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Climate change poses a threat to biodiversity, and it is unclear whether species 
can adapt to or tolerate new conditions, or migrate to areas with suitable habitats. 
Reconstructions of range shifts that occurred in response to environmental changes 
since the last glacial maximum (LGM) from species distribution models (SDMs) can 
provide useful data to inform conservation e"orts. However, di"erent SDM algo-
rithms and climate reconstructions often produce contrasting patterns, and validation 
methods typically focus on accuracy in recreating current distributions, limiting their 
relevance for assessing predictions to the past or future. We modeled historically suit-
able habitat for the threatened North American tree green ash Fraxinus pennsylvanica 
using 24 SDMs built using two climate models, three calibration regions, and four 
modeling algorithms. We evaluated the SDMs using contemporary data with spatial 
block cross-validation and compared the relative support for alternative models using a 
novel integrative method based on coupled demographic-genetic simulations. We sim-
ulated genomic datasets using habitat suitability of each of the 24 SDMs in a spatially-
explicit model. Approximate Bayesian computation (ABC) was then used to evaluate 
the support for alternative SDMs through comparisons to an empirical population 
genomic dataset. Models had very similar performance when assessed with contem-
porary occurrences using spatial cross-validation, but ABC model selection analyses 
consistently supported SDMs based on the CCSM climate model, an intermediate 
calibration extent, and the generalized linear modeling algorithm. Finally, we projected 
the future range of green ash under four climate change scenarios. Future projections 
using the SDMs selected via ABC suggest only minor shifts in suitable habitat for this 
species, while some of those that were rejected predicted dramatic changes. Our results 
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highlight the di"erent inferences that may result from the application of alternative distribution modeling algorithms and 
provide a novel approach for selecting among a set of competing SDMs with independent data.

Keywords: approximate Bayesian computation, climate change, ecological niche model, extrapolation, last glacial maximum 
(LGM), model selection

Introduction

Climate change is a major threat to global biodiversity with 
documented evidence of impacts on individual species, eco-
systems, and the services they provide to human populations 
(IPCC 2001, Parmesan and Yohe 2003, Parmesan 2006, 
Bellard et al. 2012, Díaz et al. 2019, Weiskopf et al. 2020). 
It is important to understand the extent to which species’ 
suitable habitats may shift in the future under di"erent cli-
mate change scenarios in order to identify vulnerable species 
and inform conservation e"orts. Species distribution models 
(SDMs) are often used to reconstruct historical, or forecast 
potential future, range shifts. Historical reconstructions shed 
light on the locations of glacial refugia (Puschendorf  et  al. 
2009) and the timing and pace of post-glacial expansion 
(Ordonez and Williams 2013), while forecasts help to predict 
species and ecosystem responses to changing environments. 
!e versatility of SDMs makes them a valuable modeling 
approach, providing insights that underpin contemporary 
conservation strategies aimed at safeguarding biodiversity in 
a changing world. However, there are substantial challenges 
in using SDMs. For instance, successful prediction assumes 
that the fundamental niche is not only fully occupied but 
all conditions within it are available to the species (Jackson 
and Overpeck 2000, Wiens et al. 2009), that species’ niches 
do not evolve over time, and that they do not face dispersal 
lags or barriers to movement (Corlett and Westcott 2013). 
Furthermore, di"erent approaches to building SDMs often 
produce contrasting patterns (Qiao et al. 2015, Steen et al. 
2017). !e choices made during model construction, such 
as the selection of modeling algorithms (Qiao et al. 2019), 
the speci$c climate models employed for hindcasting or fore-
casting (Fitzpatrick et al. 2018), and the criteria for selecting 
background points (Anderson and Raza 2010), can all in%u-
ence the resulting habitat suitability predictions. !us, di"er-
ent inferences may be drawn due to the variety of approaches 
to distribution modeling. 

Another challenge is the limited availability of indepen-
dent data for model validation (Yates  et  al. 2018). Most 
evaluations of SDMs rely on contemporary occurrence data-
sets (presence–absence or presence–background data) for 
model validation. Since independent data sets are di&cult to 
acquire, quasi-independence can be ‘enforced’ on the data by 
using spatial or temporal cross-validation (Araújo et al. 2005, 
Roberts et al. 2017, Fourcade et al. 2018, Liu et al. 2020). 
Cross-validation is well-suited for evaluating the accuracy of 
models focused on present-day distributions, but less use-
ful for comparing hindcasted or forecasted SDMs. !is is 
especially challenging given that conditions in the long past 
(e.g. the last glacial maximum (LGM)) or future may have 

very little overlap with present-day environments (Williams 
and Jackson 2007). SDM performance declines, sometimes 
dramatically, under these conditions (Maguire  et  al. 2016, 
Fitzpatrick  et  al. 2018). !us, there is a need to develop 
methods to evaluate alternative SDMs to improve con$dence 
in inferred range shifts both in the past and under projected 
future climate change.

Population genetic data and approximate Bayesian com-
putation (ABC) provide an underexplored alternative to 
model validation using contemporary or historical occurrence 
data. ABC is a simulation-based analytical framework that 
approximates the likelihood function for a complex model 
through comparisons between simulated and observed data 
summaries (reviewed by Bertorelle et al. 2010). !e frame-
work was originally developed in the $eld of population 
genetics (Tavaré 1997, Pritchard et al. 1999) and has since 
been used to $t and compare demographic models in a wide 
variety of contexts (e.g. to model the spread of invasive spe-
cies, Estoup et al. 2010, Ascunce et al. 2011, Sard et al. 2019, 
or assemblage-level patterns of divergence, Carnaval  et  al. 
2009, Ilves  et  al. 2010, Smith  et  al. 2014). Recent studies 
have incorporated predictions of habitat suitability from 
hindcasted SDMs to inform demographic simulations in 
integrated distributional, demographic and coalescent mod-
els (iDDC; He et al. 2013, Alvarado-Serrano and Knowles 
2014, Massatti and Knowles 2016). !ese studies often use 
a single SDM algorithm (possibly selected from a candi-
date set using occurrence-based SDM validation metrics) in 
their demographic models (Brown et al. 2016). However, in 
combination with a suitable genetic dataset and informative 
summary statistics (Alvarado-Serrano and Hickerson 2016), 
ABC model selection analyses can also be used to compare 
the relative $t of alternative SDMs and the many decisions 
around their implementation (e.g. size of the calibration 
region, predictor set, etc.). While not the focus of the present 
manuscript, the posterior probabilities for competing SDMs 
estimated from ABC could also be used as model weights in 
ensemble forecasting, allowing researchers to integrate uncer-
tainty in hind- or forecasted species distributions (Araújo and 
New 2006). Although the potential for using genetic data-
sets to assess the veracity of SDM outputs has been noted 
(He et al. 2013, Fordham et al. 2014), actual methodologies 
and applications remain uncommon.

In this study, we present a novel application of ABC to eval-
uate the relative support for alternative SDMs and compare 
these evaluations to model performance metrics estimated 
from spatially exclusive cross-validation folds, the state-of-the-
art method for assessing SDM performance when independent 
data are unavailable (Anderson and Raza 2010, Valavi et al. 
2019). Speci$cally, we constructed 24 SDMs for green ash 
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Fraxinus pennsylvanica using combinations of di"erent climate 
models, background extents, and modeling algorithms (Table 
1). We then used iDDC modeling (He et al. 2013), a range-
wide population genomic dataset for the species, and ABC to 
evaluate support for alternative SDMs. In our study, iDDC 
provides a means for selecting the best performing model 
(i.e. by determining which SDMs lead to simulated genetic 
datasets with close correspondence to observed data), avoid-
ing limitations associated with the use of contemporary occur-
rence data for model selection. Finally, we predicted the future 
range of green ash under each SDM, two alternative global 
emission scenarios, and two global circulation models to assess 
the in%uences of model choice on assessments of vulnerability 
to climate change and recommended conservation strategies.

Material and methods

Study system

Green ash is a deciduous tree in the family Oleaceae with a 
current range spanning eastern North America, from Nova 
Scotia to Alberta and south to Florida and Texas (Fig. 1). !e 
species favors consistently moist and loamy soils that are well-
drained and is moderately tolerant to shade (Westwood et al. 
2017), making it the most widespread of the ash species. 
Nonetheless, this species is currently listed as critically endan-
gered on the IUCN Red List, largely due to impacts of the 
invasive emerald ash borer Agrilus planipennis (Klooster et al. 
2018, Siegert et al. 2021). 

Species distribution modeling

Green ash occurrence data were acquired from the Botanical 
Information and Ecology Network (BIEN) ver. 4.1.1. 
(Enquist et al. 2016, Maitner et al. 2018). We excluded geo-
graphic outliers and locations with cultivated and naturalized 
individuals from our occurrence data set. We used 80-, 160- 
and 320-km bu"ers around known occurrences to de$ne 
three di"erent calibration regions from which we drew back-
ground sites for modeling. Notably, the largest bu"er covers 
most of the study region save the farthest northern areas (cf. 
map of occurrences and bu"ers in Fig. 2). We excluded occur-
rences and background sites from Kentucky and Louisiana 
because they were severely undersampled relative to the other 
parts of the range (< 0.0001% of all records in each state). To 
project SDMs to the LGM, we used modeled climate surfaces 
from Lorenz et al. (2016), based on two paleo earth system 
models, ECBilt-CLIO (Timm and Timmermann 2007) and 
CCSM3 (Collins et al. 2006), at 0.5° spatial resolution. After 
accounting for collinearity, a subset of six environmental 
variables were retained for SDM construction: mean evapo-
transpiration ratio, water de$cit index, annual precipita-
tion, the coe&cient of variation in annual precipitation, and 
standard deviations of growing degree days and minimum 
temperature. 

We modeled the current and historical distribution of 
green ash using boosted regression trees (BRTs; Elith et al. 
2008), generalized linear models (GLMs; Guisan  et  al. 
2002), MaxEnt ver. 3.3.3k (Phillips et al. 2006, Phillips and 
Dudik 2008), and natural splines (NS; Mohn  et al. 2021) 
using functions from the ‘enmSdmX’ R package (Smith et al. 
2023). Model calibration (i.e. training and tuning) and 
evaluation was based on the continuous Boyce index (CBI; 
Hirzel et al. 2006), calculated from the ratio of predicted and 
expected frequencies of evaluation points across habitat suit-
ability classes. We used CBI rather than the area under the 
curve (AUC) or true-skill statistic (TSS), given di"erences 
in background area across the 24 models. Both of these met-
rics are sensitive to, and biased by, di"erences in background 
extent (Smith 2013), and would thus be inappropriate for 
comparing models that di"er in the width of bu"ers used to 
de$ne background sites. CBI ranges from −1 to 1 and is near 
zero when the model is no better than a random model and 
positive for models that are consistent with species presences 
in evaluation data (Hirzel et al. 2006). Models were calibrated 
by splitting the occurrence data into three spatially exclusive 
sets based on subdividing the occurrences into 50 square 
cells 320 km on a side. Cells were then randomly assigned to 
three sets, one for training models, the performance of which 
was assessed against the second set to tune each algorithm’s 
parameters. Once tuned, model accuracy was assessed against 
the third set, which is the accuracy we report. For the training 
set we randomly chose 50% of the cells (25), for the calibra-
tion set ~ 20% (9 cells), and the evaluation ~ 30% (16 cells). 
We repeated random cell assignments 30 times, for each of 
which we trained, calibrated, and evaluated models for each 
combination of climate model, background extent, and 

Table 1. Settings used for the 24 distinct SDMs evaluated in this 
study. BRT: boosted regression tree. GLM: generalized linear model. 
NS: natural splines. 

Climate 
model

Background extent 
(km) SDM algorithm SDM

CCSM 80 BRT 1
GLM 2
Maxent 3
NS 4

160 BRT 5
GLM 6
Maxent 7
NS 8

320 BRT 9
GLM 10
Maxent 11
NS 12

ECBilt 80 BRT 13
GLM 14
Maxent 15
NS 16

160 BRT 17
GLM 18
Maxent 19
NS 20

320 BRT 21
GLM 22
Maxent 23
NS 24
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SDM algorithm. We then created an ‘all-sites’ model using 
all occurrences based on the best parameterization for each 
algorithm. We projected these all-sites models to the past 
using climate reconstructions from ECBilt or CCSM climate 
models using 200-year average climates centered on 500-
year intervals (Lorenz et al. 2016), then linearly interpolated 
habitat suitability in simulation grid cells at 30-year intervals 
for use in the demographic models described below. We did 
explore non-linear interpolations (splines, natural splines, 
basis-splines, etc.), but chose linear interpolation as it did not 
introduce erratic artifacts. To help assess the degree of simi-
larity among SDM predictions, we implemented a clustering 
analysis using mean di"erences between cells in the present 
and mean di"erences between cells at 21 kybp as distances 
between SDMs.

Simulations and approximate Bayesian computation 
(ABC)

Empirical population genomic data for green ash were col-
lected from samples of fourteen individuals from each of 21 
populations across the contemporary species range (a sub-
set of populations from Noakes et al. 2022, Fig. 1). Details 
of sampling, DNA extraction, restriction-associated DNA 
sequencing (RAD-seq) library preparation, and bioinformatic 

analysis can be found in the Supporting information of 
Castilla  et  al. (2024). We $ltered the dataset to retain one 
SNP per RAD locus and remove variable sites where the 
minor allele frequency was below 0.01. After $ltering, the 
population genomic dataset included 294 green ash individu-
als and 1000 SNP loci. 

We used the spatially explicit model implemented in the 
R package ‘holoSimCell’ (https://github.com/stranda/
holoSimCell) to simulate genomic datasets using habitat 
suitability projected to the past under each of the 24 SDMs. 
Brie%y, this analytical framework couples forward-time demo-
graphic simulations with backward-time coalescent genetic 
simulations and estimates support for alternative models (i.e. 
the 24 distinct SDMs) using ABC (Fig. 2). !e forward simu-
lation models population growth and dispersal, and is used to 
establish a colonization history of populations on a spatially-
explicit simulated landscape. Parameter values for simulations, 
including the maximum per-grid cell e"ective population 
size (Ne), dispersal parameters (mixture parameter), and 
parameters related to refugial population size, were drawn 
from prior distributions (Supporting information) for each 
simulation. Simulations began at 21 kybp by placing start-
ing populations in areas where predicted habitat suitability in 
hindcasted SDMs was above a model-speci$c threshold that 
maximized the sum of sensitivity and speci$city, as evaluated 

Figure 1. Map of the study region (light gray polygon) in eastern North America. !e contemporary green ash range is shown in green 
(Little 1971), and the maximum extent of glaciation 21 kybp in light blue (Dalton et al. 2020). Occurrence records from the BIEN data-
base are shown with black points, and red points illustrate the location of populations sampled for genetic analysis (by Noakes et al. 2022). 
!e SDM was projected to the gray region (dark gray: 21 kybp, light gray: present). Note the land surface was larger in the past due to 
changes in sea level. Projection: Albers equal-area conic.
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using contemporary suitability estimates and the range map 
for green ash (Little 1971). Initial abundances in cells within 
glacial refugia were scaled linearly by their predicted suitabil-
ity values. !e simulations used habitat suitability layers (in 
30-year time steps) from each of our 24 SDMs to set car-
rying capacity of a cell through time. !e colonization his-
tory for each replicate simulation was then incorporated into 
a coalescent simulation in fastsimcoal ver. 2.6 (Exco&er et al. 
2013), to e&ciently generate simulated population genomic 
data. Coalescent simulations used the same migration matrix 
as forward demographic simulations and the recorded sources 
for newly colonized grid cells at each time step of the forward 
simulation. We simulated 50 000 replicate datasets for each 
SDM, resulting in a total of 1 200 000 replicates in our ABC 
reference table. !e reference table included the randomly 
drawn parameter values used in each simulation and summary 
statistics characterizing within and among population genetic 
variation in simulated datasets.

We used ABC to evaluate the support for alternative SDMs 
by comparing summary statistics from simulations under 
each SDM to observed summary statistics from our empiri-
cal dataset. ABC analyses were conducted using the R pack-
ages ‘abc’ (Csilléry et al. 2012) and ‘abcrf’ (Marin et al. 
2019). Comparisons between simulated and observed datasets 

were based on 473 summary statistics that re%ect within- and 
among-population genetic variation (see the Supporting 
information for details on summary statistics). We estimated 
posterior probabilities of each of our 24 SDMs using simple 
rejection, multinomial logistic regression (Beaumont 2008), 
neural networks (Blum and François 2010), and random forest 
(Pudlo et al. 2016) ABC model selection algorithms. Neural 
networks included 10 networks, 20 units in the hidden layer, 
and maximum weights set to 50 000. We used 1000 trees to 
predict the most likely model in our random forest analysis. 
For multinomial logistic regression and neural networks, we 
conducted model comparisons using a range of tolerances that 
accepted between 1200 and 120 000 simulated replicates 
most closely matching the observed summary statistics (i.e. 
tolerances between 0.001 and 0.1, respectively). As a post hoc 
assessment of the ability of our simulation model to produce 
summary statistics similar to those in the empirical green ash 
dataset, we compared observed summary statistics to the dis-
tribution of summary statistics in the reference table for each 
model and calculated the frequency of observations smaller 
than our observed statistics using the ecdf function from the 
R ‘stats’ package (www.r-project.org).

Given the steep computational requirements of iDDC as a 
means to evaluate support for alternative SDMs (i.e. together, 

Figure 2. A conceptual diagram of the iDDC (He et al. 2013) modeling procedure that we use to compare support for alternative SDMs. 
Occurrence data and environmental data are used to construct multiple SDMs with di"erent climate datasets, background extents, and 
algorithms, which are then used to constrain population size through space and time in a spatially explicit forward simulation. !e coloniza-
tion history from the forward simulation parameterizes a coalescent simulation, which is used to generate simulated population genomic 
datasets that are compared to empirical data using ABC. 

 16000587, 0, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07196 by C

ollege O
f C

harleston, W
iley O

nline Library on [09/07/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

www.r-project.org


Page 6 of 14

simulating 50 000 replicates for all 24 models required the 
equivalent of ~ 34 years of runtime on a single processor), 
we conducted additional analyses to assess the sensitivity of 
model selection results to the total number of simulation 
replicates considered in the ABC analysis. For these analyses, 
we subsampled our full reference table (50 000 simulations 
per SDM, 1.2 million total), retaining from 5000 to 45 000 
simulations per model in steps of 5000 simulations, and 
repeated the neural network model selection analysis with a 
tolerance of 5% (6000 to 54 000 accepted simulations).

We used leave-one-out cross-validation (neural networks) 
and out-of-bag (OOB) error rates (random forests) to assess 
the ability of the ABC model selection analysis to distinguish 
alternative SDMs (i.e. model identi$ability). Leave-one-out 
cross-validation analyses used 100 replicates per SDM, the 
neural network model selection algorithm, and a single tol-
erance value (0.05). All simulations and ABC analyses were 
performed in R ver. 4.0.3 (www.r-project.org). 

Projecting future habitat suitability

Finally, we projected future habitat suitability under each 
SDM described above using two di"erent future global 
emission scenarios under the CMIP5 set of climate simula-
tions (RCP4.5 and RCP8.5; IPCC 2014; downscaled pro-
jections from Lorenz et al. 2016) and two global circulation 
models (GFDL-CM3 and IPSL-CM5-MR; Gri&es  et  al. 
2011, Dufresne et al. 2013). !e CCSM and ECBilt-CLIO 
do not have matching models of contemporary climate in 
Lorenz  et  al. (2016). !e two models provide contrasting 
predictions of future precipitation and temperature ranging 
from hot and dry (IPSL-CM5-MR) to wet and comparatively 
cool (GFDL-CM3). !ese four future climate scenarios (2 
RCPs × 2 climate models) were then used to predict suitable 
habitat for green ash for climate averaged across 2071–2100 

(hereafter, ‘2080’). To assess the degree to which the SDMs 
must extrapolate to novel climatic conditions in their projec-
tions of future suitability and their behavior when projected 
beyond the range of the training data, we constructed uni-
variate response curves for each predictor while holding the 
other variables at their means.

Results

Species distribution models compared using 
contemporary occurrences

Assessments of model accuracy based on contemporary 
occurrences indicated that all 24 SDMs performed well, 
with median CBI (across 30 evaluation folds) for each model 
greater than 0.8 (Fig. 3). Clustering analyses based on mean 
di"erences in estimated habitat suitability showed that SDMs 
based on the same climate model grouped at the LGM, 
whereas calibration extent was the main grouping factor of 
contemporary suitability surfaces (Supporting information). 
Hindcasted SDMs based on both climate models suggest a 
relatively continuous distribution of the species in what is 
now the southeastern United States at the LGM (Supporting 
information). However, SDMs based on the ECBilt climate 
model tended to infer larger areas of suitable habitat, includ-
ing areas near glaciated portions of the Midwest, while suit-
able habitats in SDMs based on the CCSM climate model 
were restricted to areas along the Gulf and Atlantic coasts at 
the LGM (Supporting information).

Species distribution models selected using ABC

!e rejection, neural network, and random forest algorithms 
almost always identi$ed SDM 6 (CCSM3 climate model, 
160-km background extent, GLM modeling algorithm) as 

Figure 3. Model accuracy measured using the continuous Boyce index (CBI). Values represent CBI measured against the evaluation folds 
(n = 30 repetitions of fold allocations). CBI ranges from −1 to 1, with values near zero indicating presence predictions that are no better 
than those from a random model. Boxes show the interquartile range of CBI values for each SDM (Table 1 for SDM settings), with heavy 
lines showing median CBI and whiskers extending to the range excluding outliers, which are plotted as open circles.
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the best or second-best model (Fig. 4, Supporting informa-
tion). !e rejection algorithm favored SDM 6 at every toler-
ance level except when using the most restrictive threshold 
(0.001), when SDM 4 (CCSM3 climate model, 80-km back-
ground extent, NS modeling algorithm) was favored with a 
posterior probability of 0.4633. !e neural network algo-
rithm also consistently supported SDM 6 at every tolerance 
except 0.005, where SDM 3 (CCSM3 climate model, 80-km 
background extent, MaxEnt modeling algorithm) was favored 
with a posterior probability of 0.4865 (Fig. 4, Supporting 
information). Notably, neural network-based estimates of 
cumulative support for models based on the CCSM3 climate 
model were substantially higher than cumulative support 
for SDMs based on the ECBilt model in all instances (range 
0.82–0.99; Supporting information). !e random forest 
analysis supported SDM 4 as the best model, with a posterior 
probability of 0.4448 (202/1000 votes) and SDM 6 as the 
second best model (172/1000 votes; Fig. 4). 

Multinomial logistic regression was less consistent, and 
showed strong support for $ve di"erent SDMs (posterior 
probability > 0.75) across the seven tolerances compared. 
Both climate models, two of the three background extents 
(80- and 160-km), and all four modeling algorithms were 
represented among models supported by multinomial logistic 
regression. !e large number of data summaries used in our 
ABC analyses (473 total summary statistics) may have con-
tributed to the observed instability in model selection results 
from multinomial logistic regression (i.e. the curse of dimen-
sionality; Pudlo et al. 2016). Given this pattern, and previ-
ous observations that ABC algorithms that employ machine 
learning approaches for dimension reduction are better suited 
for highly dimensional datasets (Blum and François 2010, 

Pudlo et al. 2016), we focus subsequent discussion on results 
from neural network and random forest ABC analyses, which 
favored SDMs 3 and 4, but especially SDM 6. 

Some observed summary statistics from our empirical 
green ash dataset fell outside the simulated distributions of 
these summary statistics under each model. Across the 24 
SDMs, between 18 and 89 of the 473 simulated summary 
statistic distributions did not encompass the empirical val-
ues. More frequently, observed summary statistics were in 
the tails of simulated distributions (e.g. between 109 and 
186 observed statistics fell in the 0.1% tails of distributions). 
Di"erences between SDMs did not appear to be related to 
climate model, background extent, or modeling algorithm. 
Notably, seven of the 210 pairwise FST values from simula-
tions were consistently higher than the observed pairwise FST 
values, regardless of the SDM considered. While this suggests 
that the simpli$ed recolonization model in our simulations 
may not accurately represent all aspects of the post-glacial 
expansion of the species, we did not detect systematic dif-
ferences in the degree to which simulated summary statistic 
distributions from the 24 SDMs covered observed values for 
the 473 summary statistics used in our ABC analyses.

We investigated the minimum number of demographic/
coalescent simulations necessary for model selection analy-
sis by reducing the number of simulations per SDM from 
50 000 down to 5000 (in increments of 5000). Posterior 
probabilities from the neural network ABC algorithm var-
ied with no discernable relationship to the total number of 
simulations included in the analysis. Nonetheless, SDM 6 
received the highest support among the competing models in 
all cases (posterior probability ranging from 0.337 to 0.673; 
Supporting information).

Figure 4. ABC model selection results comparing 24 alternative SDMs. Bar shading illustrates di"erences in background extent (80-, 160- 
or 320-km), and SDM algorithm (boosted regression trees, generalized linear models, Maxent, and natural splines). Estimates of posterior 
support for each model are shown for the rejection (rej., tolerance = 0.05), neural network (nnet, tolerance = 0.05), and random forest (rf ) 
model selection analyses. N.b., for the random forest, the plot shows the distribution of votes in favor of the di"erent models, rather than 
estimated posterior probabilities.
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Figure 5. Predictions for select models across time, each row represents predictions from a di"erent model (row 1 is the most supported 
model, SDM 6). Values for a given model are thresholded using the 70, 80, 90 and 95th quantile values of the raster from 0 kybp. !e blue 
region represents the glacial coverage at 21 kybp (Dalton et al. 2020) and the dark gray and green areas represent the region of inference. To 
serve as a visual benchmark, we display the modern outline of Canada, the US, and Mexico in each map. Projection: Albers equal-area conic.
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ABC cross-validation

Cross-validation using neural networks to select the best 
SDM showed that, in nearly all cases, the true simulated 
model produced the highest median posterior probability 
across 100 cross-validation replicates (Supporting informa-
tion). Neural network ABC was able to correctly distinguish 
between hindcasted SDMs based on alternative climate mod-
els and SDM algorithms, but less so for background extent. 
Looking speci$cally at SDM 6, there was little to no confu-
sion for SDMs constructed with the alternate climate model 
and very high identi$ability within the same climate model 
(Supporting information). Random forests were able to cor-
rectly distinguish between SDMs between 29 and 95% of the 
time (based on OOB error rates). Identi$cation of individual 
models was more reliable for SDMs based on CCSM (mean 
OOB error rate = 22%) than ECBilt (mean OOB error 
rate = 45%). As seen in the neural network cross-validation 
analyses, there was little confusion among SDMs based on 
alternative climate models (OOB error rates between climate 
models = 0–11%).

Future habitat suitability

Projected habitat suitability for 2080 di"ered greatly 
between the alternate climate models and under the two 
di"erent future climate scenarios (see Fig. 5 for examples 
and Supporting information for all results). SDMs based 
on CCSM often suggested a future range that is similar to 
present day range maps. In contrast, SDMs based on ECBilt 
predicted a drastic reduction in habitat suitability across the 
contemporary range by 2080 (Fig. 5D, Supporting infor-
mation). Within CCSM-based SDMs, future projections 
showed increased habitat suitability in the northeastern por-
tion of the contemporary range by 2080, especially under 
the wettest scenario (GFDL-CM3; Fig. 5, Supporting infor-
mation). Furthermore, SDMs often predicted higher habitat 
suitability for a given location under this scenario, suggesting 
that a wetter future may mediate the stressors from climate 
change for green ash.

Response curves

!e responses of each SDM to each predictor varied dra-
matically inside and outside the range of the training data, 
with some estimates changing in sign (Supporting informa-
tion). !e three most-frequently selected SDMs (2, 3 and 6) 
responded most strongly to variability in growing degree days 
and temperature variability, and to water de$cit index.

Discussion

We used simulations and genomic data within an integrated 
distributional, demographic, and coalescent modeling frame-
work (iDDC; He et al. 2013) to evaluate the relative support 
for 24 di"erent species distribution models for green ash, 

which varied by climate model, background extent, and mod-
eling algorithm. Using iDDC modeling to evaluate SDMs is 
a novel approach, and it more clearly distinguished particular 
models than did the state-of-the-art method for model assess-
ment based on geographically distinct cross-validation folds. 
Speci$cally, our analyses consistently favored SDMs based 
on the CCSM climate model over those based on ECBilt. 
Our model selection analyses, especially those approaches 
able to deal with multicollinearity and highly dimensional 
sets of summary statistics (i.e. neural network and random 
forests), consistently favored SDM 6, utilizing the CCSM 
climate model, a 160-km background extent, and the GLM 
modeling algorithm, over alternative models. Projections of 
past and future locations of suitable habitat di"ered strikingly 
across SDMs and future climate scenarios (Fig. 5), illustrat-
ing the importance of model evaluations like those conducted 
here and underscoring recent calls to integrate uncertainty 
in iDDC modeling studies (Alvarado-Serrano and Knowles 
2014, Castilla et al. 2024). By leveraging demographic and 
coalescent simulations across 21 ka of climate change with 
summary statistics based on population genomic data col-
lected across the contemporary range, evaluations based on 
iDDC modeling may improve con$dence in the selection of 
species distribution models and the reliability of projections 
of habitat suitability under future climates. While the data 
and computational requirements for ABC-based evaluation 
of alternative SDMs are steep relative to model validation 
using contemporary occurrences, we see numerous potential 
applications in studies seeking to predict past or future range 
shifts (Hoban et al. 2019).

Model comparisons using iDDC provide an alterna-
tive to more traditional methods that rely on contemporary 
occurrences to select the ‘best’ model. Previous studies have 
illustrated that model performance declines when SDMs are 
projected to novel conditions (Yates et al. 2018, Qiao et al. 
2019, Liu et al. 2020). !is is a major concern for studies 
that attempt to predict the species range in the past or future. 
Information from fossils can address some of these limitations 
(e.g. through the use of fossil occurrences to validate models; 
Martínez-Meyer  et  al. 2004, Waltari and Guralnick 2009, 
Roberts and Hamann 2012, Poli et al. 2022), but the fossil 
record is sparse for many taxa. !e signatures of past demo-
graphic events are retained in population genetic datasets; 
therefore, integrating these data in SDM evaluation provides 
more robust inference. In our analysis, response curves show 
very di"erent behavior for models projected to novel envi-
ronments particular to the LGM or 2080 (especially water 
de$cit, variability in precipitation and growing degree days; 
Supporting information). Contemporary occurrences, which 
cannot, by de$nition, sample conditions di"erent from the 
present, are limited in their ability to assess model perfor-
mance for cases that involve temporal transfer. !e iDDC 
approach can thus help to improve both the reconstruction of 
Quaternary range shifts and the prediction of climate-driven 
range shifts of the future.

iDDC can also be used to identify broad key ‘features’ that 
pose decision-points in the modeling process. !ese decision 
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points often have the potential to a"ect model predictions 
dramatically, and yet a priori, it is di&cult to make an argu-
ment for or against them. For example, best practices state 
that the extent of the calibration region should re%ect the area 
that is accessible to the species via dispersal (Barve et al. 2011, 
Araújo et al. 2019). However, limited knowledge of disper-
sal makes de$ning this area exceedingly di&cult. In our case, 
models using 80- and 160-km bu"ers to describe this region 
were strongly supported (mean selection probability across 
all methods 0.41 and 0.47, respectively), in contrast to the 
320-km bu"er (mean support 0.08). We also found di"er-
ences between modeling algorithms. Support for GLMs was 
highest (mean across all methods 0.37), compared to MaxEnt 
(0.29), NS (0.18), and BRTs (0.12). Our work thus con$rms 
that for robust model transfer, simpler models may be bet-
ter (Merow et al. 2014, Bell and Schlaepfer 2016). Finally, 
regardless of the SDM algorithm or background extent, we 
found strong support for SDMs based on the CCSM over the 
ECBilt paleoclimate model. Compared to ECBilt, CCSM 
incorporates a more sophisticated set of processes (e.g. vary-
ing sea level height and meltwater pulses; Lorenz et al. 2016). 
However, it is crucial to acknowledge that we are still far from 
comprehending the full extent of the biological implications 
arising from the di"erences in climate models employed. 

Conservationists and ecosystem managers aim to pinpoint 
species in need of interventions like assisted migration. To 
e"ectively discern these species, accurate predictions of future 
ranges are essential (Beaumont et al. 2019). In this context, 
our results highlight that the SDMs achieving the highest 
support for correspondence with past range shifts are models 
that predict a relatively small reduction in the species’ range in 
the future (Fig. 5). Notably, our ABC model selection clearly 
favored one model (SDM 6 – CCSM3 climate model, 160-
km background extent, GLM modeling algorithm; Fig. 4–5), 
which forecasted green ash distributions at 2080 that resem-
ble the current range, albeit with signi$cant habitat loss in 
the northwestern region. However, our overall results suggest 
that climate change may have a limited impact on green ash 
this century, making it a lower priority for assisted migration. 
!is aligns with a previous assessment that ranked the species 
109 out of 419 priority US tree species due to its low climate 
sensitivity and high adaptive capacity (Potter  et  al. 2019). 
Nonetheless, we do identify a pressing concern for green ash 
conservation in the northwestern region where the most loss is 
expected. !e non-native emerald ash borer, Agrilus planipen-
nis, remains the foremost threat to this species, leading to the 
tree’s Critically Endangered classi$cation (Westwood  et  al. 
2017). !e northwestern populations form a distinct 
genetic group that displays valuable traits for pest resistance 
(Steiner et al. 2019). Despite their limited geographic extent, 
the loss of northwestern populations could thus substantially 
diminish the adaptive potential of green ash.

!ere are notable limitations associated with the approach 
for SDM evaluation taken in our study. In particular, selec-
tion of the optimal SDM may be in%uenced by a number 
of assumptions made during modeling, many of which are 
inherent in other uses of SDMs to hind- and forecast ranges. 

For instance, we assume negligible evolutionary change in 
the fundamental niche of the species since the LGM. While 
this assumption is contentious (Jackson and Overpeck 2000, 
Colwell and Rangel 2009, Nogués-Bravo 2009), it seems 
more likely to hold in species with lengthy generation times 
(e.g. trees). We further assume linear changes in habitat suit-
ability over time (i.e. suitability was linearly interpolated on 
30-year intervals for our simulations) and a proportional 
relationship between estimated habitat suitability and popu-
lation size. Notably, the latter assumption could be relaxed, 
by modeling alternative functional forms for the relationship 
between suitability and population carrying capacity (Brown 
and Knowles 2012, Brown et al. 2016), though such a com-
parison would multiply the computational demands of the 
analysis by a factor of two for each additional alternative. !e 
data requirements of the method described here may also be 
limiting in some cases due to the need for a genetic dataset 
and substantial computational resources. !at being said, 
high-throughput sequencing technologies (Baird et al. 2008, 
Ali et al. 2016) have made population genomic data far more 
accessible and datasets in online repositories (e.g. GenBank’s 
Sequence Read Archive) are rapidly accumulating, meaning 
this approach could be performed on dozens of existing and 
free-to-use datasets. Furthermore, our sensitivity analyses 
suggest that it may be possible to obtain reliable inferences 
using far fewer simulations than conducted here (possibly 
as few as 5000 simulations per model), easing the computa-
tional burden of iDDC simulations.

To our knowledge, our study is the $rst to use iDDC 
modeling to evaluate alternative SDMs. In green ash, we 
found consistent support for distribution models based on 
the CCSM climate model (Lorenz et al. 2016), which pre-
dicted a relatively large refuge across the southeastern US at 
the LGM. !e best-supported model also included an inter-
mediate background extent (160-km) and the GLM SDM 
algorithm, although we expect that the particular combina-
tion of settings that lead to optimal SDM performance will 
di"er among species. Predictions of future range shifts under 
this model identi$ed a set of climate-vulnerable populations 
that may also be resistant to invasive pests and worthy of con-
sideration in future conservation e"orts, although alternative 
SDMs did not unequivocally identify these same populations 
as needing special attention (Fig. 5, Supporting informa-
tion). While using iDDC to select among a set of compet-
ing SDMs requires computational resources for simulations 
and a population genetic or genomic dataset for the species, 
it provides a useful alternative to model evaluations based on 
contemporary occurrence data alone. Furthermore, posterior 
probabilities estimated from ABC could be used as weights 
in ensemble forecasting, which avoids the need to identify a 
‘best’ model by combining predictions across SDMs (Araújo 
and New 2006). In our study, ABC was able to distinguish 
among competing SDMs, despite similar performance among 
models when assessed using contemporary occurrence data. 
We expect that integrating information in population genetic 
datasets will improve both reconstructions of past range 
dynamics and con$dence in projections of future range shifts.
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