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Abstract

Mixed-membership unsupervised clustering is widely used to extract informative
patterns from data in many application areas. For a shared data set, the stochasticity
and unsupervised nature of clustering algorithms can cause difficulties in comparing
clustering results produced by different algorithms, or even multiple runs of the same
algorithm, as outcomes can differ owing to permutation of the cluster labels or gen-
uine differences in clustering results. Here, with a focus on inference of individual
genetic ancestry in population-genetic studies, we study the cost of misalignment of
mixed-membership unsupervised clustering replicates under a theoretical model of
cluster memberships. Using Dirichlet distributions to model membership coefficient
vectors, we provide theoretical results quantifying the alignment cost as a function
of the Dirichlet parameters and the Hamming permutation difference between repli-
cates. For fixed Dirichlet parameters, the alignment cost is seen to increase with
the Hamming distance between permutations. Data sets with low variance across
individuals of membership coefficients for specific clusters generally produce high
misalignment costs—so that a single optimal permutation has far lower cost than
suboptimal permutations. Higher variability in data, as represented by greater vari-
ance of membership coefficients, generally results in alignment costs that are similar
between the optimal permutation and suboptimal permutations. We demonstrate
the application of the theoretical results to data simulated under the Dirichlet model,
as well as to membership estimates from inference of human-genetic ancestry. The
results can contribute to improving cluster alignment algorithms that seek to find
optimal permutations of replicates.
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1 Introduction

In mixed-membership unsupervised clustering, statistical models of a set of clusters and a
set of entities are considered, so that the total “membership” of an entity is distributed
across the clusters (Airoldi et al., 2015a). Using the models, patterns inferred among the
entities are interpreted by examining their co-clustering, and a cluster itself is interpreted
by examining the entities that possess large membership fractions for the cluster.
Mixed-membership unsupervised clustering has found diverse applications in such areas
as document and text classification, statistics of networks, and medical diagnostics (Airoldi
et al., 2015b). In one of the most prominent areas of application—the field of population
genetics—it has long been a central technique for recovering information about genetic rela-
tionships of individuals and populations. In typical population-genetic studies, researchers
collect genotypes from individuals within a species, measure features of genetic variation
among the individuals, and infer evolutionary processes that have generated those features.
Mixed-membership unsupervised clustering techniques designed specifically for population-
genetic data—STRUCTURE (Pritchard et al., 2000), ADMIXTURE (Alexander et al., 2009),
and BAPs (Corander et al., 2003), for example—use stochastic iterative clustering algo-
rithms to infer membership fractions for individuals in clusters. The membership fraction
for an individual in a cluster is interpreted, depending on the setting, in one of two ways.
In some settings, it represents the proportion of the individual’s genome originating in the
cluster, or the probability that within the individual, an observation of a specific site in the
genome originates from that cluster, with different sites having independent and identical
probabilities. In others, it gives the probability that the individual’s entire genome origi-
nates from the cluster, so that different sites are identically distributed but fully dependent.
In unsupervised clustering, two challenges to data analysis have long been recognized:
label-switching and genuine multimodality (Stephens, 2000; Jasra et al., 2005; Jakobsson
and Rosenberg, 2007; Airoldi et al., 2015a). Label-switching describes the fact that because
the methods include stochastic steps, if K clusters are labeled 1,2, ..., K, then K! distinct
permutations of the cluster labels have equivalent meaning. For example, Figure 1A shows

two permutations of the clusters for a single set of cluster memberships; the panels differ
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Figure 1: Label-switching and genuine multimodality. (A-C) Pairs of replicates. (D-F)
Optimal permutations of replicate 2 to align with replicate 1. Replicates are simulated
using the Dirichlet parameter values in Appendix A. (A) Label-switching only. (B) Label-
switching with two independent replicates simulated from the same parameter values. (C)
Genuine multimodality. (D) Optimal permutation for (A). (E) Optimal permutation for
(B). (F) Optimal permutation for (C). The number of individuals per population is 50.



only in that the cluster labels, each of which is represented by a color, differ between
the permutations. When label-switching is present, clustering replicates can be aligned
by identifying the unique permutation that makes the replicates equivalent (Figure 1D).
Genuine multimodality arises if no permutation exists that makes replicates equivalent, such
as in Figure 1C. Replicates using the same data can fail to produce identical memberships,
even after they are permuted to align in many features (Figure 1F). A common scenario is
that in which replicates are not strictly equivalent (Figure 1B), but a permutation makes
them extremely similar (Figure 1E); this situation is informally described as possessing
label-switching rather than genuine multimodality.

To make use of cluster analyses from multiple data sets, algorithms, or settings, a
method is needed for identifying the permutations that eliminate label-switching and reveal
genuine multimodality. In the population-genetic context, early attempts at permutation
proceeded informally, as the particular features of data sets often rendered the optimal
permutations relatively easy to identify (e.g. Rosenberg et al., 2001; Rosenberg, 2004). To
advance on this situation, several algorithms, including CLumMPP (Jakobsson and Rosen-
berg, 2007), CLuMPAK (Kopelman et al., 2015), and PoNG (Behr et al., 2016), have been
introduced for identifying optimal alignments, where an optimal alignment is one that min-
imizes a cost function or maximizes a similarity function. These algorithms are now widely
used with unsupervised clustering methods to clarify the results that the methods produce.

The alignment algorithms are generally seen to perform well in identifying permutations
that visually align replicates (Jakobsson and Rosenberg, 2007; Kopelman et al., 2015; Behr
et al., 2016). However, despite the widespread use of alignment algorithms in population
genetics, formal evaluations of their success at identifying optimal permutations have not
been performed. Further, relatively little understanding has been available regarding the
alignment cost difference of suboptimal permutations in relation to minimal-cost permu-
tations; thus, when permutations are suboptimal, the potential for reducing the alignment
cost from that achieved by existing algorithms remains unclear.

In this study, we introduce a model for evaluating the cost difference of optimal and

suboptimal permutations. We treat individual memberships as drawn from a Dirichlet



distribution with specified parameters. Under the Dirichlet model, we explore the cost of
suboptimal permutations as a function of the number of misaligned clusters—the Hamming
distance between permutations. We find that cost generally increases with the number of
misaligned clusters. For examples in which Dirichlet parameters assign each individual
primarily to a single cluster, the alignment cost for suboptimal permutations is generally
substantially higher than for the optimum. For “noisy” data, as represented by Dirichlet
parameters with similar mean values of membership components for different clusters,
suboptimal permutations can possess cost similar to the optimum. The model can help in

understanding challenges for algorithms that seek to produce minimal-cost permutations.

2 Model

2.1 Terminology

Model-based unsupervised clustering algorithms in population genetics produce a vector of
membership coefficients for each individual. For N individuals and K clusters, the output
of a clustering algorithm is an estimated N x K membership coefficient matrix Q, where g,
is the estimated coefficient for individual ¢ in cluster k. In models in which each individual
is treated as belonging to a single cluster, ¢;z represents the estimated probability that
individual 7 is a member of cluster k. In mixed-membership models, in which an individual
possesses membership in multiple clusters, ¢;; is the estimated fraction of the data from
individual ¢ that originates from cluster k.

For convenience, we use the language of mixed-membership unsupervised clustering in
population genetics, but our analysis can also apply to cases of population-genetic cluster-
ing in which membership coefficients are interpreted as probabilities rather than ancestry
fractions, as well as to related applications outside population genetics. Note that in
the population-genetic context, we distinguish “populations,” representing predetermined
groups of individuals, from “clusters,” the K groups for which membership is estimated.

Hence, each individual has an estimated membership vector q; = (Gi1, Gia, - - - , Gixc ), for

which the sum across clusters is 25:1 Gi = 1. The estimated membership matrix Q is



a right-stochastic matrix, and each column vector characterizes a cluster by the list of
associated memberships of the N individuals.

In population genetics, unsupervised cluster analyses study the patterns of genetic vari-
ation of individuals from multiple populations. They infer a matrix that contains the
estimated membership proportions of the individuals in the K clusters, where clusters cor-
respond either to supervised ancestry groups or emergent groups appearing in specific data
analyses. For instance, in a supervised analysis with three clusters 1, 2, and 3, representing
ancestry in three distant populations, respectively, an individual with estimated member-
ship vector (0.6,0.3,0.1) has 60% of its genome estimated to originate from population 1,
30% from population 2, and 10% from population 3.

2.2 Dirichlet model

We consider membership coefficients drawn from a theoretical model. Each of a set of prede-
termined populations is assumed to have its own characteristic distribution of membership
coefficients for a series of K clusters. For an analysis with K clusters, a natural choice to
model the individual membership coefficients of a population is a Dirichlet distribution of
order K (Kotz et al., 2004, chapter 49).

In this model, for a given predefined population, the expected membership proportion of
an individual in cluster k is the mean of the kth random variable in a Dirichlet-distributed
random vector. Suppose a random vector q is drawn from the Dirichlet distribution of order
K with parameters a = (aj,as...,ax), where ay > 0 for all k. Writing ay = Zszl ay, this

q ~ Dir(a) has probability density function

fla;a) = H , (1)

where I'(+) is the gamma function (Kotz et al., 2004).
It is convenient to convert Dirichlet parameters a = (a1, as, ..., ax) to expected mem-
berships, (E[¢1], Elgs], ..., E[¢k]), as the expected memberships are often more easily un-

derstood than the Dirichlet parameters. We model a set of populations using Dirich-



let distributions, with the Dirichlet parameter vector a chosen so that each mean value
Elgx] = ax/ao corresponds to the assumed mean proportion of cluster k in a population;
the sum aq controls the variance. Memberships of different individuals from the same pop-
ulation are modeled as independent random vectors sampled from the Dirichlet model with
a shared set of parameter values. Memberships of individuals from different populations
follow distributions with different Dirichlet parameters.

® on the Dirichlet parameters a to distinguish the parameter vector

We use superscript -
for population ¢. Thus, for example, for a set I; of individuals from population 1 and a
set I of individuals from population 2, q; ~ Dir(a®) for all i € I; and q; ~ Dir(a®)
for all i € I, where a(!)/ a((]l) denotes the population-wise parametric mean membership

proportions for population 1 and a®/ a(()Q) denotes those proportions for population 2.

2.3 Distance function

To quantify the alignment cost for a pair of replicate analyses, we will need a dissimilarity
measure for pairs of membership coefficients on the same samples. Consider two replicate
N x K membership coefficient matrices, P and ). We follow Jakobsson and Rosenberg
(2007) in relying on the Frobenius norm of their difference (see also Rosenberg et al. (2002)).

In particular, using ||-||» to denote the Frobenius norm, the distance between the mem-

bership matrices P and () can be calculated as

N K
Do =YY i —aa)? = P - Qllp. (2)

i=1 k=1
Each sum ZkK:l(pik — qi)? lies in [0,2]; considering the unit vectors p and q, we have
lp —all, < lIpll, + llall, = 2 by Minkowski’s inequality. The choice of the Frobenius norm
to measure the difference between membership matrices not only accords with past studies,
it is also mathematically convenient in our framework, as the sum of squares that it entails

facilitates the computation of integrals with respect to the Dirichlet distribution.



3 Alignment cost for a single individual

3.1 Overview

With our Dirichlet model and distance function established, we now describe the com-
putation of the alignment cost associated with a pair of replicate clusterings and a single
individual. Under the model, the membership coefficient vector of an individual is a random
vector drawn from the Dirichlet distribution with specified parameters.

Consider two replicate draws from the Dirichlet model, representing outcomes of two
cluster analyses. Both replicates have K clusters. However, owing to label-switching,
multimodality, or both, the clusters are not necessarily aligned. In the most general case,
in one replicate, an individual has membership vector p drawn from a Dirichlet distribution
Dir(a), and the same individual has membership vector q drawn from Dir(b) in the second
replicate. Both p and q are random vectors; when two replicates are aligned, p and q are
drawn from the same distribution, and when the replicates are not aligned, the random
vectors are drawn from different distributions.

The contribution of the individual to the distance between replicates 1 and 2 is the
random variable 325 (p; —¢;)*> = ||p — ql|5. Denote the mean value of this random variable
Ilp — q||§ by Aap, where p ~ Dir(a) and q ~ Dir(b). Using the probability density function

of the Dirichlet distribution in Eq. 1, this value can be computed as

1- Zz 1 * ps 1= Zz 1 2qp [ KL 9
L L e
p1=0 J pa=0 q1=0 J q2=0 qx—-1=0 i—1

SR N (T e (- T e
+<(1 Zp” ! ZQN 5, D) /T, ) B

X<Hfil R
TS T/ T )

dgg—1--- dgz dgy dpg—1 - - - dpa dp,.

Here, we have made use of the fact that px = 1 — Zfi_llpi and g = 1 — Zfi_ll i
It is often convenient to consider the special case for label-switching, in which the entries
of b represent a permutation of the entries of a. In other words, denote the permutation

between two replicates by ¢, so that cluster ¢(i) gives the number of the cluster in replicate



2 that corresponds to cluster ¢ in replicate 1.

For the label-switching case, in replicate 1, the parameters associated with the K
cluster memberships are (ai,as,...,ax). In replicate 2, corresponding parameters are
(b1,b2,...,br) = (agn), Gg(2), - - - » Gg(k))- For simplicity, we let b; = ag4;). Only for the iden-
tity permutation ¢y, for which ¢(i) =i for alli = 1,2,..., K, are the two replicates aligned.
Because the a; and b; are the same set of items, permuted, ag = Zfil a; = Zfil b; = bg.

We are interested in the mean contribution of an individual to the alignment cost, Cy p,
which can be calculated as the difference between the contribution of a random individual
to the distance between a pair of replicates aligned by permutation b (misaligned for b # a)

and the contribution to the distance between correctly aligned replicates:

Aap — A
Cop = 20122 (4)
2
Here, we include a factor of % to account for the fact that the Frobenius norm in Eq. 2 has
maximum 2, so that A, p — Aaa has a maximum of 2; the cost Cy ) ranges from 0 to 1.
We now evaluate Eq. 3 to obtain the individual mean contribution to distance between

replicates. First, we consider K = 2. We next examine K = 3, and we generalize to

arbitrary K. We explore the effect of the Dirichlet parameters on these mean contributions.

3.2 K=2

Consider two replicates, with Dirichlet parameters (a, as) and (b1, ba) = (ag), ag(2))-

Theorem 3.1. Consider a population of individuals with membership coefficients in K = 2
clusters. Suppose that in one replicate, the membership coefficients of the individuals follow
a Dirichlet model with parameters a = (ay,az), and in a second replicate, they follow a
Dirichlet model with parameters b = (by,by). The mean contribution of a randomly chosen

individual to the distance between replicates is

A =2 (a1 + 1)ay i (b + 1)by B 2a1b; )
& (&1 + ag + 1)(@1 -+ CLQ) (bl + bg + 1)(b1 + bg) (&1 -+ a2)<b1 —+ bg) ’

Proof of Theorem 3.1. When K = 2, Eq. 3, representing the mean contribution of a ran-
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domly chosen individual to the distance between two replicates, becomes

Aap = /p::o /qll:O ((pl —q)’+[Q—p)—(1— CI1)]2>
p

t111—1(1 . pl)agfl qlln—l(l . ql)bQ,l
XFWQFMﬂﬂWn+aﬁrwﬂr@gﬂﬂn+@)@“@*

We compute this integral in Appendix B to obtain the result. O

We can then apply Theorem 3.1 to obtain the contribution of an individual in the special

case that the two replicates are aligned. In other words, we calculate A, a:

A _ 4&1@2
as (CLl + a2)2(a1 + a9 + 1) ’

(6)

For misaligned replicates that differ by label-switching, consider a permutation ¢ with

(by,b2) = (az,a;). We have

ai + a3+ a? + a — alay — ayd’
(a1 + az)?(ar +az + 1)

Aap(a) = 2 (7)

Applying Egs. 7, 6, and Eq. 4, the mean contribution of an individual to alignment cost is

(a1 — ag)?
C =~ = 8
a,f(a) (Cll +a2)2 ( )
Figure 2 plots Eq. 8 as a function of a; and as. For as = a;, the two replicates

have the same parameters, and the mean contribution of an individual to the cost is 0.
In each replicate, the mean membership coefficient for cluster 1 is %, and the mean for
cluster 2 is also % Starting from the as = a; line in the ajas-plane, as as increases while
holding a; constant, or as a; increases while holding a, constant, the cost increases. These
parameter changes make the permuted replicate with parameters (ag,a;) quite different
from the unpermuted replicate with parameters (a1, az), so that a replicate is increasingly
distinguishable from its label-switching permutation. The cost approaches 1 for a replicate

with high a; and low as, or vice versa; in these cases, nearly all of the membership lies in

one of the two clusters, so that the alignment cost of switching the two clusters is nearly 1.
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Figure 2: Alignment cost (Eq. 8) for permutation ¢ = (2,1) as a function of the Dirichlet
parameters a; and ay for a model with K = 2 clusters under label-switching. Parameters
are varied in [1,25].

3.3 K=3

Considering two replicates, the number of permutations possible for the clusters is K! =
6. As in the K = 2 case, for each permutation ¢, we can obtain the mean individual

contribution to the distance between two replicates. We compute A, from Eq. 3.

1 1—p1 1 1—q1
Aagy = / / / / <(p1 — @)’ + (p2 — @)* + [(1 —p1—D2)
p1=0 Jp2=0 q1=0 J q2=0

a1—1_as—1

9 Pl Do (1 — D1 _p2>
BT P e o et

b1—1 ba—1 ba1

' gy (1—qi—q)”
% das dar dps dp, .
T(b1) T(bs) T(b) /T (b1 + by + by) > P2

az—1

For each ¢, we compute the alignment cost for ¢ from Eq. 4.

The costs for the 6 permutations appear in Table 1. We omit their derivations, as each
can be obtained from the general result that we present for arbitrary K (Section 3.4). In
the table, the cost of 0 for the identity permutation appears in the first row. The next three
rows show the costs associated with each of the permutations with Hamming distance 2
from the initial permutation (1,2, 3), where the Hamming distance tabulates the number
of clusters that are misaligned between a pair of replicates. The last two rows show the

costs for the two permutations with Hamming distance 3 from (1,2, 3).
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Table 1: Alignment cost for each of the six label-switching cases with K = 3, as functions
of the Dirichlet parameters ai, as, az. Each cost is obtained by evaluating Eq. 9, and then

applying Eq. 4.

Permutation number

Permutation ¢(1,2,3)

Alignment cost Cy g(a)

1 (1,2.3) 0

2 (1,3,2) (ag — a3z)?/(a; + ag + az)?

3 (3,2,1) (a1 — a3)?/(a1 + az + az)?

4 (2, 17 3) (a1 — CLQ)Q/(al + as + a3)2

5 (2,3,1) (af + a3 + a3 — a1as — ayas — azaz)/(ay + az + az)?
6 (3.1,2) (

(af + a3 + a3 — a1as — ayas — azaz)/(ay + az + az)?

az=1

az3=13 azy=25
C Cost
1
1.0
o 0.8 0.8
8 0.6 0.6

O 04 .
0.2 0.2 0.4
0.0 0.0
25 25 0.2

Figure 3: Alignment cost (Table 1) for permutation ¢ = (2,3, 1) as a function of Dirichlet
parameters a; and ap for K = 3 clusters and fixed asz. (A) a3 = 1. (B) a3 = 13. (C)

as = 25. Parameters are varied in [1, 25].

12



Figure 3 plots the alignment cost from Table 1 for label-switching with a specific permu-
tation (2, 3,1) as a function of a; and ag, for three fixed values of az. In each panel, varying
the three parameters in [1,25], for a; = as = as, the alignment cost has the minimum value
of 0. In Figure 3A, the largest alignment cost is reached when one of the three parameters
has value 25 and the other two are equal to 1; in Figure 3C, the maximum occurs when
two parameters equal 1 and the third is 25. In the intermediate Figure 3B, large values
occur both in the case that two values equal 1 and the third is 13, and in the case that
one value is 1, one is 25, and the third is 13. These maxima reflect the intuition that when
memberships differ substantially across clusters, the identity permutation has substantially

lower cost than do permutations that represent misalignments.

3.4 Arbitrary K

We now generalize the calculation of the individual mean contribution to distance between

replicates (Eq. 3) and alignment cost (Eq. 4) from the K = 2 case to arbitrary K.

Theorem 3.2. Consider a population of individuals with membership coefficients in K > 2
clusters. Suppose that in one replicate, the membership coefficients of the individuals follow
a Dirichlet model with parameters a = (a1, as,...,ax), and in a second replicate, they
follow a Dirichlet model with parameters b = (by,bs, ..., bx). The mean contribution of a

randomly chosen individual to the distance between replicates is

K-1 K-2x~K-1
21:1 (ai + 1)ai + Zz‘:1 Zj:i+1 a;a;

Auy = 2 10
b (ap + 1)ag (10)
LTS D SIS b Y e (2 ) (5 )
(b() —+ 1)b0 ngo

Recall that aq = Zfil a; and by = Zfil b;; the proof appears in Appendix C. Note
that in the case of K = 2, Eq. 10 reduces to Eq. 5. If two replicates are aligned, then we
can derive the mean contribution of an individual to the distance between replicates by

substituting b; = a; into Eq. 10 for all 4.
Corollary 3.3. The mean contribution to the distance between two aligned replicates

13



of an indiidual whose membership coefficients follow a Dir(a) distribution, where a =

(ay,a9,...,ak), is e
4Zi:1 Zj:z‘-{-l a;a;

Apa =
2 (ag + 1)ad

(11)

We obtain this result by applying Theorem 3.2 to the identity permutation ¢y. For
K = 2, Eq. 11 reduces to Eq. 6. For a general permutation ¢, supposing that the two
replicates are not necessarily correctly aligned, we calculate the contribution of a randomly

chosen individual to the cost using Eqgs. 10 and 11, following Eq. 4.

Corollary 3.4. Suppose the membership coefficients of the individuals in a Dirichlet model
follow Dir(a) where a = (a1, as,...,ax). The mean contribution of an individual to the
alignment cost for a second replicate whose parameters follow a Dirichlet model with per-

mutation ¢(a) is:

1
Caga) = = Y ai(a; — by). (12)

Once again, for K = 2, Eq. 12 reduces to Eq. 8. For K = 3, Eq. 12 gives Table 1.
With these general results on the alignment cost under label-switching now established, we

proceed to analyze the effects of the parameters on the alignment cost.

4 Effect of the parameters under label-switching

4.1 Effect of the Dirichlet parameters with fixed permutation

For label-switching with a fixed permutation, the value of Cj 4(a) in Eq. 12 is only affected by
the values of the Dirichlet parameters. In general, as the difference between the parameter
of a cluster and its corresponding parameter under permutation—the difference between a;
and ag(;—increases, Cy 4(a) also increases.

We have already examined the effect of the Dirichlet parameters in cases with K = 2
and K = 3. In Figure 2, we examined the relationship between Cj 4) and the a; for the
only non-identical permutation with K = 2, ¢(1,2) = (2,1). The alignment cost was equal
to 0 for a; = as, that is, when both clusters have mean membership 0.5. The cost increases

as a; and as become increasingly different.

14



For K = 3, similar relationships appear in Figure 3 for the permutation (2,3,1). For
ay = ap = ag, the alignment cost reaches the minimum of zero. In panels A and C, with
domain [1, 25] for each of the three parameters, the alignment cost is maximal when one of
the three is 25 and the other two are 1; in panel B, with a3 fixed, the maximum occurs at
(ay,a9,a3) = (1,1,13). The more diverged the values of three parameters, the higher the
alignment cost. This result corresponds to the intuition that when clusters have distinct

membership patterns, they are less easily mistaken for each other.

4.2 Effect of the permutation with fixed Dirichlet parameters

The cost for a permutation increases as its parameters increasingly diverge from the starting
permutation. Suppose now that we consider the effect only of the permutation. The
minimum possible value of Cy ¢a) in Eq. 12 is 0. Clearly, the cost is 0 for two replicates in
which the second replicate is unpermuted in relation to the first.

Consider a permutation cycle PC: a subset of elements in the permutation ¢ that are
permuted among themselves, so that ¢(i) € PC for all i € PC and ¢(i) € PC for all i & PC.
We interpret a permutation cycle as minimal in the sense that none of its proper subsets is
a permutation cycle. Suppose ¢ is decomposed into Npe permutation cycles. The set of all
elements [ = {1,2,..., K} is the disjoint union of all permutation cycles: I = UthfPCh.

We have the following result.

Proposition 4.1. Consider a permutation ¢. Cy ga) = 0 if and only if for each permutation

cycle PCy, in ¢, there exists a constant ¢, > 0 such that a; = ¢, for all v € PCy,.

The proposition states that the cost associated with ¢ is zero if and only if for all

permutation cycles, all clusters in the permutation cycle have the same Dirichlet parameter.

Proof of Proposition 4.1. We prove the “if” direction first. Index the permutation cycles
by h. Suppose for each h that a; = ¢, for all ¢ € PCj. For each 7, suppose that when ¢
is decomposed into permutation cycles, ¢(i) is in permutation cycle PCp. Then a; = ¢;.
Because cluster ¢ and cluster ¢(i) are in the same permutation cycle, b; = ag) = a; = cs.

Therefore, Cy 3(a) = (1/ad) Zfil ai(a; — a;) = 0.

15



For the “only if” direction, suppose Cy @) = (1/ad) Zfil a;(a; — b;) = 0. We have

Zfil aib; = sz; a;. Equivalently, (Zfil a;b;)? = (Zfil ai)? = (Zfil @?)(Zfil b7) be-
cause b = ¢(a) and all the Dirichlet parameters are positive. By the Cauchy-Schwarz
inequality, (3-8, a:bi)? < (25, a?) (32K, b?), with equality if and only if a = ab for some
constant «e. Because Zfil a; = Zfil b;, the only value a can take is 1, so that a; = b; = ag(;)
for all i =1,2,..., K. Note that ¢ and ¢(i) are in the same permutation cycle, say, PCp,

by definition. We can denote by ¢, the value a; = ag;); the value ¢, applies for all 7 in

PCj,. Thus, assuming Cj 4a) = 0 produces the conclusion that a; = ¢, for all i € PC,. [

Note that the proposition applies to the identity permutation ¢ = ¢43. The identity
permutation places each cluster in its own permutation cycle, so that ¢(i) = i, b; = agu) =
a;, and (1/a3) 325, ai(a; — b;) = 0.

Consider an example of Proposition 4.1 with permutation ¢;(1,2,3,4,5) = (2,1,4,5,3).
This permutation has two permutation cycles: {1,2} and {3,4,5}. If a; = ay and a3 =
ay = as, then Cy 4,(a) = 0. This can be easily seen from the fact that in Eq. 12, Cy ga) = 0
if a; = b; for all t = 1,2,..., K. When two clusters have the same parameter, they assign
the same mean membership value, so that they are indistinguishable. Although ¢ is not
the identity, it produces cost 0 because it only permutes indistinguishable clusters.

We also report the maximum possible cost as a function of the Dirichlet parameters,
together with the permutation that gives this cost. This upper bound on the cost provides
information on the worst-case misalignment possible given two replicates. Examining the
form of Eq. 12, for fixed (aq,aq,...,ax), this maximum can be calculated by minimizing

Zfil a;b;, where b = ¢(a), over permutations ¢.

Proposition 4.2. Fix Dirichlet parameters a. Let o describe a permutation that orders
ai,a,...,ax With ag1) < ag2) < ... < agyxy. Considering all permutations ¢, the cost
Cas(a) s mazimized when the permutation ¢ satisfies ¢(i) = o(K — o (i) + 1) for i =

1,2,..., K. The mazimum cost is (1/a?) Zfil Ao (i) [ag(i) — aU(K,iH)}.

The proposition states that the maximal value of Cj ¢(a) is attained when ¢ matches
the largest parameter in a to the smallest value in b, the second-largest value in a to the

second-smallest value in b, and so on.
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Proof of Proposition 4.2. We make use of the rearrangement inequality (Steele, 2004, p. 78).
Write ap(1y) < o) < ... < ag(k), and write r = o~ 1(¢), denoting the rank order of a; in
the list (ay,aq, ..., ax), with 1 smallest and K largest.

By the rearrangement inequality, the minimum of Zf; a;b; = Zf; AiGg ) = Zfil o (i) G (o(i))

is attained when ¢(i) = o(K — 7 + 1) for each 7. The value of Y| a;b; at the minimum is

K K K
m(;n Z ab; = Z Q; Qo (K —r+1) = Z Ao (1) Ao (K —i+1)-
=1 =1 =1

O

With the permutations that produce minimal and maximal cost established, we can
examine the effect of the permutation on cost more generally. Figure 4 shows the cost
contributed by individuals in each of four populations, for all 24 permutations of four
clusters with fixed Dirichlet parameters. With the parameters fixed, the contribution to
alignment cost in general increases as more clusters are misaligned. This result can be seen
in the fact that permutations with 3 or 4 misaligned clusters tend to lie toward the right
side of the figure, which is ordered left to right by increasing cost; permutations with only 2
misaligned clusters tend to lie near the left side. The maximal cost follows Proposition 4.2:
in panels A-C, the highest-cost permutation reverses the order of the mean memberships,
as do the four highest-cost permutations with equal cost in panel D.

Although the general pattern is that an increase in the number of misaligned clusters
increases the alignment cost, many counterexamples exist. For example, in Figure 4A,
$1(1,2,3,4) = (4,2, 3,1), with two clusters misaligned, has greater cost than ¢,(1,2,3,4) =
(4,3,1,2), with all four clusters misaligned. Permutation ¢; exchanges the two clusters with
the greatest difference in mean, whereas permutation ¢,, while assigning cluster 1 to the
distant cluster 4, performs a less costly exchange among clusters 2, 3, and 4 than mapping

cluster 4 to cluster 1.
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Figure 4: Alignment cost as a function of permutations. The figure considers an example
cluster analysis in which four populations are placed into four clusters; each population has
a different cluster in which membership predominates. In each panel, the 24 permutations
of the four clusters are ordered by the alignment cost associated with an individual from a
specific population. (A) Population 1. (B) Population 2. (C) Population 3. (D) Population
4. Simulation parameters appear in Appendix A. Permutations are labeled with respect to
the original clusters (1,2, 3,4), representing ¢(1,2,3,4) for each of the 24 possible choices

of ¢.

In panel D, clusters 2 and 3 have the same parameter values; we do not count

as misaligned clusters that map within a permutation cycle to a cluster with the same
parameter value. The number of individuals per population is 100.
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5 Multiple individuals

The theoretical contributions to distance between replicates (Theorem 3.2) and to align-
ment cost (Corollary 3.4) are both derived as expectations of random variables for a single
individual in one population. We provide a simple extension to multiple individuals from
multiple populations.

For multiple individuals from multiple populations, we can obtain an expected total con-
tribution to distance between replicates and an expected total contribution to the alignment
cost. We treat all individuals in a population as independent and identically distributed
draws from the population. The expected mean total contribution of multiple individuals

can be calculated by the linearity of expectation.

Proposition 5.1. Consider L populations, in which population ¢ has N, individuals and
membership coefficients al¥) = (agﬁ),aé@, . ,ag?) that follow a Dir(a®)) distribution, with
a((f) = Zle a,(f). The total distance between two replicates under label-suntching with per-

i

mutation ¢, which maps a? to ag()i), fori=1,2,... K, is

L
Agotat = Y NeAgo) (a0 (13)
=1
and the total alignment cost is
L
Co,total = Z NeCot) p(a®)- (14)
=1

Proof of Proposition 5.1. The proof is trivial. For a population with N, individuals and
Dirichlet parameters al), suppose two replicates follow a permutation ¢ for the second
replicate in relation to the first. The membership coefficients of these individuals are
independently drawn from the same Dirichlet distribution. Hence, by the linearity of ex-
pectation, the expected total contributions to distance and cost are sums across individuals,
NgAa(e)#)(a(e)) and NgC’a@)@(a(Z)), respectively. For multiple populations, we simply sum ex-

pectations across populations. O
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6 Example

We use data from the human-genetic ancestry inference study of Fortier et al. (2020) to il-
lustrate the alignment cost in a practical setting. For the data, we assume that membership
coefficients follow the Dirichlet model, whose parameters we then estimated. We then mea-
sure empirical alignment costs between pairs of replicates, comparing them to theoretical

costs that result from using the estimated parameters of the Dirichlet distribution.

6.1 Data

Fortier et al. (2020) conducted clustering using STRUCTURE applied to 978 sampled
individuals from L = 53 human populations, with K = 4. They performed analyses using
a larger data set of 791 loci genotyped in the individuals and a less informative smaller
subset containing, among the 791 loci, only 13 that are used in forensic genetics. The 53
populations vary in sample size, from 1 to 51 individuals.

For each analysis, 10 clustering replicates were performed, so that we have two sets of
10 replicates from Fortier et al. (2020), each with a 978 x 4 membership coefficient matrix.
The individual membership coefficients of all replicates appear in Figure 5A (all 791 loci)
and Figure 6A (13-locus subset). Fortier et al. (2020) summarized these replicates; we show
all 10. With all 791 loci, most individuals are placed predominantly in one cluster; with
the 13-locus subset, membership is more evenly distributed across clusters. We use the
791-locus analysis as an example of replicates with lower variability across individuals in
membership coefficients within populations, and the 13-locus analysis as an example with

greater variability, interpreted in this case as more “noise” in membership estimates.

6.2 Maximum likelihood estimation of Dirichlet parameters

Consider a membership matrix from population ¢ of sample size N,. The matrix has size
N, x K, and it can be written Q) = (qg),qy), . ,q](\g)T, where qg),qy), o ,q%z denote
membership vectors for the N, individuals. If we assume that each of the N, vectors

represents an independent multivariate draw from an underlying Dirichlet distribution with
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parameter vector a, then we can obtain a maximum likelihood estimate of a by maximizing

log-likelihood L(a). Taking the likelihood as a product of Eq. 1 across individuals, we have

Ny K K K
— log [ Pla®lal = N, {mgr(z ) -3 log r<ak>} N3 (ae—1)log?, (15)
i=1

k=1 k=1 k=1

(0 N
where log q,(g) = NLZ > ity log ik
This objective of maximizing L(a) is equivalent to minimizing —L(a), a convex function
in a. The minimization problem has no closed-form solution, but can be solved numerically.

We use fixed-point iteration (Minka, 2000). The update step in the iteration is

ey = { (Zaold) + loqu)} (16)

where U(z) = dlogI'(z)/dz is the digamma function. The algorithm is guaranteed to
converge to the maximizing a for the Dirichlet distribution (Minka, 2000, Section 1).

To use the fixed-point iteration method to numerically find the maximum likelihood
estimate of a = (ay,as, .. .,ax), we follow the method of Minka (2000, egs. 19-21) to start
the iteration from an initial guess for a; this method relies on empirical computations of

()

the means and variances of the ¢;;” across individuals 7. To obtain the update in Eq. 16,

we apply Newton’s method for solving ¥ (z) = y, following Minka (2000, Appendix C).

6.3 Empirical and theoretical alignment cost calculations

For both the 791-locus and 13-locus cases, we estimated the Dirichlet parameters for each of
the 53 populations and each of the 10 replicates. For the single-individual group, because no
variance among individuals is available, we cannot estimate the Dirichlet parameters, and
we simply used the membership coefficients of the individual as the parameter estimates.
To examine the performance of the Dirichlet model in measuring alignment costs, we
computed empirical and theoretical alignment costs between pairs of replicates. For each
pair of replicates, we computed the total empirical alignment cost using Eq. 2 to obtain

the sum of squared differences between their membership matrices. For individual ¢ and

21



cluster k in a population ¢ with sample size N, individuals, denote by g;, (1.0 and 9k (R2.0) the
membership coefficients in replicates R; and Ry. The sum is
L Ny, K
Ry 0 Ro,l
DR17R2 ZZZ qz(kzl ) — ( ’ )) (17>
(=1 i=1 k=1

For the theoretical computation, we first used the inferred permutation between repli-
cate 1 and subsequent replicates, as provided by CLUMPP and reported by Fortier et al.
(2020), as the “correct” alignments. We next computed the theoretical contribution to
alignment cost for each of the 53 populations based on the inferred pairwise permutation
(Eq. 12), aggregating the contributions from all populations following Eq. 14.

More precisely, suppose that for a pair of replicates (Ri, Ry), the inferred Dirichlet

(R1,0) (R2,¢

Y1, 1. First, we choose

parameters for the L populations are {a }o=12..rand {a

Ry as the “base” replicate, and denote the permutation in replicate Ry with respect to R;

as @782 The total theoretical cost in this situation is
C¢R1%327total — Z Ngca(Rl,Z)7a(R2,e) . (18)
=1

Next, we use R, as the base, and ¢ is the permutation in replicate R; with respect

to Ry. The cost is

C¢R2ﬁR1,tota1 = E NZOa(Rzﬁé),a(RLé)-

Note that in general, Cyn,.0) ar20) # Carat) ar1.0), because the inferred Dirichlet param-
eters differ for R; and Rs. To account for this asymmetry, we take as the theoretical

alignment cost the mean of the two values:
1
Ctotal(Rl,Rg) = §(C¢Rl—>R2 Jtotal + C¢R2—>Rl ,total)' (19)

6.4 Data analysis

The greater variability of membership coefficients in the 13-locus case compared to the

791-locus case is depicted in Figure 7, both on the basis of the empirical variance in mem-
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bership coefficients (Figure 7A and C) and using the theoretical variance computed from
the estimated Dirichlet parameters (Figure 7B and D). We interpret the alignment costs
in relation to this observation concerning variability in the two cases.

For the 791-locus case, averaging across individuals, Figure 5B reports pairwise empiri-
cal costs between replicates and Figure 5C reports theoretical costs. The relative difference

between empirical and theoretical costs, computed with respect to the theoretical cost as

|Ctotal(R1,R2) - DR1,R2 |

, 20
Ctotal(Rl,Rg) ( )

appears in Figure 5D. The theoretical cost in Figure 5C generally accords with the empirical
cost in Figure 5B. The relative difference in Figure 5D is small for most pairs of replicates.

For another assessment of the agreement of theoretical and empirical alignment costs,
using replicate 1 as the base, we computed the theoretical alignment cost for all 24 permu-
tations of the K = 4 clusters (Figure 5E). If a permutation was observed among replicates
2 to 10, then its empirical cost with respect to replicate 1 is also shown; if multiple repli-
cates possess the same permutation, then we take their mean cost. This analysis finds that
empirical and theoretical costs agree across permutations with a wide range of cost values.

Comparing Figures 6 and 5, Figure 6 reports corresponding quantities for the 13-locus
case. The empirical (Figure 6B) and theoretical (Figure 6C) alignment costs have lower
values than in the 791-locus case. In Figure 6A, in which individuals possess high variability
within populations, comparing to the low-variability replicates of Figure 5, it is less easily
discerned that an alignment is suboptimal; the lower alignment costs for the high-variability
13-locus case compared to the low-variability 791-locus case reflect this observation.

The agreement between theoretical and empirical alignment costs is reduced for Fig-
ure 6 compared to Figure 5, with a substantial difference between the theoretical costs
in Figure 6C and the empirical costs in Figure 6B. The relative difference is high in Fig-
ure 6D, and the empirical costs differ from the theoretical costs for many permutations
in Figure 6E. The greater disagreement between theoretical and empirical costs suggests
that for the high-variability 13-locus case, the Dirichlet model provides a poorer fit to the

replicates than in the low-variability 791-locus case.
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7 Discussion

We have used a Dirichlet model to study the membership coefficients produced by mixed-
membership unsupervised clustering algorithms (Section 2.2). Under the Dirichlet model,
using a theoretical measure for the alignment cost between clustering replicates (Eq. 4),
we have evaluated the alignment cost for a pair of clustering replicates as a function of the
model parameters. The model provides tools for use in evaluating clustering replicates, both
in analyses of specific data sets and in assessing the performance of clustering algorithms.

Under the model, Corollary 3.4 describes the cost of one replicate in relation to another,
making use of the general Theorem 3.2. A replicate with N individuals and K clusters—and
hence, N K data entries—is summarized with K parameters, one for each cluster. Theorem
3.2 and Corollary 3.4 provide relatively simple expressions in terms of the K parameter
values for each of two replicates. We have evaluated these expressions for the special cases
of K =2 (Section 3.2) and K = 3 (Section 3.3), for which they reduce further.

In analyzing the properties of the theoretical cost as a function of the Dirichlet pa-
rameters, we have seen that for a fixed permutation between a pair of replicates, the cost
increases as the Dirichlet parameters of the two replicates diverge (Section 4.1). We have
also seen that when the Dirichlet parameters are fixed, the cost increases with the number
of misaligned clusters (Section 4.2). However, this result depends in part on the specific
permutation, as certain permutations might produce lower cost than others with fewer
misaligned clusters. When all clusters within the same permutation cycle share common
Dirichlet parameters, none of these clusters are “misaligned,” and the cost is zero (Proposi-
tion 4.1). We have also described the maximal cost across permutations (Proposition 4.2),
potentially enabling cost functions to be normalized by the maximum across permutations.

In an example data analysis, we have found that the Dirichlet model closely fits data
with low variability in estimated cluster memberships across individuals within populations
(Section 6.4). The fit is not as close for data with high variability in cluster memberships,
and hence with more “noise.” However, alignment costs are smaller for such cases; in noisy
data, the model is poorer but the distinction between properly aligned and misaligned

replicates is less consequential.
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We envision several applications for the Dirichlet model and its associated results. First,
the model can be used to provide summary statistics for replicate mixed-membership cluster
analyses. The model would first be used to estimate Dirichlet parameters for replicates.
Theoretical alignment costs of permutations of those replicates could then be calculated
from the parameters, measuring the cost difference between the optimal permutation and
suboptimal permutations. As functions of the estimated parameters, the cost distribution
of permutations, the cost difference between optimal and suboptimal permutations, and
the maximal cost across permutations can all provide informative summaries.

Such summary statistics could potentially be applied in diagnostics for alignments.
The cost difference between the optimal and least suboptimal permutation can measure
the extent to which the optimal permutation of a replicate is evident—the “noise” in the
replicate—guiding computational decisions for identifying optimal alignments. In partic-
ular; if noise is low and the cost for suboptimal permutations is high, then the optimal
replicate is likely to be relatively easy to identify, and choices that prioritize speed rather
than comprehensive searches in existing alignment algorithms might be suitable.

Next, using the model, clustering alignment methods could adopt heuristic threshold
values to decide when to stop the search for a better alignment, or to decide if two replicates
represent substantially different modes or merely represent label-switching (Jakobsson and
Rosenberg, 2007; Kopelman et al., 2015). Such threshold values could potentially be tuned
prior to application of the alignment methods, employing our maximal cost computation.
The theoretical alignment cost can thus provide an automated method of choosing threshold
values suited to particular data sets, as the theoretical calculation of costs associated with
label-switching would be performed in place of more computationally intensive empirical
calculations.

Finally, and potentially most significantly, methods based on the model have the po-
tential to contribute to new alignment algorithms. Existing algorithms rely on empirical
cost calculations between pairs of replicates. Using the model, however, once the Dirichlet
parameters have been estimated, theoretical alignment costs calculated from the estimated

parameters potentially reduce computation time. In particular, when it makes sense to
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Figure 5: Application of the Dirichlet model to data from 791 loci. (A) 10 clustering repli-
cates. (B) Empirical alignment cost between pairs of replicates, following Eq. 17, divided

by the total number of individuals N = 3> | N;. (C) Theoretical alignment cost between
pairs of replicates, divided by the total number of individuals. The symmetric Eq. 19 is
used for the computation. (D) Relative difference between empirical and theoretical align-
ment cost for pairs of replicates, evaluated using Eq. 20. (E) Theoretical alignment costs
for all possible permutations of replicate 1 and empirical alignment costs for replicates 2
to 10 in relation to replicate 1 (blue lines). The theoretical computation uses Eq. 18 and
the empirical computation uses Eq. 17.
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Figure 6: Application of the Dirichlet model to data from 13 loci. (A) 10 clustering repli-
cates. (B) Empirical alignment cost between pairs of replicates, following Eq. 17, divided

by the total number of individuals N = Zle Ny. (C) Theoretical alignment cost between
pairs of replicates, divided by the total number of individuals. The symmetric Eq. 19 is
used for the computation. (D) Relative difference between empirical and theoretical align-
ment cost for pairs of replicates, evaluated using Eq. 20. (E) Theoretical alignment costs
for all possible permutations of replicate 1 and empirical alignment costs for replicates 2
to 10 in relation to replicate 1 (blue lines). The theoretical computation uses Eq. 18 and
the empirical computation uses Eq. 17.
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Figure 7: Mean and standard deviation of membership coefficients in 53 populations. (A)
Empirical, 791 loci. (B) Theoretical, 791 loci. (C) Empirical, 13 loci. (D) Theoretical, 13
loci. Panels A and B consider replicate 1 from Figure 5; panels C and D consider replicate

1 from Figure 6. Standard deviations appear

as error bars.

Population 34 has only one

individual and no empirical standard deviation; a theoretical standard deviation is induced
by the choice to equate Dirichlet parameters a with the membership coefficient vector for

the individual.
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treat individual members of predefined populations as identically distributed, the member-
ship coefficients for the N, members of a population can be summarized with K parameters
in place of N,K data points. Alignment can then proceed based on computations involv-
ing K theoretical values rather than N,K empirical values, reducing computation time
compared to use of empirical costs. Notably, as the problem of identifying optimal per-
mutations of replicates can be understood as an example of a general class of assignment
problems (Burkard et al., 2012) seen in combinatorial optimization and operations research,
this use of the model can potentially contribute to alignment problems beyond the genetics
context.

We note a number of limitations. First, the utility of the Dirichlet model is more limited
in cases in which the model provides a poor fit to the data. However, we have seen that
the fit can be assessed by comparing empirical and theoretical alignment costs, so that
applicability of the model can be assessed for a particular data set.

A second limitation is that the theoretical cost measure does not consider the scenario
in which replicates possess different numbers of clusters. The approach, however, can
be extended. Consider two replicates, replicate 1 with K clusters and replicate 2 with
Ky > K clusters. In principle, it is possible to sum membership coefficients in each of
K, disjoint subsets of the K5 clusters and to then evaluate alignment cost between the
K, clusters of replicate 1 and the K subsets for replicate 2. This computation can be
performed in principle for each way of distributing the K, clusters over K; subsets. The
Stirling number of the second kind, Sy(Ks, K7), counts the partitions of K, labeled objects
into K unlabeled classes, in such a way that each of the K classes contains at least one
of the K5 objects; the number of scenarios that must be considered is the number of ways
of distributing the K, labeled clusters over K labeled subsets, or So( Ky, Ki) K;!.

A third limitation comes from our choice of distance measure. The derivation of the
theoretical alignment cost relied on the squared 2-norm of the difference between mem-
bership vectors as the distance between replicates. Various distances have previously been
used to compare pairs of replicates (Rosenberg et al., 2002; Jakobsson and Rosenberg, 2007;
Kopelman et al., 2015; Behr et al., 2016). Other measures, including other p-norms, could
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be used in Eq. 3 to enlarge small differences between vectors (lower p) or to reduce them
(higher p); a new cost computation under the Dirichlet model would then be required.
Although our study has been motivated by the setting of unsupervised clustering in
population genetics, the Dirichlet model applies to mixed-membership clustering more gen-
erally. Hence, our analysis of the model and its performance can contribute to other fields

where cluster analysis—and particularly unsupervised cluster analysis—is used.
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Supplemental material

Title: AlignmentCost

Python package “AlignmentCost” for analyzing alignment cost. Python package
“AlignmentCost” contains code to perform the empirical data analysis described in
the article (Figures 5 and 6), including functions for computing the alignment cost
(egs. 10-12) and estimating the Dirichlet parameters (Section 6.2). The package also

contains the empirical datasets used as examples in the article. (AlignmentCost.zip,

71IP file)
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Appendix A Dirichlet parameters used in generating
figures

Using the Dirichlet model, we simulated membership coefficients of N, individuals for

each of four populations, ¢ = 1,2,3,4, using 50 and 100 for N, in the various analyses.

Dirichlet parameters al®) = (ag@, aée), agf), afp) were chosen so that membership coefficients

had specified values for expectations and variances. The variance of Dirichlet variables for

the first cluster was set at ¢ = 0.001 for Figure 1 and ¢ = 0.01 for Figure 4. That is,

) (

a9 (gl — a0

) E
J4 4
(ay))2(af’ + 1)

=c for k=1, (21)

where aée) = Zizl a,(f), for £ = 1,2,3,4. With the four means specified and the vari-

ance specified for the membership coefficient of the first cluster, the Dirichlet parameters
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are uniquely specified. The parameters and the corresponding mean and variance of the

Dirichlet distributions appear in Table 2.

Appendix B Proof of Theorem 3.1

When K = 2, we have

Aap = /pl B /ql L ( P1—q1) >+ [(1 —p1) —(1— ‘11)]2) p(f)l 1(5112)_/1?(13:2:@)

bl 1 bg 1
X U= a) dq: dp:

F(bl) (b2)/T(by + bg)

F(al + (1/2) F(bl + bg) 1 a1—1 g1
= *T(a)T(a2) DT () /plzopl (1=p1) (22)

1
x / {p?ql{l "1—q)” " = 2pig (1 — ) g (L - ql)’”‘l] dq, dp;.
q1=0

We now apply the beta integral B(a,b) fo 22711 — 2)'Yde = T(a)T(b)/T(a +b) se-
quentially to the inner integral and then the outer integral of Eq. 22, obtaining

Aun ['(ay + az) T'(by + by) /1 a1-1(1 _ pl)a2—1|: 2 1'(b1) T'(bo)

[(an)T(a2) TO0T(02) Sy, 0" P70+ by)
oy Dlbi+ )T(ba) | (b +2) F(bz)}
"T(by+by+1)  T(bi+by+2)|
S T(ay +a) {F(al +2)T(a2) 261 I'(a1 +1)(a)
~ T(a)T(az) [ T(ar +ag+2) by +by T(ag +ag+1)
(by + 1)by (a1) r(@)}
(b1 +b2) (b1 +bo+ 1) T(ar +a2) |

+

Finally, we simplify using I'(z + 1) = 2I'(x) to obtain Eq. 5.
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Table 2: Model parameters for simulating clustering examples in Figures 1 and 4

Figure(s) Population  Cluster a; as as ay
Parameter 146.3 31.35 20.9 10.45
1 Mean 0.7 0.15 0.1 0.05
Variance 0.001 6x107% 4x107% 2x107*
Parameter 24.65 135.575 49.3 36.975
Figure 1A, 1B, 2 Mean 0.1 0.55 0.2 0.15
and 1C replicate Variance 3 x 107*  0.001 6 x107* 5x 10 *
1 Parameter 2.53 10.12 107.525 6.325
3 Mean 0.02 0.08 0.85 0.05
Variance 1x107% 5 x 1072 0.001 3x 1072
Parameter 478 23.9 23.9 143.4
4 Mean 0.2 0.1 0.1 0.6
Variance 7 x107% 4x107* 4 x 1071 0.001
Parameter 95.6 47.8 23.9 1.7
1 Mean 04 0.2 0.1 0.3
Variance 0.001 6x107% 4x107% 9x10~*
Parameter 62.7 62.7 418 418
Fieure 1C 2 Mean 0.3 0.3 0.2 0.2
U Variance 0.001 0.001 §x107% 8x10~*
replicate 2 Parameter  37.35 19.8 1245 37.35
3 Mean 0.15 0.2 0.5 0.15
Variance 5 x 107% 6 x 10~ 0.001 5x 1072
Parameter 12.65 5.06 1.265 107.525
4 Mean 0.1 0.04 0.01 0.85
Variance 7 x 107% 3 x107* 8 x 10  0.001
Parameter 14 3 2 1
1 Mean 0.7 0.15 0.1 0.05
Variance 0.01 0.006 0.004 0.002
Parameter 0.8 4.4 1.6 1.2
2 Mean 0.1 0.55 0.2 0.15
Figures 4 Variance 0.01 0.028 0.018 0.014
Parameter 0.019 0.077 0.816 0.048
3 Mean 0.02 0.08 0.85 0.05
Variance 0.01 0.038 0.065 0.024
Parameter 3 1.5 15 9
4 Mean 0.2 0.1 0.1 0.6
Variance 0.01 0.006 0.006 0.01I5
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Appendix C Proof of Theorem 3.2

The proof entails a calculation of the multiple integral in Eq. 3. This integral can be

rearranged in a nested way:

. . b) 1 1 I—p1 1 ZlK1 Di X« 1
Agp = 2 = : / it / Pt / PR
Hfil F(ai) Hfil r bz‘) p1=0 p2=0 pPr—1=0

K-1 \ax-1 /1 1-q1 =X e,
ST [ [
i=1 q1=0 q2=0 qr-1=0
K—1 \ bg—1 ,K—-1 K—1K-1 K—2 K-1
(1-Xa) ( ZED S0 ) ITED SRS 3p
=1 =1 i=1 j=1 i=1 j=i+1
K-2 K-1
+ %’%‘) dgr—1+++ dgz dq1 dpg—1 -+ dp2 dpr. (24)
i=1 j=i+1
We make use of the mean and variance of the Dirichlet distribution, so that for (py, pa, ..., pK)

Dirichlet-distributed with parameters (a1, as, ..., ax) and (g1, g2, - - - , gx ) Dirichlet-distributed
with parameters (b1, bo, ..., bx), with ag = Zfil a; and by = Zfil b;, we have (Kotz et al.,
2004, eq. 49.9)

E[ 1] = a—(; (25)
Bl — (20

o Clz‘(ao - ai)
Var[p;] = t02(a0 = 1) (27)
Var[g;] = Z;g?go_jfi)) (28)
Cov(pi,p;) = —%7 i F (29)
Covigg;) = —bg(fo—bﬂ) it (30)
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Using these results, we have

Gi((li + 1)

Elpf] = Varlp] + Elpf* = oot (31)
Bl = Varla] + Ela = p o) (32
Elpp)) = Cov(pi,py) +EpBlpi) = — s i £ (33)
Elgigj] = Cov(g q;) + Elg] Elg;] = % i # J. (34)
Because p and q are independent, we also have
Elpig;] = Elpi] Elg;]. (35)

In the integral in Eq. 24, each term in the sum S5 " p2 + K12 S8 Zj | Pigi—
Zi:; Diqi + Z Z] i1 DiDj Z ZJ .41 Gig; 1s integrated with respect to the Dirich-

let density over two simplices, one for p and one for q. Hence, each term can be integrated
by one of Egs. 25-35: Eq. 31 for terms p?, Eq. 32 for terms ¢?, Eq. 35 for terms p;q; (j =i
and j # i), Eq. 33 for terms p;p; (j # ¢), and Eq. 34 for terms ¢;q; (j # 7).

The integral becomes:
K—1 —1 K—1K— K—1 K—2 K—1 K—2 K—1
Aa,b=2<ZE[p?]+Z d ZZ pig] = > Elpig]+ Y Y Eppl+ > > quq]>-

i=1 i=1 j=1 =1

=1 j=i+1 =1 j=i+1

Simplifying using Eqgs. 25-35, we obtain Eq. 10, concluding the proof.
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