

1 Cultural transmission of move choice in chess

2 Egor Lappo^{1,†}, Noah A. Rosenberg¹, and Marcus W. Feldman¹

3 ¹Department of Biology, Stanford University, Stanford, CA 94305 USA

4 [†]Email: elappo@stanford.edu

5 September 7, 2023

6 **Abstract.** The study of cultural evolution benefits from detailed analysis of cultural transmission in specific
7 human domains. Chess provides a platform for understanding the transmission of knowledge due to its
8 active community of players, precise behaviors, and long-term records of high-quality data. In this paper,
9 we perform an analysis of chess in the context of cultural evolution, describing multiple cultural factors that
10 affect move choice. We then build a population-level statistical model of move choice in chess, based on the
11 Dirichlet-multinomial likelihood, to analyze cultural transmission over decades of recorded games played by
12 leading players. For moves made in specific positions, we evaluate the relative effects of frequency-dependent
13 bias, success bias, and prestige bias on the dynamics of move frequencies. We observe that negative frequency-
14 dependent bias plays a role in the dynamics of certain moves, and that other moves are compatible with
15 transmission under prestige bias or success bias. These apparent biases may reflect recent changes, namely
16 the introduction of computer chess engines and online tournament broadcasts. Our analysis of chess provides
17 insights into broader questions concerning how social learning biases affect cultural evolution.

18 **Keywords.** Chess, cultural evolution, Dirichlet-multinomial, social learning, transmission biases.

19 1 Introduction

20 Chess has existed in its current form for hundreds of years; it is beloved as an established sport, a hobby,
21 and also as a source of inspiration for scientists across disciplines. Since the 1950s, playing chess well has
22 served as a goal in the development of artificial intelligence, as a task that a “thinking agent” would be
23 able to accomplish (Shannon 1950). This goal was realized in the victory of a chess algorithm over a top
24 human player (Deep Blue vs. Garry Kasparov in 1997). In physics and signal processing, researchers study
25 time series in databases of chess games to extract information regarding long-term correlations, dynamics
26 of position evaluation, invention of new openings, and other game features (see e.g. Schaigorodsky, Perotti,
27 and Billoni 2016; Blasius and Tönjes 2009; Ribeiro et al. 2013; Perotti et al. 2013). Statisticians have been
28 interested in chess as a case study in the development of human performance measurement (Regan, Macieja,
29 and Haworth 2011; Di Fatta, Haworth, and Regan 2009) and modeling of human choice (Regan, Biswas, and
30 Zhou 2014; Regan, Biswas, and Zhou 2014).

31 As a *cultural* dataset, a compendium of chess games has great potential to help cultural evolution re-
32 searchers understand patterns of cultural transmission and social learning. A large body of well-annotated
33 chess games is available online, and, unlike linguistic or textual data, for example, these data contain a
34 precise record of players’ behavior. As chess positions and moves are discrete, they can be recorded with
35 complete information. Yet the space of potential game sequences is extremely large, so that there can be
36 great variation in move choices. In addition, the large amount of canonical literature on chess allows for
37 thorough qualitative interpretation of patterns in move choice.

38 Focusing on the game of Go, a game that also features discrete moves and complete information, Beheim,
39 Thigpen, and McElreath (2014) analyzed the choice of the first move by Go players in a dataset of ~31,000
40 games. They concluded that the choice of the first move is driven by a mix of social and individual factors, and
41 the strength of these influences depends on the player’s age. Many issues concerning cultural transmission

42 in board games remain to be studied. For example, what are the mechanisms behind social learning: are
43 players choosing to use “successful” moves or, instead, moves played by successful players? What defines
44 success of a move? Answering these questions contributes to understanding both general processes of the
45 spread of innovations and mechanisms that govern dynamics of the evolution of cultural traits.

46 In this paper, we perform a quantitative study of chess in the context of cultural evolution using a
47 database of 3.45 million chess games from 1971 to 2019. In Section 2, we introduce chess vocabulary and
48 several aspects of the game important for our analysis. In Section 3, we describe cultural factors involved
49 in the game and position them within the context of existing literature on cultural transmission. Section 4
50 describes the dataset used in this study. In Section 5, we motivate and define a statistical model for
51 frequencies of opening strategies in the dataset. Unlike individual-based analysis of a binary choice of the
52 first move in Go by Beheim, Thigpen, and McElreath (2014), our model incorporates counts for all possible
53 moves in a position, taking a population-level approach. In Section 6, we discuss the fit of the model to data
54 for three positions at different depths in the game tree.

55 2 The game of chess

56 In this section, we briefly review chess vocabulary, assuming readers have some basic knowledge of the rules
57 of the game (for a concise summary, see Capablanca 1935).

58 First, a game of chess consists of two players taking turns moving one of their pieces on the board, starting
59 with the player who is assigned the white pieces. We will call these discrete actions *plys*: the first ply is
60 a move by the white player, the second ply is a move by the black player, and so on. The average length
61 of a chess game at a professional level is around 80 plys (see Section 4 below). We will use the word “ply”
62 when describing specific positions, but otherwise we will use the words “move,” “strategy,” and “response”
63 interchangeably with “ply.”

64 Moves are typically recorded using *algebraic notation* (Hooper and Whyld 1992, p. 389), in which each
65 ply is represented by a letter for a piece — **K** for king, **Q** for queen, **R** for rook, **B** for bishop, **N** for knight,
66 no letter for a pawn — followed by the coordinates of the square on which the piece ends. The coordinates
67 on the board are recorded using letters from **a** to **h** from left to right for the *ranks* (the *x*-axis coordinates),
68 and numbers from 1 to 8 for the *files* (the *y*-axis coordinates). For example, the first few moves of the game
69 could be recorded as **1. e4 e5 2. Nf3 Nc6 3. Bc4 Nf6...** Other special symbols are used for captures (**x**),
70 checks (+), and castling (**O-O** or **O-O-O** for king- and queen-side castling, respectively).

71 The initial stage of the game is called the *opening*. In the opening, players try to achieve a favorable
72 arrangement of the pieces that gives them the most freedom for further actions while keeping their kings
73 safe. Openings are highly standardized, with many having names, e.g. the Sicilian Defense, or the London
74 Opening. Because the number of possible positions is not that large at the beginning of the game, openings
75 are extensively analyzed by players and then memorized for use in tournaments. Example chess positions in
76 the opening are presented in Figure 1.

77 The collective body of knowledge about how to play chess from various positions is called *chess theory*.
78 For the opening, theory consists of extensive analyses of many positions by human players as well as by
79 computers. One of the manifestations of chess theory is the existence of fixed sequences of moves called
80 “lines,” from which deviations are rare. A *mainline* is a sequence of moves that has proven to be the most
81 challenging for both opponents, such that neither of them is able to claim an advantage. A *sideline* is a
82 sequence of moves that deviates from the established optimal sequence.

83 Each professional chess player has a numerical rating, usually assigned by the national or international
84 federation. FIDE (The International Chess Federation) uses the *Elo rating system* (Elo 1978). The rating
85 is relative, meaning that it is calculated based on a player’s past performance, and is intended to represent
86 a measure of the player’s ability. The typical rating of a strong intermediate player is ~ 1500 , and a rating
87 of 2500 is required to qualify for a Grandmaster (GM) title. Most elite tournaments involve ratings above
88 2700.

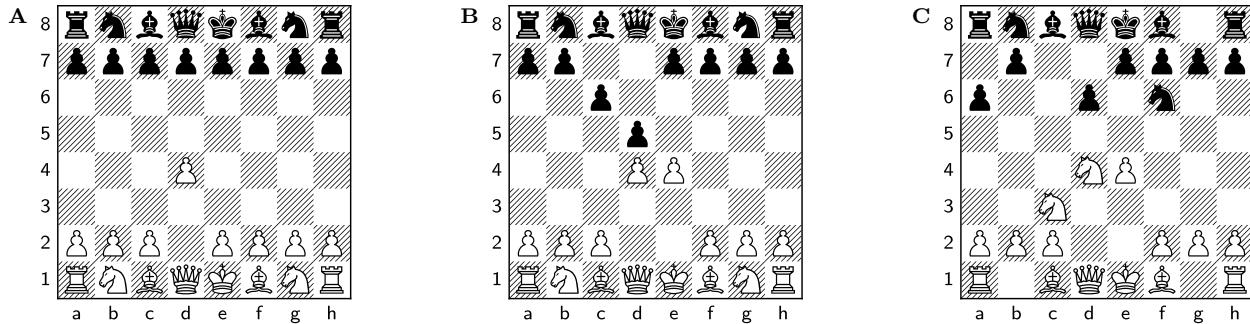


Figure 1: Example chess opening positions. (A) Queen's Pawn opening, 1. $d4$. (B) Caro-Kann opening, 1. $e4$ $c6$ 2. $d4$ $d5$. (C) Najdorf Sicilian opening, 1. $e4$ $c5$ 2. $Nf3$ $d6$ 3. $d4$ $cxd4$ 4. $Nxd4$ $Nf6$ 5. $Nc3$ $a6$.

89 3 Culture and chess

90 Chess is a cultural practice that is actively shaped by the people who participate in it. Individual players
 91 enter the practice, altering their performance and behaviors depending on the games they and others have
 92 played. Many cultural processes are involved in players' decision-making. To analyze these processes, we will
 93 concentrate on decisions made in the opening stage, because the relatively small number of positions allows
 94 players to reason about concrete moves and lines in their analyses and preparation. The factors affecting
 95 move choice that we discuss below are well-known to the chess community (Euwe and Nunn 1997; Desjarlais
 96 2011; Gobet 2018; Sousa 2002). Our goal here is to place them in the language of cultural evolution.

97 (a) **Objective strength.** One factor in move choice is the objective strength of the move, which reflects
 98 the potential for victory from resulting positions. An evaluation of a move's strength can be made by
 99 human analysis or with a chess computer. Many early moves have been extensively analyzed, so the
 100 best choice in those positions is well-known to most professional players.

101 (b) **Social context of the move.** Players are aware of how often a given move has been played in
 102 the past. This frequency evaluation can even be automated using websites such as OpeningTree.com.
 103 Developed theory often exists for more frequent moves, which can be the default choice for many players.
 104 Conversely, rare moves or *novelties* (previously unseen moves) can create problems for opponents who
 105 most likely have not prepared a response.

106 It is important to observe that the frequency with which a move is played is not directly proportional to
 107 the objective strength discussed in (a); there are moves that are objectively weak, but only conditional
 108 on the opponent finding a *single* good response. If this response is not played by the opponent, then the
 109 weak move may give an advantage. In some conditions, e.g. an unprepared opponent or lack of time,
 110 such a "weak" move can be highly advantageous. There have also been cases in which a historically
 111 frequent move was later "refuted" by deep computer analysis.

112 Beyond the move frequency, information on the success of strategies in leading to a win can play a
 113 role in move choice. In many positions, actually applying information about objective move strength
 114 is a complex problem. It is not enough to make a single strong move: a player must then *prove* an
 115 advantage by continuing to play further strong moves and executing plans that would lead to victory.
 116 The success rate of a move is an indicator of how hard it is to gain a long-term advantage leading to
 117 checkmate after choosing it.

118 The influence of elite players may also be important in move choice. Top players participate in invita-
 119 tional tournaments followed by the wider community. Players, presented with a choice of approximately
 120 similar moves, may choose the one that was played by a "superstar" player. This phenomenon is ex-
 121 exemplified by strategies named after famous players, such as "Alekhnine's Defense" (De Firmian 2008, p.
 122 159) or "Najdorf Sicilian" (De Firmian 2008, p. 246). Leading players can create trends; for example,
 123 the Berlin defense was popularized after grandmaster Vladimir Kramnik employed it to win the World
 124 Championship in 2000 (De Firmian 2008, p. 43).

125 (c) **Metastrategy.** Beyond trends in move choice, the “metastrategy” of chess is also evolving. Concep-
 126 tions of what a game of chess “should” look like have been changing through the years, and so has
 127 the repertoire of openings used by professional players (Hooper and Whyld 1992, p. 359). In the 18th
 128 century, the swashbuckling Romantic style of chess emphasized winning with “style”: declining gam-
 129 bits, or offers of an opponent’s piece, could be viewed as ungentlemanly, and Queen’s Pawn openings
 130 were rarely played (Shenk 2011, Ch. 5). However, by the World Championship of 1927, trends in chess
 131 had shifted to long-term positional play (see Shenk 2011, Ch. 8). Queen’s Pawn openings were the
 132 cutting edge of chess theory, and almost all games at that tournament began with the Queen’s Gambit
 133 Declined (Chessgames.com 2023a). Following World War I, hypermodern chess emphasized control
 134 of the board’s center from a distance, and its influence is evident in top-level games of the mid-20th
 135 century (Shenk 2011, Ch. 10). Hypermodern players refused to commit their pawns forward, preferring
 136 a position where pieces are placed on safe squares from which they could target the opponent’s weak-
 137 nesses. Recently, a style of chess mimicking computer play has emerged, in which players memorize
 138 long computer-supported opening lines and play risky pawn advances.

139 Chess is as much a social phenomenon as it is individual. Some players exhibit personal preferences for
 140 certain game features, such as early attacks or long and complicated endgames, and some aspects of
 141 play are determined by a player’s upbringing. For example, the Soviet school of chess formed around
 142 a certain energetic, daring, and yet “level-headed” style (Kotov and Yudovich 1961).

143 (d) **Psychological aspects.** Finally, psychological aspects and circumstances of the game contribute to
 144 move choice (Gobet, Retschitzki, and Voogt 2004). There are lines that are known to lead to a quick
 145 draw, and a player might elect to follow one of them, depending on the relevance of the outcome at
 146 a particular stage of the tournament. Openings may also be chosen to take opponents out of their
 147 comfort zone: in a game against a much weaker opponent, a dynamic and “pushy” line might give a
 148 player an advantage. Similarly, a master of attacking play might make mistakes when forced into a
 149 long positional game.

150 The complexities of move choice suggest that chess could serve as a model example for the quantitative
 151 study of culture. Players’ knowledge is continually altered by their own preparation, the games they play, and
 152 other players’ actions. In this sense, chess knowledge is “transmitted” over time, in part by players observing
 153 and imitating their own past actions and those of other players, or *transmission by random copying* (Bentley
 154 et al. 2007). The large historical database of chess games provides an opportunity to study deviations from
 155 random copying dynamics known as *transmission biases* or *social learning strategies* (Boyd and Richerson
 156 1985; Kendal et al. 2018; Laland 2004; Henrich and McElreath 2003). In our analysis of the transmission of
 157 chess knowledge, we will investigate *success bias* (players paying attention to win rates of different strategies),
 158 *prestige bias* (players imitating the world’s best grandmasters), and *frequency-dependent bias* (e.g. players
 159 choosing rare or unknown strategies).

160 4 Data

161 The dataset that serves as the foundation for this project is *Caissabase* – a compendium of ~5.6 million
 162 chess games, available for download at caissabase.co.uk. Games in the dataset involve players with Elo
 163 rating 2000 or above, and correspond to master-level play, allowing us to focus on the dynamics of high-level
 164 chess without the influence of players who are just learning the game.

165 In filtering the dataset, we have excluded games with errors that did not correspond to a valid sequence
 166 of moves as determined by a chess notation parser. We also filtered the dataset to keep only the games that
 167 record the result of the game, players’ names, and their Elo ratings, and we selected only the games played
 168 from 1971 to 2019. This filtering produced a table of 3,448,853 games.

169 In Figure 2, we highlight the main aspects of the dataset. Figure 2A shows that the number of games
 170 per year has been growing steadily since the 1970s, stabilizing at approximately 100,000. In total, there
 171 are 77,956 chess players in the dataset, with the number of players per year increasing in recent decades
 172 (Figure 2B).

173 It is widely accepted in the chess community that white has a slight advantage, as the side that starts
 174 the game. This view is reflected in Figure 2C, which plots the fractions of outcomes of games in each year.

175 Finally, Figure 2D shows the average length of games over time; games have become longer since the mid-
 176 1980s, which could mean that players are getting better at the game and no longer lose early. To explore
 177 the dynamics in the dataset further, we examine the frequencies of individual moves.

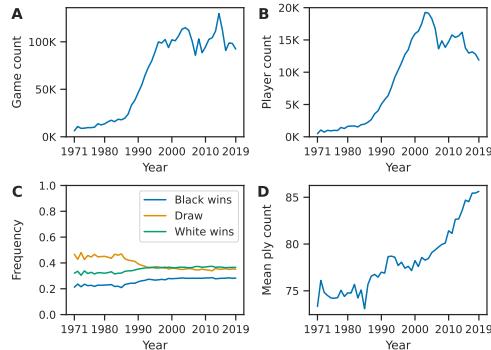


Figure 2: Features of the dataset. (A) Number of games per year. (B) Number of unique players per year. (C) Outcome proportions in each year. (D) Average game length per year, measured in the number of ploys (half-moves).

178 5 Modeling move choice

179 5.1 Move frequencies

180 Here, we discuss the dynamics of move frequencies over time for several game positions. Given a position on
 181 the board, the player whose turn it is has a choice of which move to play. In positions where their king is in
 182 check, players would only have few choices, since they are forced to get out of check. In some other cases,
 183 several equally attractive moves could be available, and any of the factors in Section 3 has the potential to
 184 affect the choice. Depending on the position, the move frequency trajectories look drastically different, as
 185 shown in Figure 3.

186 **Starting Position, ply 1.** Figure 3A shows the fractions of games in which different starting moves
 187 were played in each year from 1971 to 2019. The frequencies of the moves are mostly constant over time,
 188 suggesting that the starting move is a well-understood and well-developed idea.

189 **Sicilian Defense, ply 3.** Figure 3B shows move frequencies in response to **1. e4 c5** — the Sicilian
 190 Defense. In this position, there is a mainline move — **Nf3** — which an overwhelming majority of players
 191 prefer to play, while other moves are rarely played. Move distributions in which one specific move dominates
 192 are common, possibly because some sequences of moves are perceived as a single coherent unit.

193 **Queen's Gambit Declined, ply 7.** Figure 3C presents an example of a gradual change, which might
 194 have happened either due to a change in the metastrategy of play or because of the gradual development of
 195 chess theory.

196 **Najdorf Sicilian, ply 11.** A game starting with a Sicilian Defense can follow a sequence known as the
 197 Najdorf Sicilian. This sequence consists of 10 ploys, and the moves at ply 11 that have been played in the
 198 resulting position are presented in Figure 3D. Qualitatively, the picture is dramatically different from the
 199 early positions considered above. Among the responses to the Najdorf Sicilian, some moves are consistently
 200 popular choices (**Be2**, **Be3**, **Bg5**), some became “obsolete” in recent years (**f4**), and some rapidly gained
 201 popularity (**h3**).

202 The qualitative picture of move frequency changes can be summarized as follows. On one hand, very
 203 early opening moves do not show large fluctuations in frequencies, most likely because a significant change
 204 in frequency necessitates some kind of “innovation,” which is impossible to produce at such an early stage.
 205 On the other hand, moves beyond the standardized opening frequencies (after the 16th-20th ply) involve
 206 positions that do not repeat often enough for humans to memorize and analyze during preparation. This
 207 property makes quantitative analysis of specific late-game moves nearly impossible. Somewhere between

208 these two extremes are positions at which chess theory is actively developed and tested. Positions such
 209 as the Najdorf Sicilian occur early enough in the game to be reached often, but are advanced enough to
 210 provide many continuation possibilities that are approximately equal in terms of objective strength. In such
 211 positions, all factors, including engine analysis, move frequency, social context, stylistic trends, and personal
 212 preferences could play a role in move choice.

213 **5.2 Population-level modeling of move choice**

214 We develop a statistical model that can help to understand the data described above. A complete model of
 215 move choice would involve parameters associated with the whole population, with subgroups of players (e.g.
 216 top 50 players), or with each individual. Such a model would be very complex, so our model is restricted
 217 to population-level features of dynamics; we analyze frequency-dependent, success, and prestige biases.
 218 Features concerning match-level dynamics, personal development, and preferences of individual players are
 219 outside of the scope of our analysis, and are present in the form of residual variance, not explained by our
 220 population-level treatment.

221 **5.2.1 Unbiased model**

222 First, we consider a null model that generates the simplest dynamics, reflecting unbiased transmission of
 223 move choice preferences from one year to the next. Conceptually, the model assumes that each year, players
 224 “sample” a move randomly from games that were played in the last year. More precisely, fix an arbitrary
 225 chess position and suppose that in each year t , exactly N_t games having this position were played. The data
 226 for the model are the counts of k different response moves, denoted by $\mathbf{x}_t = (x_t^1, \dots, x_t^k)$. We do not attempt
 227 to model appearance of novel strategies, so we will assume that all counts are positive, $x_t^i > 0$. The vector
 228 of response strategy counts in the next year, \mathbf{x}_{t+1} , is multinomially distributed,

$$229 \quad \mathbf{x}_{t+1} \sim \text{Multinomial}(N_{t+1}, \boldsymbol{\theta}_t). \quad (1)$$

230 The probability vector $\boldsymbol{\theta}_t$ has the Dirichlet distribution with counts in the current year, \mathbf{x}_t , as Dirichlet
 231 allocation parameters,

$$232 \quad \boldsymbol{\theta}_t \sim \text{Dirichlet}(\mathbf{x}_t). \quad (2)$$

233 The multinomial likelihood depends on a positive integer parameter n and a vector of probabilities $\boldsymbol{\theta}$
 234 that sum to one,

$$235 \quad f_M(\mathbf{y}; n, \boldsymbol{\theta}) = \frac{n!}{y_1! \cdots y_k!} \theta_1^{y_1} \cdots \theta_k^{y_k}; \sum_{i=1}^k y_i = n. \quad (3)$$

236 The Dirichlet likelihood depends on a vector of positive real numbers $\boldsymbol{\alpha}$:

$$237 \quad f_D(\boldsymbol{\theta}; \boldsymbol{\alpha}) = \frac{\Gamma\left(\sum_{i=1}^k \alpha_i\right)}{\prod_{i=1}^k \Gamma(\alpha_i)} \prod_{i=1}^k \theta_i^{\alpha_i-1}. \quad (4)$$

238 These two likelihoods can be combined into the compound Dirichlet-multinomial likelihood by integrating
 239 over $\boldsymbol{\theta}$ (Johnson, Kotz, and Balakrishnan 1997, pp. 80-83),

$$240 \quad f_{DM}(\mathbf{y}; n, \boldsymbol{\alpha}) = \frac{n! \Gamma\left(\sum_{i=1}^k \alpha_i\right)}{\Gamma\left(n + \sum_{i=1}^k \alpha_i\right)} \prod_{i=1}^k \frac{\Gamma(y_i + \alpha_i)}{y_i! \Gamma(\alpha_i)}, \quad (5)$$

241 which will be the likelihood for the model. In other words, under our unbiased model, the counts \mathbf{x}_{t+1} of
 242 moves in year $t + 1$ are distributed with probability density function

$$243 \quad p(\mathbf{x}_{t+1} | N_{t+1}, \mathbf{x}_t) = f_{DM}(\mathbf{x}_{t+1}; N_{t+1}, \mathbf{x}_t), \quad (6)$$

244 so that the counts in the previous year \mathbf{x}_t take the roles of the Dirichlet parameters $\boldsymbol{\alpha}$. As a shorthand, we
245 write

$$246 \quad \mathbf{x}_{t+1} \sim \text{Dirichlet-multinomial}(N_{t+1}, \mathbf{x}_t). \quad (7)$$

247 For a vector \mathbf{y} having a Dirichlet-multinomial distribution with parameters n and $\boldsymbol{\alpha}$, the expectation is

$$248 \quad \mathbb{E}[\mathbf{y}] = \frac{n}{\sum_{j=1}^k \alpha_j} \boldsymbol{\alpha}. \quad (8)$$

249 For our model, this formula yields

$$250 \quad \mathbb{E}[\mathbf{x}_{t+1}] = \frac{N_{t+1}}{\sum_{j=1}^k x_t^j} \mathbf{x}_t = \frac{N_{t+1}}{N_t} \mathbf{x}_t, \quad (9)$$

251 meaning that no changes are expected to happen in this unbiased model, except possibly for the change in
252 the number of games played. The strategies are “transmitted” from one year to the next proportionally to
253 their current frequencies in the population.

254 The null model is analogous to a neutral many-allele Wright–Fisher model in population genetics (Ewens
255 2004). The multinomial distribution arises as a representation of a biological process in Wright–Fisher
256 models, where individuals in the next generation “choose” a parent from the previous generation. In our
257 model of move choice, such sampling is a metaphor that does not correspond exactly to an observed physical
258 process. As we discuss below, working with counts directly via the Dirichlet distribution allows us to account
259 for a potentially higher variance in the strategy counts relative to the multinomial distribution (Corsini and
260 Viroli 2022). Use of the Dirichlet-multinomial likelihood is a common way of dealing with overdispersion
261 in count data in many fields, including ecology (Harrison et al. 2020) and microbiome studies (Wadsworth
262 et al. 2017; Osborne, Peterson, and Vannucci 2022).

263 It should be noted that chess players pay attention to games further back in the past than just the last
264 year. Our null model is still a reasonable representation of the process for several reasons. First, there is a
265 high degree of autocorrelation in the move count data (Schaigorodsky, Perotti, and Billoni 2016), meaning
266 that it is likely that the most recent data point is representative of counts in the last several years. Second,
267 players tend to look only at *select* famous games of the past, whereas the more recent games can be more
268 easily perceived in their totality.

269 5.2.2 Fitness and frequency-dependence

270 A strategy transmitted at a rate greater than expected from the null model can be said to have higher
271 *cultural fitness* (Cavalli-Sforza and Feldman 1981). Conversely, a strategy having a lower transmission rate
272 than expected has lower cultural fitness. Selection on strategies is carried out by players when they decide
273 which move to play based on any of the factors discussed in Section 3. We can account for cultural fitness
274 by associating a *fitness coefficient* f_i to each strategy i . For now, assume that fitness values are constant,
275 $0 < f_i < \infty$. The distribution of moves in the next year can then be described as

$$276 \quad \mathbf{x}_{t+1} \sim \text{Dirichlet-multinomial}(N_{t+1}, f_1 x_t^1, \dots, f_k x_t^k), \quad (10)$$

277 with the expression for expected counts in the next year becoming

$$278 \quad \mathbb{E}[x_{t+1}^i] = N_{t+1} \frac{f_i x_t^i}{\sum_{j=1}^k f_j x_t^j}. \quad (11)$$

279 As the coefficients f_i are constrained only in that they must be positive, this way of encoding the parameters
280 is useful for inference purposes, especially in the Bayesian framework we employ below. It is straightforward
281 to find reasonable prior distributions on $(0, \infty)$, and absence of “sum to one” constraints makes it easy for
282 an MCMC sampler to efficiently explore the posterior distribution (Gelman, Carlin, et al. 2020, Ch. 12).

283 However, interpretation of the model is more convenient with a different parameterization: instead of
284 considering values of f_i , we let

285

$$\bar{f}_t = \frac{1}{N_t} \sum_{j=1}^k f_j x_t^j \quad (12)$$

286 be the *mean fitness* at time t , and define

287

$$f'_i = f_i / \bar{f}_t \quad (13)$$

288 to be normalized fitness coefficients, such that $\sum_{i=1}^k f'_i = 1$. Rewriting eq. (11) as

289

$$\mathbb{E} [x_{t+1}^i] = \frac{N_{t+1}}{N_t} \frac{f_i}{\bar{f}_t} x_t^i = \frac{N_{t+1}}{N_t} f'_i x_t^i, \quad (14)$$

290 we see that $f'_i = 1$ implies no expected change in the frequency of strategy i from time t to $t+1$. Therefore,
291 this choice of parameterization allows us to view f'_i as growth rates, with $f'_i = 1$ corresponding to no selective
292 advantage, i.e. the neutral case. The value of \bar{f}_t , in turn, adjusts the variance of the counts in the next year.

293 To summarize, in our Dirichlet-multinomial model, the f_i 's measure two phenomena at once; their *relative*
294 values represent selection, while the *mean* value of the f_i 's measures overdispersion with respect to the
295 multinomial model. Mathematically, the expectation of a Dirichlet(α)-distributed random variable is invariant
296 with respect to multiplying α by a positive constant, but its variance is determined by the magnitudes
297 of the parameters. Although the f_i are convenient to use in inference, we will interpret the results in terms
298 of a parameterization that involves f'_i and \bar{f}_t (eqs. (12) and (13)).

299 We now allow f_i to depend on the frequency of the strategy, such that

300

$$\mathbf{x}_{t+1} \sim \text{Dirichlet-multinomial}(N_{t+1}, f_1(x_t^1/N_t) x_t^1, \dots, f_k(x_t^k/N_t) x_t^k). \quad (15)$$

301 In this way, we are able to incorporate *frequency-dependent selection* phenomena, which have previously been
302 shown to be present in models of cultural data (e.g. Newberry and Plotkin 2022). Hence, we will refer to f_i
303 as *frequency-dependent fitness functions*. The expression for the mean fitness now becomes

304

$$\bar{f}_t = \sum_{j=1}^k f_j(p_t^j) p_t^j, \quad (16)$$

305 where $p_t^j = x_t^j / N_t$, and k is the number of distinct moves played from a position.

306 We choose a piecewise-constant form for the functions f_i , as this form introduces minimal assumptions
307 about their shape while keeping the number of parameters low. That is, for $i = 1, \dots, k$, we have

308

$$f_i(x) = \begin{cases} c_1^i & \text{if } x \in [0, b_1^i), \\ c_j^i & \text{if } x \in [b_{j-1}^i, b_j^i), \\ c_\ell^i & \text{if } x \in [b_{\ell-1}^i, 1], \end{cases} \quad (17)$$

309 where c_j^i are values of f_i and b_j^i are breakpoints that determine the boundaries of constant segments. For
310 ℓ segments, $\ell - 1$ breakpoints $b_j^i \in (0, 1)$ must be specified. We choose quartiles of move frequencies as the
311 values for b_j^i , so that each function f_i has three breakpoints and $\ell = 4$ constant segments. This choice does
312 not uniformly cover the domain of f_i , but allows for the same amount of data to be used in estimating each
313 segment.

314 **5.2.3 Full model**

315 We complete our model by accounting for additional features that could affect move choice dynamics. In the
316 final model, the vector of strategy counts in the year $t+1$ again has the Dirichlet-multinomial distribution
317 with parameters N_{t+1} and α :

318

$$\mathbf{x}_{t+1} \sim \text{Dirichlet-multinomial}(N_{t+1}, \alpha). \quad (18)$$

319 However, vector α is now defined as

320

$$\alpha_i = \exp(\beta_i \cdot \mathbf{y}_t^i) f_i(x_t^i/N_t) x_t^i. \quad (19)$$

321 Here, x_t^i is the count of games with the i th strategy in year t , f_i is a piecewise constant function of the
 322 strategy frequency described in Section 5.2.2 above, and β_i is a vector of constant coefficients.

323 Additional features beyond just the move count or frequency are denoted \mathbf{y}_t^i in eq. (19). There are three
 324 of these features:

- 325 1. The average outcome of the strategy in the whole population for games in year t , with a win for the
 326 side making the move encoded as 1, a win for the opposing side encoded as -1 , and a draw encoded
 327 as 0. We denote the corresponding coefficient by $\beta_{\text{win},i}$.
- 328 2. The average outcome of the strategy among the top 50 players in the dataset in year t , encoded in the
 329 same way as the population win rate. The list of top 50 players was compiled separately for each year
 330 using the average Elo rating of the players in that year. We denote the corresponding coefficient by
 331 $\beta_{\text{top50-win},i}$.
- 332 3. The frequency of the strategy among the top 50 players in year t . We denote the corresponding
 333 coefficient by $\beta_{\text{top50-freq},i}$.

334 These features represent biases different from frequency dependence that could also contribute to cultural
 335 fitness of moves; if the average outcome significantly affects move choice, success bias is present in trans-
 336 mission, as represented by coefficients $\beta_{\text{win},i}$ and $\beta_{\text{top50-win},i}$. Similarly, prestige bias could be important for
 337 transmission if players imitate the top 50 players as represented by coefficients $\beta_{\text{top50-win},i}$ and $\beta_{\text{top50-freq},i}$.

338 The extra features are included in the model as an exponential factor $\exp(\beta_i \cdot \mathbf{y}_t^i)$. This choice of factor
 339 has two purposes: first, it ensures that the variables α_i stay positive for all parameter values and data points;
 340 second, it represents *multiplicative* effects of several types of transmission biases, a common approach both
 341 in theoretical models of cultural evolution (see e.g. Denton et al. 2020; Lappo, Denton, and Feldman 2023)
 342 and in analyses of experimental data (Barrett, McElreath, and Perry 2017; Deffner, Kleinow, and McElreath
 343 2020; Canteloup et al. 2021).

344 5.2.4 Inference

345 In total, the parameter vector $\boldsymbol{\theta} = (c_j^i, \beta_i)$ has length $7k$, where k is the number of different moves played
 346 in a given position. For each move, there are three coefficients $\beta_{\text{win},i}$, $\beta_{\text{top50-win},i}$, $\beta_{\text{top50-freq},i}$, as well as four
 347 values $c_1^i, c_2^i, c_3^i, c_4^i$ characterizing the function f_i in eq. (17).

348 We choose to fit the model in a Bayesian framework using Markov Chain Monte Carlo sampling, as this
 349 choice makes implementation of the model straightforward and allows us to obtain both point estimates
 350 and uncertainty quantification from the same analysis. To conduct Bayesian inference, we need to specify
 351 a prior distribution for $\boldsymbol{\theta}$. Following Gelman, Carlin, et al. (2020), we specify non-informative priors for
 352 each parameter. Each constant segment c_j^i of each function f_i was assigned an $\text{Exp}(1)$ prior, such that f_i
 353 is always non-negative, and the prior mean of f_i is equal to one, corresponding to neutrality. We assigned
 354 each parameter β_i a normal $\mathcal{N}(0, 1)$ prior and standardized the corresponding features \mathbf{y}_t^i to have zero mean
 355 and unit variance. Given these priors and the model likelihood (defined in eqs. (18) and (19)), samples
 356 were generated from the posterior distribution using the Hamiltonian Markov Chain Monte-Carlo sampler
 357 provided by the Stan software package (Gelman, Lee, and Guo 2015; Stan Development Team 2023). For
 358 this procedure, we only consider the data from 1980 to 2019, since earlier years have significantly less data
 359 available.

360 Many moves were played only a few times in the whole dataset. To prevent extremely rare moves from
 361 inflating the number of parameters, we have combined moves that individually have average frequency less
 362 than 2% into a single category called “other.” In addition, it is commonly accepted by professional players
 363 that rare moves serve the same purpose: to take the opponent “out of theory” into positions where neither
 364 player had spent significant time preparing, leading to more chaotic and tense games.

365 There are also years in which some move counts are equal to zero, and in this case, our assumption that
 366 move counts are nonzero is violated. To remedy this situation, in computational inference we replace the
 367 parameter α from eq. (19) by $\alpha + 1$, such that for all strategies,

$$368 \quad \alpha_i = 1 + \exp(\beta_i \cdot \mathbf{y}_t^i) f_i(x_t^i / N_t) x_t^i. \quad (20)$$

369 This approach is commonly used to deal with the potential for zero counts of rare categories in models
 370 involving multinomial likelihoods. For example, it is used in Dirichlet-multinomial modeling of ecological
 371 data (Harrison et al. 2020) and in multinomial “assignment tests” of individuals to populations in genetics
 372 (Paetkau et al. 1995; Rosenberg 2005). For moves with non-zero counts, this correction biases expectations
 373 from x_t^i/N_t to $(x_t^i + 1)/(N_t + K)$, where K is the number of strategies. The bias is negligible when move
 374 counts are in the hundreds or above.

375 6 Modeling results

376 We discuss model fits for three positions at three different depths in the game tree: the Queen’s Pawn opening
 377 at ply 2 (**1. d4**), the Caro-Kann opening at ply 5 (**1. e4 c6 2. d4 d5**), and the Najdorf Sicilian at ply 11
 378 (**1. e4 c5 2. Nf3 d6 3. d4 cxd4 4. Nxd4 Nf6 5. Nc3 a6**). The parameters of the Stan HMC sampler
 379 and convergence diagnostics for each position are reported in Supplementary Information S1. In total, there
 380 are $N = 1,083,146$ games with the Queen’s Pawn opening, $N = 80,890$ games with the Caro-Kann opening,
 381 and $N = 82,557$ games with the Najdorf Sicilian opening. Input data such as raw strategy counts and win
 382 rates in each year appear in Supplementary Information S2.

383 Figure 4 shows the original frequency data, the move choice probabilities as estimated by the model, and
 384 estimates of frequency-dependent fitness $f_i'(x_t^i/N_t) = f_i(x_t^i/N_t)/\bar{f}_t$ of moves over time, as defined in eqs. (12)
 385 and (13). Comparing the first and second rows of panels in Figure 4, our model fits the data well, with
 386 estimated move choice probabilities (panels B, E, H) matching the actual move frequencies (panels A, D, G).
 387 The estimates of the parameters f_i and β_i are presented in Figures 5 and 6, respectively. For point estimates,
 388 the posterior median is used, and for quantifying uncertainty, we report posterior 1% and 99% quantiles for
 389 each estimate. In our analysis, we focus on effects β for which the middle 98% of the distribution does not
 390 contain zero and on significant effects that have reasonable justifications in chess literature or history. Finally,
 391 Figure 7 illustrates frequency dependence in the choice of strategies using posterior predictive sampling. We
 392 discuss Figure 7 in detail below.

393 6.1 Frequency dependence: Queen’s Pawn opening

394 Considering the responses to the Queen’s Pawn opening in Figure 4A, from 1980 to 2005, the move **d5**
 395 is, on average, increasing in popularity, with this trend reversing after 2005. The move **Nf6** shows the
 396 opposite dynamics. In fact, in World Championship matches of 2016, 2018, and 2021, players responded
 397 with **Nf6** in all but one game in this position (see e.g. Chessgames.com 2023b). Gradual changes can be
 398 caused by cultural drift (Bentley et al. 2007) or changes in metastrategy. However, our model suggests that
 399 transmission biases may play a role as well. In particular, the values of the fitness functions for **d5** and **Nf6**
 400 observed in Figure 4C are higher when they are at lower frequencies. The plots of frequency-dependent
 401 function functions $f_i(x)$ for x from 0 to 1 are shown in Figure 5A, and there is a downward slope in the values
 402 of $f_i(x)$ characteristic of negative *frequency-dependent bias*, or anti-conformity. Win rates or features related
 403 to top-50 players appear to have no effect on the choice of **d5** or **Nf6** (Figure 6A). The other strategies are
 404 played in only a small proportion of games, and for those strategies, it may be hard to distinguish meaningful
 405 effects from statistical artifacts.

406 To further understand the nature of frequency dependence, we plot expected deviations of move choice
 407 probability $\mathbb{E}[p_{t+1}^i]$ from random choice ($\mathbb{E}[p_{t+1}^i] = p_t^i$) for initial frequencies $x_t^i/N_t = 0, 0.02, \dots, 0.98, 1$,
 408 keeping other variables constant (see Supplementary Information S3 for a detailed description of the calculation).
 409 For the Queen’s Pawn opening, this plot appears in Figure 7A. The choice of move **d5** clearly has
 410 negative frequency dependence, as it is chosen with probability higher than what is expected under random
 411 choice when its frequency is low and with lower probability when its frequency is high, with deviations from
 412 random choice as large as 1.9%. Similar behavior can be seen for the move **Nf6**.

413 6.2 Success bias: Caro-Kann

414 In the Caro-Kann opening, the move **exd5** is used less and less in more recent years (Figure 4D). The plot
 415 of move fitnesses in Figure 4F and the choice probability plot in Figure 7B suggest that negative frequency-
 416 dependent dynamics play a role in determining this behavior. However, the functions f_i are not the only

417 determinants of move frequencies in our model; the coefficients β_i shown in Figure 6B suggest that the choice
 418 to play the move **exd5** is affected by the win rate in the population, indicating *success bias*. The decrease
 419 in the frequency of **exd5** then comes from many players losing after playing this move (see Figure S2K).
 420 Indeed, computer engines have shown that the move **e5** provides the strongest winning probability for the
 421 player, while after **exd5** the opponent can “equalize” the position and take over the game (Schandorff 2021).

422 6.3 Prestige bias: Najdorf Sicilian

423 In the case of the Najdorf Sicilian, in Section 5.1, we highlighted **h3** as a recent strong trend. The frequency-
 424 dependent fitness function $f_{\mathbf{h3}}$ shows that there is no negative frequency-dependent bias for a choice of **h3**
 425 (Figure 5C); in fact, Figure 7C shows that **h3** is, on average, chosen with probability greater than random
 426 choice at every value of the frequency in the previous year. This result suggests that the move is a genuine
 427 innovation, becoming more popular “on its own merit” and not because of frequency-dependent trends. The
 428 coefficient for the win rate among the top 50 players, $\beta_{\mathbf{h3},\text{top50-win}}$ is large (Figure 6C), meaning that the
 429 increase in the frequency of **h3** could possibly be due to a trend started by elite players, which then led to
 430 wider adoption and development of theory. We conclude that the choice to play **h3** is subject to *prestige bias*.
 431 In chess literature, side pawn pushes such as **h3**, **h4**, **a3**, and **a4** in various positions are ideas introduced
 432 by strong chess engines (Sadler and Regan 2019, Ch. 9) in the most recent decade. This trend may explain
 433 why top players, who often have teams analyzing engine suggestions for them, have been adopting the move
 434 **h3**, subsequently influencing the general population.

435 6.4 Game sample size N_s

436 Finally, we address the way our model characterizes the variance of move counts in the data. As we have
 437 discussed in Section 5.2.2, the mean fitness \bar{f}_t controls the variance of x_{t+1}^i conditional on model parameters
 438 and x_t^i . Mathematically, this influence can be seen as follows. As a shorthand, let

$$439 \quad p_i = \frac{f_i(x_t^i/N_t) x_t^i}{\sum_{j=1}^K f_i(x_t^j/N_t) x_t^j} \quad (21)$$

440 be the “frequencies” of strategies assuming no effect of prestige or success biases. Then the variance of x_{t+1}^i
 441 is (Johnson, Kotz, and Balakrishnan 1997, p. 81):

$$442 \quad \text{Var}_{\text{DM}}(x_{t+1}^i \mid x_t^i) = N_{t+1} p_i (1 - p_i) \left(\frac{N_{t+1} + N_t \bar{f}_t}{1 + N_t \bar{f}_t} \right). \quad (22)$$

443 The last term of eq. (22) is a decreasing rational function of \bar{f}_t , so $\text{Var}_{\text{DM}}(x_{t+1}^i \mid x_t^i)$ decreases as \bar{f}_t grows.
 444 In the fitted models, the mean fitness \bar{f}_t is consistently below 1 for all three positions considered, equal
 445 to ~ 0.22 for the Queen’s Pawn, ply 2 position (approximately constant over time), ~ 0.3 for Caro-Kann,
 446 ply 5, and ~ 0.45 for Najdorf Sicilian, ply 11 (Figure S3A). That we have observed $\bar{f}_t < 1$ can be interpreted
 447 in relation to players’ behavior. Mechanistically, our model describes players observing move counts in a
 448 previous year, adjusting their preferences because of transmission biases, and then selecting a move with
 449 *higher variance* than what is expected if $\bar{f}_t = 1$, corresponding to multinomial choice. We define *game sample*
 450 *size* $N_s(t) = \bar{f}_t N_t$ to be the number of games in the population at time t that achieves the same value for the
 451 variance $\text{Var}_{\text{DM}}(x_{t+1}^i \mid x_t^i)$ as in eq. (22) under the condition $\bar{f}_t = 1$. Indeed, with game sample size defined
 452 as $N_s(t) = \bar{f}_t N_t$, eq. (22) becomes

$$453 \quad \text{Var}_{\text{DM}}(x_{t+1}^i \mid x_t^i) = N_{t+1} p_i (1 - p_i) \left(\frac{N_{t+1} + N_s(t)}{1 + N_s(t)} \right), \quad (23)$$

454 so that now a mechanistic interpretation of our model consists of players observing move counts in a pop-
 455 ulation of size $N_s(t)$, adjusting their preferences according to transmission biases, and then choosing the
 456 strategy according to a multinomial distribution.

457 As the game progresses from early to later positions, the players sample a higher fraction of all games
 458 in their decision-making process (Figure S3). Possibly, the fraction of games sampled by players is low for
 459 early positions because tens of thousands of professional games each year start with a move **d4** (Figure S2A),

460 and it is likely that players cannot monitor all of these games. However, a player who specializes in playing
 461 the Najdorf Sicilian may pay attention to a larger proportion of games involving this opening, because the
 462 total number of games to analyze is much smaller for ply 11 in the Najdorf Sicilian (Figure S2C) than in the
 463 Queen's Pawn at ply 2 (Figure S2A).

464 7 Discussion

465 We have developed a population-level model for the influence of transmission biases on move choice in chess.
 466 We have shown that many of the moves analyzed are under negative frequency-dependent cultural selection,
 467 having higher fitness and being favorably selected with probability greater than random choice at lower
 468 frequencies (Figures 4 and 7). This result suggests that anti-conformity is important in the transmission
 469 of chess opening strategies. In addition, our model is able to identify moves for which other factors play
 470 a role: the dynamics of **h3** in the Najdorf Sicilian are affected by the win rate among the top 50 players
 471 (Figure 6C), indicating the presence of prestige bias, and the choice of **exd4** in the Caro-Kann suggests
 472 success bias (Figure 6B).

473 We have also inferred absence of significant success bias for many strategies, consistent with our discussion
 474 in Section 3: a win in chess is conditional on strong performance at every move, so making decisions about the
 475 opening based on the average eventual outcome may not be the best choice from many positions. Similarly,
 476 following choices of top players would be effective only if a strong continuation were found. Support for
 477 our findings of strong success bias in the Caro-Kann and prestige bias in the Najdorf Sicilian comes from
 478 information commonly known to professional chess players, such as new insights from extensive computer
 479 analysis, or new styles of play introduced by computer players.

480 In addition to measuring transmission biases, we have introduced a concept of “game sample size” N_s
 481 that appears naturally from the analysis of game counts (Section 6.4). N_s can be interpreted as the number
 482 of games that players observe when making use of social information. We have shown that later positions
 483 have a greater ratio N_s/N , which could mean that players use more complete information when positions
 484 become more complicated and less standardized (Figure S3).

485 The estimated game sample size relates to several theoretical concepts. First, from the perspective of
 486 population genetics, N_s is equivalent to variance effective population size $N_e(t) = \bar{f}_t N_t$ used to account
 487 for overdispersed allele counts relative to a standard Wright-Fisher model (Ewens 2004; Caballero 2020,
 488 Ch. 3). Second, theoretical studies of conformity typically involve individuals sampling role models from the
 489 population and making a choice based on this sample (Boyd and Richerson 1985; Denton et al. 2020; Lappo,
 490 Denton, and Feldman 2023). The number of role models is usually taken to be equal to a small number
 491 such as 3, which is much smaller than the population size. The value of N_s can be seen as relating to these
 492 theoretical models, measuring how many role models are sampled from the population.

493 7.1 Related and complementary work

494 Our model complements other recent work on measuring the strength of transmission biases in cultural
 495 datasets of competitive activities, such as the studies by Beheim, Thigpen, and McElreath (2014) on Go,
 496 Miu et al. (2018) on programming contests, and Mesoudi (2020) on football strategy. Beheim, Thigpen, and
 497 McElreath (2014) employed multilevel logistic regression to study social and individual learning involved in
 498 the board game Go. They observed strong success bias and *positive* frequency-dependence for the choice
 499 of one of the opening moves. Positive frequency-dependence in Go and negative frequency-dependence in
 500 chess could be connected to the differences in the communities around each game. Among board games,
 501 chess is unique in its use of computer engines. Computer chess engines became widely available to elite
 502 players starting from the late 1990s, revolutionizing tournament preparation. Finding the best response in
 503 a position or solving a chess puzzle became possible in a matter of seconds rather than hours or days. Post-
 504 game analysis now helps players quickly identify and address their weaknesses, which means that players
 505 can no longer “catch” many opponents with the same “trick.” Playing into popular lines can also lead to
 506 positions in which the opponent has the most preparation. In contrast, the space of possible moves in the
 507 opening is much larger in Go, and computers have reached human level only in the most recent decade.
 508 Hence, the effectiveness of studying a *particular* position in Go is diminished, and players may choose to
 509 conform to a popular strategy for their first move and hope to outplay the opponent later in the game.

510 Transmission biases and social learning strategies in various games have also been measured in field
 511 observations and experiments (e.g. Aplin, Sheldon, and McElreath 2017; Barrett, McElreath, and Perry 2017;
 512 Deffner, Kleinow, and McElreath 2020; Vale et al. 2017; Canteloup et al. 2021). Studies using experimental
 513 data typically involve models that estimate parameters for each observed individual or category of individuals,
 514 whereas we focus on analysis of large-scale population-level data. Still, some aspects of such models are
 515 similar to our Dirichlet-multinomial approach. For example, in the experience-weighted attraction (EWA)
 516 model employed by Barrett, McElreath, and Perry (2017) to analyze social learning in Capuchin monkeys
 517 (also used in Canteloup et al. (2021) and Deffner, Kleinow, and McElreath (2020)), decisions are influenced
 518 by a convex combination of functions representing individual and social learning, and different social biases
 519 are encoded in a multiplicative way similar to eq. (19) in our model. This similarity suggests that our model
 520 could potentially be modified to model move choice of each player via a Dirichlet-multinomial likelihood,
 521 enabling comparisons of learning modalities between individual players.

522 Frequency-dependent selection has previously been measured by Newberry and Plotkin (2022) in other
 523 large datasets such as baby name statistics and dog breed popularity data. These authors focused on
 524 modeling “exchangeable” entities, for which selection acts on every variant in exactly the same way. They
 525 estimate a single fitness function that is shared by every cultural variant and that characterizes average
 526 frequency-dependence in the population. Chess differs from such contexts in that it contains the concept of
 527 a “win.” Each chess move leads to a different position, altering the winning chances of each player, so that
 528 strategies at different stages of the game are dependent. Thus, our model assigns a separate fitness function
 529 to each individual strategy, treating strategies as *nonexchangeable*.

530 Our model also extends the multinomial model of Newberry and Plotkin (2022) by incorporating the
 531 Dirichlet distribution into the model likelihood. This approach has a clear mechanistic interpretation in terms
 532 of players’ behaviors and allows us to perform efficient Bayesian inference of model parameters. Statistical
 533 models of count data based on the Dirichlet-multinomial likelihood are known in many related areas, including
 534 linguistics (e.g. Madsen, Kauchak, and Elkan 2005), human genetics (Wang et al. 2023), molecular ecology
 535 (Harrison et al. 2020), and microbiome data analysis (e.g. Osborne, Peterson, and Vannucci 2022; Wadsworth
 536 et al. 2017).

537 7.2 Caveats

538 The parameters of our model can be represented in two different ways. One uses k fitness functions f_i that
 539 are only constrained to be non-negative and are naturally suited to Bayesian inference. Another uses k
 540 functions f'_i (eq. (13)) that are required to sum to one, together with the mean fitness \bar{f}_t (eq. (16)). While
 541 estimates of f_i (Figure 5) show presence of frequency-dependent dynamics, it is hard to characterize strength
 542 and significance of frequency-dependence using the values of f_i . To understand strength and significance
 543 of frequency-dependent effects we plot the growth rates f'_i of strategies (Figure 4) and compute expected
 544 deviation of move counts from random choice (Figure 7). Other analyses could potentially be used, for
 545 example evaluating whether the function f_i is significantly different from a constant function.

546 Another statistical issue that could affect our inferences is the possibility of correlated input features, so
 547 that the β coefficients might not be easily identifiable. However, features for the games played by the top-50
 548 players show behaviors that differ from those of the total population of around 15,000 players (Figure S2).
 549 Thus, for the factors we consider, it appears that distinguishing the influence of the top-50 players from a
 550 general influence of master-level players is indeed possible.

551 Our model incorporates only a subset of possible features that could be relevant to move choice, such
 552 as highly developed theory or objective strength as determined by computer evaluation (Section 3). How-
 553 ever, the presence of significant success bias and prestige bias could correspond to mechanisms of social
 554 learning *about* these other features. For example, suppose a player observes several successful games in top
 555 tournaments with **h3** in the Najdorf Sicilian, and then studies the move. The player could learn about the
 556 enthusiasm of modern computer engines for this move and could incorporate it into future play. For our
 557 model, this mechanism is indistinguishable from the player simply copying a successful move. This reason-
 558 ing about a player’s mechanistic evaluation process suggests a potential direction for further modeling that
 559 would incorporate varying individual behaviors and knowledge about position evaluation.

560

7.3 Conclusion

561 Data from the last five decades of high-level chess games can be evaluated in the context of cultural trans-
 562 mission and evolution. We have shown that the cultural “features” of transmission can be measured from
 563 move choice decisions in various positions by professional players. In particular, we have inferred influences
 564 of frequency-dependent bias, success bias (win rate), and prestige bias (the use of the move by the very top
 565 players). The prevalence of anti-conformity and the lack of strong success bias for many strategies reflects
 566 the nature of opening play in chess, which involves extensive preparation and assessment of opponents’
 567 likely preparation. We have also connected the presence or absence of transmission biases with chess theory.
 568 The fact that many of our quantitative results correspond to ideas well-known to professional chess players
 569 suggests that our modeling could be useful to chess analysts and historians. In particular, many qualitative
 570 explanations are available for the popularity of certain strategies, and a quantitative evaluation of move
 571 frequency dynamics could help test the narratives familiar to chess players with statistical evidence. More
 572 broadly, our statistical approach could potentially be used to complement the historical study of cultural
 573 trends in other games that contain discrete choices, or even in other cultural domains in which circumscribed
 574 discrete data are recorded.

575 **Data and code.** The code to generate figures in this paper and links to access the dataset are available at
 576 github.com/EgorLappo/cultural_transmission_in_chess.

577 **Funding.** We acknowledge NSF grant BCS-2116322 and grant 61809 from the J. T. Templeton Foundation for
 578 support.

579 **Acknowledgments.** We thank Sharon Du for suggesting the problem and Kaleda Denton, Bret Beheim, and an
 580 anonymous reviewer for helpful comments on the manuscript.

581

References

582 Aplin, Lucy M, Ben C Sheldon, and Richard McElreath (2017). “Conformity does not perpetuate suboptimal
 583 traditions in a wild population of songbirds”. In: *Proceedings of the National Academy of Sciences* 114.30,
 584 pp. 7830–7837.

585 Barrett, Brendan J, Richard L McElreath, and Susan E Perry (2017). “Pay-off-biased social learning underlies
 586 the diffusion of novel extractive foraging traditions in a wild primate”. In: *Proceedings of the Royal Society
 587 B* 284.1856, p. 20170358.

588 Beheim, Bret Alexander, Calvin Thigpen, and Richard McElreath (2014). “Strategic social learning and the
 589 population dynamics of human behavior: The game of Go”. In: *Evolution and Human Behavior* 35.5,
 590 pp. 351–357.

591 Bentley, R Alexander et al. (2007). “Regular rates of popular culture change reflect random copying”. In:
 592 *Evolution and Human Behavior* 28.3, pp. 151–158.

593 Blasius, Bernd and Ralf Tönjes (2009). “Zipf’s law in the popularity distribution of chess openings”. In:
 594 *Physical Review Letters* 103.21, p. 218701.

595 Boyd, Robert and Peter J Richerson (1985). *Culture and the Evolutionary Process*. Chicago: University of
 596 Chicago press.

597 Caballero, Armando (2020). *Quantitative Genetics*. Cambridge: Cambridge University Press.

598 Canteloup, Charlotte et al. (2021). “Processing of novel food reveals payoff and rank-biased social learning
 599 in a wild primate”. In: *Scientific Reports* 11.1, p. 9550.

600 Capablanca, Jose R (1935). *A primer of chess*. New York and London: Houghton Brace Jovanovich.

601 Cavalli-Sforza, Luigi Luca and Marcus W Feldman (1981). *Cultural transmission and evolution: A quantita-
 602 tive approach*. Princeton: Princeton University Press.

603 Chessgames.com (2023a). *Capablanca vs Alekhine WCM 1927*. URL: <https://www.chessgames.com/perl/chesscollection?cid=1033458> (visited on 07/21/2023).

604 — (2023b). *Carlsen - Nepomniachtchi World Championship Match*. URL: <https://www.chessgames.com/perl/chess.pl?tid=105291> (visited on 07/21/2023).

605 Corsini, Noemi and Cinzia Viroli (2022). “Dealing with overdispersion in multivariate count data”. In: *Com-
 606 putational Statistics & Data Analysis* 170, p. 107447.

607 De Firmian, Nick (2008). *Modern Chess Openings*. 15th ed. New York: Random House Puzzles & Games.

610 Deffner, Dominik, Vivien Kleinow, and Richard McElreath (2020). "Dynamic social learning in temporally
611 and spatially variable environments". In: *Royal Society Open Science* 7.12, p. 200734.

612 Denton, Kaleda Krebs et al. (2020). "Cultural evolution of conformity and anticonformity". In: *Proceedings
613 of the National Academy of Sciences* 117.24, pp. 13603–13614.

614 Desjarlais, Robert R (2011). *Counterplay: An anthropologist at the chessboard*. Berkeley and Los Angeles,
615 California: University of California Press.

616 Di Fatta, Giuseppe, Guy McC Haworth, and Kenneth W Regan (2009). "Skill rating by Bayesian inference".
617 In: *2009 IEEE Symposium on Computational Intelligence and Data Mining*. IEEE, pp. 89–94.

618 Elo, Arpad E (1978). *The Rating of Chessplayers, Past and Present*. London: Batsford.

619 Euwe, Max and John Nunn (1997). *The Development of Chess Style*. New York: David McKay Company
620 Inc.

621 Ewens, Warren John (2004). *Mathematical Population Genetics: Theoretical Introduction*. Vol. 1. New York:
622 Springer.

623 Gelman, Andrew, John B Carlin, et al. (2020). *Bayesian Data Analysis*. Boca Raton, FL: Chapman and
624 Hall/CRC.

625 Gelman, Andrew, Daniel Lee, and Jiqiang Guo (2015). "Stan: A probabilistic programming language for
626 Bayesian inference and optimization". In: *Journal of Educational and Behavioral Statistics* 40.5, pp. 530–
627 543.

628 Gobet, Fernand (2018). *The Psychology of Chess*. New York: Routledge.

629 Gobet, Fernand, Jean Retschitzki, and Alex de Voogt (2004). *Moves in Mind: The Psychology of Board
630 Games*. New York: Psychology Press.

631 Harrison, Joshua G et al. (2020). "Dirichlet-multinomial modelling outperforms alternatives for analysis of
632 microbiome and other ecological count data". In: *Molecular Ecology Resources* 20.2, pp. 481–497.

633 Henrich, Joseph and Richard McElreath (2003). "The evolution of cultural evolution". In: *Evolutionary
634 Anthropology* 12.3, pp. 123–135.

635 Hooper, David and Ken Whyld (1992). *The Oxford Companion to Chess*. Oxford: Oxford University Press.

636 Johnson, Norman Lloyd, Samuel Kotz, and Narayanaswamy Balakrishnan (1997). *Discrete multivariate dis-
637 tributions*. Vol. 165. Wiley Series in Probability and Statistics. New York: Wiley.

638 Kendal, Rachel L et al. (2018). "Social learning strategies: Bridge-building between fields". In: *Trends in
639 Cognitive Sciences* 22.7, pp. 651–665.

640 Kotov, Aleksandr and Mikhail Mikhailovich Yudovich (1961). *The Soviet school of chess*. New York: Dover.

641 Laland, Kevin N (2004). "Social learning strategies". In: *Animal Learning & Behavior* 32.1, pp. 4–14.

642 Lappo, Egor, Kaleda K Denton, and Marcus W Feldman (2023). "Conformity and anti-conformity in a finite
643 population". In: *Journal of Theoretical Biology* 562, p. 111429.

644 Madsen, Rasmus E, David Kauchak, and Charles Elkan (2005). "Modeling word burstiness using the Dirichlet
645 distribution". In: *Proceedings of the 22nd international conference on Machine learning*, pp. 545–552.

646 Mesoudi, Alex (2020). "Cultural evolution of football tactics: strategic social learning in managers' choice of
647 formation". In: *Evolutionary Human Sciences* 2, e25.

648 Miu, Elena et al. (2018). "Innovation and cumulative culture through tweaks and leaps in online programming
649 contests". In: *Nature Communications* 9.1, p. 2321.

650 Newberry, Mitchell G and Joshua B Plotkin (2022). "Measuring frequency-dependent selection in culture".
651 In: *Nature Human Behaviour*, pp. 1–8.

652 Osborne, Nathan, Christine B Peterson, and Marina Vannucci (2022). "Latent network estimation and
653 variable selection for compositional data via variational EM". In: *Journal of Computational and Graphical
654 Statistics* 31.1, pp. 163–175.

655 Paetkau, D et al. (1995). "Microsatellite analysis of population structure in Canadian polar bears". In:
656 *Molecular Ecology* 4.3, pp. 347–354.

657 Perotti, Juan I et al. (2013). "Innovation and nested preferential growth in chess playing behavior". In:
658 *Europhysics Letters* 104.4, p. 48005.

659 Regan, Kenneth W, Bartłomiej Macieja, and Guy McC Haworth (2011). "Understanding distributions of
660 chess performances". In: *Advances in Computer Games*. Springer, pp. 230–243.

661 Regan, Kenneth Wingate, Tamal Biswas, and Jason Zhou (2014). "Human and computer preferences at
662 chess". In: *Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence*.

663 Ribeiro, Haroldo V et al. (2013). "Move-by-move dynamics of the advantage in chess matches reveals
664 population-level learning of the game". In: *PLoS One* 8.1, e54165.

665 Rosenberg, Noah A (2005). "Algorithms for selecting informative marker panels for population assignment".
666 In: *Journal of Computational Biology* 12.9, pp. 1183–1201.

667 Saddler, Matthew and Natasha Regan (2019). *Game Changer. AlphaZero's Groundbreaking Chess Strategies
668 and the Promise of AI*. Amsterdam: New In Chess.

669 Schaigorodsky, Ana L, Juan I Perotti, and Orlando V Billoni (2016). "A study of memory effects in a chess
670 database". In: *PLoS One* 11.12, e0168213.

671 Schandorff, Lars (2021). *Playing the Caro-Kann*. Glasgow: Quaity Chess UK.

672 Shannon, Claude E (1950). "A chess-playing machine". In: *Scientific American* 182.2, pp. 48–51.

673 Shenk, David (2011). *The Immortal Game: A History of Chess*. Canada: Anchor Canada.

674 Sousa, João Dinis de (2002). "Chess moves and their memomics: a framework for the evolutionary processes
675 of chess openings." In: *Journal of Memetics* 6.2, pp. 18–43.

676 Stan Development Team (2023). "Stan Modeling Language Users Guide and Reference Manual, version 2.31".
677 <https://mc-stan.org>.

678 Vale, Gillian L et al. (2017). "Acquisition of a socially learned tool use sequence in chimpanzees: Implications
679 for cumulative culture". In: *Evolution and Human Behavior* 38.5, pp. 635–644.

680 Wadsworth, W Duncan et al. (2017). "An integrative Bayesian Dirichlet-multinomial regression model for
681 the analysis of taxonomic abundances in microbiome data". In: *BMC Bioinformatics* 18.1, pp. 1–12.

682 Wang, Richard J et al. (2023). "Human generation times across the past 250,000 years". In: *Science Advances*
683 9.1, eabm7047.

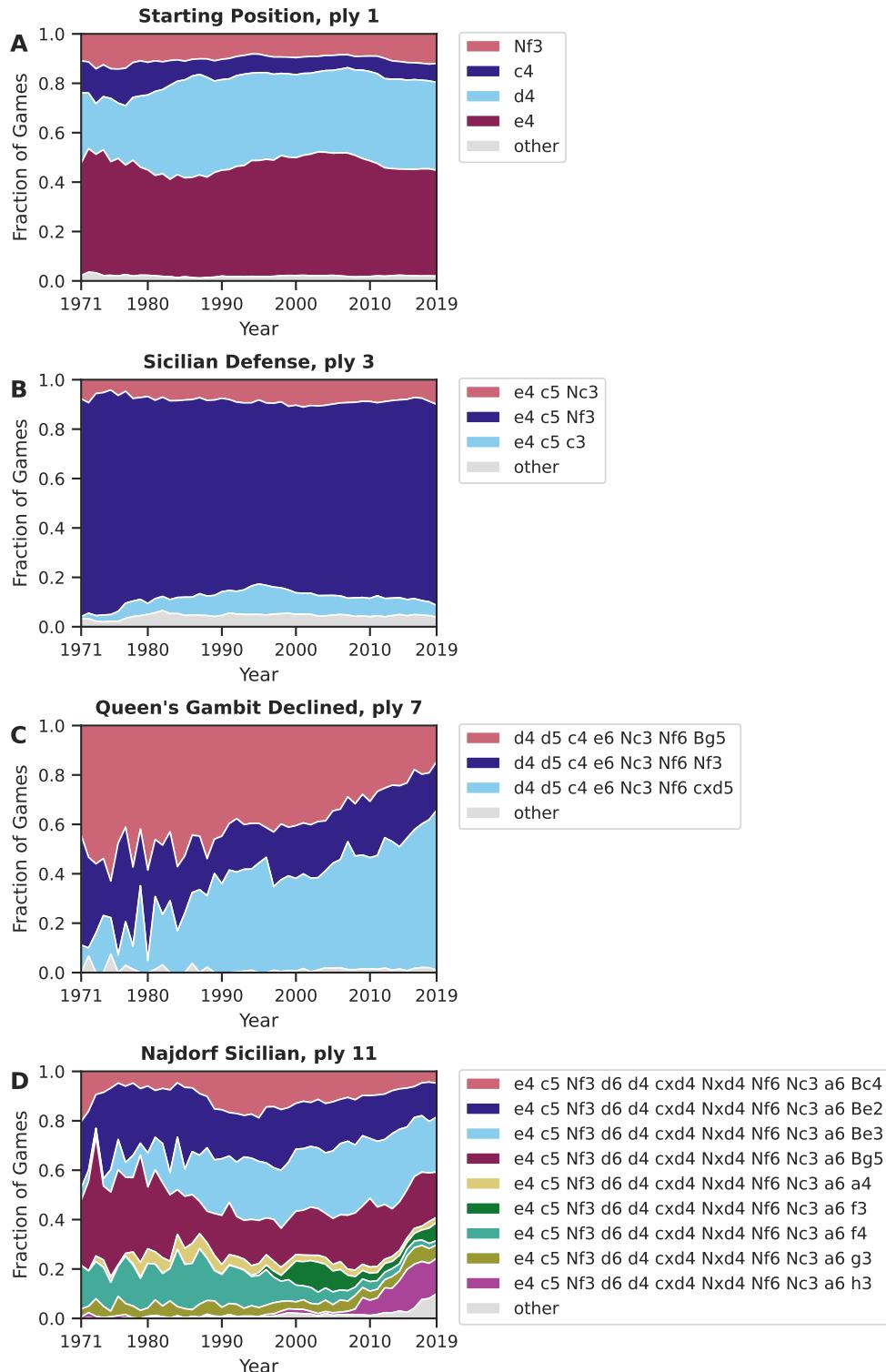


Figure 3: Move frequencies over time. For each panel, the legend presents the whole sequence of moves from the start of the game, with odd moves played by white, and even moves by black. The “other” category contains all rare moves that individually have average frequency less than 2%, with the average taken over all years. (A) Starting Position. (B) Sicilian Defense. (C) Queen’s Gambit Declined. (C) Najdorf Sicilian. See the main text for a discussion of each position.

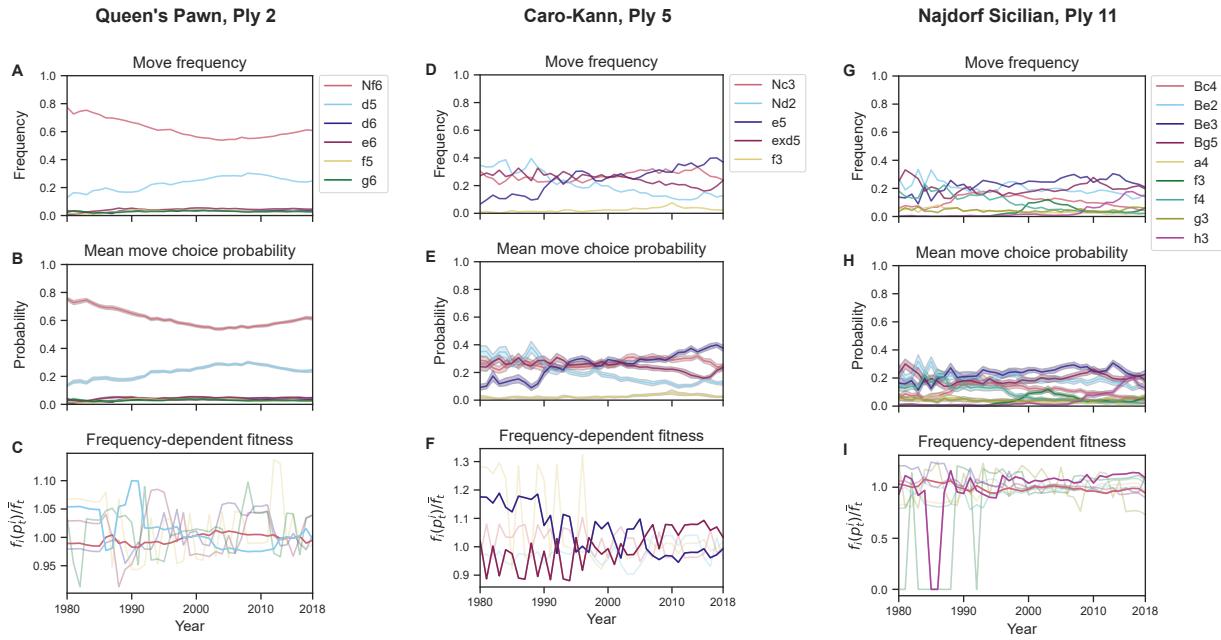


Figure 4: Dirichlet-multinomial model fits for move choice in three different positions: the Queen's Pawn opening at ply 2 (1. **d4**), the Caro-Kann opening at ply 5 (1. **e4 c6** 2. **d4 d5**), and the Najdorf Sicilian at ply 11 (1. **e4 c5** 2. **Nf3 d6** 3. **d4 cxd4** 4. **Nxd4 Nf6** 5. **Nc3 a6**). Panels A, D, and G show move frequencies x_t^i/N_t . Panels B, E, and H show posterior means of probabilities of move choice in the year t , with grey lines marking the range containing the middle 98% of the posterior density. Panels C, F, and I show frequency-dependent fitness $f_i(x_t^i/N_t)/\bar{f}_t$ of moves over time, with the values computed using posterior medians of the f_i . (A) Move frequencies, Queen's Pawn, ply 2. (B) Mean move choice probability, Queen's Pawn, ply 2. (C) Frequency-dependent fitness, Queen's Pawn, ply 2. (D) Move frequencies, Caro-Kann, ply 5. (E) Mean move choice probability, Caro-Kann, ply 5. (F) Frequency-dependent fitness, Caro-Kann, ply 5. (G) Move frequencies, Najdorf Sicilian, ply 11. (H) Mean move choice probability, Najdorf Sicilian, ply 11. (I) Frequency-dependent fitness, Najdorf Sicilian, ply 11. The curves for the “other” category are omitted in all plots as the category is too rare to give meaningful results. The model was fitted for years 1980–2019, and the move fitnesses are estimated for all years except 2019.

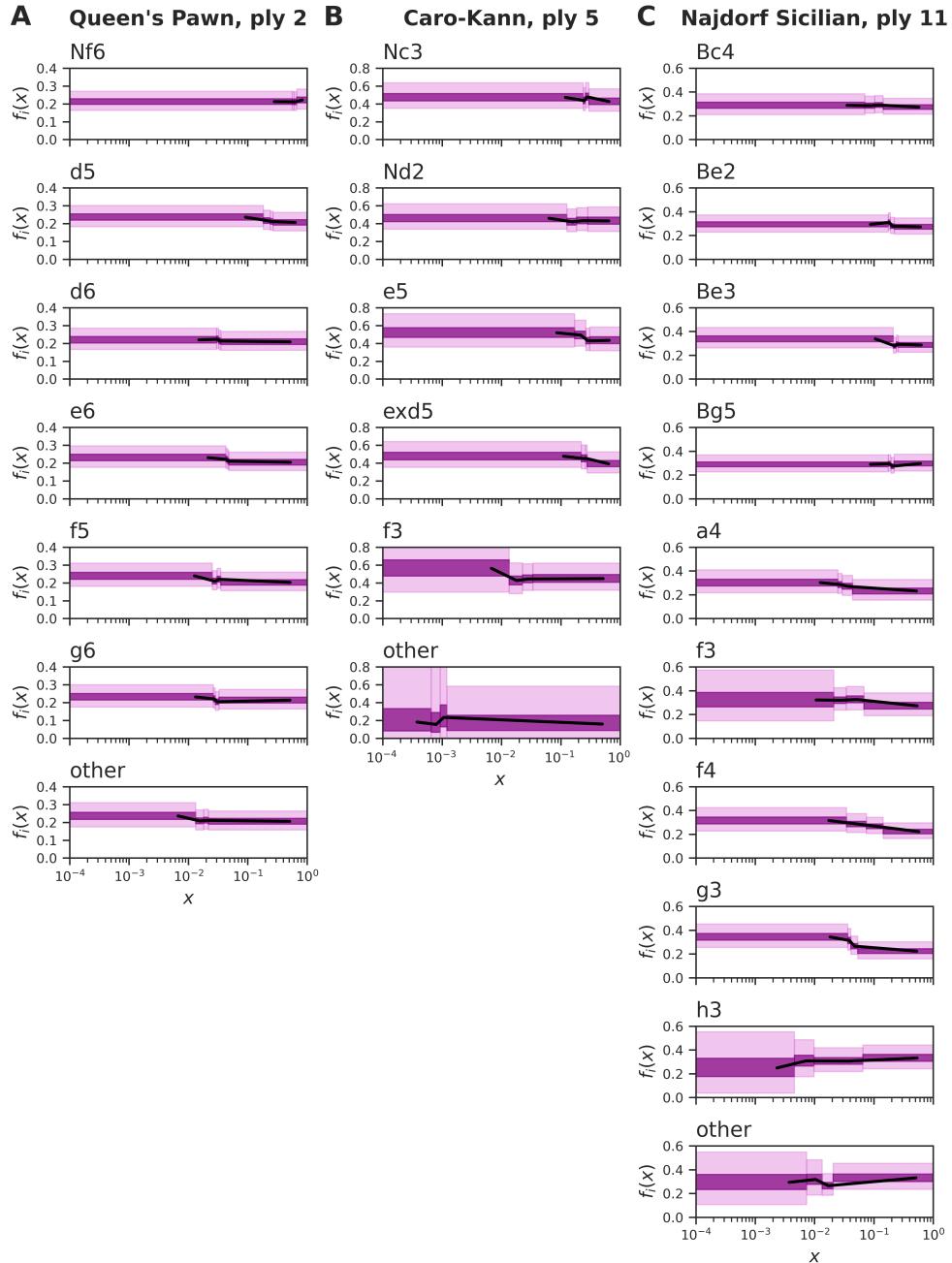


Figure 5: Estimated frequency-dependent fitness functions f_i . The black line connects the posterior medians for the four constant segments, bright purple shows regions containing 60% of the posterior density, and light purple shows regions containing 98% of the posterior density. (A) Queen's Pawn, ply 2. (B) Caro-Kann, ply 5. (C) Najdorf Sicilian, ply 11.

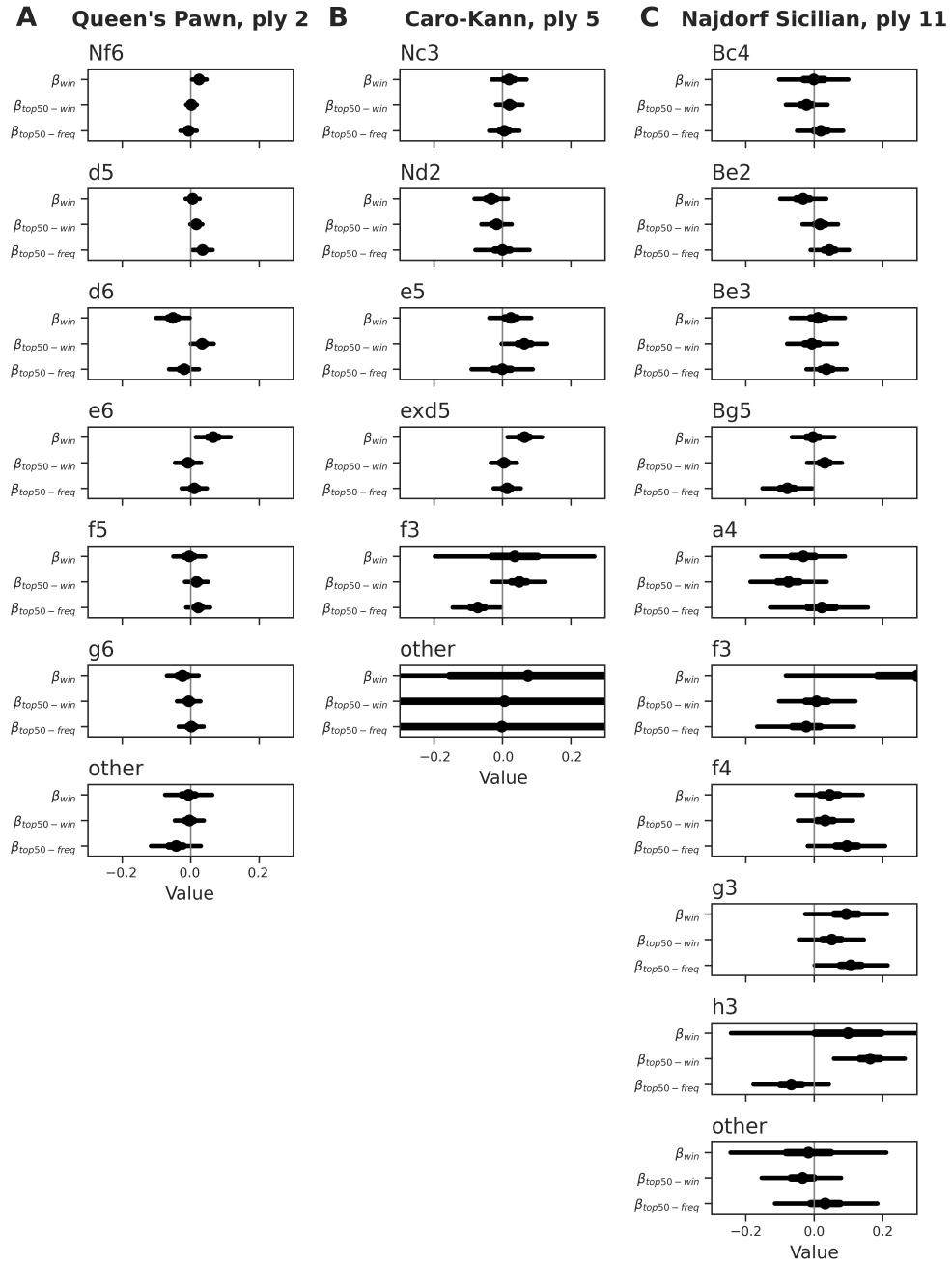


Figure 6: Estimated coefficients β_i . A point marks the posterior median, the thick line marks the region containing 60% of the posterior density, and the thin line shows the region containing 98% of the posterior density. The coefficients presented are: β_{win} , the effect of the average outcome of games in the year previous to that in which a given move was played; $\beta_{top50-win}$, the effect of the average outcome of games involving players in the top 50 in the previous year; and $\beta_{top50-freq}$, the effect of the frequency of a given move in games involving players in the top 50 in the previous year (see Section 5.2.3). (A) Queen's Pawn, ply 2. (B) Caro-Kann, ply 5. (C) Najdorf Sicilian, ply 11.

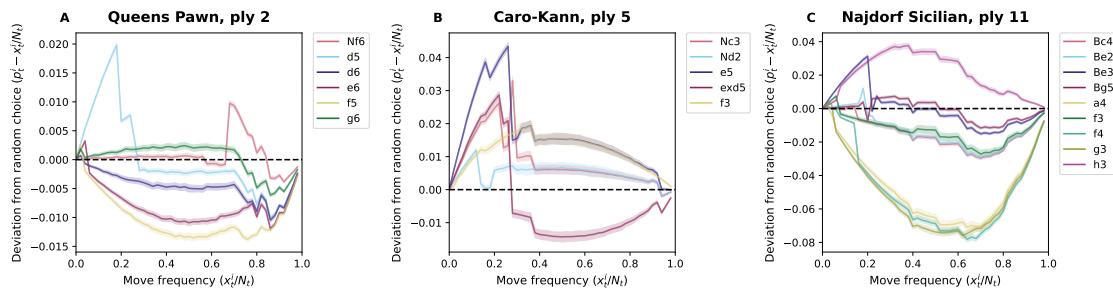


Figure 7: Dependence of move choice probability on strategy frequency. For each strategy, the corresponding curve shows the deviation from random choice of posterior move choice probability in year $t + 1$ as the frequency of that strategy in year t varies from 0 to 1. The values were computed using 1000 samples from the posterior for each initial move frequency in year t , as described in Supplementary Information S3. Shading around the curves corresponds to 98% bootstrap confidence intervals for the mean. The curves for the “other” category are omitted in all plots, as these are too rare to give meaningful results. (A) Queen’s Pawn, ply 2. (B) Caro-Kann, ply 5. (C) Najdorf Sicilian, ply 11.