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Ecography Climate change poses a threat to biodiversity, and it is unclear whether species
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doi: 10.1111/eco.07196 Reconstructions of range shifts that occurred in response to environmental changes

T & since the last glacial maximum (LGM) from species distribution models (SDMs) can
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Accepted 2 June 2024 methods typically focus on accuracy in recreating current distributions, limiting their

relevance for assessing predictions to the past or future. We modeled historically suit-
able habitat for the threatened North American tree green ash Fraxinus pennsylvanica
using 24 SDMs built using two climate models, three calibration regions, and four
modeling algorithms. We evaluated the SDMs using contemporary data with spatial
block cross-validation and compared the relative support for alternative models using a
novel integrative method based on coupled demographic-genetic simulations. We sim-
ulated genomic datasets using habitat suitability of each of the 24 SDMs in a spatially-
explicit model. Approximate Bayesian computation (ABC) was then used to evaluate
the support for alternative SDMs through comparisons to an empirical population
genomic dataset. Models had very similar performance when assessed with contem-
porary occurrences using spatial cross-validation, but ABC model selection analyses
consistently supported SDMs based on the CCSM climate model, an intermediate
calibration extent, and the generalized linear modeling algorithm. Finally, we projected
the future range of green ash under four climate change scenarios. Future projections
using the SDMs selected via ABC suggest only minor shifts in suitable habitat for this
species, while some of those that were rejected predicted dramatic changes. Our results
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highlight the different inferences that may result from the application of alternative distribution modeling algorithms and
provide a novel approach for selecting among a set of competing SDMs with independent data.

Keywords: approximate Bayesian computation, climate change, ecological niche model, extrapolation, last glacial maximum

(LGM), model selection

Introduction

Climate change is a major threat to global biodiversity with
documented evidence of impacts on individual species, eco-
systems, and the services they provide to human populations
(IPCC 2001, Parmesan and Yohe 2003, Parmesan 2006,
Bellard et al. 2012, Diaz et al. 2019, Weiskopf et al. 2020).
It is important to understand the extent to which species
suitable habitats may shift in the future under different cli-
mate change scenarios in order to identify vulnerable species
and inform conservation efforts. Species distribution models
(SDMs) are often used to reconstruct historical, or forecast
potential future, range shifts. Historical reconstructions shed
light on the locations of glacial refugia (Puschendorf et al.
2009) and the timing and pace of post-glacial expansion
(Ordonez and Williams 2013), while forecasts help to predict
species and ecosystem responses to changing environments.
The versatility of SDMs makes them a valuable modeling
approach, providing insights that underpin contemporary
conservation strategies aimed at safeguarding biodiversity in
a changing world. However, there are substantial challenges
in using SDMs. For instance, successful prediction assumes
that the fundamental niche is not only fully occupied but
all conditions within it are available to the species (Jackson
and Overpeck 2000, Wiens et al. 2009), that species’ niches
do not evolve over time, and that they do not face dispersal
lags or barriers to movement (Corlett and Westcott 2013).
Furthermore, different approaches to building SDMs often
produce contrasting patterns (Qiao et al. 2015, Steen et al.
2017). The choices made during model construction, such
as the selection of modeling algorithms (Qiao et al. 2019),
the specific climate models employed for hindcasting or fore-
casting (Fitzpatrick et al. 2018), and the criteria for selecting
background points (Anderson and Raza 2010), can all influ-
ence the resulting habitat suitability predictions. Thus, differ-
ent inferences may be drawn due to the variety of approaches
to distribution modeling.

Another challenge is the limited availability of indepen-
dent data for model validation (Yates et al. 2018). Most
evaluations of SDMs rely on contemporary occurrence data-
sets (presence—absence or presence-background data) for
model validation. Since independent data sets are difficult to
acquire, quasi-independence can be ‘enforced’ on the data by
using spatial or temporal cross-validation (Aradjo et al. 2005,
Roberts et al. 2017, Fourcade et al. 2018, Liu et al. 2020).
Cross-validation is well-suited for evaluating the accuracy of
models focused on present-day distributions, but less use-
ful for comparing hindcasted or forecasted SDMs. This is
especially challenging given that conditions in the long past
(e.g. the last glacial maximum (LGM)) or future may have
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very little overlap with present-day environments (Williams
and Jackson 2007). SDM performance declines, sometimes
dramatically, under these conditions (Maguire et al. 2016,
Fitzpatrick et al. 2018). Thus, there is a need to develop
methods to evaluate alternative SDMs to improve confidence
in inferred range shifts both in the past and under projected
future climate change.

Population genetic data and approximate Bayesian com-
putation (ABC) provide an underexplored alternative to
model validation using contemporary or historical occurrence
data. ABC is a simulation-based analytical framework that
approximates the likelihood function for a complex model
through comparisons between simulated and observed data
summaries (reviewed by Bertorelle et al. 2010). The frame-
work was originally developed in the field of population
genetics (Tavaré 1997, Pritchard et al. 1999) and has since
been used to fit and compare demographic models in a wide
variety of contexts (e.g. to model the spread of invasive spe-
cies, Estoup etal. 2010, Ascunce et al. 2011, Sard et al. 2019,
or assemblage-level patterns of divergence, Carnaval et al.
2009, Ilves et al. 2010, Smith et al. 2014). Recent studies
have incorporated predictions of habitat suitability from
hindcasted SDMs to inform demographic simulations in
integrated distributional, demographic and coalescent mod-
els iDDC; He et al. 2013, Alvarado-Serrano and Knowles
2014, Massatti and Knowles 2016). These studies often use
a single SDM algorithm (possibly selected from a candi-
date set using occurrence-based SDM validation metrics) in
their demographic models (Brown et al. 2016). However, in
combination with a suitable genetic dataset and informative
summary statistics (Alvarado-Serrano and Hickerson 2016),
ABC model selection analyses can also be used to compare
the relative fit of alternative SDMs and the many decisions
around their implementation (e.g. size of the calibration
region, predictor set, etc.). While not the focus of the present
manuscript, the posterior probabilities for competing SDMs
estimated from ABC could also be used as model weights in
ensemble forecasting, allowing researchers to integrate uncer-
tainty in hind- or forecasted species distributions (Aradjo and
New 2006). Although the potential for using genetic data-
sets to assess the veracity of SDM outputs has been noted
(He et al. 2013, Fordham et al. 2014), actual methodologies
and applications remain uncommon.

In this study, we present a novel application of ABC to eval-
uate the relative support for alternative SDMs and compare
these evaluations to model performance metrics estimated
from spatially exclusive cross-validation folds, the state-of-the-
art method for assessing SDM performance when independent
data are unavailable (Anderson and Raza 2010, Valavi et al.
2019). Specifically, we constructed 24 SDMs for green ash
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Table 1. Settings used for the 24 distinct SDMs evaluated in this
study. BRT: boosted regression tree. GLM: generalized linear model.
NS: natural splines.

Climate Background extent
model (km) SDM algorithm SDM
CCSM 80 BRT 1
GLM 2
Maxent 3
NS 4
160 BRT 5
GLM 6
Maxent 7
NS 8
320 BRT 9
GLM 10
Maxent 11
NS 12
ECBilt 80 BRT 13
GLM 14
Maxent 15
NS 16
160 BRT 17
GLM 18
Maxent 19
NS 20
320 BRT 21
GLM 22
Maxent 23
NS 24

Fraxinus pennsylvanica using combinations of different climate
models, background extents, and modeling algorithms (Table
1). We then used iDDC modeling (He et al. 2013), a range-
wide population genomic dataset for the species, and ABC to
evaluate support for alternative SDMs. In our study, iDDC
provides a means for selecting the best performing model
(i.e. by determining which SDMs lead to simulated genetic
datasets with close correspondence to observed data), avoid-
ing limitations associated with the use of contemporary occur-
rence data for model selection. Finally, we predicted the future
range of green ash under each SDM, two alternative global
emission scenarios, and two global circulation models to assess
the influences of model choice on assessments of vulnerability
to climate change and recommended conservation strategies.

Material and methods

Study system

Green ash is a deciduous tree in the family Oleaceae with a
current range spanning eastern North America, from Nova
Scotia to Alberta and south to Florida and Texas (Fig. 1). The
species favors consistently moist and loamy soils that are well-
drained and is moderately tolerant to shade (Westwood et al.
2017), making it the most widespread of the ash species.
Nonetheless, this species is currently listed as critically endan-
gered on the IUCN Red List, largely due to impacts of the
invasive emerald ash borer Agrilus planipennis (Klooster et al.
2018, Siegert et al. 2021).

Species distribution modeling

Green ash occurrence data were acquired from the Botanical
Information and Ecology Network (BIEN) ver. 4.1.1.
(Enquist et al. 2016, Maitner et al. 2018). We excluded geo-
graphic outliers and locations with cultivated and naturalized
individuals from our occurrence data set. We used 80-, 160-
and 320-km buffers around known occurrences to define
three different calibration regions from which we drew back-
ground sites for modeling. Notably, the largest buffer covers
most of the study region save the farthest northern areas (cf.
map of occurrences and buffers in Fig. 2). We excluded occur-
rences and background sites from Kentucky and Louisiana
because they were severely undersampled relative to the other
parts of the range (< 0.0001% of all records in each state). To
project SDMs to the LGM, we used modeled climate surfaces
from Lorenz et al. (2016), based on two paleo earth system
models, ECBilt-CLIO (Timm and Timmermann 2007) and
CCSM3 (Collins et al. 2000), at 0.5° spatial resolution. After
accounting for collinearity, a subset of six environmental
variables were retained for SDM construction: mean evapo-
transpiration ratio, water deficit index, annual precipita-
tion, the coeflicient of variation in annual precipitation, and
standard deviations of growing degree days and minimum
temperature.

We modeled the current and historical distribution of
green ash using boosted regression trees (BRTs; Elith et al.
2008), generalized linear models (GLMs; Guisan et al.
2002), MaxEnt ver. 3.3.3k (Phillips et al. 2006, Phillips and
Dudik 2008), and natural splines (NS; Mohn et al. 2021)
using functions from the ‘enmSdmX’ R package (Smith et al.
2023). Model calibration (i.e. training and tuning) and
evaluation was based on the continuous Boyce index (CBI;
Hirzel et al. 2000), calculated from the ratio of predicted and
expected frequencies of evaluation points across habitat suit-
ability classes. We used CBI rather than the area under the
curve (AUC) or true-skill statistic (TSS), given differences
in background area across the 24 models. Both of these met-
rics are sensitive to, and biased by, differences in background
extent (Smith 2013), and would thus be inappropriate for
comparing models that differ in the width of buffers used to
define background sites. CBI ranges from —1 to 1 and is near
zero when the model is no better than a random model and
positive for models that are consistent with species presences
in evaluation data (Hirzel et al. 2006). Models were calibrated
by splitting the occurrence data into three spatially exclusive
sets based on subdividing the occurrences into 50 square
cells 320 km on a side. Cells were then randomly assigned to
three sets, one for training models, the performance of which
was assessed against the second set to tune each algorithm’s
parameters. Once tuned, model accuracy was assessed against
the third set, which is the accuracy we report. For the training
set we randomly chose 50% of the cells (25), for the calibra-
tion set ~ 20% (9 cells), and the evaluation ~ 30% (16 cells).
We repeated random cell assignments 30 times, for each of
which we trained, calibrated, and evaluated models for each
combination of climate model, background extent, and
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Figure 1. Map of the study region (light gray polygon) in eastern North America. The contemporary green ash range is shown in green
(Litdle 1971), and the maximum extent of glaciation 21 kybp in light blue (Dalton et al. 2020). Occurrence records from the BIEN data-
base are shown with black points, and red points illustrate the location of populations sampled for genetic analysis (by Noakes et al. 2022).
The SDM was projected to the gray region (dark gray: 21 kybp, light gray: present). Note the land surface was larger in the past due to

changes in sea level. Projection: Albers equal-area conic.

SDM algorithm. We then created an ‘all-sites’ model using
all occurrences based on the best parameterization for each
algorithm. We projected these all-sites models to the past
using climate reconstructions from ECBilt or CCSM climate
models using 200-year average climates centered on 500-
year intervals (Lorenz et al. 2016), then linearly interpolated
habitat suitability in simulation grid cells at 30-year intervals
for use in the demographic models described below. We did
explore non-linear interpolations (splines, natural splines,
basis-splines, etc.), but chose linear interpolation as it did not
introduce erratic artifacts. To help assess the degree of simi-
larity among SDM predictions, we implemented a clustering
analysis using mean differences between cells in the present
and mean differences between cells at 21 kybp as distances
between SDMs.

Simulations and approximate Bayesian computation
(ABC)

Empirical population genomic data for green ash were col-
lected from samples of fourteen individuals from each of 21
populations across the contemporary species range (a sub-
set of populations from Noakes et al. 2022, Fig. 1). Details
of sampling, DNA extraction, restriction-associated DNA
sequencing (RAD-seq) library preparation, and bioinformatic
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analysis can be found in the Supporting information of
Castilla et al. (2024). We filtered the dataset to retain one
SNP per RAD locus and remove variable sites where the
minor allele frequency was below 0.01. After filtering, the
population genomic dataset included 294 green ash individu-
als and 1000 SNP loci.

We used the spatially explicit model implemented in the
R package holoSimCell’ (https://github.com/stranda/
holoSimCell) to simulate genomic datasets using habitat
suitability projected to the past under each of the 24 SDMs.
Briefly, this analytical framework couples forward-time demo-
graphic simulations with backward-time coalescent genetic
simulations and estimates support for alternative models (i.e.
the 24 distinct SDMs) using ABC (Fig. 2). The forward simu-
lation models population growth and dispersal, and is used to
establish a colonization history of populations on a spatially-
explicit simulated landscape. Parameter values for simulations,
including the maximum per-grid cell effective population
size (/V), dispersal parameters (mixture parameter), and
parameters related to refugial population size, were drawn
from prior distributions (Supporting information) for each
simulation. Simulations began at 21 kybp by placing start-
ing populations in areas where predicted habitat suitability in
hindcasted SDMs was above a model-specific threshold that
maximized the sum of sensitivity and specificity, as evaluated
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Figure 2. A conceptual diagram of the iDDC (He et al. 2013) modeling procedure that we use to compare support for alternative SDMs.
Occurrence data and environmental data are used to construct multiple SDMs with different climate datasets, background extents, and
algorithms, which are then used to constrain population size through space and time in a spatially explicit forward simulation. The coloniza-
tion history from the forward simulation parameterizes a coalescent simulation, which is used to generate simulated population genomic

datasets that are compared to empirical data using ABC.

using contemporary suitability estimates and the range map
for green ash (Little 1971). Initial abundances in cells within
glacial refugia were scaled linearly by their predicted suitabil-
ity values. The simulations used habitat suitability layers (in
30-year time steps) from each of our 24 SDMs to set car-
rying capacity of a cell through time. The colonization his-
tory for each replicate simulation was then incorporated into
a coalescent simulation in fastsimcoal ver. 2.6 (Excoffier et al.
2013), to efficiently generate simulated population genomic
data. Coalescent simulations used the same migration matrix
as forward demographic simulations and the recorded sources
for newly colonized grid cells at each time step of the forward
simulation. We simulated 50 000 replicate datasets for each
SDM, resulting in a total of 1 200 000 replicates in our ABC
reference table. The reference table included the randomly
drawn parameter values used in each simulation and summary
statistics characterizing within and among population genetic
variation in simulated datasets.

We used ABC to evaluate the support for alternative SDMs
by comparing summary statistics from simulations under
each SDM to observed summary statistics from our empiri-
cal dataset. ABC analyses were conducted using the R pack-
ages ‘abc’ (Gsilléry et al. 2012) and ‘aberf’ (Marin et al.
2019). Comparisons between simulated and observed datasets

were based on 473 summary statistics that reflect within- and
among-population genetic variation (see the Supporting
information for details on summary statistics). We estimated
posterior probabilities of each of our 24 SDMs using simple
rejection, multinomial logistic regression (Beaumont 2008),
neural networks (Blum and Francois 2010), and random forest
(Pudlo et al. 2016) ABC model selection algorithms. Neural
networks included 10 networks, 20 units in the hidden layer,
and maximum weights set to 50 000. We used 1000 trees to
predict the most likely model in our random forest analysis.
For multinomial logistic regression and neural networks, we
conducted model comparisons using a range of tolerances that
accepted between 1200 and 120 000 simulated replicates
most closely matching the observed summary statistics (i.e.
tolerances between 0.001 and 0.1, respectively). As a post hoc
assessment of the ability of our simulation model to produce
summary statistics similar to those in the empirical green ash
dataset, we compared observed summary statistics to the dis-
tribution of summary statistics in the reference table for each
model and calculated the frequency of observations smaller
than our observed statistics using the ecdf function from the
R ‘stats’ package (www.r-project.org).

Given the steep computational requirements of iDDC as a
means to evaluate support for alternative SDMs (i.e. together,
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simulating 50 000 replicates for all 24 models required the
equivalent of ~ 34 years of runtime on a single processor),
we conducted additional analyses to assess the sensitivity of
model selection results to the total number of simulation
replicates considered in the ABC analysis. For these analyses,
we subsampled our full reference table (50 000 simulations
per SDM, 1.2 million total), retaining from 5000 to 45 000
simulations per model in steps of 5000 simulations, and
repeated the neural network model selection analysis with a
tolerance of 5% (6000 to 54 000 accepted simulations).

We used leave-one-out cross-validation (neural networks)
and out-of-bag (OOB) error rates (random forests) to assess
the ability of the ABC model selection analysis to distinguish
alternative SDMs (i.e. model identifiability). Leave-one-out
cross-validation analyses used 100 replicates per SDM, the
neural network model selection algorithm, and a single tol-
erance value (0.05). All simulations and ABC analyses were
performed in R ver. 4.0.3 (www.r-project.org).

Projecting future habitat suitability

Finally, we projected future habitat suitability under each
SDM described above using two different future global
emission scenarios under the CMIP5 set of climate simula-
tions (RCP4.5 and RCP8.5; IPCC 2014; downscaled pro-
jections from Lorenz et al. 2016) and two global circulation
models (GFDL-CM3 and IPSL-CM5-MR; Grifhies et al.
2011, Dufresne et al. 2013). The CCSM and ECBilt-CLIO
do not have matching models of contemporary climate in
Lorenz et al. (2016). The two models provide contrasting
predictions of future precipitation and temperature ranging
from hotand dry (IPSL-CM5-MR) to wet and comparatively
cool (GFDL-CM3). These four future climate scenarios (2
RCPs X 2 climate models) were then used to predict suitable
habitat for green ash for climate averaged across 2071-2100

(hereafter, 2080°). To assess the degree to which the SDMs
must extrapolate to novel climatic conditions in their projec-
tions of future suitability and their behavior when projected
beyond the range of the training data, we constructed uni-
variate response curves for each predictor while holding the
other variables at their means.

Results

Species distribution models compared using
contemporary occurrences

Assessments of model accuracy based on contemporary
occurrences indicated that all 24 SDMs performed well,
with median CBI (across 30 evaluation folds) for each model
greater than 0.8 (Fig. 3). Clustering analyses based on mean
differences in estimated habitat suitability showed that SDMs
based on the same climate model grouped at the LGM,
whereas calibration extent was the main grouping factor of
contemporary suitability surfaces (Supporting information).
Hindcasted SDMs based on both climate models suggest a
relatively continuous distribution of the species in what is
now the southeastern United States at the LGM (Supporting
information). However, SDMs based on the ECBilt climate
model tended to infer larger areas of suitable habitat, includ-
ing areas near glaciated portions of the Midwest, while suit-
able habitats in SDMs based on the CCSM climate model
were restricted to areas along the Gulf and Atlantic coasts at
the LGM (Supporting information).

Species distribution models selected using ABC

The rejection, neural network, and random forest algorithms
almost always identified SDM 6 (CCSM3 climate model,
160-km background extent, GLM modeling algorithm) as
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Figure 3. Model accuracy measured using the continuous Boyce index (CBI). Values represent CBI measured against the evaluation folds
(n=30 repetitions of fold allocations). CBI ranges from —1 to 1, with values near zero indicating presence predictions that are no better
than those from a random model. Boxes show the interquartile range of CBI values for each SDM (Table 1 for SDM settings), with heavy
lines showing median CBI and whiskers extending to the range excluding outliers, which are plotted as open circles.
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support for each model are shown for the rejection (rej., tolerance=0.05), neural network (nnet, tolerance=10.05), and random forest (rf)
model selection analyses. NV.4., for the random forest, the plot shows the distribution of votes in favor of the different models, rather than
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the best or second-best model (Fig. 4, Supporting informa-
tion). The rejection algorithm favored SDM 6 at every toler-
ance level except when using the most restrictive threshold
(0.001), when SDM 4 (CCSM3 climate model, 80-km back-
ground extent, NS modeling algorithm) was favored with a
posterior probability of 0.4633. The neural network algo-
rithm also consistently supported SDM 6 at every tolerance
except 0.005, where SDM 3 (CCSM3 climate model, 80-km
background extent, MaxEnt modeling algorithm) was favored
with a posterior probability of 0.4865 (Fig. 4, Supporting
information). Notably, neural network-based estimates of
cumulative support for models based on the CCSM3 climate
model were substantially higher than cumulative support
for SDMs based on the ECBilt model in all instances (range
0.82-0.99; Supporting information). The random forest
analysis supported SDM 4 as the best model, with a posterior
probability of 0.4448 (202/1000 votes) and SDM 6 as the
second best model (172/1000 votes; Fig. 4).

Multinomial logistic regression was less consistent, and
showed strong support for five different SDMs (posterior
probability > 0.75) across the seven tolerances compared.
Both climate models, two of the three background extents
(80- and 160-km), and all four modeling algorithms were
represented among models supported by multinomial logistic
regression. The large number of data summaries used in our
ABC analyses (473 total summary statistics) may have con-
tributed to the observed instability in model selection results
from multinomial logistic regression (i.e. the curse of dimen-
sionality; Pudlo et al. 2016). Given this pattern, and previ-
ous observations that ABC algorithms that employ machine
learning approaches for dimension reduction are better suited
for highly dimensional datasets (Blum and Frangois 2010,

Pudlo et al. 2016), we focus subsequent discussion on results
from neural network and random forest ABC analyses, which
favored SDMs 3 and 4, but especially SDM 6.

Some observed summary statistics from our empirical
green ash dataset fell outside the simulated distributions of
these summary statistics under each model. Across the 24
SDMs, between 18 and 89 of the 473 simulated summary
statistic distributions did not encompass the empirical val-
ues. More frequently, observed summary statistics were in
the tails of simulated distributions (e.g. between 109 and
186 observed statistics fell in the 0.1% tails of distributions).
Differences between SDMs did not appear to be related to
climate model, background extent, or modeling algorithm.
Notably, seven of the 210 pairwise F; values from simula-
tions were consistently higher than the observed pairwise F;
values, regardless of the SDM considered. While this suggests
that the simplified recolonization model in our simulations
may not accurately represent all aspects of the post-glacial
expansion of the species, we did not detect systematic dif-
ferences in the degree to which simulated summary statistic
distributions from the 24 SDMs covered observed values for
the 473 summary statistics used in our ABC analyses.

We investigated the minimum number of demographic/
coalescent simulations necessary for model selection analy-
sis by reducing the number of simulations per SDM from
50 000 down to 5000 (in increments of 5000). Posterior
probabilities from the neural network ABC algorithm var-
ied with no discernable relationship to the total number of
simulations included in the analysis. Nonetheless, SDM 6
received the highest support among the competing models in
all cases (posterior probability ranging from 0.337 to 0.673;
Supporting information).
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(A) Model 6: GLM using CCSM paleoclimate model with a 160-km extent with mean ANN acceptance rate of 0.51
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(B) Model 2: GLM using CCSM paleoclimate model with a 80-km extent with mean ANN acceptance rate of 0.13
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(C) Model 10: GLM using CCSM paleoclimate model with a 320-km extent with mean ANN acceptance rate of 0.03
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(D) Model 18: GLM using ECBIlt paleoclimate model with a 160-km extent with mean ANN acceptance rate of 0.00
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(E) Model 7: MaxEnt using CCSM paleoclimate model with a 160-km extent with mean ANN acceptance rate of 0.06
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Figure 5. Predictions for select models across time, each row represents predictions from a different model (row 1 is the most supported
model, SDM 6). Values for a given model are thresholded using the 70, 80, 90 and 95th quantile values of the raster from 0 kybp. The blue
region represents the glacial coverage at 21 kybp (Dalton et al. 2020) and the dark gray and green areas represent the region of inference. To
serve as a visual benchmark, we display the modern outline of Canada, the US, and Mexico in each map. Projection: Albers equal-area conic.
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ABC cross-validation

Cross-validation using neural networks to select the best
SDM showed that, in nearly all cases, the true simulated
model produced the highest median posterior probability
across 100 cross-validation replicates (Supporting informa-
tion). Neural network ABC was able to correctly distinguish
between hindcasted SDMs based on alternative climate mod-
els and SDM algorithms, but less so for background extent.
Looking specifically at SDM 6, there was little to no confu-
sion for SDMs constructed with the alternate climate model
and very high identifiability within the same climate model
(Supporting information). Random forests were able to cor-
rectly distinguish between SDMs between 29 and 95% of the
time (based on OOB error rates). Identification of individual
models was more reliable for SDMs based on CCSM (mean
OOB error rate=22%) than ECBilt (mean OOB error
rate=45%). As seen in the neural network cross-validation
analyses, there was little confusion among SDMs based on
alternative climate models (OOB error rates between climate
models=0-11%).

Future habitat suitability

Projected habitat suitability for 2080 differed greatly
between the alternate climate models and under the two
different future climate scenarios (see Fig. 5 for examples
and Supporting information for all results). SDMs based
on CCSM often suggested a future range that is similar to
present day range maps. In contrast, SDMs based on ECBilt
predicted a drastic reduction in habitat suitability across the
contemporary range by 2080 (Fig. 5D, Supporting infor-
mation). Within CCSM-based SDMs, future projections
showed increased habitat suitability in the northeastern por-
tion of the contemporary range by 2080, especially under
the wettest scenario (GFDL-CM3; Fig. 5, Supporting infor-
mation). Furthermore, SDMs often predicted higher habitat
suitability for a given location under this scenario, suggesting
that a wetter future may mediate the stressors from climate
change for green ash.

Response curves

The responses of each SDM to each predictor varied dra-
matically inside and outside the range of the training data,
with some estimates changing in sign (Supporting informa-
tion). The three most-frequently selected SDMs (2, 3 and 6)
responded most strongly to variability in growing degree days
and temperature variability, and to water deficit index.

Discussion

We used simulations and genomic data within an integrated
distributional, demographic, and coalescent modeling frame-
work (iDDC; He et al. 2013) to evaluate the relative support
for 24 different species distribution models for green ash,

which varied by climate model, background extent, and mod-
eling algorithm. Using iDDC modeling to evaluate SDMs is
a novel approach, and it more clearly distinguished particular
models than did the state-of-the-art method for model assess-
ment based on geographically distinct cross-validation folds.
Specifically, our analyses consistently favored SDMs based
on the CCSM climate model over those based on ECBilt.
Our model selection analyses, especially those approaches
able to deal with multicollinearity and highly dimensional
sets of summary statistics (i.e. neural network and random
forests), consistently favored SDM 6, utilizing the CCSM
climate model, a 160-km background extent, and the GLM
modeling algorithm, over alternative models. Projections of
past and future locations of suitable habitat differed strikingly
across SDMs and future climate scenarios (Fig. 5), illustrat-
ing the importance of model evaluations like those conducted
here and underscoring recent calls to integrate uncertainty
in iDDC modeling studies (Alvarado-Serrano and Knowles
2014, Castilla et al. 2024). By leveraging demographic and
coalescent simulations across 21 ka of climate change with
summary statistics based on population genomic data col-
lected across the contemporary range, evaluations based on
iDDC modeling may improve confidence in the selection of
species distribution models and the reliability of projections
of habitat suitability under future climates. While the data
and computational requirements for ABC-based evaluation
of alternative SDMs are steep relative to model validation
using contemporary occurrences, we see numerous potential
applications in studies seeking to predict past or future range
shifts (Hoban et al. 2019).

Model comparisons using iDDC provide an alterna-
tive to more traditional methods that rely on contemporary
occurrences to select the ‘best” model. Previous studies have
illustrated that model performance declines when SDMs are
projected to novel conditions (Yates et al. 2018, Qiao et al.
2019, Liu et al. 2020). This is a major concern for studies
that attempt to predict the species range in the past or future.
Information from fossils can address some of these limitations
(e.g. through the use of fossil occurrences to validate models;
Martinez-Meyer et al. 2004, Waltari and Guralnick 2009,
Roberts and Hamann 2012, Poli et al. 2022), but the fossil
record is sparse for many taxa. The signatures of past demo-
graphic events are retained in population genetic datasets;
therefore, integrating these data in SDM evaluation provides
more robust inference. In our analysis, response curves show
very different behavior for models projected to novel envi-
ronments particular to the LGM or 2080 (especially water
deficit, variability in precipitation and growing degree days;
Supporting information). Contemporary occurrences, which
cannot, by definition, sample conditions different from the
present, are limited in their ability to assess model perfor-
mance for cases that involve temporal transfer. The iDDC
approach can thus help to improve both the reconstruction of
Quaternary range shifts and the prediction of climate-driven
range shifts of the future.

iDDC can also be used to identify broad key ‘features’ that
pose decision-points in the modeling process. These decision
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points often have the potential to affect model predictions
dramatically, and yet a priori, it is difficult to make an argu-
ment for or against them. For example, best practices state
that the extent of the calibration region should reflect the area
that is accessible to the species via dispersal (Barve etal. 2011,
Aragjo et al. 2019). However, limited knowledge of disper-
sal makes defining this area exceedingly difficult. In our case,
models using 80- and 160-km buffers to describe this region
were strongly supported (mean selection probability across
all methods 0.41 and 0.47, respectively), in contrast to the
320-km buffer (mean support 0.08). We also found differ-
ences between modeling algorithms. Support for GLMs was
highest (mean across all methods 0.37), compared to MaxEnt
(0.29), NS (0.18), and BRTs (0.12). Our work thus confirms
that for robust model transfer, simpler models may be bet-
ter (Merow et al. 2014, Bell and Schlaepfer 2016). Finally,
regardless of the SDM algorithm or background extent, we
found strong support for SDMs based on the CCSM over the
ECBilt paleoclimate model. Compared to ECBilt, CCSM
incorporates a more sophisticated set of processes (e.g. vary-
ing sea level height and meltwater pulses; Lorenz et al. 2016).
However, it is crucial to acknowledge that we are still far from
comprehending the full extent of the biological implications
arising from the differences in climate models employed.

Conservationists and ecosystem managers aim to pinpoint
species in need of interventions like assisted migration. To
effectively discern these species, accurate predictions of future
ranges are essential (Beaumont et al. 2019). In this context,
our resules highlight that the SDMs achieving the highest
support for correspondence with past range shifts are models
that predict a relatively small reduction in the species’ range in
the future (Fig. 5). Notably, our ABC model selection clearly
favored one model (SDM 6 — CCSM3 climate model, 160-
km background extent, GLM modeling algorithm; Fig. 4-5),
which forecasted green ash distributions at 2080 that resem-
ble the current range, albeit with significant habitat loss in
the northwestern region. However, our overall results suggest
that climate change may have a limited impact on green ash
this century, making it a lower priority for assisted migration.
This aligns with a previous assessment that ranked the species
109 out of 419 priority US tree species due to its low climate
sensitivity and high adaptive capacity (Potter et al. 2019).
Nonetheless, we do identify a pressing concern for green ash
conservation in the northwestern region where the most loss is
expected. The non-native emerald ash borer, Agrilus planipen-
nis, remains the foremost threat to this species, leading to the
tree’s Critically Endangered classification (Westwood et al.
2017). The northwestern populations form a distinct
genetic group that displays valuable traits for pest resistance
(Steiner et al. 2019). Despite their limited geographic extent,
the loss of northwestern populations could thus substantially
diminish the adaptive potential of green ash.

There are notable limitations associated with the approach
for SDM evaluation taken in our study. In particular, selec-
tion of the optimal SDM may be influenced by a number
of assumptions made during modeling, many of which are
inherent in other uses of SDM:s to hind- and forecast ranges.
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For instance, we assume negligible evolutionary change in
the fundamental niche of the species since the LGM. While
this assumption is contentious (Jackson and Overpeck 2000,
Colwell and Rangel 2009, Nogués-Bravo 2009), it seems
more likely to hold in species with lengthy generation times
(e.g. trees). We further assume linear changes in habitat suit-
ability over time (i.e. suitability was linearly interpolated on
30-year intervals for our simulations) and a proportional
relationship between estimated habitat suitability and popu-
lation size. Notably, the latter assumption could be relaxed,
by modeling alternative functional forms for the relationship
between suitability and population carrying capacity (Brown
and Knowles 2012, Brown et al. 2016), though such a com-
parison would multiply the computational demands of the
analysis by a factor of two for each additional alternative. The
data requirements of the method described here may also be
limiting in some cases due to the need for a genetic dataset
and substantial computational resources. That being said,
high-throughput sequencing technologies (Baird et al. 2008,
Ali et al. 2016) have made population genomic data far more
accessible and datasets in online repositories (e.g. GenBank’s
Sequence Read Archive) are rapidly accumulating, meaning
this approach could be performed on dozens of existing and
free-to-use datasets. Furthermore, our sensitivity analyses
suggest that it may be possible to obtain reliable inferences
using far fewer simulations than conducted here (possibly
as few as 5000 simulations per model), easing the computa-
tional burden of iDDC simulations.

To our knowledge, our study is the first to use iDDC
modeling to evaluate alternative SDMs. In green ash, we
found consistent support for distribution models based on
the CCSM climate model (Lorenz et al. 2016), which pre-
dicted a relatively large refuge across the southeastern US at
the LGM. The best-supported model also included an inter-
mediate background extent (160-km) and the GLM SDM
algorithm, although we expect that the particular combina-
tion of settings that lead to optimal SDM performance will
differ among species. Predictions of future range shifts under
this model identified a set of climate-vulnerable populations
that may also be resistant to invasive pests and worthy of con-
sideration in future conservation efforts, although alternative
SDM:s did not unequivocally identify these same populations
as needing special attention (Fig. 5, Supporting informa-
tion). While using iDDC to select among a set of compet-
ing SDMs requires computational resources for simulations
and a population genetic or genomic dataset for the species,
it provides a useful alternative to model evaluations based on
contemporary occurrence data alone. Furthermore, posterior
probabilities estimated from ABC could be used as weights
in ensemble forecasting, which avoids the need to identify a
‘best model by combining predictions across SDMs (Aratjo
and New 2000). In our study, ABC was able to distinguish
among competing SDMs, despite similar performance among
models when assessed using contemporary occurrence data.
We expect that integrating information in population genetic
datasets will improve both reconstructions of past range
dynamics and confidence in projections of future range shifts.
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