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Abstract. The study of cultural evolution benefits from detailed analysis of cultural transmission in specific6

human domains. Chess provides a platform for understanding the transmission of knowledge due to its7

active community of players, precise behaviors, and long-term records of high-quality data. In this paper,8

we perform an analysis of chess in the context of cultural evolution, describing multiple cultural factors that9

affect move choice. We then build a population-level statistical model of move choice in chess, based on the10

Dirichlet-multinomial likelihood, to analyze cultural transmission over decades of recorded games played by11

leading players. For moves made in specific positions, we evaluate the relative effects of frequency-dependent12

bias, success bias, and prestige bias on the dynamics of move frequencies. We observe that negative frequency-13

dependent bias plays a role in the dynamics of certain moves, and that other moves are compatible with14

transmission under prestige bias or success bias. These apparent biases may reflect recent changes, namely15

the introduction of computer chess engines and online tournament broadcasts. Our analysis of chess provides16

insights into broader questions concerning how social learning biases affect cultural evolution.17

Keywords. Chess, cultural evolution, Dirichlet-multinomial, social learning, transmission biases.18

1 Introduction19

Chess has existed in its current form for hundreds of years; it is beloved as an established sport, a hobby,20

and also as a source of inspiration for scientists across disciplines. Since the 1950s, playing chess well has21

served as a goal in the development of artificial intelligence, as a task that a “thinking agent” would be22

able to accomplish (Shannon 1950). This goal was realized in the victory of a chess algorithm over a top23

human player (Deep Blue vs. Garry Kasparov in 1997). In physics and signal processing, researchers study24

time series in databases of chess games to extract information regarding long-term correlations, dynamics25

of position evaluation, invention of new openings, and other game features (see e.g. Schaigorodsky, Perotti,26

and Billoni 2016; Blasius and Tönjes 2009; Ribeiro et al. 2013; Perotti et al. 2013). Statisticians have been27

interested in chess as a case study in the development of human performance measurement (Regan, Macieja,28

and Haworth 2011; Di Fatta, Haworth, and Regan 2009) and modeling of human choice (Regan, Biswas, and29

Zhou 2014; Regan, Biswas, and Zhou 2014).30

As a cultural dataset, a compendium of chess games has great potential to help cultural evolution re-31

searchers understand patterns of cultural transmission and social learning. A large body of well-annotated32

chess games is available online, and, unlike linguistic or textual data, for example, these data contain a33

precise record of players’ behavior. As chess positions and moves are discrete, they can be recorded with34

complete information. Yet the space of potential game sequences is extremely large, so that there can be35

great variation in move choices. In addition, the large amount of canonical literature on chess allows for36

thorough qualitative interpretation of patterns in move choice.37

Focusing on the game of Go, a game that also features discrete moves and complete information, Beheim,38

Thigpen, and McElreath (2014) analyzed the choice of the first move by Go players in a dataset of „31,00039

games. They concluded that the choice of the first move is driven by a mix of social and individual factors, and40

the strength of these influences depends on the player’s age. Many issues concerning cultural transmission41
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in board games remain to be studied. For example, what are the mechanisms behind social learning: are42

players choosing to use “successful” moves or, instead, moves played by successful players? What defines43

success of a move? Answering these questions contributes to understanding both general processes of the44

spread of innovations and mechanisms that govern dynamics of the evolution of cultural traits.45

In this paper, we perform a quantitative study of chess in the context of cultural evolution using a46

database of 3.45 million chess games from 1971 to 2019. In Section 2, we introduce chess vocabulary and47

several aspects of the game important for our analysis. In Section 3, we describe cultural factors involved48

in the game and position them within the context of existing literature on cultural transmission. Section 449

describes the dataset used in this study. In Section 5, we motivate and define a statistical model for50

frequencies of opening strategies in the dataset. Unlike individual-based analysis of a binary choice of the51

first move in Go by Beheim, Thigpen, and McElreath (2014), our model incorporates counts for all possible52

moves in a position, taking a population-level approach. In Section 6, we discuss the fit of the model to data53

for three positions at different depths in the game tree.54

2 The game of chess55

In this section, we briefly review chess vocabulary, assuming readers have some basic knowledge of the rules56

of the game (for a concise summary, see Capablanca 1935).57

First, a game of chess consists of two players taking turns moving one of their pieces on the board, starting58

with the player who is assigned the white pieces. We will call these discrete actions plys: the first ply is59

a move by the white player, the second ply is a move by the black player, and so on. The average length60

of a chess game at a professional level is around 80 plys (see Section 4 below). We will use the word “ply”61

when describing specific positions, but otherwise we will use the words “move,” “strategy,” and “response”62

interchangeably with “ply.”63

Moves are typically recorded using algebraic notation (Hooper and Whyld 1992, p. 389), in which each64

ply is represented by a letter for a piece — K for king, Q for queen, R for rook, B for bishop, N for knight,65

no letter for a pawn — followed by the coordinates of the square on which the piece ends. The coordinates66

on the board are recorded using letters from a to h from left to right for the ranks (the x-axis coordinates),67

and numbers from 1 to 8 for the files (the y-axis coordinates). For example, the first few moves of the game68

could be recorded as 1. e4 e5 2. Nf3 Nc6 3. Bc4 Nf6… Other special symbols are used for captures (x),69

checks (+), and castling (O-O or O-O-O for king- and queen-side castling, respectively).70

The initial stage of the game is called the opening. In the opening, players try to achieve a favorable71

arrangement of the pieces that gives them the most freedom for further actions while keeping their kings72

safe. Openings are highly standardized, with many having names, e.g. the Sicilian Defense, or the London73

Opening. Because the number of possible positions is not that large at the beginning of the game, openings74

are extensively analyzed by players and then memorized for use in tournaments. Example chess positions in75

the opening are presented in Figure 1.76

The collective body of knowledge about how to play chess from various positions is called chess theory.77

For the opening, theory consists of extensive analyses of many positions by human players as well as by78

computers. One of the manifestations of chess theory is the existence of fixed sequences of moves called79

“lines,” from which deviations are rare. A mainline is a sequence of moves that has proven to be the most80

challenging for both opponents, such that neither of them is able to claim an advantage. A sideline is a81

sequence of moves that deviates from the established optimal sequence.82

Each professional chess player has a numerical rating, usually assigned by the national or international83

federation. FIDE (The International Chess Federation) uses the Elo rating system (Elo 1978). The rating84

is relative, meaning that it is calculated based on a player’s past performance, and is intended to represent85

a measure of the player’s ability. The typical rating of a strong intermediate player is „1500, and a rating86

of 2500 is required to qualify for a Grandmaster (GM) title. Most elite tournaments involve ratings above87

2700.88
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A B C

Figure 1: Example chess opening positions. (A) Queen’s Pawn opening, 1. d4. (B) Caro-Kann opening, 1.
e4 c6 2. d4 d5. (C) Najdorf Sicilian opening, 1. e4 c5 2. Nf3 d6 3. d4 cxd4 4. Nxd4 Nf6 5. Nc3 a6.

3 Culture and chess89

Chess is a cultural practice that is actively shaped by the people who participate in it. Individual players90

enter the practice, altering their performance and behaviors depending on the games they and others have91

played. Many cultural processes are involved in players’ decision-making. To analyze these processes, we will92

concentrate on decisions made in the opening stage, because the relatively small number of positions allows93

players to reason about concrete moves and lines in their analyses and preparation. The factors affecting94

move choice that we discuss below are well-known to the chess community (Euwe and Nunn 1997; Desjarlais95

2011; Gobet 2018; Sousa 2002). Our goal here is to place them in the language of cultural evolution.96

(a) Objective strength. One factor in move choice is the objective strength of the move, which reflects97

the potential for victory from resulting positions. An evaluation of a move’s strength can be made by98

human analysis or with a chess computer. Many early moves have been extensively analyzed, so the99

best choice in those positions is well-known to most professional players.100

(b) Social context of the move. Players are aware of how often a given move has been played in101

the past. This frequency evaluation can even be automated using websites such as OpeningTree.com.102

Developed theory often exists for more frequent moves, which can be the default choice for many players.103

Conversely, rare moves or novelties (previously unseen moves) can create problems for opponents who104

most likely have not prepared a response.105

It is important to observe that the frequency with which a move is played is not directly proportional to106

the objective strength discussed in (a); there are moves that are objectively weak, but only conditional107

on the opponent finding a single good response. If this response is not played by the opponent, then the108

weak move may give an advantage. In some conditions, e.g. an unprepared opponent or lack of time,109

such a “weak” move can be highly advantageous. There have also been cases in which a historically110

frequent move was later “refuted” by deep computer analysis.111

Beyond the move frequency, information on the success of strategies in leading to a win can play a112

role in move choice. In many positions, actually applying information about objective move strength113

is a complex problem. It is not enough to make a single strong move: a player must then prove an114

advantage by continuing to play further strong moves and executing plans that would lead to victory.115

The success rate of a move is an indicator of how hard it is to gain a long-term advantage leading to116

checkmate after choosing it.117

The influence of elite players may also be important in move choice. Top players participate in invita-118

tional tournaments followed by the wider community. Players, presented with a choice of approximately119

similar moves, may choose the one that was played by a “superstar” player. This phenomenon is ex-120

emplified by strategies named after famous players, such as “Alekhine’s Defense” (De Firmian 2008, p.121

159) or “Najdorf Sicilian” (De Firmian 2008, p. 246). Leading players can create trends; for example,122

the Berlin defense was popularized after grandmaster Vladimir Kramnik employed it to win the World123

Championship in 2000 (De Firmian 2008, p. 43).124
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(c) Metastrategy. Beyond trends in move choice, the “metastrategy” of chess is also evolving. Concep-125

tions of what a game of chess “should” look like have been changing through the years, and so has126

the repertoire of openings used by professional players (Hooper and Whyld 1992, p. 359). In the 18th127

century, the swashbuckling Romantic style of chess emphasized winning with “style”: declining gam-128

bits, or offers of an opponent’s piece, could be viewed as ungentlemanly, and Queen’s Pawn openings129

were rarely played (Shenk 2011, Ch. 5). However, by the World Championship of 1927, trends in chess130

had shifted to long-term positional play (see Shenk 2011, Ch. 8). Queen’s Pawn openings were the131

cutting edge of chess theory, and almost all games at that tournament began with the Queen’s Gambit132

Declined (Chessgames.com 2023a). Following World War I, hypermodern chess emphasized control133

of the board’s center from a distance, and its influence is evident in top-level games of the mid-20th134

century (Shenk 2011, Ch. 10). Hypermodern players refused to commit their pawns forward, preferring135

a position where pieces are placed on safe squares from which they could target the opponent’s weak-136

nesses. Recently, a style of chess mimicking computer play has emerged, in which players memorize137

long computer-supported opening lines and play risky pawn advances.138

Chess is as much a social phenomenon as it is individual. Some players exhibit personal preferences for139

certain game features, such as early attacks or long and complicated endgames, and some aspects of140

play are determined by a player’s upbringing. For example, the Soviet school of chess formed around141

a certain energetic, daring, and yet “level-headed” style (Kotov and Yudovich 1961).142

(d) Psychological aspects. Finally, psychological aspects and circumstances of the game contribute to143

move choice (Gobet, Retschitzki, and Voogt 2004). There are lines that are known to lead to a quick144

draw, and a player might elect to follow one of them, depending on the relevance of the outcome at145

a particular stage of the tournament. Openings may also be chosen to take opponents out of their146

comfort zone: in a game against a much weaker opponent, a dynamic and “pushy” line might give a147

player an advantage. Similarly, a master of attacking play might make mistakes when forced into a148

long positional game.149

The complexities of move choice suggest that chess could serve as a model example for the quantitative150

study of culture. Players’ knowledge is continually altered by their own preparation, the games they play, and151

other players’ actions. In this sense, chess knowledge is “transmitted” over time, in part by players observing152

and imitating their own past actions and those of other players, or transmission by random copying (Bentley153

et al. 2007). The large historical database of chess games provides an opportunity to study deviations from154

random copying dynamics known as transmission biases or social learning strategies (Boyd and Richerson155

1985; Kendal et al. 2018; Laland 2004; Henrich and McElreath 2003). In our analysis of the transmission of156

chess knowledge, we will investigate success bias (players paying attention to win rates of different strategies),157

prestige bias (players imitating the world’s best grandmasters), and frequency-dependent bias (e.g. players158

choosing rare or unknown strategies).159

4 Data160

The dataset that serves as the foundation for this project is Caissabase – a compendium of „5.6 million161

chess games, available for download at caissabase.co.uk. Games in the dataset involve players with Elo162

rating 2000 or above, and correspond to master-level play, allowing us to focus on the dynamics of high-level163

chess without the influence of players who are just learning the game.164

In filtering the dataset, we have excluded games with errors that did not correspond to a valid sequence165

of moves as determined by a chess notation parser. We also filtered the dataset to keep only the games that166

record the result of the game, players’ names, and their Elo ratings, and we selected only the games played167

from 1971 to 2019. This filtering produced a table of 3,448,853 games.168

In Figure 2, we highlight the main aspects of the dataset. Figure 2A shows that the number of games169

per year has been growing steadily since the 1970s, stabilizing at approximately 100,000. In total, there170

are 77,956 chess players in the dataset, with the number of players per year increasing in recent decades171

(Figure 2B).172

It is widely accepted in the chess community that white has a slight advantage, as the side that starts173

the game. This view is reflected in Figure 2C, which plots the fractions of outcomes of games in each year.174
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Finally, Figure 2D shows the average length of games over time; games have become longer since the mid-175

1980s, which could mean that players are getting better at the game and no longer lose early. To explore176

the dynamics in the dataset further, we examine the frequencies of individual moves.177
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Figure 2: Features of the dataset. (A) Number of games per year. (B) Number of unique players per year.
(C) Outcome proportions in each year. (D) Average game length per year, measured in the number of plys
(half-moves).

5 Modeling move choice178

5.1 Move frequencies179

Here, we discuss the dynamics of move frequencies over time for several game positions. Given a position on180

the board, the player whose turn it is has a choice of which move to play. In positions where their king is in181

check, players would only have few choices, since they are forced to get out of check. In some other cases,182

several equally attractive moves could be available, and any of the factors in Section 3 has the potential to183

affect the choice. Depending on the position, the move frequency trajectories look drastically different, as184

shown in Figure 3.185

Starting Position, ply 1. Figure 3A shows the fractions of games in which different starting moves186

were played in each year from 1971 to 2019. The frequencies of the moves are mostly constant over time,187

suggesting that the starting move is a well-understood and well-developed idea.188

Sicilian Defense, ply 3. Figure 3B shows move frequencies in response to 1. e4 c5 — the Sicilian189

Defense. In this position, there is a mainline move — Nf3 — which an overwhelming majority of players190

prefer to play, while other moves are rarely played. Move distributions in which one specific move dominates191

are common, possibly because some sequences of moves are perceived as a single coherent unit.192

Queen’s Gambit Declined, ply 7. Figure 3C presents an example of a gradual change, which might193

have happened either due to a change in the metastrategy of play or because of the gradual development of194

chess theory.195

Najdorf Sicilian, ply 11. A game starting with a Sicilian Defense can follow a sequence known as the196

Najdorf Sicilian. This sequence consists of 10 plys, and the moves at ply 11 that have been played in the197

resulting position are presented in Figure 3D. Qualitatively, the picture is dramatically different from the198

early positions considered above. Among the responses to the Najdorf Sicilian, some moves are consistently199

popular choices (Be2, Be3, Bg5), some became “obsolete” in recent years (f4), and some rapidly gained200

popularity (h3).201

The qualitative picture of move frequency changes can be summarized as follows. On one hand, very202

early opening moves do not show large fluctuations in frequencies, most likely because a significant change203

in frequency necessitates some kind of “innovation,” which is impossible to produce at such an early stage.204

On the other hand, moves beyond the standardized opening frequencies (after the 16th-20th ply) involve205

positions that do not repeat often enough for humans to memorize and analyze during preparation. This206

property makes quantitative analysis of specific late-game moves nearly impossible. Somewhere between207
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these two extremes are positions at which chess theory is actively developed and tested. Positions such208

as the Najdorf Sicilian occur early enough in the game to be reached often, but are advanced enough to209

provide many continuation possibilities that are approximately equal in terms of objective strength. In such210

positions, all factors, including engine analysis, move frequency, social context, stylistic trends, and personal211

preferences could play a role in move choice.212

5.2 Population-level modeling of move choice213

We develop a statistical model that can help to understand the data described above. A complete model of214

move choice would involve parameters associated with the whole population, with subgroups of players (e.g.215

top 50 players), or with each individual. Such a model would be very complex, so our model is restricted216

to population-level features of dynamics; we analyze frequency-dependent, success, and prestige biases.217

Features concerning match-level dynamics, personal development, and preferences of individual players are218

outside of the scope of our analysis, and are present in the form of residual variance, not explained by our219

population-level treatment.220

5.2.1 Unbiased model221

First, we consider a null model that generates the simplest dynamics, reflecting unbiased transmission of222

move choice preferences from one year to the next. Conceptually, the model assumes that each year, players223

“sample” a move randomly from games that were played in the last year. More precisely, fix an arbitrary224

chess position and suppose that in each year t, exactly Nt games having this position were played. The data225

for the model are the counts of k different response moves, denoted by xt = (x1
t , . . . , x

k
t ). We do not attempt226

to model appearance of novel strategies, so we will assume that all counts are positive, xi
t ą 0. The vector227

of response strategy counts in the next year, xt+1, is multinomially distributed,228

xt+1 „ Multinomial(Nt+1,θt). (1)229

The probability vector θt has the Dirichlet distribution with counts in the current year, xt, as Dirichlet230

allocation parameters,231

θt „ Dirichlet(xt). (2)232

The multinomial likelihood depends on a positive integer parameter n and a vector of probabilities θ233

that sum to one,234

fM (y;n,θ) =
n!

y1! ¨ ¨ ¨ yk!
θy1

1 ¨ ¨ ¨ θyk

k ;
k

ÿ

i=1

yi = n. (3)235

The Dirichlet likelihood depends on a vector of positive real numbers α:236

fD(θ;α) =
Γ
(

řk
i=1 αi

)
śk

i=1 Γ(αi)

k
ź

i=1

θαi´1
i . (4)237

These two likelihoods can be combined into the compound Dirichlet-multinomial likelihood by integrating238

over θ (Johnson, Kotz, and Balakrishnan 1997, pp. 80-83),239

fDM (y;n,α) =
n! Γ

(
řk

i=1 αi

)
Γ
(
n+

řk
i=1 αi

) k
ź

i=1

Γ(yi + αi)

yi! Γ(αi)
, (5)240

which will be the likelihood for the model. In other words, under our unbiased model, the counts xt+1 of241

moves in year t+ 1 are distributed with probability density function242

p(xt+1 | Nt+1,xt) = fDM (xt+1;Nt+1,xt), (6)243
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so that the counts in the previous year xt take the roles of the Dirichlet parameters α. As a shorthand, we244

write245

xt+1 „ Dirichlet-multinomial(Nt+1,xt). (7)246

For a vector y having a Dirichlet-multinomial distribution with parameters n and α, the expectation is247

E [y] =
n

řk
j=1 αj

α. (8)248

For our model, this formula yields249

E [xt+1] =
Nt+1

řk
j=1 x

j
t

xt =
Nt+1

Nt
xt, (9)250

meaning that no changes are expected to happen in this unbiased model, except possibly for the change in251

the number of games played. The strategies are “transmitted” from one year to the next proportionally to252

their current frequencies in the population.253

The null model is analogous to a neutral many-allele Wright–Fisher model in population genetics (Ewens254

2004). The multinomial distribution arises as a representation of a biological process in Wright–Fisher255

models, where individuals in the next generation “choose” a parent from the previous generation. In our256

model of move choice, such sampling is a metaphor that does not correspond exactly to an observed physical257

process. As we discuss below, working with counts directly via the Dirichlet distribution allows us to account258

for a potentially higher variance in the strategy counts relative to the multinomial distribution (Corsini and259

Viroli 2022). Use of the Dirichlet-multinomial likelihood is a common way of dealing with overdispersion260

in count data in many fields, including ecology (Harrison et al. 2020) and microbiome studies (Wadsworth261

et al. 2017; Osborne, Peterson, and Vannucci 2022).262

It should be noted that chess players pay attention to games further back in the past than just the last263

year. Our null model is still a reasonable representation of the process for several reasons. First, there is a264

high degree of autocorrelation in the move count data (Schaigorodsky, Perotti, and Billoni 2016), meaning265

that it is likely that the most recent data point is representative of counts in the last several years. Second,266

players tend to look only at select famous games of the past, whereas the more recent games can be more267

easily perceived in their totality.268

5.2.2 Fitness and frequency-dependence269

A strategy transmitted at a rate greater than expected from the null model can be said to have higher270

cultural fitness (Cavalli-Sforza and Feldman 1981). Conversely, a strategy having a lower transmission rate271

than expected has lower cultural fitness. Selection on strategies is carried out by players when they decide272

which move to play based on any of the factors discussed in Section 3. We can account for cultural fitness273

by associating a fitness coefficient fi to each strategy i. For now, assume that fitness values are constant,274

0 ă fi ă 8. The distribution of moves in the next year can then be described as275

xt+1 „ Dirichlet-multinomial(Nt+1, f1x
1
t , . . . , fkx

k
t ), (10)276

with the expression for expected counts in the next year becoming277

E
[
xi
t+1

]
= Nt+1

fix
i
t

řk
j=1 fjx

j
t

. (11)278

As the coefficients fi are constrained only in that they must be positive, this way of encoding the parameters279

is useful for inference purposes, especially in the Bayesian framework we employ below. It is straightforward280

to find reasonable prior distributions on (0,8), and absence of “sum to one” constraints makes it easy for281

an MCMC sampler to efficiently explore the posterior distribution (Gelman, Carlin, et al. 2020, Ch. 12).282

However, interpretation of the model is more convenient with a different parameterization: instead of283

considering values of fi, we let284
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f̄t =
1

Nt

k
ÿ

j=1

fj x
j
t (12)285

be the mean fitness at time t, and define286

f 1
i = fi/f̄t (13)287

to be normalized fitness coefficients, such that
řk

i=1 f
1
i = 1. Rewriting eq. (11) as288

E
[
xi
t+1

]
=

Nt+1

Nt

fi
f̄t
xi
t =

Nt+1

Nt
f 1
ix

i
t, (14)289

we see that f 1
i = 1 implies no expected change in the frequency of strategy i from time t to t+1. Therefore,290

this choice of parameterization allows us to view f 1
i as growth rates, with f 1

i = 1 corresponding to no selective291

advantage, i.e. the neutral case. The value of f̄t, in turn, adjusts the variance of the counts in the next year.292

To summarize, in our Dirichlet-multinomial model, the fi’s measure two phenomena at once; their rela-293

tive values represent selection, while the mean value of the fi’s measures overdispersion with respect to the294

multinomial model. Mathematically, the expectation of a Dirichlet(α)-distributed random variable is invari-295

ant with respect to multiplying α by a positive constant, but its variance is determined by the magnitudes296

of the parameters. Although the fi are convenient to use in inference, we will interpret the results in terms297

of a parameterization that involves f 1
i and f̄t (eqs. (12) and (13)).298

We now allow fi to depend on the frequency of the strategy, such that299

xt+1 „ Dirichlet-multinomial(Nt+1, f1(x
1
t/Nt)x

1
t , . . . , fk(x

k
t /Nt)x

k
t ). (15)300

In this way, we are able to incorporate frequency-dependent selection phenomena, which have previously been301

shown to be present in models of cultural data (e.g. Newberry and Plotkin 2022). Hence, we will refer to fi302

as frequency-dependent fitness functions. The expression for the mean fitness now becomes303

f̄t =
k

ÿ

j=1

fj(p
j
t ) p

j
t , (16)304

where pjt = xj
t/Nt, and k is the number of distinct moves played from a position.305

We choose a piecewise-constant form for the functions fi, as this form introduces minimal assumptions306

about their shape while keeping the number of parameters low. That is, for i = 1, . . . , k, we have307

fi(x) =

$

’

&

’

%

ci1 if x P [0, bi1),

cij if x P [bij´1, b
i
j),

ciℓ if x P [biℓ´1, 1],

(17)308

where cij are values of fi and bij are breakpoints that determine the boundaries of constant segments. For309

ℓ segments, ℓ ´ 1 breakpoints bij P (0, 1) must be specified. We choose quartiles of move frequencies as the310

values for bij , so that each function fi has three breakpoints and ℓ = 4 constant segments. This choice does311

not uniformly cover the domain of fi, but allows for the same amount of data to be used in estimating each312

segment.313

5.2.3 Full model314

We complete our model by accounting for additional features that could affect move choice dynamics. In the315

final model, the vector of strategy counts in the year t+ 1 again has the Dirichlet-multinomial distribution316

with parameters Nt+1 and α:317

xt+1 „ Dirichlet-multinomial(Nt+1,α). (18)318

However, vector α is now defined as319

αi = exp(βi ¨ yi
t) fi(x

i
t/Nt)x

i
t. (19)320
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Here, xi
t is the count of games with the ith strategy in year t, fi is a piecewise constant function of the321

strategy frequency described in Section 5.2.2 above, and βi is a vector of constant coefficients.322

Additional features beyond just the move count or frequency are denoted yi
t in eq. (19). There are three323

of these features:324

1. The average outcome of the strategy in the whole population for games in year t, with a win for the325

side making the move encoded as 1, a win for the opposing side encoded as ´1, and a draw encoded326

as 0. We denote the corresponding coefficient by βwin,i.327

2. The average outcome of the strategy among the top 50 players in the dataset in year t, encoded in the328

same way as the population win rate. The list of top 50 players was compiled separately for each year329

using the average Elo rating of the players in that year. We denote the corresponding coefficient by330

βtop50-win,i.331

3. The frequency of the strategy among the top 50 players in year t. We denote the corresponding332

coefficient by βtop50-freq,i.333

These features represent biases different from frequency dependence that could also contribute to cultural334

fitness of moves; if the average outcome significantly affects move choice, success bias is present in trans-335

mission, as represented by coefficients βwin,i and βtop50-win,i. Similarly, prestige bias could be important for336

transmission if players imitate the top 50 players as represented by coefficients βtop50-win,i and βtop50-freq,i.337

The extra features are included in the model as an exponential factor exp(βi ¨ yi
t). This choice of factor338

has two purposes: first, it ensures that the variables αi stay positive for all parameter values and data points;339

second, it represents multiplicative effects of several types of transmission biases, a common approach both340

in theoretical models of cultural evolution (see e.g. Denton et al. 2020; Lappo, Denton, and Feldman 2023)341

and in analyses of experimental data (Barrett, McElreath, and Perry 2017; Deffner, Kleinow, and McElreath342

2020; Canteloup et al. 2021).343

5.2.4 Inference344

In total, the parameter vector θ = (cij ,βi) has length 7k, where k is the number of different moves played345

in a given position. For each move, there are three coefficients βwin,i, βtop50-win,i, βtop50-freq,i, as well as four346

values ci1, c
i
2, c

i
3, c

i
4 characterizing the function fi in eq. (17).347

We choose to fit the model in a Bayesian framework using Markov Chain Monte Carlo sampling, as this348

choice makes implementation of the model straightforward and allows us to obtain both point estimates349

and uncertainty quantification from the same analysis. To conduct Bayesian inference, we need to specify350

a prior distribution for θ. Following Gelman, Carlin, et al. (2020), we specify non-informative priors for351

each parameter. Each constant segment cij of each function fi was assigned an Exp(1) prior, such that fi352

is always non-negative, and the prior mean of fi is equal to one, corresponding to neutrality. We assigned353

each parameter βi a normal N (0, 1) prior and standardized the corresponding features yi
t to have zero mean354

and unit variance. Given these priors and the model likelihood (defined in eqs. (18) and (19)), samples355

were generated from the posterior distribution using the Hamiltonian Markov Chain Monte-Carlo sampler356

provided by the Stan software package (Gelman, Lee, and Guo 2015; Stan Development Team 2023). For357

this procedure, we only consider the data from 1980 to 2019, since earlier years have significantly less data358

available.359

Many moves were played only a few times in the whole dataset. To prevent extremely rare moves from360

inflating the number of parameters, we have combined moves that individually have average frequency less361

than 2% into a single category called “other.” In addition, it is commonly accepted by professional players362

that rare moves serve the same purpose: to take the opponent “out of theory” into positions where neither363

player had spent significant time preparing, leading to more chaotic and tense games.364

There are also years in which some move counts are equal to zero, and in this case, our assumption that365

move counts are nonzero is violated. To remedy this situation, in computational inference we replace the366

parameter α from eq. (19) by α+ 1, such that for all strategies,367

αi = 1 + exp(βi ¨ yi
t)fi(x

i
t/Nt)x

i
t. (20)368
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This approach is commonly used to deal with the potential for zero counts of rare categories in models369

involving multinomial likelihoods. For example, it is used in Dirichlet-multinomial modeling of ecological370

data (Harrison et al. 2020) and in multinomial “assignment tests” of individuals to populations in genetics371

(Paetkau et al. 1995; Rosenberg 2005). For moves with non-zero counts, this correction biases expectations372

from xi
t/Nt to (xi

t + 1)/(Nt + K), where K is the number of strategies. The bias is negligible when move373

counts are in the hundreds or above.374

6 Modeling results375

We discuss model fits for three positions at three different depths in the game tree: the Queen’s Pawn opening376

at ply 2 (1. d4), the Caro-Kann opening at ply 5 (1. e4 c6 2. d4 d5), and the Najdorf Sicilian at ply 11377

(1. e4 c5 2. Nf3 d6 3. d4 cxd4 4. Nxd4 Nf6 5. Nc3 a6). The parameters of the Stan HMC sampler378

and convergence diagnostics for each position are reported in Supplementary Information S1. In total, there379

are N = 1, 083, 146 games with the Queen’s Pawn opening, N = 80, 890 games with the Caro-Kann opening,380

and N = 82, 557 games with the Najdorf Sicilian opening. Input data such as raw strategy counts and win381

rates in each year appear in Supplementary Information S2.382

Figure 4 shows the original frequency data, the move choice probabilities as estimated by the model, and383

estimates of frequency-dependent fitness fi1(xi
t/Nt) = fi(x

i
t/Nt)/f̄t of moves over time, as defined in eqs. (12)384

and (13). Comparing the first and second rows of panels in Figure 4, our model fits the data well, with385

estimated move choice probabilities (panels B, E, H) matching the actual move frequencies (panels A, D, G).386

The estimates of the parameters fi and βi are presented in Figures 5 and 6, respectively. For point estimates,387

the posterior median is used, and for quantifying uncertainty, we report posterior 1% and 99% quantiles for388

each estimate. In our analysis, we focus on effects β for which the middle 98% of the distribution does not389

contain zero and on significant effects that have reasonable justifications in chess literature or history. Finally,390

Figure 7 illustrates frequency dependence in the choice of strategies using posterior predictive sampling. We391

discuss Figure 7 in detail below.392

6.1 Frequency dependence: Queen’s Pawn opening393

Considering the responses to the Queen’s Pawn opening in Figure 4A, from 1980 to 2005, the move d5394

is, on average, increasing in popularity, with this trend reversing after 2005. The move Nf6 shows the395

opposite dynamics. In fact, in World Championship matches of 2016, 2018, and 2021, players responded396

with Nf6 in all but one game in this position (see e.g. Chessgames.com 2023b). Gradual changes can be397

caused by cultural drift (Bentley et al. 2007) or changes in metastrategy. However, our model suggests that398

transmission biases may play a role as well. In particular, the values of the fitness functions for d5 and Nf6399

observed in Figure 4C are higher when they are are at lower frequencies. The plots of frequency-dependent400

function functions fi(x) for x from 0 to 1 are shown in Figure 5A, and there is a downward slope in the values401

of fi(x) characteristic of negative frequency-dependent bias, or anti-conformity. Win rates or features related402

to top-50 players appear to have no effect on the choice of d5 or Nf6 (Figure 6A). The other strategies are403

played in only a small proportion of games, and for those strategies, it may be hard to distinguish meaningful404

effects from statistical artifacts.405

To further understand the nature of frequency dependence, we plot expected deviations of move choice406

probability E[pit+1] from random choice (E[pit+1] = pit) for initial frequencies xi
t/Nt = 0, 0.02, . . . , 0.98, 1,407

keeping other variables constant (see Supplementary Information S3 for a detailed description of the calcu-408

lation). For the Queen’s Pawn opening, this plot appears in Figure 7A. The choice of move d5 clearly has409

negative frequency dependence, as it is chosen with probability higher than what is expected under random410

choice when its frequency is low and with lower probability when its frequency is high, with deviations from411

random choice as large as 1.9%. Similar behavior can be seen for the move Nf6.412

6.2 Success bias: Caro-Kann413

In the Caro-Kann opening, the move exd5 is used less and less in more recent years (Figure 4D). The plot414

of move fitnesses in Figure 4F and the choice probability plot in Figure 7B suggest that negative frequency-415

dependent dynamics play a role in determining this behavior. However, the functions fi are not the only416

10

Page 11 of 32

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



determinants of move frequencies in our model; the coefficients βi shown in Figure 6B suggest that the choice417

to play the move exd5 is affected by the win rate in the population, indicating success bias. The decrease418

in the frequency of exd5 then comes from many players losing after playing this move (see Figure S2K).419

Indeed, computer engines have shown that the move e5 provides the strongest winning probability for the420

player, while after exd5 the opponent can “equalize” the position and take over the game (Schandorff 2021).421

6.3 Prestige bias: Najdorf Sicilian422

In the case of the Najdorf Sicilian, in Section 5.1, we highlighted h3 as a recent strong trend. The frequency-423

dependent fitness function fh3 shows that there is no negative frequency-dependent bias for a choice of h3424

(Figure 5C); in fact, Figure 7C shows that h3 is, on average, chosen with probability greater than random425

choice at every value of the frequency in the previous year. This result suggests that the move is a genuine426

innovation, becoming more popular “on its own merit” and not because of frequency-dependent trends. The427

coefficient for the win rate among the top 50 players, βh3,top50-win is large (Figure 6C), meaning that the428

increase in the frequency of h3 could possibly be due to a trend started by elite players, which then led to429

wider adoption and development of theory. We conclude that the choice to play h3 is subject to prestige bias.430

In chess literature, side pawn pushes such as h3, h4, a3, and a4 in various positions are ideas introduced431

by strong chess engines (Sadler and Regan 2019, Ch. 9) in the most recent decade. This trend may explain432

why top players, who often have teams analyzing engine suggestions for them, have been adopting the move433

h3, subsequently influencing the general population.434

6.4 Game sample size Ns435

Finally, we address the way our model characterizes the variance of move counts in the data. As we have436

discussed in Section 5.2.2, the mean fitness f̄t controls the variance of xi
t+1 conditional on model parameters437

and xi
t. Mathematically, this influence can be seen as follows. As a shorthand, let438

pi =
fi(x

i
t/Nt)x

i
t

řK
j=1 fi(x

j
t/Nt)x

j
t

(21)439

be the “frequencies” of strategies assuming no effect of prestige or success biases. Then the variance of xi
t+1440

is (Johnson, Kotz, and Balakrishnan 1997, p. 81):441

VarDM(xi
t+1 | xi

t) = Nt+1pi(1 ´ pi)

(
Nt+1 +Ntf̄t
1 +Ntf̄t

)
. (22)442

The last term of eq. (22) is a decreasing rational function of f̄t, so VarDM(xi
t+1 | xi

t) decreases as f̄t grows.443

In the fitted models, the mean fitness f̄t is consistently below 1 for all three positions considered, equal444

to „ 0.22 for the Queen’s Pawn, ply 2 position (approximately constant over time), „ 0.3 for Caro-Kann,445

ply 5, and „ 0.45 for Najdorf Sicilian, ply 11 (Figure S3A). That we have observed f̄t ă 1 can be interpreted446

in relation to players’ behavior. Mechanistically, our model describes players observing move counts in a447

previous year, adjusting their preferences because of transmission biases, and then selecting a move with448

higher variance than what is expected if f̄t = 1, corresponding to multinomial choice. We define game sample449

size Ns(t) = f̄tNt to be the number of games in the population at time t that achieves the same value for the450

variance VarDM(xi
t+1 | xi

t) as in eq. (22) under the condition f̄t = 1. Indeed, with game sample size defined451

as Ns(t) = f̄tNt, eq. (22) becomes452

VarDM(xi
t+1 | xi

t) = Nt+1pi(1 ´ pi)

(
Nt+1 +Ns(t)

1 +Ns(t)

)
, (23)453

so that now a mechanistic interpretation of our model consists of players observing move counts in a pop-454

ulation of size Ns(t), adjusting their preferences according to transmission biases, and then choosing the455

strategy according to a multinomial distribution.456

As the game progresses from early to later positions, the players sample a higher fraction of all games457

in their decision-making process (Figure S3). Possibly, the fraction of games sampled by players is low for458

early positions because tens of thousands of professional games each year start with a move d4 (Figure S2A),459
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and it is likely that players cannot monitor all of these games. However, a player who specializes in playing460

the Najdorf Sicilian may pay attention to a larger proportion of games involving this opening, because the461

total number of games to analyze is much smaller for ply 11 in the Najdorf Sicilian (Figure S2C) than in the462

Queen’s Pawn at ply 2 (Figure S2A).463

7 Discussion464

We have developed a population-level model for the influence of transmission biases on move choice in chess.465

We have shown that many of the moves analyzed are under negative frequency-dependent cultural selection,466

having higher fitness and being favorably selected with probability greater than random choice at lower467

frequencies (Figures 4 and 7). This result suggests that anti-conformity is important in the transmission468

of chess opening strategies. In addition, our model is able to identify moves for which other factors play469

a role: the dynamics of h3 in the Najdorf Sicilian are affected by the win rate among the top 50 players470

(Figure 6C), indicating the presence of prestige bias, and the choice of exd4 in the Caro-Kann suggests471

success bias (Figure 6B).472

We have also inferred absence of significant success bias for many strategies, consistent with our discussion473

in Section 3: a win in chess is conditional on strong performance at every move, so making decisions about the474

opening based on the average eventual outcome may not be the best choice from many positions. Similarly,475

following choices of top players would be effective only if a strong continuation were found. Support for476

our findings of strong success bias in the Caro-Kann and prestige bias in the Najdorf Sicilian comes from477

information commonly known to professional chess players, such as new insights from extensive computer478

analysis, or new styles of play introduced by computer players.479

In addition to measuring transmission biases, we have introduced a concept of “game sample size” Ns480

that appears naturally from the analysis of game counts (Section 6.4). Ns can be interpreted as the number481

of games that players observe when making use of social information. We have shown that later positions482

have a greater ratio Ns/N , which could mean that players use more complete information when positions483

become more complicated and less standardized (Figure S3).484

The estimated game sample size relates to several theoretical concepts. First, from the perspective of485

population genetics, Ns is equivalent to variance effective population size Ne(t) = f̄tNt used to account486

for overdispersed allele counts relative to a standard Wright-Fisher model (Ewens 2004; Caballero 2020,487

Ch. 3). Second, theoretical studies of conformity typically involve individuals sampling role models from the488

population and making a choice based on this sample (Boyd and Richerson 1985; Denton et al. 2020; Lappo,489

Denton, and Feldman 2023). The number of role models is usually taken to be equal to a small number490

such as 3, which is much smaller than the population size. The value of Ns can be seen as relating to these491

theoretical models, measuring how many role models are sampled from the population.492

7.1 Related and complementary work493

Our model complements other recent work on measuring the strength of transmission biases in cultural494

datasets of competitive activities, such as the studies by Beheim, Thigpen, and McElreath (2014) on Go,495

Miu et al. (2018) on programming contests, and Mesoudi (2020) on football strategy. Beheim, Thigpen, and496

McElreath (2014) employed multilevel logistic regression to study social and individual learning involved in497

the board game Go. They observed strong success bias and positive frequency-dependence for the choice498

of one of the opening moves. Positive frequency-dependence in Go and negative frequency-dependence in499

chess could be connected to the differences in the communities around each game. Among board games,500

chess is unique in its use of computer engines. Computer chess engines became widely available to elite501

players starting from the late 1990s, revolutionizing tournament preparation. Finding the best response in502

a position or solving a chess puzzle became possible in a matter of seconds rather than hours or days. Post-503

game analysis now helps players quickly identify and address their weaknesses, which means that players504

can no longer “catch” many opponents with the same “trick.” Playing into popular lines can also lead to505

positions in which the opponent has the most preparation. In contrast, the space of possible moves in the506

opening is much larger in Go, and computers have reached human level only in the most recent decade.507

Hence, the effectiveness of studying a particular position in Go is diminished, and players may choose to508

conform to a popular strategy for their first move and hope to outplay the opponent later in the game.509
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Transmission biases and social learning strategies in various games have also been measured in field510

observations and experiments (e.g. Aplin, Sheldon, and McElreath 2017; Barrett, McElreath, and Perry 2017;511

Deffner, Kleinow, and McElreath 2020; Vale et al. 2017; Canteloup et al. 2021). Studies using experimental512

data typically involve models that estimate parameters for each observed individual or category of individuals,513

whereas we focus on analysis of large-scale population-level data. Still, some aspects of such models are514

similar to our Dirichlet-multinomial approach. For example, in the experience-weighted attraction (EWA)515

model employed by Barrett, McElreath, and Perry (2017) to analyze social learning in Capuchin monkeys516

(also used in Canteloup et al. (2021) and Deffner, Kleinow, and McElreath (2020)), decisions are influenced517

by a convex combination of functions representing individual and social learning, and different social biases518

are encoded in a multiplicative way similar to eq. (19) in our model. This similarity suggests that our model519

could potentially be modified to model move choice of each player via a Dirichlet-multinomial likelihood,520

enabling comparisons of learning modalities between individual players.521

Frequency-dependent selection has previously been measured by Newberry and Plotkin (2022) in other522

large datasets such as baby name statistics and dog breed popularity data. These authors focused on523

modeling “exchangeable” entities, for which selection acts on every variant in exactly the same way. They524

estimate a single fitness function that is shared by every cultural variant and that characterizes average525

frequency-dependence in the population. Chess differs from such contexts in that it contains the concept of526

a “win.” Each chess move leads to a different position, altering the winning chances of each player, so that527

strategies at different stages of the game are dependent. Thus, our model assigns a separate fitness function528

to each individual strategy, treating strategies as nonexchangeable.529

Our model also extends the multinomial model of Newberry and Plotkin (2022) by incorporating the530

Dirichlet distribution into the model likelihood. This approach has a clear mechanistic interpretation in terms531

of players’ behaviors and allows us to perform efficient Bayesian inference of model parameters. Statistical532

models of count data based on the Dirichlet-multinomial likelihood are known in many related areas, including533

linguistics (e.g. Madsen, Kauchak, and Elkan 2005), human genetics (Wang et al. 2023), molecular ecology534

(Harrison et al. 2020), and microbiome data analysis (e.g. Osborne, Peterson, and Vannucci 2022; Wadsworth535

et al. 2017).536

7.2 Caveats537

The parameters of our model can be represented in two different ways. One uses k fitness functions fi that538

are only constrained to be non-negative and are naturally suited to Bayesian inference. Another uses k539

functions f 1
i (eq. (13)) that are required to sum to one, together with the mean fitness f̄t (eq. (16)). While540

estimates of fi (Figure 5) show presence of frequency-dependent dynamics, it is hard to characterize strength541

and significance of frequency-dependence using the values of fi. To understand strength and significance542

of frequency-dependent effects we plot the growth rates f 1
i of strategies (Figure 4) and compute expected543

deviation of move counts from random choice (Figure 7). Other analyses could potentially be used, for544

example evaluating whether the function fi is significantly different from a constant function.545

Another statistical issue that could affect our inferences is the possibility of correlated input features, so546

that the β coefficients might not be easily identifiable. However, features for the games played by the top-50547

players show behaviors that differ from those of the total population of around 15,000 players (Figure S2).548

Thus, for the factors we consider, it appears that distinguishing the influence of the top-50 players from a549

general influence of master-level players is indeed possible.550

Our model incorporates only a subset of possible features that could be relevant to move choice, such551

as highly developed theory or objective strength as determined by computer evaluation (Section 3). How-552

ever, the presence of significant success bias and prestige bias could correspond to mechanisms of social553

learning about these other features. For example, suppose a player observes several successful games in top554

tournaments with h3 in the Najdorf Sicilian, and then studies the move. The player could learn about the555

enthusiasm of modern computer engines for this move and could incorporate it into future play. For our556

model, this mechanism is indistinguishable from the player simply copying a successful move. This reason-557

ing about a player’s mechanistic evaluation process suggests a potential direction for further modeling that558

would incorporate varying individual behaviors and knowledge about position evaluation.559
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7.3 Conclusion560

Data from the last five decades of high-level chess games can be evaluated in the context of cultural trans-561

mission and evolution. We have shown that the cultural “features” of transmission can be measured from562

move choice decisions in various positions by professional players. In particular, we have inferred influences563

of frequency-dependent bias, success bias (win rate), and prestige bias (the use of the move by the very top564

players). The prevalence of anti-conformity and the lack of strong success bias for many strategies reflects565

the nature of opening play in chess, which involves extensive preparation and assessment of opponents’566

likely preparation. We have also connected the presence or absence of transmission biases with chess theory.567

The fact that many of our quantitative results correspond to ideas well-known to professional chess players568

suggests that our modeling could be useful to chess analysts and historians. In particular, many qualitative569

explanations are available for the popularity of certain strategies, and a quantitative evaluation of move570

frequency dynamics could help test the narratives familiar to chess players with statistical evidence. More571

broadly, our statistical approach could potentially be used to complement the historical study of cultural572

trends in other games that contain discrete choices, or even in other cultural domains in which circumscribed573

discrete data are recorded.574

Data and code. The code to generate figures in this paper and links to access the dataset are available at575

github.com/EgorLappo/cultural_transmission_in_chess.576
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Figure 3: Move frequencies over time. For each panel, the legend presents the whole sequence of moves from
the start of the game, with odd moves played by white, and even moves by black. The “other” category
contains all rare moves that individually have average frequency less than 2%, with the average taken over
all years. (A) Starting Position. (B) Sicilian Defense. (C) Queen’s Gambit Declined. (C) Najdorf Sicilian.
See the main text for a discussion of each position.
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Figure 4: Dirichlet-multinomial model fits for move choice in three different positions: the Queen’s Pawn
opening at ply 2 (1. d4), the Caro-Kann opening at ply 5 (1. e4 c6 2. d4 d5), and the Najdorf Sicilian
at ply 11 (1. e4 c5 2. Nf3 d6 3. d4 cxd4 4. Nxd4 Nf6 5. Nc3 a6). Panels A, D, and G show move
frequencies xi

t/Nt. Panels B, E, and H show posterior means of probabilities of move choice in the year t,
with grey lines marking the range containing the middle 98% of the posterior density. Panels C, F, and I
show frequency-dependent fitness fi(xi

t/Nt)/f̄t of moves over time, with the values computed using posterior
medians of the fi. (A) Move frequencies, Queen’s Pawn, ply 2. (B) Mean move choice probability, Queen’s
Pawn, ply 2. (C) Frequency-dependent fitness, Queen’s Pawn, ply 2. (D) Move frequencies, Caro-Kann, ply
5. (E) Mean move choice probability, Caro-Kann, ply 5. (F) Frequency-dependent fitness, Caro-Kann, ply 5.
(G) Move frequencies, Najdorf Sicilian, ply 11. (H) Mean move choice probability, Najdorf Sicilian, ply 11.
(I) Frequency-dependent fitness, Najdorf Sicilian, ply 11. The curves for the “other” category are omitted
in all plots as the category is too rare to give meaningful results. The model was fitted for years 1980-2019,
and the move fitnesses are estimated for all years except 2019.
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Figure 5: Estimated frequency-dependent fitness functions fi. The black line connects the posterior medians
for the four constant segments, bright purple shows regions containing 60% of the posterior density, and light
purple shows regions containing 98% of the posterior density. (A) Queen’s Pawn, ply 2. (B) Caro-Kann, ply
5. (C) Najdorf Sicilian, ply 11.

19

Page 20 of 32

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



Figure 6: Estimated coefficients βi. A point marks the posterior median, the thick line marks the region
containing 60% of the posterior density, and the thin line shows the region containing 98% of the posterior
density. The coefficients presented are: βwin, the effect of the average outcome of games in the year previous
to that in which a given move was played; βtop50-win, the effect of the average outcome of games involving
players in the top 50 in the previous year; and βtop50-freq, the effect of the frequency of a given move in
games involving players in the top 50 in the previous year (see Section 5.2.3). (A) Queen’s Pawn, ply 2. (B)
Caro-Kann, ply 5. (C) Najdorf Sicilian, ply 11.
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Figure 7: Dependence of move choice probability on strategy frequency. For each strategy, the corresponding
curve shows the deviation from random choice of posterior move choice probability in year t + 1 as the
frequency of that strategy in year t varies from 0 to 1. The values were computed using 1000 samples
from the posterior for each initial move frequency in year t, as described in Supplementary Information S3.
Shading around the curves corresponds to 98% bootstrap confidence intervals for the mean. The curves for
the “other” category are omitted in all plots, as these are too rare to give meaningful results. (A) Queen’s
Pawn, ply 2. (B) Caro-Kann, ply 5. (C) Najdorf Sicilian, ply 11.
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