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A scheduling problem

The National Collegiate Athletic Association men’s and women’s basketball tourna-
ments, colloquially known as “March Madness” after the month during which most of
their games take place, are single-elimination sports tournaments with 68 teams from
colleges across the United States. Each team is assigned an initial opponent, with sub-
sequent opponents determined by the outcomes of a sequence of specified games. A
team that loses a game plays no subsequent games, so that 67 games are played until a
single winning team remains.

In typical years, the games are played in multiple distant locations. Games are
scheduled in many arenas, often concurrently. The teams in a tournament are divided
into four regional groups of approximately equal size (18, 18, 16, and 16 in the 2019
men’s tournament, for example), and they play their games within the regional groups
until four teams remain, one from each region. The “Final Four” teams play the last
three games in a single arena, revealing the champion of the tournament.

The 2020 tournaments were canceled due to the COVID-19 pandemic. For the
2021 tournaments, with the pandemic continuing, the organizers sought to limit teams’
travel, arranging for all the games to be played in Indiana in the men’s tournament, and
San Antonio in the women’s tournament. This circumstance inspires a question:

Suppose all the games in a single-elimination sports tournament are played sequen-
tially in the same arena. In how many possible sequences can the games be played?

In an actual March Madness tournament, the sequence of games is divided into
“rounds.” First, the “First Four” round is played, reducing the 68 teams to a fully
symmetric arrangement of 64 teams. Next, for each ¢ from 1 to k — 1, with £ = 6,
each remaining team plays its ¢th game (not counting the “First Four” games) before
any team plays its (i + 1)th game. However, an equally valid sequence would play
all the games in one of the four disjoint regional groups of teams before any game is
played in the other three groups; such a sequence would identify one member of the
“Final Four” before the teams in other regions have played any games at all. Many
different sequences of games leading to the “Final Four” can be envisioned.
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Figure 1 A bracket with 2> = 8 teams. Teams labeled T1 to T8 appear as circles, and
games appear as squares. The number of games played is 2° — 1 = 7. Note that our
use of the term bracket refers to a tournament structure after teams are assigned to
the leaves but before any games are played; in the setting of sports tournaments, a
bracket can also include predicted or actual winners of the games.

We will see that the question of enumerating sequences of games reveals connec-
tions between a familiar sporting event and problems of evolutionary biology. Al-
though the actual 2021 tournaments used multiple arenas rather than a single one (all
in Indiana in the men’s tournament, all in San Antonio in the women’s), the differ-
ence from a typical year—with games spread across 14 arenas in 11 states plus the
District of Columbia in the 2019 men’s tournament, for example—suffices to inspire a
mathematical connection.

Symmetric single-elimination tournaments

We make the enumeration problem precise. For now, ignore the “First Four” games,
and consider a symmetric arrangement of 2 distinguishable teams, each of which has
the potential to win the tournament by winning k& games. Assign each team its sequence
of potential opponents. Next, bijectively assign each of the 2¥ — 1 scheduled games a
label from {1,2,...,2% — 1}, subject to a constraint. In particular, a game can only
be played after its teams have been determined: the label for a game must exceed the
labels for games that determine its teams. We term the tree whose leaves encode the
teams and whose interior nodes encode the games a bracket (Figure 1).

First, we consider a scenario with a single arena. In how many possible sequences
can the 2¥ — 1 games of a bracket be played in a single arena? The problem con-
sists in counting permissible bijections between the 2% — 1 games and the labels
{1,2,...,2F —1}.

To develop an understanding of the problem, we examine small k up to k = 6,
corresponding to the March Madness men’s tournament from 1985 through 2000 and
the women’s tournament from 1994 through 2021; the number of men’s teams was
increased from 64 to 65 in 2001 and then 68 in 2011, and the number of women’s
teams was increased from 64 to 68 in 2022. For £ = 1, there is a unique ordering of
one game. For k = 2, either of the two non-championship games can be played first,
then the other, and then the championship game, so that there are 2 sequences.

For k = 3, consider the bracket in Figure 1; for convenience, we index games with
letters rather than numbers. First, note that any number of games among {A, B, C} in
the “left” sub-bracket can be played before the first game in the “right” sub-bracket
(necessarily D or E). Having fixed the schedule in each sub-bracket, we can count
the number of ways to sequence the games from the sub-brackets to form a complete
sequence of all games; this number is the same irrespective of the sequences within
sub-brackets. For illustration, suppose the order of games for the left sub-bracket is B,
then A, then C. For the right sub-bracket, suppose the order is D, then E, then F.
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For fixed sequences of games in the left and right sub-brackets, the number of ways
of sequencing the games from the right sub-bracket in relation to the games from the
left sub-bracket can be counted by choosing which 3 ranks among {1, 2, 3,4, 5,6} are
assigned to games in the left sub-bracket. For example, suppose the ranks 1, 2,6 are
assigned to the left sub-bracket. With the sub-bracket game orders B, A, C and D, E, F
already chosen, the complete game schedule is B, A, D, E, F, C, followed by G, which
must be played last.

Hence, (g) = 20 valid game sequences exist for each pair of choices for the order
of games in the left and right sub-brackets of 22 = 4 teams. We have already seen, for
k = 2, that 2 valid sequences of games exist for each of these sub-brackets. Multiply-
ing the number of ways of sequencing the games in the left and right sub-brackets in
relation to each other by the numbers of sequences of games in the left and right sub-
brackets themselves, the number of possible sequences of games is 20 x 2 x 2 = 80.

This example leads to a recurrence. Let S(k) denote the number of valid game
sequences for a tournament of 2* teams. We saw S(1) = 1, 5(2) = 2,and S(3) = 80
via S(3) = (5)[S(2)]?. For 2* teams, there are [S(k — 1)]? pairs of sequences for the
two sub-brackets that produce the two teams in the championship game. The binomial
coefficient that counts the number of ways that the games of one sub-bracket can be

k
placed in relation to the games of the other sub-bracket is (2,3_;31). Hence, we have

S(k) = (2?1_21) [S(k — 1P (1)

This recurrence, with S(1) = 1, has solution

27 —2
S(k) = H <2j_1 B 1) ) )
Using eq. 1 or eq. 2, we find
S(4) = 21,964, 800
S(5) = 74,836, 825, 861, 835, 980, 800, 000
S(6) = 2,606, 654,998,899, 867, 556, 195, 703, 676, 289, 609, 067, 340, 669, 424, 836, 280, 320, 000, 000, 000.

By a nice coincidence, the quantity S(6), counting valid sequences of games in a
tournament of 64 teams, has 64 digits.

Note that no particular requirement exists that a bracket has 2* games, and the
problem of counting possible sequences of games in a bracket can be considered for
arbitrary single-elimination tournament structures.

Labeled histories in evolutionary biology

In fact, the problem of counting sequences of games in a bracket is equivalent to a
problem of evolutionary biology, that of enumerating the labeled histories that are
compatible with a labeled topology.

In evolutionary biology, species are related to each other by descent from a common
ancestor. The ancestor—descendant relationships can be represented by a tree structure.
Consider a rooted binary tree I with y leaves, bijectively labeled by the elements of a
label set containing y elements. In the context of evolution, each label represents the la-
bel for a “taxon,” or a distinctive biological group such as a species. The tree describes
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Figure 2 Labeled topologies and labeled histories. (A,B) Trees with the same taxon
labels, but with different labeled topologies: (((T1,T2), (T3,T4)), ((T5,T6), (T7,T8))) in
(A) and (((T1,T8), (T4, T5)), ((T3,T6), (T2,T7))) in (B). Note that if the labels are omit-
ted, then these trees have the same shape, or unlabeled topology. (C,D) Trees with
the same labeled topology, but with different labeled histories. Using vertical position
in the figure to indicate position in time, with lower nodes representing more recent
evolutionary divergences, the labeled history in (C) maps sequence (1,2,3,4,5,6,7)
to nodes (A,B,C,D,E F,G). The labeled history in (D) maps (1,2,3,4,5,6,7) to
(B,A,D,E, F,C,G). Note that in (A) and (B), the temporal sequence of non-leaf nodes
is not needed for describing labeled topologies, and labels for those nodes are omitted.

the descent relationships among the taxa. A rooted labeled binary tree is termed a la-
beled topology (Figure 2A,B). With the precise definition of a bracket above, a bracket
is exactly a labeled topology, replacing the leaf labels for biological taxa with the team
names in the tournament.

A second structure of interest in evolutionary biology is that of a labeled history.
Consider a rooted binary tree 7" as a directed graph with edges that point from the root
toward the leaves. A node w of T is said to be ancestral to a node v if w lies on the
path from the root to v; v is said to be descended from w. Trivially, a node is both
ancestral to and descended from itself. Given a labeled topology for a rooted binary
tree T' with y leaves, a labeled history for T is a bijection o from {1,2, ...,y — 1} to
the internal (non-leaf) nodes of 7', satisfying the constraint that if node v is descended
from node w in T, then o' (v) < o~ (w) (Figure 2C,D).

Observe that this constraint on labeled histories is precisely the constraint that
makes a sequence of games valid for a tournament: valid game sequences compati-
ble with a tournament correspond to labeled histories compatible with a labeled topol-
ogy. Hence, we can use ideas from the mathematical study of evolutionary trees, or
mathematical phylogenetics, for sports tournaments, and vice versa.

Note that in an evolutionary tree, the branching of one lineage into two is usually
treated as taking place instantaneously. In the analogy with sports tournaments, it is
convenient to also assume that each game is played instantaneously. Note also that for
alignment with the sports analogy, in our definition of labeled histories here, the num-
bering of internal nodes increases from leaves toward the root, but in mathematical-
phylogenetic studies, the opposite convention is often adopted.

Review of mathematical phylogenetics results. The problem of enumerating la-
beled histories compatible with a labeled topology can be solved recursively [15].
Consider a labeled topology 7" with subtrees I and R immediately descended from
the root, where one subtree (L) is arbitrarily assigned to be the “left” subtree and the
other (R) is arbitrarily assigned to be the “right” subtree. Let |T'| be the number of
leaves of 7', so that T" has |T| — 1 internal nodes. For each pair consisting of a la-
beled history for L and a labeled history for R, we must count the number of ways
of placing into a sequence the |L| — 1 internal nodes of L and the |R| — 1 internal
nodes of R. Reserving the label |T'| — 1 for the root node of 7', |L| — 1 of the num-
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bers {1,2,...,|T| — 2} must be assigned to the internal nodes of L and the rest to the

m:f} ways. Hence, multiplying
by the numbers of labeled histories for L and R, and noting that the number of labeled
histories is N (7") = 1 for labeled topologies 7" with 1 leaf (and for those with 2 and 3

leaves), we have a recurrence.

internal nodes of R. This assignment can be made in (

Theorem 1. For a labeled topology T, the number of labeled histories N (T') is

_ (1T =2
for |T| > 2, with N(T') = 1 for |T| = 1.

This recurrence can produce a non-recursive formula [5]. For subtrees L and R, let
their subtrees be Ly, L, and Ry, R,., respectively. Applying the recurrence,

N(T) = <€|| B f) <<||LLJ’—_21> N(L) N(L,.)> (<£‘| —_21> N(Ry) N(R,.)).

Iterating until each subtree in the expression has 1, 2, or 3 leaves, we have a product
of binomial coefficients, one for each internal node of T'. To state the result precisely,
denote by V°(T') the set of internal nodes of 7, including the root. For each v €
VO(T), denote by m(v) the number of leaves in the subtree rooted at v, and denote by
¢(v) the number of leaves in the left subtree of the subtree rooted at v. Then

m(v) — 2
VD= 1] (z((v)) 1>'
veVO(T)

In this product, each internal node other than the root appears in the numerator of
one binomial coefficient and the denominator of another; the root appears only in a
numerator. Multiplying by (|7'| — 1)/(|T'| — 1), the expression can be simplified.

Theorem 2. For a labeled topology T, the number of labeled histories N (T') is
(7] —1)!

HUEVO(T) (m(v) —1)

for|T| > 2, with N(T) = 1 for |T| = 1.

N(T) =

As an example of the theorem, consider the case in which 7" is the labeled topology
that corresponds to the symmetric bracket for 64 teams (Figure 3). Considering all
internal nodes v in 7', the tree contains one node with 64 descendant leaves, two nodes
with 32 descendant leaves, four nodes with 16 descendant leaves, eight nodes with 8
descendant leaves, 16 nodes with 4 descendant leaves, and 32 nodes with 2 descendant
leaves. Hence, the product over internal nodes in Theorem 2 is

T = ) G GGG

Multiplying by 63! recovers the product from eq. 2, N(T') = S(6) ~ 2.61 x 103,
The full March Madness men’s tournament bracket from 2021, with the “First Four”
games included, adds two games each to two of the four sub-brackets that produce
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the “Final Four” teams, so that two sub-brackets contain 18 teams and the other two
contain 16 teams.

This modification of the symmetric bracket for 64 teams produces 4 more internal
nodes (Figure 4). It also changes the numbers of descendants for many of the nodes in
the resulting tree 7". Considering all internal nodes v, m(v) now takes values 68, 36,
32,18,16,9,8, 5, 4, 3, and 2. The numbers of nodes with these numbers of descendants
are 1,1,1,2,2,4,4,4,12, 4, and 34, respectively. The product in Theorem 2 becomes

&) &) 6 @6 6EEE6E) G

Multiplying by 67! gives N (T') & 3.60 x 10° possible sequences of games.

Uses of labeled histories. Labeled histories, sometimes termed coalescence se-
quences or ranked labeled trees, appear frequently in mathematical phylogenetics.
They are among the main classes of tree structures used in assessing probabilistic
outcomes of assumptions about evolution [28, p. 47]. It is often convenient for evolu-
tionary models to assume that each sequence of branching events that could produce
a rooted binary tree for a set of labeled species is equally likely; this assumption, that
of the Yule or Yule—Harding model in phylogenetics [1, 13, 15, 20, 27, 28, 30, 33, 35],
produces a uniform distribution on labeled histories.

Computations concerning features of tree shape for evolutionary trees often eval-
uate the probability that such features are produced under the Yule-Harding model,
so that they directly or indirectly examine the fraction of labeled histories on y leaves
that possess a given feature, or the probability distribution of a quantity across labeled
histories [3, 5, 6,7, 8, 10, 12, 16, 18, 22, 24, 25, 29, 31, 34, 36, 37]. Mathematical phy-
logenetics computations have used combinatorial results on the set of labeled histories
for y species, for example employing a space of labeled histories with a notion of dis-
tance between them [26] and a characterization of the labeled topologies that possess
the largest number of labeled histories [9, 11, 14]. In some situations, phylogenetic
research reports results on labeled histories that have been obtained in equivalent sce-
narios in computer science, involving concepts such as binary search trees [4, 17, 21],
heaps [32, p. 1319], and tableaux [19, p. 67, problem 20] .

Simultaneous games, simultaneous binary mergers

Not only does the biological setting introduce a result for the sports tournament se-
quence enumeration problem, the sports context introduces a new idea that has not
often been considered in the biological setting of evolutionary trees: simultaneity. If
the games of a tournament are played in multiple arenas, as is true of March Madness
in typical years, then games can be played simultaneously.

Suppose £ arenas are available. A sequence of games is now permitted to possess
“ties,” where a tie represents games played in different arenas at the same time. How
many tie-permitting sequences are possible for a tournament with bracket 7" if £ arenas
are available?

We call this quantity N*(T); N'(T) gives the case with one arena, denoted by
N(T') in Theorems 1 and 2. We enumerate tie-permitting sequences in the “infinite-
arenas” setting, obtaining N°°(7"). The number of available arenas need not actually
be infinite: it need only satisfy ¢ > ||T'|/2], where |T'| is the number of teams in
bracket 7', as no more than ||7'|/2] games can ever be played simultaneously in 7.
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Figure 3 A labeled topology with 64 labeled leaves. This labeled topology corre-
sponds to a 64-team bracket, with teams numbered 1 to 64; the root node is the cham-
pionship game.

456 7 8 910\ 1314151617 1819 [\ 2223 24 25 26 27 28 [\ 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

23 112 2021 2930

Figure 4 A labeled topology with 68 labeled leaves. This labeled topology corre-
sponds to the 68-team bracket that was used in the March Madness men’s tournament
in 2021.
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For convenience, we refer to a collection of simultaneous games as an “event.” A
feature of the infinite-arenas context is that events induced by two game sequences,
one for the left sub-bracket of a node and the other for the right sub-bracket, can
be combined into a joint event when forming the complete game sequence, without
occupying more arenas than are available. By contrast, if, for example, £ = 2, then a
2-game event from the left sub-bracket cannot be simultaneous with an event from the
right sub-bracket, as this joint event would occupy at least 3 arenas.

To state a succinct recurrence for N°°(7T), we let E°°(T', n) be the number of tie-
permitting sequences on the bracket 7" which consist of exactly n events, so that the
sequence occupies exactly 7 distinct points in time. Note that E°°(T, |T| — 1) is equal
to N'(T'), or equivalently, the quantity denoted by N (T") in Theorems 1 and 2. Let
d(T) denote the depth of T', the maximum length of a path from the root of 7" to one
of its leaves. We have

[T|-1

N>(T)= > E*(T,n). 3)

n=46(T)

We give the following recurrence for E°°(T', n), noting that for a trivial bracket T’
consisting of a single team, £°°(7',0) = 1 and E>(T,n) = 0 for n # 0.

Theorem 3. Let T' be a bracket with left sub-bracket L and right sub-bracket R.
(i) If (|L|,|R|) = (1,1), then E>(T,1) = 1 and E*(T,n) = 0 forn # 1.
(ii) If at least one of |L|, | R| exceeds 1, then
min(|L|—1,n—1) min(|R|—1,n—1)
( n—1

E>(T,n) = > >

a=max (5(L)7n—|R|) b=max (5(R)7n—a—1)

Proof. For (i), if a bracket T" has only one team in the left sub-bracket and one team
in the right sub-bracket, then a single game is played (n = 1), and trivially, only one
sequence exists for this game. Hence, E>°(T',1) = 1 and E>~(T,n) = 0 forn # 1.

For the recursive case (ii), we count sequences that merge a sequence of games from
the left sub-bracket L and a sequence of games from the right sub-bracket R. The last
event in any such sequence is a single game, corresponding to the root node of 7.

In a sequence of n events, the number a of events in L can range from §(L) to |L| —
1, and the number b of events in R can range from §(R) to |R| — 1. We additionally
require a,b < n — 1 to ensure that at most n — 1 events are used for the bracket 7',
excluding its root, and a + b > n — 1 to ensure that at least n — 1 events are used.

The number of sequences for the left sub-bracket containing a events is £ (L, a),
and the number for the right sub-bracket containing b events is £°°(R, b). It remains
to prove that the trinomial coefficient correctly counts the number of possible ways to
form a sequence of n — 1 events for the bracket 7' (excluding the root) by combining
the a events of the left sub-bracket and the b events of the right sub-bracket in an
order-preserving, tie-permitting sequence. Each of the n — 1 events must be formed
in one of three ways: an event among the a events of the left sub-bracket occurs and is
not simultaneous with an event among the b events of the right sub-bracket, an event
among the b events of the right sub-bracket occurs and is not simultaneous with an
event among the a events of the left sub-bracket, or an event among the a events of
the left sub-bracket is simultaneous with an event among the b events of the right
sub-bracket. The numbers of events in these three disjoint categories are (n — 1) — b,
(n—1) —a,and a + b — (n — 1), respectively. O

In the biological context, the setting of Theorem 3 corresponds to labeled histo-
ries with ties, in which—looking backward in time—multiple pairs of lineages can

(n—-1)-b(n—-1)—a,a+b—(n—1)

) E®(L,a) E®(R,b).
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coalesce simultaneously. How many tie-permitting labeled histories are possible for a
labeled topology if arbitrarily many pairwise coalescences can occur simultaneously?
In mathematical evolutionary biology, models that permit simultaneous pairwise coa-
lescences, or simultaneous binary mergers, are sometimes studied [2, 23]. Such models
relax the assumption of the Yule—Harding model for tree shape that coalescences must
be asynchronous. They are useful when considering genealogies of genetic lineages
sampled in small populations in discrete time; in such settings, it is not improbable that
multiple pairs of lineages will coalesce in the same discrete time step. The problem of
counting sequences of games for single-elimination tournaments when multiple arenas
are available is the problem of counting tie-permitting labeled histories when arbitrar-
ily many simultaneous binary mergers are permissible. Hence, Theorem 3, allowing
simultaneous binary mergers in the enumeration of labeled histories, generalizes the
recursion of Theorem 1 that counts labeled histories in the standard setting when ties
are not permitted.

For tournaments with 2¥ teams, we can compare the number of sequences of games
in the arbitrary-arenas case in Theorem 3 to the single-arena case in eq. 2 (Table 1).
In the case of 22 = 4 teams, the arbitrary-arenas case permits one additional sequence
that cannot occur with only a single arena: a sequence in which two games are played
simultaneously in two arenas. For 2% = 8 teams, 365 sequences are possible when
arbitrarily many arenas are available, compared to the 80 possible with only one arena.

The number of sequences in the arbitrary-arenas case grows rapidly in relation to
the number in the single-arena case. For 2* = 16 teams in a symmetric bracket, as
used for the single-elimination round of World Cup soccer, the number of sequences is
1,323, 338, 487 for the arbitrary-arenas case compared to 21, 964, 800 sequences for
the single-arena case. For 27 = 128 teams in a symmetric bracket, as used for Grand
Slam tennis tournaments, the number is approximately 5.84 x 102 for the arbitrary-
arenas case compared to 4.10 x 1093 for the single-arena case. For March Madness,
the 68-team design in Figure 4 gives 1.91 x 107® sequences compared to 3.60 x 1058,

Tables 2 and 3 show the numbers of game sequences for all tournament designs
with 8 or fewer teams—the numbers of tie-permitting labeled histories for all labeled
topologies with at most 8 taxa. In these tables, for a tree T, the number of sequences
for the single-arena case can be seen in the column for n = |T'| — 1 events, as each of
the |T'| — 1 games represents a distinct event.

In Tables 2 and 3, for fixed trees, we can compare the numbers of sequences with
different numbers of events. The number of sequences tends to increase as the number
of events increases from its minimum, §(7"), reaching a peak before decreasing as the
number of events reaches its maximum, |T'| — 1. For example, for the fully symmetric
bracket with 8 teams, the number of sequences increases from 1 with 3 events to 22
with 4 events, 102 with 5 events, and 160 with 6 events, before declining to 80 with
7 events. The minimal number of events, & (T) introduces a constraint that requires
many specific games to be played simultaneously; somewhat larger values for the num-
ber of events are less constrained, allowing larger numbers of game sequences. It will
be of interest to more formally explore this pattern of change with n for fixed 7.

For a specified number of teams, considering different trees, the number of tie-
permitting sequences tends to increase with an increasing amount of “balance” in the
tree structure. Thus, for example, with 8 teams, the “caterpillar” bracket in the first
row of Table 3 possesses only one sequence, whereas the fully symmetric bracket in
the last row possesses the largest number, 365. This observation, that the number of
tie-permitting sequences increases with tree balance, considered informally, follows a
pattern seen in the single-arena case [14]. It suggests the possibility of searching for
results concerning the tree shapes that produce the largest number of labeled histories
when ties are permitted.
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Number of teams Number of game sequences
(number of taxa) (number of labeled histories)

One arena  Arbitrarily many arenas
(no ties) (ties permitted)

2 1 1

4 2 3

8 80 365

16 21,964,800 1,323,338,487

32 7.48 x 10%2 1.12 x 10%7

64 2.61 x 1053 3.41 x 107
128 4.10 x 10163 5.84 x 10182

TABLE 1: The number of sequences of games for symmetric brackets of 2* teams,
k=1,2,3,4,5,6,7, with one arena (Theorem 2) or arbitrarily many arenas (Theorem
3)—or, the number of labeled histories for symmetric labeled topologies of 2* taxa,
either disallowing or allowing ties in coalescence times. For k = 5 to k = 7, the values
are approximate. For the 68-team bracket in Figure 4, the number of game sequences
is ~ 3.60 x 10% in one arena and ~ 1.91 x 107® for arbitrarily many arenas.

Conclusion

We have illuminated a connection between labeled histories in phylogenetics and se-
quences in which the games of a single-elimination tournament can be played in a
single arena. By also obtaining a recursion that counts the number of sequences of
games for single-elimination tournaments when arbitrarily many arenas are available,
we have identified the equivalent problem of counting tie-permitting labeled histories
when simultaneous coalescence events are permitted, and we have provided a recursive
solution.

On April 4, 2021, Stanford defeated Arizona 54-53 at the Alamodome in San An-
tonio in the last coalescence of the 2021 March Madness women’s tournament. The
following day, Baylor defeated Gonzaga 86-70 at Lucas Oil Stadium in Indianapo-
lis in the corresponding last coalescence for the men’s tournament. Interestingly, the
asynchronicity of these championship games, enabling audiences to watch both of
them, suggests a more general question of counting game sequences that either asyn-
chronously interleave the games of multiple tournaments or that permit synchronous
games across tournaments: the question of counting labeled histories, without and with
simultaneous binary mergers, for forests of labeled topologies.

An amusing problem concerning a resourceful attempt to conduct sporting events
under the constraints induced by the COVID-19 pandemic has revealed new results
for combinatorial structures in evolutionary biology. And if the schedulers of March
Madness ever find themselves in circumstances that demand that all the games in a
68-team tournament (as in Figure 4) must be played in one arena, they can rest assured
that although the number of available game sequences for a specified bracket is greatly
reduced from the
1,905,458,855,466,636,787,971,925,146,177,334,793,473,753,765,414,856,950,607,419,556,152,726,849,614,067
that are permissible in the case that arbitrarily many arenas are available, the single-
arena scenario still leaves them with
360,410,120,625,822,474,490,741,822,944,015,962,624,736,196,480,481,624,064,000,000,000,000
possibilities.
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Number of teams  Bracket Number of game sequences with n events
(number of taxa) (labeled (number of labeled histories with n events)

(topology) n=1 n=2 n=3 n=4 n=5 n=6 Total

2 1 1
3 AN 1 1

4 PN 1 1

4 PON 1 2 3

5 AR 1 1

5 PONN 1 2 3

5 PN 2 3 5

6 A 1 1

6 AN 1 2 3

6 PN 2 3 5

6 L 3 4 7
6 SO 2 9 8 19
6 PON 1 6 6 13
7 PN 1 1

7 A 1 2

7 PN 2 3 5
7 PN 3 4 7
7 PN 2 9 8 19
7 PN 1 6 6 13
7 PN 4 5 9
7 PONN 12 10 25
7 PONS 6 20 15 41
7 PON 12 10 25
7 PN 1 12 30 20 63

TABLE 2: The number of sequences of games for brackets with at most 7 teams.
For convenience, each bracket T is depicted as unlabeled, so that the leaf labeling
is omitted. The entries represent the terms E°°(T, n) in Theorem 3, with sum N°°(T)

(eq. 3).
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Number of teams  Bracket Number of game sequences with n events
(number of taxa) (labeled (number of labeled histories with n events)

(topology) n=3 n=4 n=5 n=6 n=7 Total

8 A 1 1
8 A 1 2 3
8 PN 2 3 5
8 PN 3 4 7
8 PN 2 9 8 19
8 PN 1 6 6 13
8 PN 4 5 9
8 A 3 12 10 25
8 PN 6 20 15 41
8 PN 3 12 10 25
8 PO 1 12 30 20 63
8 PN 5 6 11
8 AR 4 15 12 31
8 PONN 8 25 18 51
8 PN 12 35 24 71
8 PEANN 6 44 85 48 183
8 PONN 3 28 60 36 127
8 L 6 20 15 41
8 PSS 3 24 50 30 107
8 PN 6 42 80 45 173
8 PO 1 12 30 20 63
8 PON 5 36 70 40 151
8 PON 1 2 102 160 80 365

TABLE 3: The number of sequences of games for brackets with 8 teams. For conve-
nience, each bracket T' is depicted as unlabeled, so that the leaf labeling is omitted.
The entries represent the terms E°°(T,n) in Theorem 3, with sum N°°(T) (eq. 3).
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Summary. How many ways are there to arrange the sequence of games in a single-elimination
sports tournament? We consider the connection between this enumeration problem and the enu-
meration of “labeled histories,” or sequences of asynchronous branching events, in mathemati-
cal phylogenetics. The possibility of playing multiple games simultaneously in different arenas

suggests an extension of the enumeration of labeled histories to scenarios in which multiple
branching events occur simultaneously. We provide a recursive result enumerating game se-
quences and labeled histories in which simultaneity is allowed. For a March Madness basketball
tournament of 68 labeled teams, the number of possible sequences of games is ~ 1.91 x 107
if arbitrarily many arenas are available, but only ~ 3.60 x 108 if all games must be played
sequentially in the same arena.
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