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When is the allele-sharing dissimilarity
between two populations exceeded by the
allele-sharing dissimilarity of a population
with itself?

Abstract: Allele-sharing statistics for a genetic locus measure the dissimilarity between two populations
as a mean of the dissimilarity between random pairs of individuals, one from each population. Owing to
within-population variation in genotype, allele-sharing dissimilarities can have the property that they have
a nonzero value when computed between a population and itself. We consider the mathematical properties
of allele-sharing dissimilarities in a pair of populations, treating the allele frequencies in the two populations
parametrically. Examining two formulations of allele-sharing dissimilarity, we obtain the distributions of
within-population and between-population dissimilarities for pairs of individuals. We then mathematically
explore the scenarios in which, for certain allele-frequency distributions, the within-population dissimilarity—
the mean dissimilarity between randomly chosen members of a population—can exceed the dissimilarity
between two populations. Such scenarios assist in explaining observations in population-genetic data that
members of a population can be empirically more genetically dissimilar from each other on average than
they are from members of another population. For a population pair, however, the mathematical analysis
finds that at least one of the two populations always possesses smaller within-population dissimilarity than
the value of the between-population dissimilarity. We illustrate the mathematical results with an application
to human population-genetic data.
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1 Introduction
Statistics that measure the genetic dissimilarity between pairs of populations are widely used for interpreting
population-genetic data (Bowcock et al., 1994; Chakraborty and Jin, 1993; Gao and Martin, 2009; Mountain
and Cavalli-Sforza, 1997; Mountain and Ramakrishnan, 2005; Rosenberg, 2011; Tal, 2013; Witherspoon
et al., 2007). Patterns in numerical values of the statistics appear in calculations of the relative similarity
and dissimilarity of different human groups (Mountain and Ramakrishnan, 2005; Rosenberg, 2011; With-
erspoon et al., 2007). Further, genetic dissimilarity statistics, often termed “genetic distances,” underlie
frequently applied tools for data analysis and visualization, including methods such as evolutionary tree
construction (Bowcock et al., 1994) and multidimensional scaling (Gao and Martin, 2009).

Population-level genetic dissimilarity statistics computed at a single genetic locus often proceed by
considering pairs of vectors, p and q, representing the allele frequencies of two populations. Each vector
consists of nonnegative entries that sum to 1. Hence, for a locus with 𝐼 distinct alleles, such a genetic
dissimilarity statistic has domain Δ𝐼−1 × Δ𝐼−1, where Δ𝐼−1 is the simplex {𝑝1, 𝑝2, . . . , 𝑝𝐼 :

∑︀𝐼
𝑖=1 𝑝𝑖 =

1 and 𝑝𝑖 ≥ 0 for all 𝑖}.
Among the many genetic dissimilarity statistics that are available (Jorde, 1985; Nei, 1987), those known

as allele-sharing dissimilarities form a distinctive subset. Such statistics view a dissimilarity between two
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populations as the mean of a dissimilarity between pairs of individuals, one from one population and one
from the other. With this perspective, they have a simple interpretation as a population-level generalization
of an individual-level statistic. They also have a natural connection to a fundamental computation in human
population genetics—the apportionment of genetic diversity among different levels of genetic structure (Edge
et al., 2022; Lewontin, 1972)—which can be viewed in terms of various mean pairwise dissimilarities across
certain subsets of individuals (Rosenberg, 2011).

Unlike most dissimilarity statistics—such as those based on such principles as the Euclidean distance
between functions of allele frequency vectors (Cavalli-Sforza and Edwards, 1967) or the dot product of these
vectors (Nei, 1972)—because they emerge from inter-individual computations among non-identical individu-
als, allele-sharing dissimilarities can produce nonzero values for the dissimilarity between a polymorphic
population and itself. This feature assists in understanding a property of genetic variation in structured
populations: the extent to which genetic dissimilarity of individuals from the same population ever exceeds
genetic dissimilarity of individuals from different populations, if at all.

Because individuals in a population generally possess a larger number of recent shared ancestors than
individuals from different populations, a perspective focused on population-genetic descent predicts that
individuals from the same population will be genetically more similar than individuals from different
populations. Indeed, in human population genetics, studies of allele-sharing dissimilarity find that the mean
dissimilarity across pairs of individuals from different populations does exceed the mean dissimilarity for pairs
from the same populations (Mountain and Ramakrishnan, 2005; Rosenberg, 2011; Tal, 2013; Witherspoon
et al., 2007). However, such studies also find a perhaps unexpected result that the allele-sharing dissimilarity
for some pairs of individuals from the same population can exceed the dissimilarity for some pairs from
different populations.

Here, we seek to explain the properties of allele-sharing dissimilarities within and between populations.
We study mathematical properties of population-level allele-sharing dissimilarities under the assumption that
individuals in a population represent random draws from the vector of allele frequencies in the population.
We consider mean allele-sharing dissimilarities for pairs of individuals from the same population and for
pairs of individuals from different populations, evaluating the conditions on allele-frequency vectors under
which the allele-sharing dissimilarity for a population to itself can exceed the allele-sharing dissimilarity
between two populations. We interpret the results in relation to ongoing efforts to understand human
genetic similarity and difference.

2 Methods

2.1 Allele-sharing dissimilarities

An allele-sharing dissimilarity (ASD) is a type of dissimilarity that is based on counting the number of
alleles shared at a locus between two diploid individuals. We consider two different versions of the ASD
concept.

In one ASD variant, which we denote by 𝒟1, “allele-sharing” for two diploid individuals is interpreted
as the number of shared elements in their multisets of alleles. Consider a locus with four distinct alleles, the
minimum number required so that all possible cases exist. Call these alleles 𝐴, 𝐵, 𝐶, and 𝐷. For 𝒟1, two
individuals both with genotype 𝐴𝐵 have 2 alleles shared, as the sets {𝐴, 𝐵} and {𝐴, 𝐵} have 2 identical
elements. An individual with genotype 𝐴𝐵 and an individual with genotype 𝐴𝐶 have 1 allele shared, as the
sets {𝐴, 𝐵} and {𝐴, 𝐶} have 1 element shared between them, namely 𝐴. Two individuals with genotype 𝐴𝐴

have 2 alleles shared, as multisets {𝐴, 𝐴} and {𝐴, 𝐴} have 2 shared elements, 𝐴 and 𝐴. The dissimilarity
𝒟1 then uses 1 minus half the number of the shared alleles as the dissimilarity; the normalization ensures
that 𝒟1 lies in [0, 1] (Gao and Martin, 2009; Mountain and Cavalli-Sforza, 1997). With 0, 1, and 2 shared
alleles, the dissimilarity equals 1, 1

2 , and 0, respectively.
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Another variant of ASD, which we denote by 𝒟2, instead considers alleles individually, evaluating the
fraction of pairs of alleles, one from the first individual and one from the second, that are distinct (Mountain
and Ramakrishnan, 2005). For two individuals with genotype 𝐴𝐵, 𝒟2 is equal to 1

2 , because among the
four possible pairs of alleles—(𝐴, 𝐴), (𝐴, 𝐵), (𝐵, 𝐴), and (𝐵, 𝐵), where the first entry in the pair represents
an allele from the first individual and the second entry is an allele from the second individual—two of four
contain distinct alleles.

Table 1 shows all seven possible pairs of unordered diploid genotypes for two individuals and their
corresponding dissimilarities measured by 𝒟1 and 𝒟2. In only two of seven cases do the two dissimilarities
differ.

2.2 Notation

Consider a locus with 𝐼 distinct alleles. We consider allele-frequency vectors in each of two populations.
In Population 1, the allele frequencies are p = (𝑝1, 𝑝2, . . . , 𝑝𝐼), where 𝑝𝑖 represents the frequency of allele
𝑖. In Population 2, they are q = (𝑞1, 𝑞2, . . . , 𝑞𝐼). The frequencies satisfy 0 ≤ 𝑝𝑖, 𝑞𝑖 ≤ 1 for all 𝑖, and∑︀𝐼

𝑖=1 𝑝𝑖 =
∑︀𝐼

𝑖=1 𝑞𝑖 = 1.
We are interested in mathematical properties of the distribution of ASD measure 𝒟, for pairs of

populations—possibly the same population—where 𝒟 can refer to 𝒟1 or 𝒟2. We denote the dissimilarity
𝒟 between two randomly chosen individuals within the same population with allele-frequency vector p
by 𝒟𝑤(p), and the corresponding dissimilarity between two randomly chosen individuals from different
populations with allele-frequency vectors p and q by 𝒟𝑏(p, q). We often drop the arguments for convenience.

We will have occasion to use various symmetric sums involving allele frequencies. For 𝑡 = 1, 2, 3, 4, for
expressions in the separate populations, we use the notation

𝜎𝑡 =
𝐼∑︁

𝑖=1
𝑝𝑡

𝑖, 𝜏𝑡 =
𝐼∑︁

𝑖=1
𝑞𝑡

𝑖 , (1)

where 𝜎1 = 𝜏1 = 1.
For expressions involving both populations, we use

𝜌𝑡𝑢 =
𝐼∑︁

𝑖=1
𝑝𝑡

𝑖𝑞
𝑢
𝑖 , (2)

where (𝑡, 𝑢) is equal to (1, 1), (1, 2), (2, 1), or (2, 2). Note that each of these sums can be viewed as an inner
product.

2.3 Assumptions

We seek to perform ASD computations under the assumption that individuals are sampled at random from
allele-frequency distributions. With this perspective, for a random pair of individuals, an ASD measure is
a random variable that depends on the allele-frequency vectors of two populations of interest, treated as
parameters.

At a given locus, we assume that the two alleles of an individual are sampled independently, so that
diploid genotypes in a population are assumed to follow Hardy-Weinberg proportions. In other words, the
probabilities of diploid genotypes in a population with allele-frequency vector p equal 𝑝2

𝑖 for homozygous
genotypes and 2𝑝𝑖𝑝𝑗 for heterozygous unordered genotypes, with 𝑖 ̸= 𝑗.
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3 Distribution of 𝒟𝑤

We first compute allele-sharing dissimilarities between random pairs of individuals sampled from the same
population, evaluating the properties of random variables 𝒟𝑤

1 and 𝒟𝑤
2 .

3.1 Distribution of 𝒟𝑤
1

𝒟𝑤
1 is a random variable that takes on values 0, 1

2 , and 1. We compute its probability distribution, and we
then evaluate its mean and variance.

P
[︀
𝒟𝑤

1 = 𝑑
]︀
. We obtain the probability for each possible genotype combination in Table 1. These probabilities

appear in Table 2, both as sums and as simplified polynomials.
With the probabilities of all genotype combinations obtained, we can sum across genotype combi-

nations to compute probabilities for 𝒟𝑤
1 (p) to equal 0, 1

2 , and 1. The resulting probabilities appear in Table 3.

E[𝒟𝑤
1 ]. The expected value of 𝒟𝑤

1 (p) can be computed from the full probability distribution, via

E[𝒟𝑤
1 (p)] =

∑︁
𝑑∈{0, 1

2 ,1}

𝑑P [𝒟𝑤
1 (p) = 𝑑] .

Using the probabilities in Table 3, the result is

E[𝒟𝑤
1 (p)] = 1 − 2𝜎2 + 2𝜎3 − 𝜎4. (3)

In the 𝐼 = 2 case, using 𝑝2 = 1 − 𝑝1 so that 𝜎𝑡 = 𝑝𝑡
1 + (1 − 𝑝1)𝑡, Eq. 3 becomes:

E[𝒟𝑤
1 (p)] = 2𝑝1 − 4𝑝2

1 + 4𝑝3
1 − 2𝑝4

1. (4)

Figure 1A plots Eq. 4 as a function of 𝑝1. In the figure, we can observe that the mean value of the
dissimilarity increases from a value of 0 at 𝑝1 = 0, when the population is monomorphic, to a peak of 3

8 at
𝑝1 = 1

2 . It then decreases symmetrically to 0 at 𝑝1 = 1.

Var[𝒟𝑤
1 ]. To obtain the variance of the distribution of 𝒟𝑤

1 (p), we first calculate

E[𝒟𝑤
1 (p)2] =

∑︁
𝑑∈{0, 1

2 ,1}

𝑑2P [𝒟𝑤
1 (p) = 𝑑]

= 1 − 3𝜎2 + 3𝜎3 + 𝜎2
2 − 2𝜎4. (5)

The variance can then be obtained from Eqs. 3 and 5 by Var[𝒟𝑤
1 (p)] = E[𝒟𝑤

1 (p)2] −E[𝒟𝑤
1 (p)]2:

Var[𝒟𝑤
1 (p)] = 𝜎2 − 𝜎3 − 3𝜎2

2 + 8𝜎2𝜎3 − 4𝜎2𝜎4 − 4𝜎2
3 + 4𝜎3𝜎4 − 𝜎2

4 . (6)

For the 𝐼 = 2 case, we once again use that 𝑝2 = 1 − 𝑝1:

E[𝒟𝑤
1 (p)2] = 𝑝1 − 𝑝2

1 (7)
Var[𝒟𝑤

1 (p)] = 𝑝1 − 5𝑝2
1 + 16𝑝3

1 − 32𝑝4
1 + 40𝑝5

1 − 32𝑝6
1 + 16𝑝7

1 − 4𝑝8
1. (8)

Figure 1B plots Eq. 8 as a function of 𝑝1. Like the mean, the variance of the dissimilarity increases from 0
at 𝑝1 = 0 to a peak at 𝑝1 = 1

2 , decreasing symmetrically to 0 at 𝑝1 = 1. The maximal variance is 7
64 .

3.2 Distribution of 𝒟𝑤
2

We compute the distribution of random variable 𝒟𝑤
2 . This computation uses the same probabilities for

genotype pairs as those used for 𝒟𝑤
1 in Table 2.
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P
[︀
𝒟𝑤

2 = 𝑑
]︀
. We compute the probability for each of the possible values of 𝒟𝑤

2 by summing probabilities in
Table 2. The resulting probabilities appear in Table 4.

E[𝒟𝑤
2 ]. Summing across the possible values for the dissimilarity,

E[𝒟𝑤
2 (p)] =

∑︁
𝑑∈{0, 1

2 , 3
4 ,1}

𝑑P [𝒟𝑤
2 (p) = 𝑑] ,

yielding the result
E[𝒟𝑤

2 (p)] = 1 − 𝜎2. (9)
Note that Eq. 9 gives the “expected heterozygosity,” the probability that two draws from the allele-frequency
distribution produce distinct alleles.

For the 𝐼 = 2 case, we have 𝜎2 = 𝑝2
1 + (1 − 𝑝1)2 = 1 − 2𝑝1 + 2𝑝2

1, so Eq. 9 simplifies to

E[𝒟𝑤
2 (p)] = 2𝑝1 − 2𝑝2

1 = 2𝑝1(1 − 𝑝1). (10)

Figure 1A plots Eq. 10 as a function of 𝑝1. The mean value of the dissimilarity is symmetric around a peak
at ( 1

2 , 1
2 ), equaling 0 at 𝑝1 = 0 and 𝑝1 = 1.

Var[𝒟𝑤
2 ]. The variance of the distribution of 𝒟𝑤

2 is obtained using Var[𝒟𝑤
2 ] = E[𝒟𝑤

2 (p)2] − E[𝒟𝑤
2 (p)]2.

We first find

E[𝒟𝑤
2 (p)2] =

∑︁
𝑑∈{0, 1

2 , 3
4 ,1}

𝑑2P [𝒟𝑤
2 (p) = 𝑑]

= 1 − 7
4𝜎2 + 1

2𝜎3 + 1
4𝜎2

2 . (11)

Therefore,
Var[𝒟𝑤

2 (p)] = 1
4𝜎2 + 1

2𝜎3 − 3
4𝜎2

2 . (12)

For the 𝐼 = 2 case, we use 𝑝2 = 1 − 𝑝1 to obtain

E[𝒟𝑤
2 (p)2] = 𝑝1 − 2𝑝3

1 + 𝑝4
1 (13)

Var[𝒟𝑤
2 (p)] = 𝑝1 − 4𝑝2

1 + 6𝑝3
1 − 3𝑝4

1. (14)

Figure 1B plots Eq. 14. The variance has peaks at ( 3−
√

3
6 , 1

12 ) and ( 3+
√

3
6 , 1

12 ), between which it has a local
minimum at ( 1

2 , 1
16 ). It equals 0 at 𝑝1 = 0 and 𝑝1 = 1.

3.3 Comparison of 𝒟𝑤
1 and 𝒟𝑤

2

Comparing E[𝒟𝑤
1 ] (Eq. 3) and E[𝒟𝑤

2 ] (Eq. 9), we quickly observe that if 𝑝𝑖 ̸= 1 for all 𝑖, then

E[𝒟𝑤
1 ] < E[𝒟𝑤

2 ]. (15)

The result follows by noting (1−𝑝𝑖)2 > 0 for all 𝑖, so that
∑︀𝐼

𝑖=1 𝑝2
𝑖 (2𝑝𝑖) <

∑︀𝐼
𝑖=1 𝑝2

𝑖 (1+𝑝2
𝑖 ) and 2𝜎3 < 𝜎2+𝜎4,

from which we obtain Eq. 15. In fact, Eq. 15 follows from Table 1: for all possible genotype combinations,
𝒟𝑤

1 ≤ 𝒟𝑤
2 , and the inequality is strict in two of seven cases, at least one of which must have nonzero

probability if 𝑝𝑖 ̸= 1 for all 𝑖.
For 𝐼 = 2, Eq. 15 can be observed in Figure 1A, as it can be seen that the curve for E[𝒟𝑤

2 ] exceeds that
for E[𝒟𝑤

1 ]. The largest excess occurs at 𝑝1 = 𝑝2 = 1
2 . Figure 2C plots the difference E[𝒟𝑤

2 ] −E[𝒟𝑤
1 ] for the

case of 𝐼 = 3, and the maximal difference in the figure also occurs when alleles have the same frequency,
(𝑝1, 𝑝2, 𝑝3) = ( 1

3 , 1
3 , 1

3 ).
For the variances, Figure 1B finds that for 𝐼 = 2, Var[𝒟𝑤

1 ] > Var[𝒟𝑤
2 ] for intermediate 𝑝1, and that

the two variances are comparable for 𝑝1 near 0 or 1, with some 𝑝1 values producing Var[𝒟𝑤
1 ] < Var[𝒟𝑤

2 ].
Figure 2F illustrates a similar result for 𝐼 = 3. For both 𝐼 = 2 and 𝐼 = 3, at intermediate allele frequencies,
Var[𝒟𝑤

1 ] > Var[𝒟𝑤
2 ]; at extreme allele frequencies, the two variances are comparable, sometimes with

Var[𝒟𝑤
1 ] < Var[𝒟𝑤

2 ].
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4 Distribution of 𝒟𝑏

We now examine allele-sharing dissimilarities between pairs of individuals from different populations. Let
p be the allele frequency vector for the population from which the first individual is sampled, and let q
be the corresponding vector for the population of the second individual; the special case of q = p follows
Section 3. We evaluate the properties of the random variables 𝒟𝑏

1 and 𝒟𝑏
2.

4.1 Distribution of 𝒟𝑏
1

P
[︀
𝒟𝑏

1 = 𝑑
]︀
. We obtain the probability for each possible genotype combination for a pair of individuals

from different populations. For this computation, we use the polynomials in Eqs. 1 and 2. The resulting
probabilities appear in Table 5.

We sum across genotype combinations to obtain probabilities for 𝒟𝑏
1 to equal particular values. Table 6

provides these probabilities.

E[𝒟𝑏
1]. As we did for the within-population dissimilarity 𝒟𝑤

1 (p), we compute the expected value of the
distribution of the between-population dissimilarity 𝒟𝑏

1(p, q) as

E[𝒟𝑏
1(p, q)] =

∑︁
𝑑∈{0, 1

2 ,1}

𝑑P
[︀
𝒟𝑏

1(p, q) = 𝑑
]︀

.

Using the values in Table 6, we obtain

E[𝒟𝑏
1(p, q)] = 1 − 2𝜌11 + 𝜌21 + 𝜌12 − 𝜌22. (16)

For the 𝐼 = 2 case, with 𝑝2 = 1 − 𝑝1 and 𝑞2 = 1 − 𝑞1, Eq. 16 simplifies to

E[𝒟𝑏
1(p, q)] = 𝑝1 + 𝑞1 − 4𝑝1𝑞1 + 2𝑝2

1𝑞1 + 2𝑝1𝑞2
1 − 2𝑝2

1𝑞2
1 . (17)

Figure 3A plots Eq. 17. The figure has maxima of 1 at (𝑝1, 𝑞1) = (1, 0) and (0, 1), when the two populations
have the greatest difference in allele frequency, and equals 0 at (0, 0) and (1, 1). It has a saddle surface with
a value of 3

8 at saddle point (𝑝1, 𝑞1) = ( 1
2 , 1

2 ).

Var[𝒟𝑏
1]. We first compute

E[𝒟𝑏
1(p, q)2] =

∑︁
𝑑∈{0, 1

2 ,1}

𝑑2P
[︀
𝒟𝑏

1(p, q) = 𝑑
]︀

= 1 − 3𝜌11 + 3
2𝜌21 + 3

2𝜌12 − 2𝜌22 + 𝜌2
11. (18)

Using Var[𝒟𝑏
1(p, q)] = E[𝒟𝑏

1(p, q)2] −E[𝒟𝑏
1(p, q)]2, the variance is thus

Var[𝒟𝑏
1(p, q)] = 𝜌11 − 1

2𝜌21 − 1
2𝜌12 − 3𝜌2

11 + 4𝜌11𝜌21 + 4𝜌11𝜌12 − 4𝜌11𝜌22 − 𝜌2
21 − 𝜌2

12 − 2𝜌12𝜌21

+ 2𝜌12𝜌22 + 2𝜌21𝜌22 − 𝜌2
22. (19)

For the 𝐼 = 2 case, we have 𝑝1 = 1 − 𝑝2 and 𝑞1 = 1 − 𝑞2. Eqs. 18 and 19 simplify to

E[𝒟𝑏
1(p, q)2] = 1

2𝑝1 + 1
2𝑞1 − 2𝑝1𝑞1 + 1

2𝑝2
1 + 1

2𝑞2
1 (20)

Var[𝒟𝑏
1(p, q)] = 1

2𝑝1 + 1
2𝑞1 − 4𝑝1𝑞1 − 1

2𝑝2
1 − 1

2𝑞2
1 + 8𝑝2

1𝑞1 + 8𝑝1𝑞2
1 − 4𝑝3

1𝑞1 − 24𝑝2
1𝑞2

1 − 4𝑝1𝑞3
1

+20𝑝3
1𝑞2

1 + 20𝑝2
1𝑞3

1 − 4𝑝4
1𝑞2

1 − 24𝑝3
1𝑞3

1 − 4𝑝2
1𝑞4

1 + 8𝑝4
1𝑞3

1 + 8𝑝3
1𝑞4

1 − 4𝑝4
1𝑞4

1 . (21)

Figure 3D shows that the variance has higher values away from the four corners (0, 0), (1, 0), (0, 1), and
(1, 1) for (𝑝1, 𝑞1), equaling 0 in each of these corners.
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4.2 Distribution of 𝒟𝑏
2

P
[︀
𝒟𝑏

2 = 𝑑
]︀
. We use Table 5 to obtain the probabilities of particular values of 𝒟𝑏

2. The resulting probabilities
appear in Table 7.

E[𝒟𝑏
2]. For 𝒟𝑏

2, we substitute the values from Table 7 into

E[𝒟𝑏
2(p, q)] =

∑︁
𝑑∈{0, 1

2 , 3
4 ,1}

𝑑P
[︀
𝒟𝑏

2(p, q) = 𝑑
]︀

.

We obtain
E[𝒟𝑏

2(p, q)] = 1 − 𝜌11. (22)

This quantity is the between-population analogue of expected heterozygosity, the probability that two
random draws, one from the allele-frequency distribution of a locus in one population and one from the
corresponding distribution in a second population, represent the same allele.

For the 𝐼 = 2 case, Eq. 22 simplifies to

E[𝒟𝑏
2(p, q)] = 𝑝1 + 𝑞1 − 2𝑝1𝑞1. (23)

Figure 3B plots Eq. 23. The figure has maxima of 1 at (𝑝1, 𝑞1) = (1, 0) and (0, 1) and equals 0 at (0, 0) and
(1, 1). It has a saddle surface with a value of 1

2 at saddle point (𝑝1, 𝑞1) = ( 1
2 , 1

2 ).

Var[𝒟𝑏
2]. We find that

E[𝒟𝑏
2(p, q)2] =

∑︁
𝑑∈{0, 1

2 ,1}

𝑑2P
[︀
𝒟𝑏

2(p, q) = 𝑑
]︀

= 1 − 7
4𝜌11 + 1

4𝜌21 + 1
4𝜌12 + 1

4𝜌2
11. (24)

Therefore, by Var[𝒟𝑏
2(p, q)] = E[𝒟𝑏

2(p, q)2] −E[𝒟𝑏
2(p, q)]2,

Var[𝒟𝑏
2(p, q)] = 1

4𝜌11 + 1
4𝜌21 + 1

4𝜌12 − 3
4𝜌2

11. (25)

For the 𝐼 = 2 case, Eqs. 24 and 25 simplify to

E[𝒟𝑏
2(p, q)2] = 1

2𝑝1 + 1
2𝑞1 + 1

2𝑝2
1 + 1

2𝑞2
1 − 𝑝1𝑞1 − 𝑝2

1𝑞1 − 𝑝1𝑞2
1 + 𝑝2

1𝑞2
1 (26)

Var[𝒟𝑏
2(p, q)] = 1

2𝑝1 + 1
2𝑞1 − 3𝑝1𝑞1 − 1

2𝑝2
1 − 1

2𝑞2
1 + 3𝑝2

1𝑞1 + 3𝑝1𝑞2
1 − 3𝑝2

1𝑞2
1 . (27)

Figure 3E plots Eq. 27. The variance is greatest at (𝑝1, 𝑞1) = ( 1
2 , 0), ( 1

2 , 1), (0, 1
2 ), and (1, 1

2 ) and equals 0
at (0, 0), (1, 0), (0, 1), and (1, 1). It has a local minimum at (𝑝1, 𝑞1) = ( 1

2 , 1
2 ).

4.3 Comparison of 𝒟𝑏
1 and 𝒟𝑏

2

The two measures for the between-population dissimilarity have the same expected value, E[𝒟𝑏
1] = E[𝒟𝑏

2],
if for all 𝑖, at least one of 𝑝𝑖, 1 − 𝑝𝑖, 𝑞𝑖, and 1 − 𝑞𝑖 is zero. The condition for equality can be seen from
E[𝒟𝑏

2] −E[𝒟𝑏
1] = 𝜌11 − 𝜌21 − 𝜌12 + 𝜌22 =

∑︀𝐼
𝑖=1 𝑝𝑖(1 − 𝑝𝑖)𝑞𝑖(1 − 𝑞𝑖). Excluding these equality cases, we have

E[𝒟𝑏
1] < E[𝒟𝑏

2]. (28)

Note that 𝒟𝑏
1 ≤ 𝒟𝑏

2 for all possible genotype combinations in Table 1.
The inequality in Eq. 28 can be observed for the 𝐼 = 2 case in Figure 3C, where the surface plot of

E[𝒟𝑏
2]−E[𝒟𝑏

1] remains greater than or equal to 0, with equality only on the boundary. The largest difference
occurs at 𝑝1 = 𝑞1 = 1

2 .
Figure 3F compares the variances of 𝒟𝑏

1 and 𝒟𝑏
2 for the case of 𝐼 = 2. Across most of the parameter

space, Var[𝒟𝑏
1] > Var[𝒟𝑏

2]. The excess is greatest at points (𝑝1, 𝑞1) = ( 1
3 , 2

3 ) and ( 2
3 , 1

3 ).
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5 The relative magnitudes of E[𝒟𝑤] and E[𝒟𝑏]

We now examine the relative magnitudes of the expectations E[𝒟𝑤] and E[𝒟𝑏]. We determine the conditions
under which the expectation of a within-population dissimilarity exceeds that of a between-population
dissimilarity.

5.1 Inequality relationship between E[𝒟𝑤
1 (p)] and E[𝒟𝑏

1(p,q)]

For arbitrary 𝐼, using Eqs. 3 and 16, the expression E[𝒟𝑤
1 (p)] > E[𝒟𝑏

1(p, q)] is equivalent to

−2𝜎2 + 2𝜎3 − 𝜎4 + 2𝜌11 − 𝜌21 − 𝜌12 + 𝜌22 > 0. (29)

This condition can be written with vector notation. Let p̃ = (𝑝2
1, 𝑝2

2, . . . , 𝑝2
𝐼) and q̃ = (𝑞2

1 , 𝑞2
2 , . . . , 𝑞2

𝐼 ), treating
p, q, p̃, and q̃ as row vectors. We have the identities 𝜎2 = pp𝑇 , 𝜎3 = pp̃𝑇 = p̃p𝑇 , 𝜎4 = p̃p̃𝑇 , 𝜌11 = pq𝑇 ,
𝜌12 = pq̃𝑇 , 𝜌21 = p̃q𝑇 , and 𝜌22 = p̃q̃𝑇 .

Eq. 29 thus becomes

−2pp𝑇 + 2pp̃𝑇 − p̃p̃𝑇 + 2pq𝑇 − p̃q𝑇 − pq̃𝑇 + p̃q̃𝑇 > 0, (30)

which simplifies to (︀
p p − p̃

)︀ (︂ (p − q)𝑇

[(p − p̃) − (q − q̃)]𝑇

)︂
< 0. (31)

For 𝐼 = 2, we can further simplify this condition on 𝑝1 and 𝑞1, noting 𝑝2 = 1 − 𝑝1 and 𝑞2 = 1 − 𝑞1.

Theorem 1. Consider a locus with 𝐼 = 2 distinct alleles. For individuals sampled from two populations with
allele frequency vectors p = (𝑝1, 1 − 𝑝1) and q = (𝑞1, 1 − 𝑞1), E[𝒟𝑤

1 (p)] > E[𝒟𝑏
1(p, q)] holds if and only if⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 < 𝑞1 < 𝑝1 if 0 < 𝑝1 ≤ 𝑎,

𝑔(𝑝1) < 𝑞1 < 𝑝1 if 𝑎 ≤ 𝑝1 < 1
2 ,

𝑝1 < 𝑞1 < 𝑔(𝑝1) if 1
2 < 𝑝1 ≤ 1 − 𝑎,

𝑝1 < 𝑞1 < 1 if 1 − 𝑎 ≤ 𝑝1 < 1,

(32)

where
𝑔(𝑥) = 2𝑥3 − 4𝑥2 + 4𝑥 − 1

2𝑥(1 − 𝑥) ,

and

𝑎 = 1
3

(︃
3
√︀

3
√

33 − 13
22/3 − 25/3

3
√︀

3
√

33 − 13
+ 2

)︃
≈ 0.3522

is the unique real root of 2𝑥3 − 4𝑥2 + 4𝑥 − 1.

Proof. We simplify Eq. 29 noting 𝑝2 = 1 − 𝑝1 and 𝑞2 = 1 − 𝑞1. To find the region where E[𝒟𝑤
1 (p)] >

E[𝒟𝑏
1(p, q)], we solve the polynomial inequality

𝑝1 − 𝑞1 − 4𝑝2
1 + 4𝑝1𝑞1 + 4𝑝3

1 − 2𝑝2
1𝑞1 − 2𝑝1𝑞2

1 − 2𝑝4
1 + 2𝑝2

1𝑞2
1 > 0, (33)

with 0 ≤ 𝑝1 ≤ 1 and 0 ≤ 𝑞1 ≤ 1. Solving for 𝑞1 in terms of 𝑝1, we find that the expression in Eq. 33 is 0 at
𝑞1 = 𝑝1 and at 𝑞1 = 𝑔(𝑝1), and for fixed 𝑝, it is positive when 𝑞 lies between the two roots. The unique real
root for 𝑔(𝑥) = 𝑥 is at 𝑥 = 1

2 , so that 𝑔(𝑝1) < 𝑝1 for 𝑝1 < 1
2 and 𝑔(𝑝1) > 𝑝1 for 𝑝1 > 1

2 .
For 0 ≤ 𝑝1 < 1

2 , 𝑔(𝑝1) < 0 for 𝑝1 < 𝑎, so that for 0 ≤ 𝑝1 ≤ 𝑎, the region where the expression in Eq. 33
is positive includes the full interval (0, 𝑝1) for 𝑞1. For 𝑎 ≤ 𝑝1 ≤ 1

2 , it is positive only in interval (𝑔(𝑝1), 𝑝1)
for 𝑞1.
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For 1
2 < 𝑝1 < 1, 𝑔(𝑝1) = 1 for 𝑝1 = 1 − 𝑎, with 𝑔(𝑝1) < 1 for 𝑝1 in [ 1

2 , 1 − 𝑎) and 𝑔(𝑝1) > 1 for 𝑝1 in
(1 − 𝑎, 1]. Hence, for 𝑝1 in [ 1

2 , 1 − 𝑎], the expression in Eq. 33 is positive for 𝑞1 in (𝑝1, 𝑔(𝑝1)), and for 𝑝1 in
[1 − 𝑎, 1], it is positive for 𝑞1 in (𝑝1, 1).

Figure 4A plots the region identified in Theorem 1. That a nonempty region exists indicates that sometimes,
allele frequencies for a biallelic locus produce a within-population dissimilarity that exceeds the between-
population dissimilarity. Note that because the choice of which allele is labeled 1 and which is labeled 2 is
arbitrary, (𝑝1, 𝑞1) is included in the region if and only if (1 − 𝑝1, 1 − 𝑞1) is also included.

We can calculate the area of the region in the unit square representing the probability P
(︀
E[𝒟𝑤

1 ] > E[𝒟𝑏
1]
)︀

under the assumption that 𝑝1 and 𝑞1 are independently and identically distributed with uniform-[0, 1]
distribution:

P
(︀
E[𝒟𝑤

1 ] > E[𝒟𝑏
1]
)︀

=
𝑎∫︁

𝑝1=0

𝑝1∫︁
𝑞1=0

1 𝑑𝑞1 𝑑𝑝1 +

1
2∫︁

𝑝1=𝑎

𝑝1∫︁
𝑞1=𝑔(𝑝1)

1 𝑑𝑞1 𝑑𝑝1 +
1−𝑎∫︁

𝑝1= 1
2

𝑔(𝑝1)∫︁
𝑞1=𝑝1

1 𝑑𝑞1 𝑑𝑝1 +
1∫︁

𝑝1=1−𝑎

1∫︁
𝑞1=𝑝1

1 𝑑𝑞1 𝑑𝑝1

= 2

⎡⎢⎣ 𝑎∫︁
𝑝1=0

𝑝1 𝑑𝑝1 +

1
2∫︁

𝑝1=𝑎

−4𝑝3
1 + 6𝑝2

1 − 4𝑝1 + 1
2𝑝1(1 − 𝑝1) 𝑑𝑝1

⎤⎥⎦
= −𝑎2 + 2𝑎 − 1

2 − 2 log 2 − log 𝑎 − log(1 − 𝑎)

≈ 0.17179. (34)

To evaluate P
(︀
E[𝒟𝑤

1 ] > E[𝒟𝑏
1]
)︀

more generally, for each 𝐼 from 2 to 20, we perform a simulation. In
particular, for each 𝐼, we consider independently and identically distributed vectors p and q from the
uniform distribution over the simplex Δ𝐼−1 (the Dirichlet-(1, 1, . . . , 1) distribution, where the vector of 1’s
has length 𝐼). We sample 100, 000 replicate pairs (p, q), and for each pair we evaluate if E[𝒟𝑤

1 ] > E[𝒟𝑏
1].

Figure 5A plots the resulting probability. We can observe that for 𝐼 = 2, the simulated P
(︀
E[𝒟𝑤

1 ] > E[𝒟𝑏
1]
)︀

accords with the analytical value in Eq. 34. The probability then decreases with increasing 𝐼.

5.2 Inequality relationship between E[𝒟𝑤
2 (p)] and E[𝒟𝑏

2(p,q)]

For arbitrary 𝐼, via Eqs. 9 and 22, the expression E[𝒟𝑤
2 (p)] > E[𝒟𝑏

2(p, q)] is equivalent to

𝜌11 − 𝜎2 > 0. (35)

With 𝜎2 = pp𝑇 and 𝜌11 = pq𝑇 , Eq. 35 thus becomes

p(p − q)𝑇 < 0. (36)

For 𝐼 = 2, Eq. 36 can be simplified to a condition on 𝑝1 and 𝑞1, again noting 𝑝2 = 1−𝑝1 and 𝑞2 = 1−𝑞1.

Theorem 2. Consider a locus with 𝐼 = 2 distinct alleles. For individuals sampled from two populations with
allele frequency vectors p = (𝑝1, 1 − 𝑝1) and q = (𝑞1, 1 − 𝑞1), E[𝒟𝑤

2 (p)] > E[𝒟𝑏
2(p, q)] holds if and only if{︃

0 < 𝑞1 < 𝑝1 if 0 < 𝑝1 < 1
2 ,

𝑝1 < 𝑞1 < 1 if 1
2 < 𝑝1 < 1.

(37)

Proof. With 𝑝2 = 1 − 𝑝1 and 𝑞2 = 1 − 𝑞1, Eq. 35 simplifies to

𝑝1 − 𝑞1 − 2𝑝2
1 + 2𝑝1𝑞1 > 0.

Solving this inequality, we arrive at the result.
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Figure 4B plots the region identified in Theorem 2. This region describes the locations in which allele
frequencies for a biallelic locus produce a within-population dissimilarity that exceeds the between-population
dissimilarity. As is true for 𝒟1, (𝑝1, 𝑞1) is included in the region if and only if (1 − 𝑝1, 1 − 𝑞1) is also included.

The area of the region in the unit square, representing P
(︀
E[𝒟𝑤

2 ] > E[𝒟𝑏
2]
)︀

under the assumption that
𝑝1 and 𝑞1 are independently and identically distributed with uniform-[0, 1] distribution, is straightforward:

P
(︀
E[𝒟𝑤

2 ] > E[𝒟𝑏
2]
)︀

=

1
2∫︁

𝑝1=0

𝑝1∫︁
𝑞1=0

1 𝑑𝑞1 𝑑𝑝1 +
1∫︁

𝑝1= 1
2

1∫︁
𝑞1=𝑝1

1 𝑑𝑞1 𝑑𝑝1

= 1
4 . (38)

We evaluate P
(︀
E[𝒟𝑤

2 ] > E[𝒟𝑏
2]
)︀

for each 𝐼 from 2 to 20 by simulation. For each 𝐼, we consider
independently and identically distributed vectors p and q from the uniform distribution over the simplex
Δ𝐼−1 (the Dirichlet-(1, 1, . . . , 1) distribution), sampling 100, 000 replicate pairs (p, q), and evaluating the
fraction of pairs for which E[𝒟𝑤

2 ] > E[𝒟𝑏
2].

Figure 5B plots the resulting probability, illustrating the agreement between the simulated P
(︀
E[𝒟𝑤

2 ] > E[𝒟𝑏
2]
)︀

and the analytical value in Eq. 38 for 𝐼 = 2. The probability then decreases as 𝐼 increases.

5.3 Comparison of the E[𝒟𝑤]−E[𝒟𝑏] inequalities for 𝒟1 and 𝒟2

The inequality E[𝒟𝑤] > E[𝒟𝑏], where the mean dissimilarity between individuals from the same population
exceeds that between individuals from different populations, holds under different scenarios for 𝒟1 and 𝒟2.
Comparing Eqs. 34 and 38, we see that for the case of 𝐼 = 2, E[𝒟𝑤

1 ] > E[𝒟𝑏
1] holds over a smaller fraction

of the parameter space than the corresponding inequality E[𝒟𝑤
2 ] > E[𝒟𝑏

2] (Figure 4). Further, if the former
inequality holds, then the latter always holds as well.

In Figure 5, we also observe that the probabilities P
(︀
E[𝒟𝑤] > E[𝒟𝑏]

)︀
are higher for 𝒟2 than for 𝒟1 in

simulations with different numbers of alleles. Hence, use of 𝒟2 rather than 𝒟1 produces a greater probability
that the within-population genetic dissimilarity exceeds the between-population dissimilarity.

6 The relative magnitudes of E[𝒟𝑤] and E[𝒟𝑏]

We have seen that both for 𝒟1 and for 𝒟2, it is possible for the expected dissimilarity E[𝒟𝑤] of random
pairs of individuals within a population to exceed the expected dissimilarity E[𝒟𝑏] of random pairs between
that population and a second population. However, we will see that for a pair of populations, the mean of
their two within-population dissimilarities never exceeds their between-population dissimilarity.

For a pair of populations with allele frequency vectors p and q, let E[𝒟𝑤
1 (p, q)] = 1

2 (E[𝒟𝑤
1 (p)] +

E[𝒟𝑤
1 (q)]), and let E[𝒟𝑤

2 (p, q)] = 1
2 (E[𝒟𝑤

2 (p)] +E[𝒟𝑤
2 (q)]).

6.1 Inequality relationship between E[𝒟𝑤
1 ](p,q) and E[𝒟𝑏

1(p,q)]

Theorem 3. E[𝒟𝑤
1 (p, q)] ≤ E[𝒟𝑏

1(p, q)], with equality if and only if p = q.

Proof. We use Eqs. 3 and 16 to rewrite E[𝒟𝑤
1 (p, q)] −E[𝒟𝑏

1(p, q)], obtaining

E[𝒟𝑤
1 (p)] +E[𝒟𝑤

1 (q)]
2 −E[𝒟𝑏

1(p, q)]

= −𝜎2 + 𝜎3 − 1
2𝜎4 − 𝜏2 + 𝜏3 − 1

2𝜏4 − 𝜌21 − 𝜌12 + 𝜌22 + 2𝜌11.
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Rewriting in terms of the vectors p, q, p̃, and q̃, we have

E[𝒟𝑤
1 (p)] +E[𝒟𝑤

1 (q)]
2 −E[𝒟𝑏

1(p, q)]

= −(p − q)(p − q)𝑇 + (p − q)(p̃ − q̃)𝑇 − 1
2(p̃ − q̃)(p̃ − q̃)𝑇

= −1
2‖p − q‖2 − 1

2‖(p − q) − (p̃ − q̃)‖2

≤ 0.

Equality is reached in the last step if and only if p = q.

6.2 Inequality relationship between E[𝒟𝑤
2 (p,q)] and E[𝒟𝑏

2(p,q)]

Theorem 4. E[𝒟𝑤
2 (p, q)] ≤ E[𝒟𝑏

2(p, q)], with equality if and only if p = q.

Proof. We rewrite E[𝒟𝑤
2 (p, q)] −E[𝒟𝑏

2(p, q)] using Eqs. 9 and 22:

E[𝒟𝑤
2 (p)] +E[𝒟𝑤

2 (q)]
2 −E[𝒟𝑏

2(p, q)]

= −𝜎2
2 − 𝜏2

2 + 𝜌11.

In terms of the vectors p and q, we have

E[𝒟𝑤
2 (p)] +E[𝒟𝑤

2 (q)]
2 −E[𝒟𝑏

2(p, q)]

= −1
2pp𝑇 − 1

2qq𝑇 + pq𝑇

= −1
2‖p − q‖2

≤ 0,

with equality if and only if p = q.

6.3 Comparison of the E[𝒟𝑤]−E[𝒟𝑏] inequalities for 𝒟1 and 𝒟2

The inequality E[𝒟𝑤(p, q)] ≤ E[𝒟𝑏(p, q)], with equality if and only if p = q, holds for both 𝒟1 and 𝒟2.
Comparing the proofs of Theorems 3 and 4, we see that

E[𝒟𝑤
1 (p, q)] −E[𝒟𝑏

1(p, q)] = E[𝒟𝑤
2 (p, q)] −E[𝒟𝑏

2(p, q)] − 1
2‖(p − q) − (p̃ − q̃)‖2. (39)

The extent to which E[𝒟𝑤
1 (p, q)] < E[𝒟𝑏

1(p, q)] for p ̸= q, or E[𝒟𝑤
1 (p, q)] −E[𝒟𝑏

1(p, q)], has a greater ab-
solute value than the corresponding extent to which E[𝒟𝑤

2 (p, q)] < E[𝒟𝑏
2(p, q)] for p ̸= q, or E[𝒟𝑤

2 (p, q)] −
E[𝒟𝑏

2(p, q)].

7 Data analysis

7.1 Data

Our theoretical analysis predicts features of dissimilarities 𝒟1 and 𝒟2 in within-population and between-
population computations. To compare to empirical observations, we examine multiallelic microsatellite
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data from the Human Genome Diversity Project (HGDP-CEPH panel). We consider the 1048 individuals
and 783 microsatellite loci from Rosenberg et al. (2005), employing the H1048 subset of the HGDP-CEPH
panel (Rosenberg, 2006). We follow previous uses of the HGDP-CEPH panel in considering 53 populations
and 7 geographic regions. We focus on 30 populations for which the number of sampled individuals is greater
than 15. Across these 30 populations, the total number of individuals considered is 813.

7.2 Theoretical computations

For our theoretical calculations, given a population in the data set and a locus, we compute allele frequencies.
We then apply our theoretical formulas to the allele frequency vectors. Note that if a locus is missing
genotypes in an individual, then we omit that individual from the calculation of population allele frequencies
at the locus, so that we maintain the property that allele frequencies at a locus in a population sum to 1.

7.3 Empirical computations

For empirical calculations, we consider the actual diploid individuals in the HGDP-CEPH data, for within-
population computations comparing all pairs of individuals within a population. For between-population
computations, we compare all pairs of individuals, one each from two populations. Pairwise dissimilarities
between diploid genotypes are obtained according to Table 1. We compute within-population and between-
population dissimilarities as the means across relevant pairs, and we compute variances of dissimilarity
distributions across pairs of individuals.

For this analysis, we omit individuals with missing data prior to computation of empirical ASD values.
In between-population comparisons, all allelic types present in one but not the other population are assigned
a frequency of 0 in the population in which they are absent.

We perform the theoretical and empirical calculations for all 783 loci.

7.4 Results of data analysis

Figure 6 compares empirical and theoretical means and variances of within-population dissimilarities across
pairs of individuals, considering 100 randomly sampled loci in 30 populations. Figure 6A compares the
empirical value of E[𝒟𝑤

1 ] computed by averaging 𝒟𝑤
1 values for all pairs of sampled individuals with the

theoretical value predicted from the allele frequencies and Eq. 3. The theoretical calculation generally
predicts the empirical dissimilarity, with most points clustering along the diagonal (𝑟 = 0.962). In Figure 6B,
a similar plot for E[𝒟𝑤

2 ] using Eq. 9 for the theoretical computation produces closer agreement between the
empirical and theoretical values (𝑟 = 0.999).

Figures 6C and 6D compare empirical and theoretical variances across pairs of individuals for within-
population dissimilarities, using Eqs. 6 and 12 for the theoretical computation. The theoretical variance
predicts the empirical variance, but the agreement is not as close as for the mean (𝑟 = 0.676 for Var[𝒟𝑤

1 ],
𝑟 = 0.732 for Var[𝒟𝑤

2 ]).
Figure 7 plots analogous comparisons for between-population dissimilarities, considering a subset of

loci from Figure 6. In Figure 7A, we see a close relationship between empirical E[𝒟𝑏
1] and theoretical E[𝒟𝑏

1]
similar to the relationship observed in Figure 6A (𝑟 = 0.943). As was seen in Figure 6B, in Figure 7B, we
see a stronger relationship between the empirical value of E[𝒟𝑏

2] and the theoretical value (𝑟 = 1.000).
Figures 7C and 7D consider relationships between empirical and theoretical between-population variances

for 𝒟1 and 𝒟2. As was observed in Figures 6C and 6D, empirical and theoretical variance are correlated
(𝑟 = 0.676 for Var[𝒟𝑏

1], 𝑟 = 0.731 for Var[𝒟𝑏
2]), but the agreement for variances is not as close as for the

mean.
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Figure 8 empirically examines the inequalities in Theorems 3 and 4 stating that when computed from
allele frequencies, the mean of the within-population dissimilarities for two populations is always less than
the dissimilarity between them. It shows all population pairs from Figures 6 and 7 with a single random
locus.

In Figure 8A, we find that the theoretical values of E[𝒟𝑏
1] and E[𝒟𝑤

1 ], computed from allele frequencies
alone, follow the predicted inequality, with E[𝒟𝑏

1] > E[𝒟𝑤
1 ]. However, the theorem does not necessarily

apply to dissimilarities computed from actual diploid individuals, and indeed, some exceptions are observed
in which the empirical E[𝒟𝑏

1] is smaller than E[𝒟𝑤
1 ] (Figure 8C). Similar results hold for E[𝒟𝑏

2] and E[𝒟𝑤
2 ]

in Figures 8B and 8D.
Figure 9 tabulates the fraction of loci for which the empirical within-population dissimilarity of a

population (denoted Population 1) exceeds the population’s empirical between-population dissimilarity
with a second population (Population 2), or E[𝒟𝑤] > E[𝒟𝑏]. The populations are arranged geographically,
following a general decrease in within-population genetic diversity with migration distance from Africa,
as measured by expected heterozygosity 1 − 𝜎2 (Prugnolle et al., 2005; Ramachandran et al., 2005). In
Figure 9A, for 𝒟1, if Population 1 is a population with relatively low within-population heterozygosity,
such as a Native American population, then its within-population dissimilarity rarely exceeds its between-
population dissimilarity with a second population (rightmost columns). The fraction of loci for which
E[𝒟𝑤] > E[𝒟𝑏] is greatest for intermediate-heterozygosity South Asian populations (central columns). If
Population 2 is a high-heterozygosity African population, then for all non-African choices of Population 1,
the within-population dissimilarity of Population 1 rarely exceeds the between-population dissimilarity with
an African Population 2 (bottom rows). Similar patterns are seen in Figure 9B for 𝒟2, with the additional
observation that the within-population dissimilarity of Population 1 often exceeds the between-population
dissimilarity when low-heterozygosity Native American populations are placed in the role of Population 2
(top rows).

8 Discussion
Allele-sharing statistics are often used to quantify genetic dissimilarity within and between populations.
Because they typically share a larger number of recent ancestors, individuals from the same population
might be predicted to possess a lower genetic dissimilarity than those from different populations. We have
mathematically explored the circumstances under which this prediction fails, when the genetic dissimilarity
within a population exceeds the genetic dissimilarity between two populations. The analysis characterizes
the properties of allele frequency vectors that give rise to this counterintuitive scenario, illustrating its
occurrence in human population-genetic data.

When does within-population dissimilarity for a population exceed between-population dissimilarity with
a second population? The conditions that permit this inequality in the case of 𝐼 = 2 alleles are instructive
(Theorems 1 and 2 and Figure 4). In this case, two populations have unbalanced allele frequencies, with
Population 2 more unbalanced than Population 1, but the two populations are similar in their frequencies. In
Population 1, dissimilarity is generated from comparisons of homozygotes for one allele and homozygotes for
the other allele. However, because Population 2 has allele frequencies that are more unbalanced than those of
Population 1, fewer comparisons of distinct homozygotes occur in the between-population comparison. This
phenomenon results in a within-population dissimilarity in Population 1 that exceeds the between-population
dissimilarity. Beyond 𝐼 = 2, such an excess is observed in empirical calculations with 𝐼 ≥ 2 alleles (Figure 9),
as well as in simulations, though with decreasing probability as 𝐼 increases (Figure 5).

Although a population can possess greater within-population dissimilarity than its between-population
dissimilarity to a second population, we find that for arbitrary numbers of alleles 𝐼, it is not possible for
both populations in a pair to possess greater within-population dissimilarity than the between-population
dissimilarity (Theorems 3, 4). In data, “theoretical” dissimilarities obtained by treating allele frequencies in
the data as parametric frequencies of two populations follow this inequality strictly, with greater between-



14 X. Liu et al., Allele-sharing within and between populations.

population dissimilarity than at least one of the two within-population dissimilarities (Figure 8A,B).
Similarly, the mean of the two within-population dissimilarities is strictly less than the between-population
dissimilarity in theoretical calculations (Figure 8A,B); while “empirical” dissimilarities calculated from
individual genotypes can violate the inequality, we find that these violations are generally mild (Figure 8C,D).

The results can contribute to understanding unexpected phenomena involving allele-sharing dissimilari-
ties in human populations. We have seen that within-population dissimilarities in Population 1 sometimes
exceed between-population dissimilarities, often in comparisons that involve a lower-diversity Population 2
and a higher-diversity Population 1 (Figure 9); in essence, a high-diversity population can possess enough
variation that its inter-individual dissimilarity can exceed the dissimilarity between populations. Our
theoretical calculations provide a basis for this scenario, and in fact, we saw for 𝐼 = 2 that it is not unlikely
in certain parts of the allele frequency space (Figure 4).

Our theoretical analysis deepens a line of inquiry on mathematical effects on allele-sharing. For each of
two dissimilarity functions, we have obtained probability distributions of within- and between-population
allele-sharing dissimilarities across pairs of individuals as functions of allele frequencies (Tables 3, 4, 6,
7), focusing on the mean and variance of the dissimilarity statistics (Eqs. 3, 6, 9, 12, 16, 19, 22, 25).
The expressions for these quantities, and inequalities concerning their relationships (Theorems 1, 2, 3, 4),
augment previous efforts on the mathematics of allele-sharing dissimilarities in terms of allele frequencies
(Chakraborty and Jin, 1993; Tal, 2013).

The two variants of allele-sharing dissimilarity that we studied, 𝒟1 and 𝒟2, share many features.
For 𝐼 = 2 and 𝐼 = 3 alleles, the expected values of 𝒟𝑤

1 and 𝒟𝑤
2 are maximal when all alleles have the

same frequency (Figures 1A and 2A,B). Trends in expectations of 𝒟𝑏
1 and 𝒟𝑏

2 at 𝐼 = 2 are also similar
(Figure 3A,B), as are the regions in which E[𝒟𝑤] > E[𝒟𝑏] for 𝐼 = 2 (Figure 4), and the simulated
probabilities P

(︀
E[𝒟𝑤] > E[𝒟𝑏]

)︀
for 𝐼 ≥ 2 (Figure 5).

However, some consistent differences between the two dissimilarities are also observed. 𝒟2 ≥ 𝒟1 for all
genotypes (Table 1), and hence, E[𝒟𝑤

2 ] ≥ E[𝒟𝑤
1 ] (Figures 1 and 2C and Eq. 15) and E[𝒟𝑏

2] ≥ E[𝒟𝑏
1] (Figure

3C and Eq. 28). Although both dissimilarities have E[𝒟𝑤] ≤ E[𝐷𝑏] (Theorems 3 and 4), E[𝒟𝑤
1 ] −E[𝒟𝑏

1] ≤
E[𝒟𝑤

2 ] −E[𝒟𝑏
2] (Eq. 39), so that the extent to which E[𝒟𝑤] lies below E[𝒟𝑏] has greater magnitude for 𝒟1.

The within-population variance across pairs of individuals is not uniformly higher for either dissimilarity
(Figure 1B and 2F); at 𝐼 = 2, it has different shapes, as Var[𝒟𝑤

2 ] has two maxima, whereas Var[𝒟𝑤
1 ] has

only one (Figure 1B). 𝒟2 has larger regions in which E[𝒟𝑤] > E[𝒟𝑏] for 𝐼 = 2 (Figure 4) and for 𝐼 ≥ 2
(Figure 5). In the empirical analysis, 𝒟2 has a closer match between empirical and theoretical mean values
of the dissimilarity (Figures 6B, 7B). Its patterns in the fraction of loci for which E[𝒟𝑤] > E[𝒟𝑏] align more
closely with the heterozygosity values of the populations, with the probability of E[𝒟𝑤] > E[𝒟𝑏] larger when
Population 1 is a higher-diversity population and Population 2 is a lower-diversity population (Figure 9B).
Notably, expressions for E[𝒟2] are closely tied to heterozygosity (Eq. 9) and its between-population analogue
(Eq. 22), potentially explaining the tighter connection of heterozygosity to its associated observations. Thus,
the lesser-used 𝒟2—which, unlike 𝒟1, allows the dissimilarity of an individual and itself to be nonzero
(Table 1)—does possess a more easily interpreted pattern in the probability that E[𝒟𝑤] > E[𝒟𝑏].

Does our analysis suggest a preference for 𝒟1 over 𝒟2, or vice versa? To summarize, 𝒟1 has been used
more frequently than 𝒟2, and it also has the property that the dissimilarity of an individual and itself
is zero. The less frequently used 𝒟2 does not have this property, but it produces simpler expressions for
its within-population and between-population expectations, with more natural interpretations of those
expectations and their consequences. We conclude that although 𝒟1 has a number of desirable properties,
𝒟2 does as well, and it perhaps merits attention commensurate with that given to 𝒟1.

This work has several possible extensions. We have focused on the first and second moments of allele-
sharing dissimilarities across pairs of individuals; the full distributions (Tables 3, 4, 6, 7) could also be
further investigated. We examined 𝐼 = 2 in the greatest detail, but special cases that fix a maximal value of
𝐼 could also be considered. We chose the two most frequently used ASD variants, 𝒟1 and 𝒟2, but a variant
designed for genotypes obtained by observation of band patterns (Chakraborty and Jin, 1993) could also be
studied.
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We have only considered allele-sharing dissimilarity between population pairs at a single locus, and it
will be of interest to investigate dissimilarities that average across many loci. Our theoretical calculations
focus on dissimilarities between two random individuals chosen from specified allele-frequency distributions
at a locus. Although such distributions have nonzero probability only on the discrete values {0, 1

2 , 1} for
𝒟1 and {0, 1

2 , 3
4 , 1} for 𝒟2, when an allele-sharing dissimilarity is calculated as an average across 𝐿 loci,

the 2𝐿 + 1 values {0, 1
2𝐿 , 1

𝐿 , 3
2𝐿 , . . . , 𝐿−1

𝐿 , 2𝐿−1
2𝐿 , 1} become possible values for 𝒟1 (all multiples of 1

2𝐿 in
[0, 1]), and the 4𝐿 values {0, 1

2𝐿 , 3
4𝐿 , . . . , 4𝐿−3

4𝐿 , 2𝐿−1
2𝐿 , 4𝐿−1

4𝐿 , 1} for 𝒟2 (all multiples of 1
4𝐿 in [0, 1], other

than 1
4𝐿 itself). Thus, the mean allele-sharing dissimilarity of a random pair of individuals across many

loci—computed either theoretically or empirically—has many possible numerical values, potentially giving
rise to continuous approximations for associated probability distributions.

We note significant caveats in interpreting our empirical analysis in relation to our theoretical computa-
tions. The empirical computations make use of all pairs of individuals drawn from specified samples; each
sampled individual appears in many pairs, so that the empirical analysis does not follow the assumption of
the theoretical analysis that pairs represent independent draws from allele frequency distributions. A second
difference of the empirical and theoretical analyses is that the theoretical analysis assumes that pairs of
alleles within an individual are independent draws from the allele-frequency distribution, whereas inbreeding
can induce dependence of these alleles empirically. Such deviations from the assumptions of the theoretical
analysis in conducting the empirical analysis could be explored in simulations that do and do not permit
inbreeding and reuse of pairs of individuals and in empirical samples large enough to avoid such reuses.

Allele-sharing dissimilarities have long been used in population genetics. The mathematical relation-
ships we have obtained assist both in predicting their properties in relation to allele frequencies and in
understanding empirical aspects of their values. When counterintuitive phenomena are obtained with such
dissimilarities—such as a greater within-population dissimilarity than the between-population dissimilarity—
the mathematical results can potentially provide insight into the unexpected observations.

Acknowledgment: We acknowledge NIH grant R01 HG005855 and NSF grant BCS-2116322 for support.
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List of figure captions
Figure 1. Mean and variance of the within-population dissimilarities 𝒟𝑤

1 and 𝒟𝑤
2 for 𝐼 = 2 alleles as

functions of the frequency 𝑝1 of one of the alleles. (A) Mean, eqs. 4 and 10. (B) Variance, eqs. 8 and 14.

Figure 2. Mean and variance of the within-population dissimilarities 𝒟𝑤
1 and 𝒟𝑤

2 for 𝐼 = 3 alleles as
functions of the frequencies 𝑝1 and 𝑝2 of two of the alleles. (A) Mean of 𝒟𝑤

1 , eq. 3. (B) Mean of 𝒟𝑤
2 ,

eq. 9. (C) E[𝒟𝑤
2 ]−E[𝒟𝑤

1 ]. (D) Variance of 𝒟𝑤
1 , eq. 6. (E) Variance of 𝒟𝑤

2 , eq. 12. (F) Var[𝒟𝑤
2 ]−Var[𝒟𝑤

1 ].

Figure 3. Mean and variance of the between-population dissimilarities 𝒟𝑏
1 and 𝒟𝑏

2 for 𝐼 = 2 alleles as
functions of the frequencies (𝑝1, 𝑞1) of one of the alleles. (A) Mean of 𝒟𝑏

1, eq. 17. (B) Mean of 𝒟𝑏
2, eq. 23.

(C) E[𝒟𝑏
2] −E[𝒟𝑏

1]. (D) Variance of 𝒟𝑏
1, eq. 21. (E) Variance of 𝒟𝑏

2, eq. 27. (F) Var[𝒟𝑏
2] − Var[𝒟𝑏

1].

Figure 4. Values of (𝑝1, 𝑞1) for which E[𝒟𝑤] > E[𝒟𝑏] in the case of 𝐼 = 2 alleles, shaded in color. (A) 𝒟1,
Theorem 1. (B) 𝒟2, Theorem 2.

Figure 5. The probability P
(︀
E[𝒟𝑤] > E[𝒟𝑏]

)︀
for simulated pairs of allele frequency vectors (p, q) with 𝐼

distinct alleles. (A) 𝒟1. (B) 𝒟2. Independent and identical uniform distributions are simulated for each
𝐼, 2 ≤ 𝐼 ≤ 20, by drawing uniformly from the simplex Δ𝐼−1 (100,000 replicates).

Figure 6. Empirical and theoretical mean and variance of within-population allele-sharing dissimilarities.
Each panel considers 100 randomly sampled loci (among 783) in 30 populations with sample size greater
than 15 (100 × 30 = 3000 data points in each panel). (A) E[𝒟𝑤

1 ]. (B) E[𝒟𝑤
2 ]. (C) Var[𝒟𝑤

1 ]. (D) Var[𝒟𝑤
2 ].

Empirical values rely on dissimilarity calculations according to Table 1 from pairs of diploid individuals,
and theoretical values are calculated from allele frequencies according to eqs. 3, 9, 6, and 12.

Figure 7. Empirical and theoretical mean and variance of between-population allele-sharing dissimilarities.
Each panel considers 10 randomly sampled loci in pairs among the 30 populations with sample size
greater than 15 (10 ×

(︀30
2
)︀

= 4350 data points in each panel). The 10 loci are taken from among those
used in Figure 6. (A) E[𝒟𝑏

1]. (B) E[𝒟𝑏
2]. (C) Var[𝒟𝑏

1]. (D) Var[𝒟𝑏
2]. Empirical values rely on dissimilarity

calculations according to Table 1 from pairs of diploid individuals, and theoretical values are calculated
from allele frequencies according to eqs. 16, 22, 19, and 25.

Figure 8. Empirical and theoretical E[𝒟𝑏] and E[𝒟𝑤]. Each panel considers a random locus, D1S1677,
in 435 pairs of populations with sample size greater than 15. The locus is among those used in
Figures 6 and 7. The upper left triangle is the region in which the between-population dissimilarity
of two populations exceeds the mean of the within-population dissimilarities of the two populations,
E[𝒟𝑏] > E[𝒟𝑤], as proven for theoretical disimilarities (Theorems 3, 4). The two ends of a horizontal
gray line indicate the E[𝒟𝑤] values for two populations whose mean within-population dissimilarity is
plotted at the midpoint of the line. (A) Theoretical values of 𝒟1. (B) Theoretical values of 𝒟2. (C)
Empirical values of 𝒟1. (D) Empirical values of 𝒟2.

Figure 9. Fraction of loci for which E[𝒟𝑏] < E[𝒟𝑤]. Each panel considers all 783 loci in pairs among the 30
populations with sample size greater than 15. Each cell denotes a pair of populations, with Population
1 considered for the within-population dissimilarity. Geographical regions are separated by bold black
lines. (A) 𝒟1. (B) 𝒟2.
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