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Advances in high-throughput technologies have enhanced our ability to
describe microbial communities as they relate to human health and disease.
Alongside the growth in sequencing data has come an influx of resources that
synthesize knowledge surrounding microbial traits, functions, and metabolic
potential with knowledge of how they may impact host pathways to influence
disease phenotypes. These knowledge bases can enable the development of
mechanistic explanations that may underlie correlations detected between
microbial communities and disease. In this review, we survey existing resources
and methodologies for the computational integration of broad classes of
microbial and host knowledge. We evaluate these knowledge bases in their
access methods, content, and source characteristics. We discuss challenges
of the creation and utilization of knowledge bases including inconsistency of
nomenclature assignment of taxa and metabolites across sources, whether the
biological entities represented are rooted in ontologies or taxonomies, and how
the structure and accessibility limit the diversity of applications and user types.
We make this information available in a code and data repository at: https://
github.com/lozuponelab/knowledge-source-mappings.  Addressing  these
challenges will allow for the development of more effective tools for drawing
from abundant knowledge to find new insights into microbial mechanisms
in disease by fostering a systematic and unbiased exploration of existing
information.
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1 Introduction

The structure and function of the human microbiome can be both a driver and
consequence of various disease states (Falony et al., 2019; King et al., 2019). Microbiome
signatures are associated with a range of conditions including auto-immune and
gastrointestinal disease, cancer, and neurological disease (Berg et al., 2020). Understanding
interactions between the gut microbiome and the host at a mechanistic level requires a
sophisticated synthesis of individual microbial functions, such as metabolic output, and how
these functions interact with host processes that influence human physiology.
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Mechanistic prediction of microbe-host interactions often
involves in-depth analyses of multi-omic datasets. For example, in one
study that related immune markers, microbiome composition,
metabolomic data, diet, and demographic measures to markers of
metabolic health in people living with human immunodeficiency
virus (HIV), they found that butyrate production and mucolytic
activity of particular gut microbes play a potential role in intestinal
barrier dysfunction, suggesting more targeted followup studies
(Armstrong et al., 2021). In another study that used metagenomic,
metatranscriptomic, metaproteomic, and metabolic data to explore
the functional attributes of the microbiome that influence Parkinson’s
disease (PD) pathogenesis, a preliminary result found the metabolite
2-hydroxypyridine (2-HP) and the microbe Methanobrevibacter
smithii to be enriched in PD, prompting several experiments which
verified their effects on alpha synuclein aggregation (Wilmes et al.,
2022). Large scale metagenomics studies can hone in on these
interactions at a species or strain level, and bioinformatics analyses
can further hypothesize how the microbial community contributes to
health or disease (Armour et al., 2019; Wallen et al., 2022). Such
studies provide rich information in the scientific literature on
associations between microbes, host pathways and diseases, which
brings us closer toward a mechanistic understanding of the
microbiome. Despite advances in bioinformatics techniques to
evaluate multi-omic datasets and laboratory methods to further
explore promising results, there is no efficient and reliable solution for
using existing knowledge to identify the most promising potential
mechanisms involving the microbiome in human disease for further
experimental validation.

Public resources that organize microbial knowledge serve an
important purpose in mechanistic inference. These can be summarized
into six categories, with relevant concepts defined in Box 1: (1)
Ontologies and taxonomies which provide a standardized nomenclature
and hierarchical ranking of biological entities such as microorganisms,
proteins or metabolites, (2) Annotated databases that have some
information about the given concept that is linked to an experimental
result, (3) Mechanistic curated knowledge bases that contain knowledge
drawn from multiple data sources and render known explanations
about biological interactions (4) Integrated knowledge bases which
aggregate relationships and identifiers represented across many
different sources (5) Correlative curated knowledge bases which include
associations found between two unique concept types, e.g., a microbe
and a disease, and (6) Inference-ready knowledge bases that enable
mechanistic inference (Figure 1A). Synthesizing microbial and host
information is critical to achieve a systems level perspective of the
microbiome. Such integrated resources elucidate relationships
between microbes and other biological concepts, allowing researchers
to access the increasing amount of information to draw
new conclusions.

We evaluate the accessibility of the many resources that fall within
these categories, which alludes to the structure that the content is
made available in, and the interfaces that users are able to access the
resource. The various ways that knowledge bases are made available,
whether through downloadable files, programmatically, or via a user
interface, influences how useful they are among scientists. We identify
the content of each resource including the types of information classes
that are represented and the types of relationships between concepts.
Lastly, we critique the source characteristics of each resource by
assessing the source of knowledge, the curation method, and the
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qualities such as accuracy that result from those curation methods.
We assess comprehensiveness and accuracy by examining how each
resource was constructed and how automated processes can lack the
specific or validated evidence provided by manual curation. The most
effective integrated resources are those which link all categories of
knowledge, and align the concepts represented to identifiers of
ontologies or primary knowledge bases (Figure 1B). These resources
thereby allow for sophisticated computational analyses and inference
to understand microbial mechanisms. In this review, we assess how
integrated resources and tools can be used to address mechanistic
questions in microbiome research.

2 Efforts to standardize microbiome
studies

Understanding the host-associated microbiome is particularly
challenging given the need to incorporate both microbial and host
processes into analyses. Due to the interdisciplinary nature of
microbiome research, there have been many efforts to develop broad
standardization of experimental design, metadata, and reported
results of observational and genetic studies in the field. The Genomic
Standards Consortium (GSC) introduced two important standards:
minimum information about any (x) sequence (MIxS) and
minimum information about marker gene sequence (MIMARKS),
and a checklist for microbiome study reporting and manuscript
preparation (Yilmaz et al., 2011; Mirzayi and Renson, 2021).
Platforms such as Qiita, which allows users to perform microbiome
analyses for one or more studies, require the metadata to be entered
according to MIxS standards (Gonzalez et al., 2018). These standards
ensure consistency in reporting metadata of new, published
experimental results and support integration of data across
studies seamlessly.

In addition to standardizing metadata, it is important to unify the
representation of concepts for multi-omic studies. Integrated resources
harmonize biological content by mapping entities to standardized
ontologies or other primary databases. The nomenclature of microbes,
proteins, and metabolites that are involved in a microbiome study may
vary, and aligning these terms is important for aggregation. It is most
useful if the concepts represented are mapped to universally accepted
identifiers such as ontologies or taxonomies (Box 1). Many domain
specific ontologies exist in the Open Biological and Biomedical
Ontology Foundry (OBO) that are widely relevant to biomedicine,
such as the Gene Ontology (GO) that provides a directed acyclic graph
(DAG) structure to the biological processes, cellular components, and
molecular functions that result from gene products (The Gene
Ontology Consortium, 2019; Jackson et al, 2021). Structured
databases that consolidate external annotations, align nomenclature,
and provide frequent updates can also be the main source of
identifiers. PubChem is one such resource of chemical information
including molecular formula, structure, and physical properties, while
DrugBank expands on this information to include drug target
sequences and pharmacological properties (Wishart et al., 2018; Kim
et al, 2023). This process of standardization thus enables the
contextualization of specific experimental results to a broader class of
concepts (chemicals, proteins, organisms, etc.). The primary databases
relevant for microbiome research are described in Table 1. These
efforts for standardization of both metadata and microbial concepts
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FIGURE 1

Characterization of known resources relevant to microbiome research. (A) Schematic of the types of resources that exist and the purpose that they
serve in microbiome research. Note that resource characterization is based on the prominent qualities, though many resources span these types.
Affordances represent the primary purpose of the given resource type. The standardized nomenclature affordance indicates that the resource
introduces new identifiers to uniquify concepts. The knowledge-based biological relationships affordance implies that the resource describes
interactions among the concepts by the indicated relationship type in (B). The mechanistic hypothesis inference affordance indicates that the resource
is uniquely suited to provide a mechanistic explanation when given specific queries. (B) The evaluations performed over existing resources mentioned

have supported the development of integrated resources that combine
functional and metabolic concepts of microbes and the host.

3 Microbiome-relevant knowledge
bases and their applications

Our understanding of the microbiome is improved through
knowledge of the relationships between individual microbial taxa, the
functional characterization of their genes and how genomic content
contributes to their metabolic outputs, and other information on
microbial traits and functions determined through experimentation.
Relating microbial taxonomic and functional information to host
pathways, physiology or disease can provide mechanistic detail that
informs our understanding of microbe-host interactions. This
knowledge is made available through methods to collect and curate
knowledge of microbial functions from the literature using natural
language processing or manual annotation and representing the
information in the form of integrated resources. We assess the
relationships among integrated knowledge bases and their mappings
to primary databases in Figure 2. The varying categories of integrated
resources are highly applicable to three primary use cases: effectively
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accessing systems level microbiome information, contextualizing new
findings with existing findings, and inferring new relationships to
better understand how microbes influence disease. More detail of
these resource qualities is described in Supplementary Table 1.

3.1 Knowledge bases that streamline
access

An increasing number of knowledge bases have been developed
that synthesize microbial and host content for systems biology
research, including mechanistic curated knowledge bases and
integrated knowledge bases. The relationships represented capture
biological processes in a causal way, and are rooted in human curation
of specific, validating experiments. In most cases, these resources
introduce new unique identifiers for informational classes, which, in
combination with other primary databases discussed previously,
supports standardization and integration of correlative and inference-
ready knowledge bases. In order to connect microbial sequences from
experimental studies to these resources, sequence search tools such as
Basic Local Alignment Search Tool (BLAST) or functional annotation
tools such as InterPro and EggNog Mapper are used, alongside
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BOX 1 Key terms

« Data repository: an archive of any data formats to enable
public sharing

« Primary knowledge source: a source of knowledge that is
used as a nomenclature standard for a knowledge base, for
example an annotated database or ontology

» Ontology or Taxonomy: a system that is used as a

semantic standard with a hierarchical classification

scheme approved by groups of experts (Carpendale

etal., 2014)

Annotated database: database that stores experimentally

derived content, such as sequences or structures from an
with data labels
manual curation

instrument, potentially  from

Knowledge Base: structured repository describing the
relationships between categories and the standardizing
mappings of such categories*
o Mechanistic knowledge: an assertion of causal

relationships between two categories

Correlative knowledge: an assertion of statistical

associations between two categories

o Mechanistic curated knowledge base: knowledge base
derived from manual curation over multiple
knowledge sources

o Correlative curated knowledge base: repository of

correlative knowledge derived from manual curation over

multiple knowledge sources

Integrated knowledge base: knowledge base that
incorporates content from multiple knowledge sources,
most often cross-linking identifiers over such resources

o Inference-ready knowledge base: knowledge base that
represents relationships in a logically consistent and
semantically well-defined manner

*A category here signifies a class of knowledge based on empirical evidence,
often referred to as a concept or entity. The three terms are used interchangeably

throughout this review.

additional web applications such as MolEvolvR facilitating protein
characterization across phylogenetic contexts (McGinnis and Madden,
2004; Jones et al., 2014; Cantalapiedra et al., 2021; Krol et al., 2022).

3.1.1 Resources that include microbial and host
genes, reactions, pathways, and metabolites

The Kyoto Encyclopedia of Genes and Genomes (KEGG) and
MetaCyc are examples of mechanistic curated knowledge bases that
represent relationships among microbial and host genes, reactions/
pathways, and metabolites (Kanchisa et al., 2017; Caspi et al., 2020).
KEGG and MetaCyc provide direct taxonomic mappings to NCBI
Taxonomy, RefSeq, or GenBank, as well as direct mappings to multiple
primary sources of metabolites and proteins (Figure 2). Both knowledge
bases integrate knowledge of metabolic pathways for many organisms
(Mendoza et al.,, 2019; Caspi et al., 2020). These knowledge bases
organize pathway and molecular content in unique ways, often making
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comparison difficult, however a primary difference is in the supported
tools surrounding the resource. KEGG introduces several tools
including the BlastKOALA (short for KEGG Orthology And Links
Annotation), a protein annotation web service, KEGG Mapper, a
genome annotation service, and Pathogen Checker, a service supporting
search of antimicrobial resistance genes (Kanchisa et al., 2017). KEGG
also introduced drug and disease links to the pathways represented in
2005 and 2008, respectively. MetaCyc introduces Pathway Tools
consisting of key components such as PathoLogic, a method to predict
metabolic pathways of a given organism, and MetaFlux to generate
genome-scale metabolic networks (GSMNs or GEMs) using flux based
analysis (Caspi et al., 2020). Each of these platforms support extensive
web-based interfaces for exploring the content represented, and both
have moved to a subscription model. The large diversity of life
represented among MetaCyc and KEGG render them broadly relevant
to understanding microbiome-related results.

3.1.2 Resources that host GSMNs

A method that systematically evaluates microbial phenotypes
relevant for microbe:host interactions is GSMNs. GSMN's are in silico
models and can be used to infer metabolic phenotypes. GSMNs use
the annotated genes of an organism, which describe the associated
biochemical reactions that the enzymatic products of such genes are
capable of affecting. These gene annotations are found using
annotation tools such as GapMind or aggregated from publicly
available curated databases (Price et al., 2020). GSMNs serve two
purposes: they synthesize knowledge of that organism’s metabolism,
and they are a mathematical model which can be used to simulate
metabolic phenotypes in environments of interest (Moretti et al.,
2021). Moreover, GSMNs from multiple organisms can be aggregated
in order to simulate entire microbial communities with tools such as
MICOM (Swainston et al., 2017). Recently, MICOM was used to
predict the risk of Clostridium difficile infection, the leading cause of
antibiotic associated diarrhea, based on the metabolic strategies of
C. difficile in different host microbiome and diet contexts (Carr et al.,
2023). GSMNs can therefore serve as a blueprint for the suite of
metabolic transformations possible and facilitate the understanding
of the metabolic potential of a given microbial community (Mendoza
etal,, 2019; Esvap and Ulgen, 2021; Passi et al., 2021).

GSMNes are highly dependent on knowledge sources used in their
construction. Because many different methods to generate GSMNG exist
and it is often a manual process, there are often inconsistencies in the
resulting models (Heinken et al., 2023). These differences are influenced
by the reconstruction approach and attributed to the chosen database
or annotation tools from which the information is gathered
(Magnusdottir et al., 2017; Machado et al., 2018; Hsieh et al., 2023). The
consistent mapping of the biological concepts represented in public
databases and knowledge bases is a critical aspect of their broad utility.
This standardization challenge expands beyond GSMNss to all resources
that combine unique forms of knowledge based on prior studies, and
remains a major limitation in the causal mechanism generating task.

There are several key resources hosting GSMNs, including the
Biochemical, Genetic and Genomic knowledge base (BiGG), MetaNetX,
BioModels, the Department of Energy Systems Biology Knowledgebase
(KBase), and the Virtual Metabolic Human (VMH) (Arkin et al., 2018;
Malik-Sheriff et al., 2019; Noronha et al., 2019; Norsigian et al., 2019;
Moretti et al,, 2021). BiGG enables an efficient search over multiple
GSMNs by integrating published models of different organisms with
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TABLE 1 Primary knowledge sources for the standardization of all entity types.

(A) Microbial classification resource Nomenclature Trait Sequence De novo Update
based based tree based = frequency
Ontologies and taxonomies
Bergey’s Manual of Systematic Bacteriology (Goodfellow et al., 2009) X 2-4y
NCBI Taxonomy (Federhen, 2012) X X 6 months
Deutsche Sammlung fur Mikroorganismen und Zellkultren (DSMZ) X X 1-4 months
Genome Taxonomy Database (GTDB) (Parks et al., 2022) X X 6 months
Greengenes, Greengenes2 (DeSantis et al., 2006; McDonald et al., 2023) X X X Irregular
SILVA (Quast et al., 2012) X X X 1-2 years
Unified Medical Language System (UMLS) (Bodenreider, 2004) X 2.5months
Systematized Nomenclature of Medicine-Clinical Terminology X 1 year
(SNOMED CT) (Vuokko et al., 2023)
Medical Subject Headings (MeSH) X 1 year

(B) Functional Nomenclature Sequence Function Homologous Microbe Host Update
characterization of genes Groupings  Oriented Oriented frequency
resource

Ontologies and taxonomies

Protein Ontology (PRO) (Chen et al., 2020) X X X 2-6 months

Gene Ontology (GO) (The Gene Ontology X X X 1month

Consortium, 2019) — subsumes EC

Annotated Databases

Protein Data Bank (PDB) (wwPDB X X X 1week

consortium et al., 2019)

SWISS-PROT/Trembl (Boeckmann, 2003) X X X X 1 month

Cluster of Orthologous Groups (COGs) X X X X X Irregular
(Galperin et al., 2021)

InterPro/Pfam (Paysan-Lafosse et al., 2023) X X X X X X 1-3 months

Carbohydrate Active Enzymes (CAZy) X X X X X X 1month
(Cantarel et al., 2009)

GenBank (Sayers et al,, 2021) X X 2 months
RefSeq (O’Leary et al.,, 2016) X X X X 1 year
Entrez (Maglott et al., 2007) X X Daily
Ensembl (Howe et al., 2021) X X 0.5 months
Protein Information Resource/Protein X X X X 3 months
Sequence Database (PIR/PSD) (Barker et al.,
2000)
Protein Extraction, Description and X X X X Irregular
ANalysis Tool (PEDANT) (Frishman, 2003)
microRNA sequence database (MiRBase) X X X 1 year
(Griffiths-Jones, 2006) (host oriented only)
Universal Protein Resource Knowledge X X X X X 1month
Base (UniProtKB) (The UniProt
Consortium et al., 2023) *note this
contains SWISS-PROT/Trembl
AnnoTree (Mendler et al., 2019) *note this X X X X Dep. on GTDB
contains InterPro annotations (microbe
oriented only)

(Continued)
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TABLE 1 (Continued)

(B) Functional
characterization of genes
resource

Ontologies and taxonomies

Nomenclature Sequence

Function Homologous

Microbe

Groupings  Oriented

10.3389/fmicb.2024.1351678

Host
Oriented

Update
frequency

Bacterial and Viral Bioinformatics X X X Irregular
Resource Center (BV-VRC) (Olson et al.,

2023) (microbe-oriented only)

Functional Annotation of Prokaryotic X X X X X Irregular
Taxa (FAPROTAX) (Liang et al., 2020)

Enzyme Commission (EC) (Biochemistry X X X X 2.5 months
1U of Committee MBN and Webb, 1992)

BRaunschweig ENzyme DAtabase X X X X X 6 months
(BRENDA) (Chang et al., 2021)

EggNOG (Huerta-Cepas et al., 2019) 2-3y
SEED (Overbeek et al., 2014) X X X X X X Dep. on resources

(C) Metabolite and reaction
classification resource

Ontologies and taxonomies

Nomenclature

Gene

interaction

Microbe
oriented

Chemical
reaction

Host
oriented

Update
frequency

Chemical Entities of Biological Interest (ChEBI) X X X 1 month
(Hastings et al., 2016)

Chemical Function Ontology (Wishart et al., 2023) X X X X New
Annotated Databases

ChEMBL (Zdrazil et al., 2023) X X X X X 6 months
PubChem (Kim et al., 2023) X X X 1 year
SABIO-Reaction Kinetics Database (Wittig et al., 2018) X X X X 1 year
DrugBank (Wishart et al., 2018) X X X X 1 year
Rhea (Bansal et al., 2022) X X X X 2 months

(D) Pathway classification resource

Ontologies and taxonomies

Microbe oriented

Host oriented

Update frequency

Pathway ontology (Petri et al., 2014) X 1 week
Small Molecule Pathway Database (SMPDB) (Jewison et al., 2014) 2-4 years
PathBank (Wishart et al., 2020) X 2-4 years

(E) Disease classification resource

Ontologies and taxonomies

Nomenclature

Disease classification

Update frequency

Disease Ontology (Schriml et al., 2022) X 1 year
Monarch Disease Ontology (Vasilevsky et al., 2022) X 1month
Unified Medical Language System (UMLS) (Bodenreider, 2004) X 6 months
Systematized Nomenclature of Medicine-Clinical Terminology X 1 year
(SNOMED CT) (Vuokko et al., 2023)

Medical Subject Headings (MeSH) X 1 year
Chemical Function Ontology (Wishart et al., 2023) X New
International Classification of Diseases (ICD) (Harrison et al., 2021) X 1-4 years

The Nomenclature column specifies if the primary knowledge source provides identifiers for concept names. (A) Primary knowledge bases for microbial classification. Trait based resources use

inherent traits, structural or otherwise, to differentiate taxa. Sequence-based resources rely on the genomic content, and de novo tree-based resources use some sequence-based and some

machine learning techniques to differentiate taxa. All microbial classification resources are microbe-oriented. (B) Primary resources for functional characterization of microbial genes. Primary

resources may link a given protein with its genomic sequence (Sequence), describe the function of a protein (Function), or describe the evolutionary relationships among proteins
(Homologous Groupings). (C) Primary knowledge bases used for metabolic modeling. Primary resources may link a given chemical with a target genomic sequence (Gene Interaction) or
describe the reactions that a chemical is involved in (Chemical Reaction). (D) Primary knowledge sources used for pathways. (E) Primary knowledge sources used for diseases. Primary

resources that include a hierarchical classification of diseases are noted (Disease classification). All disease resources are host-oriented.
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standardized nomenclature of all components, with models of 108
organisms included as of 2019(Norsigian et al, 2019). BiGG and
BioModels make high-quality GSMNs available to the academic
community. Over the years, these have been updated to introduce
features such as including genome annotations, standardizing reactions
and metabolites to primary sources, and a greater taxonomic diversity of
models (Malik-Sheriff et al., 2019; Norsigian et al., 2019). The VMH
connects human metabolism, genetics, and disease with microbial
metabolism and diet. The VMH cross-references over 57 resources to
combine GSMNs of humans and microbes drawn from existing
metabolic maps, experimental data from literature, and other integrated
resources including BiGG (Noronha et al., 2019). VMH is a useful
resource for studies seeking available knowledge of metabolite profiles.
For example, the VMH was used in an evaluation of the influence of the
Mediterranean diet on aging and the gut microbiome (Ghosh et al.,
2020). MetaNetX is an integrated knowledge base that provides a
mapping between major GSMN databases for more standardized
representation of metabolic processes (Moretti et al., 2021). The goal of
this resource is to reconcile the biochemical and metabolic content
represented in key public databases. MetaNetX both provides cross-links
and merges equivalent biochemical reactions and metabolites into a
single identifier, such that entities are merged based on reaction context
or chemical formula (Moretti et al, 2021). MetaNetX provides a
straightforward way to access the relationships among metabolites
through many GSMN sources. KBase is a resource funded by the US
Department of Energy that integrates external repositories with data
generated on the system, e.g., for public access to genomes and their
corresponding metabolic models, including KEGG, BiGG, and MetaCyc,
thus including metabolic models for 773 gut microbes as of 2018 and
potentially more GSMNSs that are currently private (Arkin et al., 2018).
KBase also supports a suite of tools that allow for the construction of
these metabolic models and workflows supporting the assembly of
genomes all the way through to metabolic reconstruction, as well as
many other computational tools for omic analyses. These user generated
tools can generate data linkages to Functional Annotation of Prokaryotic
Taxa (FAPROTAX) and InterPro, and all database entries and mappings
are inherited from ModelSEED (Arkin et al., 2018; Seaver et al., 2021).

3.1.3 Resources that host microbe and host
metabolic content

There are several curated and integrated knowledge bases focused
on centralizing known metabolic traits and output in host and microbial
environments. The Human Microbial Metabolome Database (MiMeDB)
connects microbial and human metabolism among many resources,
including the VMH, as well as genome or proteome information with a
focus on how the human microbiome influences health (Wishart et al.,
2023). While MiMeDB represents fewer diseases than KEGG, they are
constrained to those that are understood to be affected by microbial
metabolism. MiMeDB furthermore supports specific constraints on the
search of all entity types within the web-interface (e.g., co-metabolite,
microbial, or human metabolite type). The MetAboliC pAthways
DAtabase for Microbial taxonomic groups (MACADAM) is focused on
functional annotations and integrates pathway genome databases
(PGDBs) from MetaCyc, MicroCyc, FAPROTAX, and International
Journal of Systematic and Evolutionary Microbiology (IJSEM) with
genomes from RefSeq (Le Boulch et al., 2019). The Human Metabolome
Database (HMDB) has accelerated the standardization of metabolic
output and originally provided a uniquely centralized resource of
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broadly relevant human metabolomic data (Wishart et al., 2022). In
2021 microbial or gut-derived metabolites were added to the HMDB,
supporting disease-focused investigation of microbial pathways. With
the comprehensive array of metabolites documented, the known
metabolite-disease associations in HMDB were used in a deep learning
method intended to predict novel disease associated metabolites (Sun
et al,, 2022). The HMDB ecosystem also introduces tools such as
DeepMet, a deep generative model for identifying new metabolites and
potential hypotheses surrounding them (Wishart et al., 2022). Other
deep learning based methods for understanding microbe-metabolite
relationships include MM Vec, BiomNED, and MiMeNet (Morton et al.,
2019; Le et al., 2020; Reiman et al., 2021).

3.1.4 Resources that include microbial trait and
genomic content

Curated databases that incorporate microbial trait information or
genomic content can illuminate functional qualities of microbes. These
include the Bacterial Diversity Metadatabase (BacDive) and the
Pathosystems Resource Integration Center (PATRIC) (Gillespie et al.,
2011; Sohngen et al.,, 2014). PATRIC integrates genomic, transcriptomic,
protein—protein interaction, protein structure, and other diverse data
types for 22 genera of prokaryotic bacteria, mainly pathogens (Gillespie
etal,, 2011). This integrated knowledge base, which also includes some
correlative results of host-pathogen-disease associations, compiles this
information from publicly available datasets for users to easily view and
analyze such results. BacDive is the largest standardized resource of
prokaryotic information, consisting of strain level details of phenotypes,
morphology, growth patterns, metabolism, and sequences for over
70,000 strains (Schngen et al., 2014).

3.1.5 Resources that include microbial or host
pathway content

Several graph relational databases exist that support more complex
queries based on their structure. These resources incorporate
semantically defined relationships between concepts at a much greater
depth than those represented in KEGG or MetaCyc. The Reactome
Knowledgebase (Reactome) is a graph database that synthesizes human
molecular processes in a standardized way such that all concepts are
rooted in ontologies or primary databases (Fabregat et al., 2018). With
over 10,000 human genes and their function incorporated, Reactome
provides a high-level metabolic map for the interaction between the
genome, the proteome, and the metabolome in humans. Reactome is
not as broadly relevant to the specific microbe-human interactions that
exist elsewhere as only pathogenic bacteria and infectious diseases are
included. WikiPathways is another graph database of biological pathway
models for all species, though mostly focused on human biology
(Martens et al., 2021). Reactome and WikiPathways are community
driven, which results in content that reflects the current consensus and
supports more frequent updates. Reactome and WikiPathways provide
interactive network visualizations of curated processes and pathways for
the user to browse the concepts represented.

3.2 Contextualizing experimental findings
Whereas the previous section described curated and integrated

knowledge bases that allow scientists to effectively access systems-level
microbiome information, a second category of knowledge bases
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(A) Network of relationships included in integrated resources. Edges between an integrated resource and some type of primary knowledge source
(microbe, protein, metabolite, pathway, or disease) represent either a categorization of the concept via an ontology or taxonomy (solid lines), or a
nomenclature mapping to some identifier (dashed lines). Node size of the primary knowledge source (colored) represents the in-degree from
integrated databases, where the largest nodes are those most often used for standardization. Colored points above integrated resources specify to
which concept type the integrated resource maps, including indirect mappings through a general aggregate database. (B) Relationships among all
general aggregate databases and primary databases, separated by category. Reference degree shows the degree to which a primary database may

be referenced, indicating those most often used for standardization. E.g., If database i references another database j, a general aggregate database that
in turn references database k, then i and k have a reference degree of 2. That primary database is only referenced if shown in (A). This figure was
generated using code and data available in github repository: https://github.com/lozuponelab/knowledge-source-mappings.

represent literature findings. Correlative knowledge bases allow
researchers to contextualize new findings with existing findings in the
literature, such as previous studies that have detected a relationship
between a microbe and a disease, pathway, or other entity through
laboratory or population level studies. These resources organize
previously found associations between microbes and other entities,
making knowledge computationally accessible.

In response to the growing number of drug resistant bacteria, the
Microbe-Drug Association Database (MDAD) was built through
manual curation of literature describing microbe-drug relationships
based on PubMed keywords (Sun et al., 2018). The studies represented
are either microbe-drug relationships identified through lab
experiments or those found effective in clinical trials. GutMGene is
another database created after manually searching PubMed articles for
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evidence of associations between microbes and metabolites produced
or consumed, and microbial influence on human gene expression
(Cheng et al., 2022). GutMDisorder similarly synthesizes associations
between microbes and human diseases or phenotypes found in the
literature (Cheng et al., 2020). Disbiome contains microbe-disease
associations found from population level studies that identified
significant differences in abundance between a control and disease state
(Janssens et al, 2018). Amadis similarly provides evidence of
associations between diseases and microbes, with a similar number of
disease entries as Disbiome (Amadis includes relationships between 221
human diseases and 774 microbes, while Disbiome includes 190 human
diseases and 800 microbes) (Janssens et al., 2018; Li et al., 2021). The
Host Genetic and Immune Factors Shaping Human Microbiota
(GIMICA) is another database representative of multiple human body
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sites and the immune, environmental, and genetic factors that they
interact with (Tang et al., 2021). Several other link-based aggregate
databases introduced more stringent manual curation techniques to
adequately represent the variable aspects of studies, such as experimental
setting or sequencing technique. BugSigDB is a community-supported
effort of over 2,500 curated microbial signatures cited in over 600
scientific articles. With over 1,400 unique taxa represented, BugSigDB
is rich in metadata, experimental conditions, and design of each
experiment and is well standardized to a range of ontologies. Another
knowledge base, dbBact, includes over 900 experiments and supports
similar use cases aligning results across many studies (Amir et al., 2023).
These literature-based databases support easy access to information in
a context dependent manner. The provenance of such associations is
also easily made available within these resources by PubMed Identifier
(PMID). NJS16 is an integrative network that incorporates manually
curated knowledge from literature of gut microbes and how they
interact via metabolite transport (Sung et al., 2017). NJS16 uses a
metagenomic analysis of a cohort of Type 2 Diabetes individuals to
showcase a framework that can predict microbe-metabolite interactions
that influence host physiology in other contexts. Such manually curated
resources play a critical role in allowing researchers to contextualize
their results by easily accessing literature that describes correlative
microbial findings.

Findings of a specific experimental result can be related to a more
complete mechanistic path by using relationships summarized in
correlative databases. These databases have been used for corroboration
of the findings of targeted experiments. For example, gutMGene has
been used to corroborate the hypothesis that the gut microbial
community plays an important role in cardiovascular disease through
short chain fatty acid production by citing searchable microbe-
metabolite relationships in the form of a network. Additionally,
gutMDisorder has been used to validate polysaccharides identified to
have a regulatory effect in disease through microbe-disease relationships
in the form of a network (Hu et al., 2022; Wei et al., 2023). BugSigDB
demonstrates the value in having a heterogeneous resource to explore
patterns of microbial composition across studies, examines the
commonly co-occurring or mutually exclusive individual or groups of
microbes, and evaluates differences in microbial communities across
body sites (Geistlinger et al., 2022). However, despite these highly useful
applications of manually curated, correlative knowledge bases, there are
key challenges that contribute to their limited use. A primary limitation
of these databases is the small number of relationship types represented
(designated as path length in Figure 3). Furthermore, it is difficult to
align experimental results to such databases when concepts are not
mapped to common primary knowledge sources, discussed more in
challenges and future perspectives.

3.3 Mechanistic hypothesis generation

Hypothesis generation in microbiome research requires a diverse
range of knowledge. To date, no resource or methodology supports the
task of hypothesizing mechanisms of microbial processes that influence
disease by including all categories of data described in Figure 3.
However, some resources represent data in a way that supports
inference, linking multiple complex relationships into a derived
explanation. Structured, microbiome-relevant resources can support
this automated inference. Knowledge graphs (KGs) are commonly used
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for this purpose due to their logical representation conducive to
automated inference. KGs are simplified representations of related
concepts through nodes (concepts) and edges (relationships between
those concepts). The KG construction process involves the aggregation
of content and harmonization to ontologies, most often through ingests
that extract, transform, and load such information into a semantically
consistent format. Graph-based models, the basis of KGs, enable
complex queries and reasoning, which is especially useful for
understanding the intricate interactions between microbes and the host.
The following resources have varying levels of specificity to a particular
disease, solely focus on microbial trait data, or lack the wider context
necessary for disease-based inference.

MiKG4MD is one resource that represents how microbes are
involved with mental disorders in the form of a knowledge graph (Liu
etal, 2021). MiKG4MD was used to form specific queries that identify
several sources describing the relationship between Bifidobacterium
dentium and anxiety or depression via the neurotransmitter gamma-
aminobutyric acid (GABA) (Liu et al., 2021). MiKG4MD has not been
applied beyond the case studies that demonstrate its purpose, though
these queries exemplify the hypothesis generating potential. The Pre-/
Probiotics Knowledge Graph (PPKG) represents over 29,000 articles
describing prebiotics and probiotics, combined with three other
primary public databases, MeSH, UMLS and SNOMED CT (Table 1)
(Liu et al., 2022). Similar to MiKG4MD, a specific query of PPKG
showed 114 direct relationships identified between Bifidobacterium
bifidum and disease, suggesting an influence on blood lipids, gut
microbiome profiles, brain connectivity, and gene expression (Liu et al.,
2022). KG-microbe is a resource that more broadly represents how
microbes interact with their environment (Joachimiak et al., n.d.).
KG-Microbe is useful to understand microbial traits and environments,
such as soil or water as well as human anatomical sites, though it does
not yet include information which connects microbes to disease. Several
relevant ontologies that play an important role in the representation of
the complex knowledge associated with the microbiome also exist. The
ontology of host-microbe interactions (OHMI) is the only known OBO
ontology resource that introduces a structured representation of
microbe-host interactions (He et al., 2019). This resource makes a
critical step in developing standards for how to represent host-microbe
interactions through flexible and interoperable representations.
Furthermore, OHMI aligns to several OBO ontologies including NCBI
Taxonomy, the Environmental Ontology (ENVO), and the Uber-
anatomy Ontology (UBERON). Importantly, OHMI does not include
the mechanistic detail of proteins and metabolites necessary for
inference, however the logical representation introduced can provide a
framework for mechanistic inference (He et al., 2019). OHMI has not
been updated since the original publication. OHMI introduces over
1,000 terms including microbes, host-microbe interactions, and study
details (He et al., 2019).

There are also frameworks that synthesize multi-omic content in a
graph database or network representation. BioChem4;j is one such
framework that automatically ingests content from multiple ontologies
and represents microbes and their functional traits using the UniProt
API (Swainston et al., 2017). BioChem4j is therefore an extensible
resource from which researchers can gather the enzymes and
metabolites involved in microbial biochemical reactions that may occur
in any environment. BioChem4j has been applied toward a pipeline for
the discovery and optimization of biosynthetic pathways, specifically for
understanding a range of industrial microorganisms. The pipeline
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examined flavonoid production pathways and an alkaloid pathway in
Escherichia coli for the purposes of microbial engineering for chemical
production (Carbonell et al., 2018). The Unified Functional Network
(UniFuncNet) is another framework that integrates multiple resources
necessary for the construction of GSMNs (Queirds et al.,, 2022). The
UniFuncNet framework can take as input a list of entities from different
databases (e.g., proteins, genes, metabolites, etc) and output a network
representation of all associations among such entities. UniFuncNet’s
applications are demonstrated through two workflows which, for
example, expanded existing GSMNs of Akkermansia muciniphila to
include the biosynthesis and metabolism of glycans, or to relate
compounds identified in a metabolomics dataset to relevant pathways
and organisms (Queirds et al., 2022).

4 Challenges associated with the
construction and applications of
knowledge bases

4.1 Inconsistent taxonomy and metabolite
nomenclature assignment

A major challenge arising from the availability of multiple
taxonomic databases as well as multiple versions of the same taxonomic
database are the resultant inconsistencies in the labeling of a microbe.
The classification method of microbes curated from the literature is
often overlooked, and in many cases a microbe may be assigned the
wrong identifier (e.g., a microbe originally labeled via SILVA is assigned
an NCBI Taxonomy identifier). Methods of taxonomic assignment in
sequence-based studies of microbial population differ depending on
whether small subunit (SSU) ribosomal RNA (rRNA) is targeted, also
known as 16S sequencing for bacteria and archaea, or shotgun
metagenomic sequencing is performed. Inconsistent classification,
whether varying labels is due to lack of information or poor quality of
sequencing reads, can impede the ability to relate findings about a given
microbe across studies to each other and to their functional attributes,
which is important for ultimately trying to understand microbe-host
interactions at the mechanistic level. Additional challenges arise when
microbial nomenclature is revised based on a better resolution of
evolutionary relationships from sequencing data or phenotypic
information, resulting in the same taxa having different names
depending on the date of publication.

SILVA and Greengenes, which are built using sequences from the
European Nucleotide Archive (ENA) and GenBank, respectively, are the
most used taxonomic databases for 16S sequencing (Pruesse et al., 2007;
Ceccarani and Severgnini, 2023; McDonald et al., 2023). SILVA uses a
Bergey’s seed alignment (Garrity et al.,, 2004), then partially manually
builds upon that classification to construct a phylogenetic tree which is
used as a guide. In order to classify sequences, SILVA uses the SILVA
Incremental Aligner (SINA) reference-based alignment tool for multiple
sequence alignment, and assigns organism names according to the
Deutsche Sammlung fur Mikroorganismen und Zellkultren (DSMZ)
(Pruesse et al., 2012). In contrast to SILVA, which uses a pre-constructed
tree, Greengenes constructs a de novo tree for taxonomic classification
(DeSantis et al., 2006). Greengenes2 made significant updates by linking
a substantial number of whole genome sequences from the International
Nucleotide Sequence Database Collaboration (INSDC) (Arita et al.,
2021), amplicons from the Living Tree Project (Yilmaz et al., 2014) and
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other resources, to create the largest tree with the broadest phylogenetic
coverage to date (McDonald et al., 2023). A new version of the SILVA
database is released semi-annually, whereas Greengenes2 only recently
was released, 9years after the prior version (Pruesse et al., 2007;
McDonald et al,, 2023). Although it is well established that use of
different taxonomic databases and their versions can greatly impact
taxonomic assignments made, there are limited solutions for dealing
with this ambiguity when creating integrated resources.

Similar problems arise for the nomenclature of metabolites that
are represented in manually curated databases. Main technologies
used for metabolomics include mass spectrometry (MS)-based or
nuclear magnetic resonance (NMR)-based approaches. Metabolomics
can be approached with untargeted techniques (for hypothesis
generation) or targeted techniques (for hypothesis testing) (Johnson
etal., 2016). The naming and mapping of these metabolites therefore
can introduce some uncertainty and similar discontinuity as microbial
taxonomy. Metabolite identification is done by comparing the spectra
obtained experimentally with that included in the curated knowledge
bases or primary knowledge sources described above, such as ChEBI
or ChEMBL (Hastings et al., 2016; Zdrazil et al., 2023). The mismatch
of metabolite names and identifiers across these standardized
resources, presents challenges for researchers to contextualize their
findings and formulate hypotheses regarding their data using
integrated resources (Merlet et al., 2016; Shaffer et al., 2017). Resources
also exist that facilitate the classification relating their spectra to those
of known metabolites to improve direct mapping such as the Global
Natural Products Social molecular networking (GNPS) (Overbeek
et al, 2014). The challenge of mismatching metabolite labels is
especially prominent in the construction and alignment of GSMNG,
which draw from these standardized databases. HMDB is one of the
most comprehensive resources of known host and microbiome
associated metabolites, still only representing a fraction of the
metabolome, that cross-links many of standard chemical databases
and identifiers to make this process more straightforward (Wishart
et al., 2022). MetaNetX further facilitates mapping experimental
results to representations in GSMNs to contextualize metabolomics
findings (Moretti et al, 2021). An important direction of
understanding microbiome-host relationships is evaluating how the
microbiome and the metabolome interact with exogenous factors,
such as diet, collectively called the exposome (Shaffer et al., 2017). The
VMH is an important resource for this, as it introduces known
relationships between the exposome and the metabolome (Noronha
et al, 2019). Nomenclature challenges also are confronted in
constructing correlative knowledge bases, such as gutMGene, in that
chemical names that are manually curated, or text mined potentially,
cannot be mapped to an identifier in a primary knowledge source
(Cheng et al., 2022). As such, what exists in these resources may not
accurately represent what was found in the corresponding study. The
increased utility and standardization of naming of integrated
knowledge bases is critical for addressing the challenges described, as
integrated resources provide expansive knowledge that will support
mechanistic exploration.

4.2 Semantic standardization

Another limitation of these resources is the extent to which entities
are mapped to existing primary knowledge sources (e.g., ChEBI).
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Without mappings to a semantic standard, it is impossible to combine
a resource with others as the concepts represented are not identical.
Mechanistic curated knowledge bases such as KEGG, which introduce
new identifiers due to their broadly represented and cross-linked
information, are particularly useful resources to map to because of their
scale and connectivity to other resources. Integrated knowledge bases
play an important role in enabling one to search a broader field of
knowledge, or relationships between more concept types (a higher path
length as defined in Figure 3). The benefits of standardizing to
ontologies are two-fold; first, ontologies offer a full hierarchy of
relationships in a machine-readable format. Ontologies are curated by
experts in both data engineering and the scientific area represented and
provide a logical interpretation of knowledge categories. This makes it
possible to abstract or concretize a concept depending on the
mechanistic detail desired. Experimental results can be mapped to
ontological concepts as an exact term (e.g., AKT-interacting protein
isoform 2) or more broadly characterize the concept to a parent term
(e.g, AKT-interacting protein). Second, KGs built of the logical
representation of concepts in ontologies can be used to contextualize
More
comprehensive KGs can be constructed when all the knowledge

scientific results and infer mechanistic explanations.

represented in these resources is correctly mapped to useful ontologies.
knowledge lack
standardization in microbial and disease categories. The few databases

Microbiome  relevant bases primarily
that incorporate human diseases are limited in their degree of
standardization. Ontologies such as the Monarch Disease Ontology
(MONDO) and the Human Phenotype Ontology (HPO) have been
developed as part of the Monarch initiative and provide logically
coherent hierarchical representations of concepts (Kohler et al., 2021;
Vasilevsky et al., 2022). MONDO, which includes resources such as
Online Mendelian Inheritance in Man (OMIM) and Orphanet, is
updated monthly, and introduces thousands of diseases and disorders.
Mappings to resources such as MONDO support the applications of
aggregate databases toward understanding microbial mechanisms in
human disease. Microbes in gutMGene, gutMDisorder, Disbiome,

Amadis, and GIMICA are mapped to NCBI Taxonomy, however those

10.3389/fmicb.2024.1351678

in MDAD and NJS16 are not (Figure 2). MDAD includes protein
mappings to UniProt and metabolite mappings to DrugBank, while
NJS16 only includes metabolite mappings to KEGG (Goodfellow et al.,
2009; wwPDB consortium et al.,, 2019). The absence of mappings to
NCBI Taxonomy or any structured phylogenetic database limits
usability due to the inconsistencies in naming and taxonomic
classification strategies. It is important that new resources map to the
primary sources most often referenced by current integrated resources,
as shown in Figure 2A by the colored node size, to ensure that concepts
can be consistently identified. These standardization challenges limit the
capacity to integrate sources of knowledge and make mechanistic claims
using such knowledge.

4.3 Access methods and source
characteristics of resources

The source characteristics of integrated resources can influence
both their comprehensiveness and accuracy. Manually curated resources
can have increased accuracy as content is provided through curation by
experts directly from literature. While manual curation is nearly always
at play due to the requirement of specific expertise in understanding
microbes, the field is clearly approaching a new era of automated
content extraction. Text mining approaches make this task more
efficient, allowing for more content to be easily accessed by scientists
with a wide variety of research interests.

Knowledge bases can be accessed in many ways depending on the
type of users that they serve (Figure 1B). Wet-lab focused researchers
interested in accessing the broad store of knowledge offered by these
resources are primarily interested in interactive web interfaces.
Curated knowledge bases KEGG and MetaCyc each offer interactive
visual interfaces and useful pathway diagrams. Integrated knowledge
bases such as MiMeDB and MACADAM also offer an interface to
easily query the desired content, though not the same support in
pathway diagrams as Wikipathways and Reactome. Reactome is even
more uniquely suited to show interactive cartoon diagrams which can
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FIGURE 3
Understanding the connectedness of integrated databases based on path length. Path length refers to the number of relationships between unique
concepts, or feature types, that are included within a resource. The feature types discussed in this context are microbes, proteins (or genes, human or
microbial), metabolites (human or microbial), pathways (human or microbial), and diseases (human). The concept of path length is used to assess how
comprehensively a resource can be used for mechanistic inference, or which relationships are needed from other databases to do so.
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greatly increase accessibility to all users. Other programmatic ways
of accessing these resources are important for the analyses that
bioinformaticians do using complex datasets. The Simple Protocol
And Resource Description Framework Query Language (SPARQL)
is a query language for the Resource Description Framework (RDF),
a framework that supports relationship-based data made available on
the web (Candan et al., 2001). When SPARQL queries are supported,
whether programmatically or via an API, computational users can
easily access information through highly specialized queries. API
support also enables this functionality.

Many mechanistic curated and integrated knowledge bases are
offered as relational databases or tables, which supports fast access
to a range of knowledge. Graph databases require traversal across a
wider domain of information, and therefore are not quick in
retrieval. However, graph databases can host information to a
greater level of detail. For example, the “glycolysis” pathway in
KEGG and MetaCyc host fewer than 30 metabolites or gene/gene
products, whereas Reactome includes over 40 metabolites and 100
proteins. In relational databases such as KEGG, the detail comes in
the nodes (genes, metabolites, organisms) and the relationships
represent some interaction or input/output more generally. In graph
databases such as Reactome, the edges provide a hierarchical set of
content in themselves with much more detail, for example the edge
“ADPGK:Mg2+ phosphorylates Glc to G6P” connects alpha-D-
Glucose to alpha-D-glucose 6-phosphate. All reactions are
rooted in literature evidence, providing a detailed account of
biological interactions.

The formal representation of knowledge introduced by KGs can
include heterogeneous biological content that is flexible and
interoperable. The network structure of a KG supports inference
based on both the semantic representation of knowledge and the
structure of the graph, allowing one to infer new edges (hypothesized
relationships between distinct concepts) or classify biological
concepts. An important consideration for KGs is the model used to
represent such complex knowledge. A logical semantic representation
is critical for inference, and this can be difficult with such complex
concepts as microbe-host interactions. It is generally useful to follow
a predefined schema for interoperability and introducing new
information, such as the Web Ontology Language (OWL) or the
Biolink model (Bechhofer, 2009; Unni et al., 2022). These models
allow harmonization of data sources across all knowledge types,
which is especially important in the multi-omic nature of microbiome
science. The types of edges within MiKG4MD are arbitrary and do
not align with previously existing repositories, such as the Biolink
Model or the Relationships Ontology (RO), both of which provide
some standardized structure to the organization of a KG (Smith et al.,
2005; Liu et al., 2021; Unni et al., 2022). However KG-microbe does
align to the Biolink schema, which ingests microbial trait databases
and combines them with ontologies such as ChEBI and GO
(Joachimiak et al., n.d.). This was done using automated graph
construction libraries that are a part of KG-Hub. Through some
manual curation, KG-Microbe includes specific microbial traits to
be represented in a way that aligns with the Biolink schema
(Joachimiak et al,, n.d.). It is important for the chosen schema to
support interoperability between KGs, incorporation of any ontology
or primary knowledge source, and correctly represent the
heterogeneous data types necessary within a microbiome-
relevant KG.
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5 Future perspective

By indexing and linking multi-omic knowledge, integrated
resources can contextualize results at the systems-level, corroborating
findings from experimental observations, and provide promise toward
uncovering novel hypotheses. We evaluate key categories of
microbiome-relevant knowledge including microbes, host and
microbial proteins, host and microbial metabolites, host and microbial
pathways, and host diseases and argue that the extent to which these
categories are covered by such integrated resources influences their
ability to be adopted for mechanistic inquiry. It is important for users to
evaluate the resource based on the six categories present here and their
affordances (Figure 1A); ontologies and taxonomies, annotated
databases, mechanistic curated knowledge bases, integrated knowledge
bases, correlative curated knowledge bases, and inference-ready
knowledge bases, in order to derive the best applications of such
resources. We have also evaluated the primary traits of these resources
including access methods, content, and source characteristics
(summarized in Supplementary Table 1). The access points of the
knowledge contained in these resources, whether programmatically or
via a user-friendly web interface, can greatly affect the adoption by the
intended user. Ensuring they support downloadable flat files or APIs
translates to more readily available content for automatic hypothesis
generation. Mapping the concepts represented in each resource is an
important factor to consider in utilizing these resources, as it can limit
the capacity for connecting it with other resources. Many correlative
knowledge bases, for example, lack the level of nomenclature
standardization to commonly used primary knowledge sources that is
essential for wide adoption and integration of such resources. Future
resources should always keep the nomenclature limitations in mind
during construction and ensure that the level of standardization
supports the intended use case.

Inference-ready knowledge bases such as KGs serve an important
purpose in the microbiome field in supporting mechanistic hypothesis
generation using existing knowledge. As shown, there are few resources
that adequately map all categories of knowledge mentioned to enable
explanations for microbe-disease associations to be understood. A focus
on this connectedness, highly dependent on the level of standardization
discussed previously, will drive the microbiome field toward a deeper
understanding of microbe-host interactions via automated inference
(Figure 2). Furthermore, it is important that these KGs use a data model
that is highly interoperable and flexible to integrate heterogeneous data
types. Applying these resources to mechanistic inference can help assess
health outcomes and derive new understandings of multi-omic data sets
through many methodologies such as linear modeling or machine
learning based approaches. While these methodologies are not
addressed in great detail, it is important to recognize their complexities.

Through this review of resources, we have provided evidence of the
efforts to consolidate the rapidly increasing number of experimental
findings surrounding the microbiome. We have published data resource
mappings in a git-hub repository to ensure reproducibility and to
support updates." We recognize that this review does not capture all
possible resources, therefore encourage contributions to this repository
in hopes of maintaining a useful source of information for researchers

1 https://github.com/lozuponelab/knowledge-source-mappings
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to select the most appropriate knowledge sources. We argue that the
adoption of these resources and contributions to the field will
be maximized with further standardization and connectedness. The
application of these resources to understanding microbe-host-disease
related questions holds promise for advancing biomedical understanding.
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