. The predicted scores 
from our models highlighted key features and allowed us to compare the relative utility 
of each omic data set in single-omic versus multi-omic models. Our results emphasized 
the importance of metabolomics and viromics over metagenomics and metatranscrip­
tomics for predicting IBD status. The greater predictive capability of metabolomics and 
viromics is likely because these omics serve as markers of lifestyle factors such as diet. 
This study provides a modeling framework for multi-omic data, and our results show the 
utility of combining multiple omic data types to disentangle complex disease etiologies 
and biological signatures.
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I nflammatory bowel disease (IBD) is characterized by complex etiology and contains 
multiple pathological subtypes, including Crohn’s disease (CD) and ulcerative colitis 

(UC). Both of these subtypes have wide-ranging heritability estimates and involve 
disruptions of the gut mucosa and dysbiotic gut microbiota. Despite clustering of these 
diseases within family trees, genome-wide association studies have produced much 
smaller single nucleotide polymorphism (SNP) heritability estimates (0.37 for CD and 0.27 
for UC) (1) than twin studies, which estimate heritability coefficients of 0.75 for CD and 
0.67 for UC (2). IBD affects individuals worldwide and has an incidence of 19.2/100,000 
person-years in North America (3) and age-adjusted prevalence of 0.40% and 0.65% for 
CD and UC, respectively (4). With impactful symptoms including diarrhea, abdominal 
pain, bloody stools, weight loss, and fatigue, the rising rates of CD and IBD are a salient 
public health concern (5).

In genome-wide association studies to date, more than 120 related genes have been 
identified for CD, 67 of which were found to be differentially expressed for both CD 
and UC patients compared to non-IBD individuals (6). These biological underpinnings 
have connected IBD to an array of comorbidities including asthma (7) and diabetes 
(8), which are also characterized by polygenic architectures and complex environmental 
interactions related to immune activation. Additionally, many of the genes most strongly 
associated with IBD diagnosis are active in host-microbe interactions (such as patho­
gen-associated molecular pattern recognition, inflammatory responses, and phagocytic 
processes), including toll-like receptor (TLR) 4, TLR9, nucleotide-binding oligomerization 
domain containing 2, interleukin-23 receptor, and tumor necrosis factor (6). Multiple 
environmental risk factors for IBD have been identified, including smoking, excess body 
fat (9), urban living (10), antibiotic exposure (10), and adverse childhood events (11). 
On the other hand, studies have highlighted protective environmental factors includ­
ing Helicobacter pylori infection (12), breastfeeding (9), and adequate vitamin D status 
(10). Notably, many of these environmental factors are associated with changes to an 
individual’s gut microbiome, its activity, the host’s metabolome, and immune function 
(13, 14).

Our aims for this study were twofold: (i) develop a generalizable and interpretable 
modeling framework that can used to study multi-omic data sets for complex traits 
by evaluating the predictive contribution of each omic data type, and (ii) apply this 
framework to the gut ecosystem in individuals with and without IBD to contextualize 
important features across four omic data sets. To accomplish both of these objectives, we 
reached beyond genetic data and genome-wide association studies to further uncover 
risk factors for IBD. This included microorganisms (both bacteria and viruses), RNA 
transcripts of the microbiome, and small molecules (metabolites) present in the gut. 
Whereas most studies including omic analyses use univariate differential abundance 
methods (examining one feature at a time), our goal was to create an additive and 
predictive multivariable model that would incorporate features from multiple omic data 
types. Given that many omic data types are compositional (15, 16) (meaning that the 
data are proportions or relative abundance constrained by library size), a decrease in 
one feature will correspond to an increase in others. Thus, multivariable differential 
abundance analysis or models for predicting disease status based on omic data (as 
will be described later in this paper) may provide a unique alternative to univariate 
differential abundance methods.

Analogous methods to polygenic risk scores (17) have begun to target sources 
of biological variation beyond genotypes. A recent study in the University of Califor­
nia, Los Angeles (UCLA) Health Biobank found that methylation-based risk scores 
were considerably more accurate than their genetic variant-based counterpart when 
imputing diagnoses and lab tests in the electronic health record (18). This recent 
pairing of machine learning methods and biological data from multiple omic levels 
has opened the door to better-informed models that may have greater potential for 
disease prevention and personalized medicine applications, especially among complex 
traits. The microbiome, transcriptome, virome, and metabolome are all dynamic through 
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time for individuals, which differ from genetic variants, which remain constant from 
birth. Therefore, a multi-omic-based prediction appears to be a promising approach 
in the context of complex and dynamic disease etiologies. Although high-throughput 
technologies and data generation are on the rise, there are still common issues such as 
overfitting to training data sets, low interpretability, and the general lack of portability 
from one context to another (19). We aim to address these shortcomings by develop­
ing a generalizable and interpretable modeling framework that can be applied across 
the phenome and to multiple, different omics. In the present analysis, we designed 
a modular multi-omic framework that allows researchers to assess the relative contribu­
tions of each omic data type individually and then combine them together to assess 
overall predictive capability.

MATERIALS AND METHODS

Data acquisition

The Human Microbiome Project 2 (HMP2) (20) IBD multi-omic database contains 1,785 
unique samples collected from 131 participants across five study sites, with metadata 
including each sample’s participant ID, sex, race, antibiotic use, and site. The data used 
in our study were publicly available (accessed online [https://ibdmdb.org/]) and collected 
following approval by multiple institutional review boards, referenced in the flagship 
HMP2 paper (20). All sample collection and participant involvement were reported to 
follow the Declaration of Helsinki guidelines and federal regulations.

Data set description

Each of the 1,785 samples was analyzed across up to eight different omic data types. In 
this study, we used feature count tables for samples across four of the present omic data 
types: metagenomics (MGN), metatranscriptomics (MTS), viromics (VRM), and metabolo­
mics (MBL). MGN data consisted of taxonomic counts at the species level, whereas MTS 
data were functional profiles at the pathway level. For clarification, the term “sample” 
is used in this paper to denote one fecal specimen, which could have corresponding 
MGN, MTS, VRM, and MBL data, whereas “participant” is used to denote an individual 
who may have multiple samples throughout the duration of the study. MBL, MGN, MTS, 
and VRM data were collected on average 10.3, 3.3, 6.5, and 7.4 weeks apart per par­
ticipant, respectively (see Fig. S1). Count tables for MGN and VRM were generated with 
MetaPhlAn2 and VirMap, respectively. MTS count tables were generated by summing 
pathway abundances as mapped by HUMAnN2. For MBL, four column methods [Carbon 
18 (C18) positive, C18 negative, hydrophilic interaction liquid chromatography (HILIC) 
positive, and HILIC negative) coupled with mass spectrometry were used to isolate and 
detect metabolites. Only compounds successfully annotated with molecule names were 
included in analyses.

Data processing and thresholding

Compositional data sets (MGN, MTS, and VRM) were normalized with center log-ratio 
transformation, and MBL was normalized using a log10 transformation. We then removed 
highly sparse features (found in fewer than 5% of samples) from VRM. For MBL, we only 
included compounds present in >99% of samples. The difference in methods used for 
these two data types is due to variation in the sparsity of the data sets, as the majority 
of viruses were found in very few samples, whereas the majority of compounds from 
MBL were found in most samples. Additionally, we removed one of any two highly 
collinear features (Pearson’s ρ > 0.95) from MBL and MTS data sets at random. After 
normalization, features with a standard deviation less than 1 were excluded from MGN 
and MTS, and features with a standard deviation less than 0.1 were excluded from VRM 
and MBL. The standard deviation threshold for each omic data type was chosen based 
on a histogram of sample variation in the data set and served to eliminate features with 
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minimal differences across samples. The exclusion of high-missingness and low-variance 
features resulted in the filtering of MGN from 578 to 237 features, MTS from 421 to 280 
features, VRM from 239 to 9 features, and MBL from 596 to 269 features (see Table S1).

Training and validation split

Represented in our sample set were 130 distinct individuals (one participant from the 
original study was excluded due to missing data). To avoid overfitting, samples from 30 
participants (23% of individuals) were set aside to serve as a validation set for perform­
ing model predictions and evaluating the resultant accuracy, as well as for use in our 
multi-omic model. Because the multi-omic model required all four data types, the 30 
participants who had the most samples with all four omic data types and the fewest 
samples with missing omics were chosen for the validation set (Fig. S2). We ensured 
that no samples from these individuals were used in the training process for any of the 
four omic layers. Any samples in the validation set with missing omics were excluded 
from the multi-omic model. No aspects of the experimental design indicate a bias for 
how many samples from a participant contain all four omics (based on any qualities of 
that participant), so this is assumed to represent a non-biased subset of the participants 
to the best of the researchers’ knowledge from all available information on sample 
collection. The remaining training set contained 100 participants with a varying number 
of samples across layers. Of the 30 participants reserved for validation, 15 (499 samples) 
had CD, 3 (102 samples) had UC, and 12 (427 samples) were non-IBD controls. Of the 
100 training participants, 50 (1,242 samples) had CD, 35 (932 samples) had UC, and 15 
(520 samples) were non-IBD controls. Table S1 shows the breakdown of training and 
validation samples within each omic data type.

Individual omic models

Features for each omic data type were selected by applying mixed-effects least absolute 
shrinkage and selection operator (LASSO) (21) logistic regression using the glmmLasso 
function in the R package glmmLasso V1.5.1 (22) using the following model, where y 
denotes IBD diagnosis, μ denotes the intercept, βi denotes the effect sizes, n denotes the 
number of omic features, (1|x) indicates a random effect for variable x, and 𝜖 denotes the 
error:

(1)𝑦 = 𝜇 +𝑖 = 1

𝑛 𝛽𝑖 × feature𝑖 + 𝛽𝑛 + 1 × age + 𝛽𝑛 + 2 × sex + 𝛽𝑛 + 3 × race  +
𝛽𝑛 + 4 × antibiotic_use + (1 ∣ site) + (1 ∣ participant_ID) + 𝜖 .

The mixed-effects LASSO regression was run across a grid of lambda values, which 
control how parsimonious the models are (via penalizing additional features). A final 
LASSO regression was run using the lambda value at the elbow of the number of features 
retained by LASSO (Fig. S3). Using only the LASSO selected features, we generated 
a logistic mixed-effects model (R package lme4 V1.1–29) (23) following equation 1 
and requiring that the important covariates of age, sex, race, antibiotic use, site, and 
participant ID were included. Thus, feature weights were estimated in a context that 
accounted for these potentially confounding variables. Analogous to the methods for 
computing polygenic risk scores from a genome-wide association study (24), the n 
feature weights (excluding participant demographic information) were then multiplied 
by each ith samples’ feature value and summed, that is, for sample i:

(2)score𝑖 = 𝛽1 × feature1, 𝑖 + 𝛽2 × feature2, 𝑖 +⋯ + 𝛽𝑛 × feature𝑛, 𝑖 .
These raw scores were standardized to have a mean of 0 and a standard deviation of 

1.
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Baseline models

We fit a baseline risk score model for each omic data type based on only metadata for 
each participant using the lmer function via the lme4 R package where terms are the 
same as described above:

(3)𝑦 = 𝜇 + 𝛽1 × age + 𝛽2 × sex + 𝛽3 × race  +𝛽4 × antibiotic_use + (1 ∣ site) + (1 ∣ participant_ID) + 𝜖 .
We trained these models on participants in the training data set and then used them 

to predict the diagnosis of participants in the validation data set.

Assessing model validity

Within each omic data type, predicted risk scores for each individual were averaged 
across their longitudinal samples in the validation set (see Fig. S4). Area under the 
curve (AUC) values were calculated from receiver operating characteristic curves for 
each model (both baseline and feature) across omic layers. Odds ratios (ORs) were also 
calculated for each of the predicted scores, and 95% confidence intervals (CIs) were 
generated for each OR.

Multi-omic models

Prediction scores generated via feature weights within each omic layer were averaged 
across samples with all four omics present for each individual in the testing data set and 
then combined in the following logistic regression model:

(4)𝑦 = 𝜇 + 𝛽1 ×MGN + 𝛽2 ×MTS + 𝛽3 × VRM  +𝛽4 ×MBL + 𝛽5 × age + 𝛽6 × sex + 𝜖 .
Age and sex were the two covariates included in this model due to little or no 

variability across the validation samples for other variables such as race or antibiotic use. 
Nagelkerke’s R2 was used to compare the combined logistic model to a baseline model 
only based on age and sex. Code for these methods has been made publicly available at 
the following repository (https://github.com/sterrettJD/poly-omics-risk).

Analyzing metabolite origins

We used Annotation of Metabolite Origins using Networks (AMON) (25) to link the MBL 
data set to the MGN data set. AMON uses the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (26) Orthologies (KOs) present from microbial taxa and the host genome to 
resolve which KEGG compounds were more likely derived from microbial sources, the 
host, or other sources. We mapped the names of annotated, LASSO-selected compounds 
to KEGG compound identifiers, which involved collapsing duplicated names to single 
compound identifiers. A list of KOs present in the human genome was downloaded 
directly from KEGG, using the “hsa” organism code. The list of microbial KOs was derived 
from the publicly available functional profile of the MGN data set generated using the 
HUMAnN pipeline.

RESULTS

Included participants

This study included 130 participants, of whom, 27 did not have IBD, 65 had CD, and 38 
had UC. Male and female participants were represented similarly, and the mean age of 
participants was 28 years old, with a standard deviation of 17 years and a range of 6–76 
years of age. The majority of participants were White and did not use antibiotics. Table 1 
elaborates with descriptive statistics of each group.

Research Article mSystems

January 2024  Volume 9  Issue 1 10.1128/msystems.00677-23 5

https://github.com/sterrettJD/poly-omics-risk
https://doi.org/10.1128/msystems.00677-23


Baseline models

Baseline models, which only include patient demographic information and were trained 
on the training data set, poorly predicted the actual diagnosis of our validation data set, 
as can be seen in Table S2 (MGN AUC [95% CI] = 0.43 [0.19, 0.67], MGN Nagelkerke’s R2 = 
0.08; VRM AUC [95% CI] = 0.47 [0.23, 0.71], VRM Nagelkerke’s R2 = 0.02; MTS AUC [95% CI] 
= 0.38 [0.15, 0.62], MTS Nagelkerke’s R2 = 0.04; MBL AUC [95% CI] = 0.47 [0.25, 0.69], MBL 
Nagelkerke’s R2 = 0.01). This established that diagnosis could not be discriminated solely 
by participant metadata and non-omic covariates as described in equation 3 and Table 
S1.

Individual omic risk scores

Compared to the baseline models, the predicted risk scores (using feature weights 
derived from the training set) for each omic data type (in addition to the baseline 
covariates of age and sex) demonstrated better predictive capability on the validation 
data as is shown in Fig. 1 (MGN AUC [95% CI] = 0.66 [0.44, 0.87], MGN Nagelkerke’s 
R2 = 0.12; VRM AUC [95% CI] = 0.83 [0.68, 0.98], VRM Nagelkerke’s R2 = 0.43; MTS AUC 
[95% CI] = 0.73 [0.53, 0.92], MTS Nagelkerke’s R2 = 0.20; MBL AUC [95% CI] = 0.82 [0.66, 
0.98], MBL Nagelkerke’s R2 = 0.40). A similar plot showing AUCs and ORs when only 
using the omic-derived scores to predict diagnosis is shown in Fig. S5 with similar results, 
suggesting that the covariates of age and sex are not driving this predictive accuracy 
(MGN AUC [95% CI] = 0.70 [0.50, 0.91], MGN Nagelkerke’s R2 = 0.04; VRM AUC [95% CI] = 
0.80 [0.63, 0.96], VRM Nagelkerke’s R2 = 0.31; MTS AUC [95% CI] = 0.64 [0.42, 0.86], MTS 
Nagelkerke’s R2 = 0.12; MBL AUC [95% CI] = 0.78 [0.59, 0.98]), MBL Nagelkerke’s R2 = 0.32]. 
Of the individual omic models, VRM and MBL had the best predictive capability with 
little to no interquartile overlap between cases and controls. The VRM and MBL predicted 
scores had significant ORs of 9.28 (1.53, 56.13; P = 0.02) and 4.30 (1.32, 13.98; P = 0.02), 

TABLE 1 Descriptive statistics of participants in the studya

Healthy control
(n = 27)

Crohn’s disease
(n = 65)

Ulcerative colitis
(n = 38)

Total
(N = 130)

Sex
  Female 12 (44.4%) 32 (49.2%) 20 (52.6%) 64 (49.2%)
  Male 15 (55.6%) 33 (50.8%) 18 (47.4%) 66 (50.8%)
Age
  Mean (SD) 29 (±20) 26 (±16) 29 (±17) 28 (±17)
Antibiotics
  No 27 (100%) 51 (78.5%) 33 (86.8%) 111 (85.4%)
  Yes 0 (0%) 14 (21.5%) 5 (13.2%) 19 (14.6%)
Site
  Cedars-Sinai 1 (3.7%) 20 (30.8%) 12 (31.6%) 33 (25.4%)
  Cincinnati 9 (33.3%) 17 (26.2%) 7 (18.4%) 33 (25.4%)
  MGH 13 (48.1%) 13 (20.0%) 11 (28.9%) 37 (28.5%)
  MGH Pediatrics 3 (11.1%) 8 (12.3%) 5 (13.2%) 16 (12.3%)
  Emory 1 (3.7%) 7 (10.8%) 3 (7.9%) 11 (8.5%)
Race
  American Indian or 

Alaska Native
0 (0%) 1 (1.5%) 0 (0%) 1 (0.8%)

  Black or African 
American

1 (3.7%) 3 (4.6%) 6 (15.8%) 10 (7.7%)

  More than one race 1 (3.7%) 3 (4.6%) 1 (2.6%) 5 (3.8%)
  White 25 (92.6%) 56 (86.2%) 29 (76.3%) 110 (84.6%)
  Others 0 (0%) 2 (3.1%) 2 (5.3%) 4 (3.1%)
aCategorical data are presented as “N (percent),” and numerical data are presented as “mean (standard deviation).” 
Abbreviations: MGH, Massachusetts General Hospital; SD, standard deviation.
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respectively, while MTS had an OR of 2.89 (0.62, 13.52; P = 0.2), and MGN had the lowest 
OR of 1.24 (0.50, 3.09; (P = 0.6).

Selected features

Within each individual omic model, LASSO selected 14 species from the 237 considered 
in the MGN data set, representing 5.91% of all features passing quality control (QC); 23 
pathways from the 280 considered in the MTS, representing 8.21% of all features passing 
QC, 14 features from 269 metabolites in the MTB, representing 5.20% of all features 
passing QC; and six viruses from nine considered in the VRM, representing 66.67% of all 
features passing QC. Figure 2 shows the feature weights for each omic data type. For 
MGN, Megasphaera sp. DISK18 had the strongest negative weight (indicating association 
with a low risk score). Additional species associated with lower risk scores included 
Parabacteroides goldsteinii, Methanobrevibacter smithii, Roseburia hominis, and Akkerman­
sia muciniphila. Firmicutes CAG 83 was the only species identified with a positive weight. 
Figure S6 to S19 illustrate the dynamic longitudinal trends among the 14 LASSO-selected 
MGN species for the 30 individuals reserved for model validation. The variation and 
volatility within individuals over the 52-week sampling period highlight the importance 

FIG 1 Risk scores predict IBD diagnosis. Z-score transformed risk scores (averaged across all samples for each participant) 

on the y axis are plotted against actual diagnosis on the x axis for the validation data set. AUC and OR were calculated with 

basic covariates (diagnosis ~ score + age + sex). Each of the four scores shown was calculated using feature weights from a 

LASSO-identified mixed-effects logistic regression trained in a separate set of samples/individuals: diagnosis ~ features + age 

+ sex + race + antibiotic use + (1|site) + (1|participant ID). An actual diagnosis value of 1 indicates the presence of IBD.
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of longitudinal sampling when trying to capture robust estimates of the effects of 
each taxon. Additionally, a phylogenetic tree of the MGN features shows that Alistipes 
putredinis and Alistipes shahii are the most related species, while M. smithii appeared to 
be more distantly related to the rest of the features (Fig. S20). A co-occurrence analysis 
revealed that the 14 selected features showed low levels of co-occurrence (<0.5 Pearson 
correlation index). Among the 14 features, the pairs Eubacterium siraeum and Oscillibacter 
sp. CAG:241, as well as A. putredinis and A. shahii, had the highest Pearson index of 0.5. 
R. hominis and Megasphaera sp. DISK_18 had the lowest Pearson index of −0.03 (Fig. S21 
and S22). The absence of large negative values across the heatmap suggests that these 
14 features do not have mutually exclusive relationships.

The MTS model selected 22 pathways. Of these, the strongest negative weights 
(associated with a lower risk score) were for the 2-methyl citrate cycle I and the 
superpathway of sulfur amino acid biosynthesis identified from Saccharomyces cerevisiae, 
and the strongest negative weights were for the pentose phosphate pathway and the 
methylerythritol phosphate pathway I. Of the six viruses included in the VRM model, 
four had positive weights indicating a direct association with IBD. The strongest positive 
weight was for cucumber green mottle mosaic virus and the strongest negative weight 

FIG 2 Feature weights for each risk score model. The effect sizes described by the x axis were multiplied by transformed abundances and then summed to 

generate each omic score. A negative weight corresponds to a lower predicted risk of IBD, whereas a positive weight would confer a higher predicted risk of IBD.
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was a gokushovirus. The MBL model selected 14 metabolites. The strongest positive 
weights were for docosapentaenoate (identified by the C18 column) and phenyllactate, 
and the strongest negative weights were for eicosatrienoate and docosapentaenoate 
(identified by the HILIC column).

Combined multi-omics model

Figure 3a illustrates the ORs of all omic scores in a combined framework for the 30 
individuals reserved for model validation. The covariates of age and sex were only 
slightly predictive of IBD on their own (Nagelkerke’s pseudo-R2 = 0.11); however, a 
multiple regression including age, sex, and all four scores produced a Nagelkerke’s R2 = 
0.46 and an AUC of 0.80 (Fig. 3c). The variance explained by the four scores without age 
and sex was slightly lower (R2 = 0.37), showing the importance of including demographic 
covariates and the predictive capacity of our combined framework to explain variance 
among IBD diagnoses. Despite the 95% CI for all four scores of ORs overlapping with 
one, VRM and MBL stood out with larger values than MGN or MTS. The correlation 
between scores illustrates some similarity between VRM, MGN, and MBL, in addition to 
MTS and MBL (Fig. 3b). However, these correlations are modest in magnitude (<0.5), 
suggesting that each of these scores captures a mostly distinct signal. Analysis for a 

FIG 3 Results of multi-omic modeling. (a) ORs and 95% CIs of the predicted score, (b) Pearson correlation matrix between 

omic scores, and (c) standardized risk scores (summed across all omics) on the y axis plotted against actual diagnosis on the 

x axis for the validation data set, where AUC and OR were calculated with basic covariates (diagnosis ~ score + age + sex). In 

panel a, points represent the OR for each omic’s predicted scores in the multi-omic regression, and lines represent 95% CIs of 

the ORs. In panel b, the size and darkness of the circle represent the correlation between the predicted scores for each omic 

data type. In panel c, an actual diagnosis of 1 represents a case for IBD.
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leave-one–omic-out approach is shown in Fig. S23 to further demonstrate the increased 
ORs (near the threshold for significance) for VRM and MBL compared to MGN and MTS.

Metabolite origins

AMON (25) was used to predict the origins of the 14 metabolites selected by LASSO 
using the host (human) genome and the genomes of the 237 bacteria species in the 
MGN data set. Of the 14 selected metabolites, two had the same compound identifier, 
resulting in 12 compounds that were unique and annotated. We used a list of KOs in 
the human genome and from the KOs identified by the shotgun metagenome functional 
profile. AMON predicted that seven of the 12 MBL compounds were produced by either 
the human or the gut microbiome, meaning that five of the compounds were likely 
produced by other sources (such as plant compounds derived from dietary sources). 
Figure 4 shows the classification of these seven compounds based on their likely 
organismal source. Of the seven identified compounds, four were likely only produced 
by the human, two were produced by either the human or the microbes, and one was 
likely only produced by the microbes present in the gut microbiome. The LASSO-selected 
taxa contained KOs to produce two of the metabolites, taurine and 4-hydroxystyrene. 
Notably, only the LASSO-selected bacteria were capable of producing 4-hydroxystyrene, 
whereas the non-selected taxa and host were not.

DISCUSSION

Overall, we successfully utilized a polygenic risk score framework across multiple omic 
data types to predict IBD diagnosis. Other studies have taken similar approaches, such 
as single variable differential abundance testing across multiple omics in IBD (27), 
multivariate analysis of multi-omic interactions in participants with IBD (28), like a 
composite of unsupervised multivariate analysis and principal component analysis, or 
multi-omic risk scores for diseases other than IBD (29). Our results often corroborate 
the findings of other multi-omic studies of individuals with IBD, and they also highlight 
groups of features that associate with IBD when considering the abundances of other 
features. Additionally, our methods allow for comparison of the predictive ability of 

FIG 4 Annotation of LASSO-selected compound origins. A Venn diagram showing the likely origins of LASSO-selected compounds from the MBL data set. 

“LASSO-selected taxa” refers to KOs from the 14 taxa selected by the MGN LASSO model, whereas “non-selected taxa” refers to all KOs detected in the MGN data 

set from the 223 taxa not selected by the MGN LASSO model. “Human” refers to all KOs present in the human genome, according to KEGG database, and “other 

sources” refers to compounds that were likely not produced by the host or detected taxa from the gut microbiome.
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different omics for disease, highlighting that taxonomic profiling (from MGN) might not 
hold as much of a predictive signature of IBD as other omics that provide information 
on active transcription (MTS) and compound presence (MBL). Additionally, although 
VRM-predicted IBD scores correlated with MGN, VRM held a much stronger relationship 
with IBD, which could be a result of agricultural viruses serving as markers of diet.

Interpretation of features identified by individual models

In the sections below, we explore the biological relevance of the LASSO-selected features 
for each of the omic models. This discussion of the selected features is meant to 
describe the potential biological relevance underlying each of the models. However, it 
is important to note that these conclusions are not focused on nominally significant 
features; instead, the LASSO-selected features are considered in their multivariable 
context, where many taxa or features could be interdependent (due to factors such 
as microbial cooperation/competition or mediation of the effects of one pathway by 
another). We describe features that were selected by LASSO for their joint predictive 
utility. These should not be confused with results from independent association tests 
between each feature and the outcome (such as differential expression analysis), which 
would generally be used to identify individual features significantly associated with the 
outcome after correction for multiple hypothesis testing. When applied to the testing 
data set, the combined multi-omic model was more predictive than the baseline model, 
and this is the focus of our results; the following sections aim to contextualize the 
underlying biological relevance of these models.

Metagenomics

Among the 14 MGN features selected by LASSO, all but one had a negative weight in 
the multiple regression. These negative effect estimates correspond to reduced risk of 
IBD when utilized in the scoring framework, and the estimate with the largest magnitude 
(−1.37) was Megasphaera sp. DISK 18, which is known for being an early colonizer of the 
oral microbiome (30). The next most negative effect estimate, from P. goldsteinii, is of 
key interest given recent findings in mouse experiments that a P. goldsteinii probiotic 
may be useful in treating diet-induced obesity and type 2 diabetes (31). The links 
between the microbiome, diet, and IBD are important to consider in the context in which 
environmental exposures may manifest a genetic predisposition to the onset of IBD (8). 
Our findings of R. hominis and Bacteroides faecis CAG 32 associated with decreased risk 
of IBD are consistent with existing literature (32). We are intrigued by the importance of 
two features belonging to the Alistipes genus given the emerging connections between 
Alistipes and gut dysbiosis (33). Lastly, Ruminococcus bromii’s role in the MGN score is 
worth highlighting since R. bromii is known to support the growth of Ruminococcus 
gnavus (34), which is a species purported to be associated with increased risk of CD (32, 
35).

Metatranscriptomics

The MTS model identified a strong negative weight for transcripts belonging to the 
2-methyl citrate cycle, meaning this pathway was associated with a lower risk of IBD. 
Notably, the 2-methyl citrate cycle is responsible for metabolizing propionic acid (36) (a 
short-chain fatty acid produced by gut commensal organisms fermenting dietary fiber) 
into succinate, which can enter the tricarboxylic acid cycle. Increased transcription of this 
pathway could be indicative of high propionic acid in the gut, which has previously been 
demonstrated to be protective in the context of IBD, as propionic acid has anti-inflamma-
tory effects through the inhibition of nuclear factor κB (37). Alternatively, lower propionic 
acid could reflect decreased dietary fiber in participants with IBD. This result also aligns 
with the previous analysis (38) of the HMP2 data set (using different methods). The MTS 
model additionally identified a strong negative weight for sulfur amino acid biosynthesis 
transcripts. Given that one signature of IBD is a microbial shift toward the catabolism 
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of taurine and cysteine to produce hydrogen sulfide, this is consistent with previous 
literature as well (39).

The MTS model identified the pentose phosphate and methylerythritol phosphate 
pathways as having the strongest positive weights. The pentose phosphate pathway 
is involved in the metabolism of C5 sugars, but not much literature exists explaining 
a connection between it and IBD, although one study identified an increase in the 
pentose phosphate pathway in ileal CD (40). Similarly, little literature exists about the 
potential role of the methylerythritol phosphate pathway in the context of IBD, although 
its intermediates are potent activators of human gamma delta T cells, which are the first 
line of mucosal defense (41). Gamma delta T cells have been implicated in intestinal 
inflammation and IBD in both human and animal models across a multitude of studies, 
although it is unclear whether their effects are protective or not (42).

Viromics

The VRM model identified six viruses associated (either positively or negatively) with 
IBD risk. Four of these, cucumber green mottle mosaic virus, bell pepper mottle virus, 
pepper mild mottle virus, and tomato mosaic virus, are all in the Tobamovirus genus. 
These are highly persistent and transmissible positive-sense single-stranded RNA viruses 
that are known to infect various crop species and are found worldwide. Although many 
crops have developed resistance to the damaging effects of these viruses, they are still 
endemic in agricultural products and have been found to make up a large portion of the 
gut virome (43, 44). As such, the presence of these viruses could serve as a marker of food 
choice in these participants, given that individuals with IBD may choose to consume 
different foods due to their condition. Interestingly, only one of these tobamoviruses, 
tomato mosaic virus, had a negative feature weight. The other two viruses identified, 
pseudomonas phage PPpW4 and gokushovirus WV 2015a, are both bacteriophages. 
Pseudomonas phage PPpW4 parasitizes pseudomonas bacteria, which are associated 
with pneumonia and post-surgical infections, and have been studied for use in phage 
therapy (45). Gokushoviruses, although ubiquitous throughout the environment, are 
largely uncharacterized (46).

Metabolomics

The MBL model identified 14 metabolites associated with IBD, the majority of which 
were fatty acids. Metabolites with positive weights were docosahexaenoate, NH4-18:2 
cholesterol ester, C24:1-ceramide (d18:1), adrenate, phenyllactate, eicosapentaenoate, 
and arachidonate. Adrenate and phenyllactate have been found in increased concentra­
tions in individuals with IBD (20). Metabolites with negative weights were hydroxystyr­
ene, eicosatrienoate, and 12,13-dihydroxyoctadec-9-enoic acid (diHOME). 12,13-diHOME 
was also reported as an important metabolite for differentiating IBD status when 
applying a knockoff filtering-based multivariate approach to data from HMP2 (47).

Our model selected two compounds annotated as taurine that had been isolated 
using different chromatographic columns (HILIC negative and HILIC positive), and 
interestingly, these compounds had contrasting positive and negative weights. This may 
be related to the charge (or other aspects) of the identified compounds, but a more 
detailed investigation to follow up the untargeted MBL would be needed to differentiate 
these two. In accordance with this uncertainty, multiple studies have found conflicting 
associations between taurine in the gut metabolome and IBD status (48). Taurine, being 
a sulfur-containing amino acid, could have very diverse roles in the gut metabolome 
given its microbial metabolism to hydrogen sulfide, which can have effects ranging from 
pathogen inhibition at moderate concentrations to direct irritation of the gut mucosa 
at high concentrations (49). Additionally, taurine plays other roles in the gut metabo­
lome, such as conjugating with cholic acid to form the bioactive secondary bile acid, 
taurocholic acid. Our findings are consistent with some differential abundance testing 
results from the original HMP2 paper, as they found taurine and taurocholic acid to be 
differentially abundant across IBD status (20).
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Similarly, our model selected two compounds annotated as docosapentaenoate, 
although, in this case, one with a positive weight came from the C18 column (specialized 
for intermediate polarity compounds, such as free fatty acids), and one with a negative 
weight came from the negative ion mode HILIC-negative mode (specialized for polar 
compounds). According to previous studies, docosapentaenoate is an omega-3 fatty acid 
generally regarded to have anti-inflammatory effects (50).

Comparing individual omic models

Of the individual omic models, MBL and VRM had the highest predictive capability, while 
MTS provided moderate prediction, and MGN provided the lowest predictive accuracy. 
One explanation for these results is that MBL and VRM provide information about both 
the microbiome and the host; the metabolites could have been produced by the host or 
their diet, and the viruses could also be diet-related given that four of the six selected 
viruses belong to the genus Tobamovirus and infect crops. In contrast, MTS and MGN 
only provide information about the microbiome, not the host. However, MTS specifies 
data on active transcription, whereas MGN only provides information about taxonomy 
and functional capabilities. Notably, our MGN analysis only considered taxonomy, not 
functional potential (i.e., no MGN pathway abundance data). These results are consistent 
with other findings that the metabolome predicts phenotypes better than taxonomic 
profiles do (51).

Comparison of features selected by single-omic models

AMON identified that most of the LASSO-selected compounds from the MBL data set 
were not produced by the taxa selected by the MGN LASSO model. This suggests that 
these single-omic models are providing orthogonal information, which is complemen­
ted by the weak correlation between MGN and MBL single-omic scores. Of note, the 
compound 4-hydroxystyrene was identified to be produced by the MGN LASSO-selected 
taxa (but not the host or non-selected taxa). This has been demonstrated experimen­
tally, as other groups have shown that microbial metabolism of hydroxycinnamic acids 
produces 4-hydroxystyrene in the rat microbiome (52). Particularly, polyphenols such as 
hydroxycinnamic acids (and their metabolites) have been studied as potential interven­
tions in IBD (53), as they modulate epithelial inflammation and severity of dextran sulfate 
sodium-induced UC in mice (54). Thus, the integrated results of our multi-omic modeling 
highlight the importance of microbial metabolism of select polyphenols on IBD status 
and the relevance of a multi-omic modeling approach for this disease. However, with a 
larger sample size, an approach allowing for interactions between omic data sets may 
improve the detection of microbes involved in the metabolism of phenotype-modulat­
ing compounds.

Combined model

The combined regression model incorporating multiple omic scores allows us to 
contextualize the predictive capability of each omic model in a multi-omic context. The 
results of our combined model mirror the AUCs and ORs of the individual omic models. 
In the combined model, MGN had the lowest OR, whereas MTS had a moderate OR, and 
MBL and VRM had the highest ORs. We were limited by our sample size to not be able to 
reserve a second bonafide validation set for the combined model, but the improved R2 

from a baseline model indicates the predictive capability of this combined model. Other 
studies performing multi-omic predictive modeling should consider similar frameworks 
with single-omic predictive scores to improve the interpretability of important features 
and allow for the comparison of predictive accuracy between various omic data types. 
This modular approach of building scores within each omic data type allows for the 
selection of a sparse set of features within each data set; it also leads to a combined 
model with insights contextualized by multiple biological omic layers (ideally ranging 
from the genome to the metabolome).
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Limitations

As with many studies of this kind, batch and site effects may affect the generalizabil­
ity of our model. High-throughput omic technology faces many limitations due to 
batch effects, and future work should consider techniques for combining batches in 
this framework, using batch correction techniques, or incorporating random effects for 
batches (55). Such work to combine data from different studies could increase the 
robustness of this framework and increase the generalizability of its diagnostic capability, 
which would increase the likelihood of clinical implementation for such diagnostic omic 
modeling, which should be considered an end goal.

Additionally, the number of omic features was far greater than the number of 
participants, although we were able to use multiple longitudinal samples per participant 
(accounted for via random effects for participant ID). We took steps to reduce the 
number of features, such as through the sparsity, collinearity, and variance filtering steps 
and through the use of LASSO regression for feature selection. However, such steps 
could cause us to unwittingly discard useful information. Importantly, our modeling did 
not consider interactions between features, either within or between omics, which is a 
direction for future research. Moreover, the use of a center log-ratio transformation is not 
robust to shifting total microbial biomass, nor is it subcompositionally consistent. Other 
log-ratio transformations, such as the isometric log-ratio transformation, are subcompo­
sitionally consistent, although they do suffer from more difficult interpretability. Future 
work should consider the use of additive, isometric, or phylogenetic isometric log-ratio 
transformations to transform compositional data out of the simplex into Euclidean space, 
although interpretability and use cases of poly-omic models should be considered as a 
trade-off.

The relatively small sample size and sample overlap across omic data sets limited our 
ability to detect weak effect sizes across features. Extending these analyses to larger and 
more diverse studies would allow us to evaluate these methods on a larger scale. For 
example, performing cross-validation splits of the training and testing data sets would 
have further tested the robustness of these results. However, without sufficient sample 
sizes overlapping between omic layers, we were limited to one training-testing split of 
the data. In addition, exploring non-linear machine learning techniques such as random 
forests may have yielded better results and motivates an exciting direction for future 
multi-omic analyses.

The currently available data set from HMP2 does not allow public access of host 
genome data, which would have provided immense context to the “outer” omics upon 
which our analysis focused, and future analysis incorporating host genome data would 
add to these results by allowing comparison of the outer omic to standard polygenic 
risk scores for IBD. Additionally, no information was available regarding the existence of 
any relatives within the data set, which could have confounded results, as our analyses 
assumed all participants were not related or living in the same location.

Conclusions

Not only did we successfully implement a poly-omic risk score framework across four 
omic layers, but also each of our individual models identified features known to associate 
with IBD risk while providing new insights into features that may influence or be 
influenced by IBD. The majority of IBD models do not utilize multiple omic layers, 
focusing instead on host genetics or solely microbiome taxonomic composition (56). 
Those that utilize other information often focus on predicting flare-up and other clinical 
outcomes among individuals with IBD (39). This study is unique in that it combines omic 
layers to predict the presence of disease.

Our results provide a framework for an interpretable comparison of single-omic 
models in multi-omic contexts, with particular relevance to the gut microbiome and 
complex phenotypes. Our work suggests that some single-omic models (in this case MBL 
and VRM) are more predictive than others, although this is likely phenotype-depend­
ent. Each omic model provides a combination of unique and redundant information, 
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relative to other omic models, and a combination of single-omic models may often 
yield improvements in predictive accuracy. Such methods are extendable and custom­
izable to the context of interest through the use of non-linear methods, alternative 
data transformations, and interactions between features. There are generally trade-offs 
between model simplicity, predictive accuracy, and interpretability, and future stud­
ies should carefully consider the primary goals of their model. Multi-omic modeling 
approaches that connect the dots along the continuum from genes to their environment 
will be paramount to identifying novel insights for health and disease.
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