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Abstract—Texture classification plays a crucial role in ap-
plications ranging from object recognition and product design
to surface exploration. Utilizing deep learning methods with
sensors, such as accelerometers, offers a way to identify key
surface features without the need to precisely replicate human
touch. A Contextually Guided Convolutional Neural Network
(CG-CNN) employs contextual guidance by developing auxil-
iary tasks during its training. These tasks offer implicit, yet
rigorous, internal supervision signals. When trained with these
subtasks, CG-CNN learns to represent the innate structure and
patterns within the data, resulting in robust, transferrable,
and local/contextual-neighborhood-preserving domain repre-
sentations. This paper extends the CG-CNN framework for
texture classification by integrating semisupervised learning.
Empirical evaluations on the VibTac-12 texture dataset reveal
that CG-CNN effectively generalizes to novel and unfamiliar
textures, even when trained with scarce labeled examples. By
harnessing vast amounts of unlabeled, contextually relevant
data alongside the labeled samples, CG-CNN ensures robust
and precise texture classification. Such advancements hold
promise for applications in robotics, prosthetics, and haptic
interfaces.

Index Terms—Deep Learning for Texture Classification,
Contextual Guidance, Semisupervised Auxiliary Tasks.

I. INTRODUCTION

Semi-supervised learning bridges the gap between super-

vised and unsupervised methods, harnessing both labeled

and unlabeled data during training [1], [2]. This approach

becomes essential in areas like texture classification and

tactile perception. Capturing the essence of a touch de-

mands controlled environments to obtain clear labels. In

our daily interactions, while humans touch myriad surfaces,

rarely do we consciously recognize or categorize them in

terms of supervised labels. This makes gathering accurate

labeled tactile data challenging, often facing issues of noise,

time constraints, or simple feasibility. Leveraging semi-

supervised methodologies, we can better harness available

data and also offer a more resource-efficient approach to

learning.

While traditional deep Convolutional Neural Networks

(CNNs) learn features through error backpropagation, which

involves passing the error (e.g., classification or reconstruc-

tion) from the higher layers down to lower layers, the

emergence of features in the visual cortex is local and self-

organized. This emergence can be attributed to their local

high transfer utility [3]. The Contextually Guided Convo-

lutional Neural Network (CG-CNN) introduced by [3]–[5]

offers a bottom-up approach distinct from the traditional top-

down deep CNNs. While both employ error backpropaga-

tion, CG-CNN prioritizes preserving important data, ensur-

ing the retention of neighborhood or contextual information

throughout the learning process. CG-CNNs use local con-

textual information instead of solely relying on supervised

backpropagation, offering an autoencoder-like approach to

learning descriptive (pluripotent) features. This approach,

which we derived from our computational neuroscientific

studies of cerebral cortical networks [4]–[6], attributes an

objective function to maximize for each convolutional area

and, thus, eliminates the need for backpropagating the error

from the top layers [4], [7], [8]. CG-CNN approach reduces

the risk of mode collapse and vanishing gradients [9]. For

each convolutional area, it uses a self-supervised shallow

CNN, and thus, the first area learns its features from small,

unlabeled datasets, instead of relying on large, manually

labeled datasets. Higher areas can be built using the outputs

of the previous CG-CNN areas. CG-CNN offers a natural
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extension for semisupervised learning, which involves using

both labeled and unlabeled data [1], [10]. In a semisu-

pervised setting CG-CNN self-supervises when provided

with unlabelled examples, and applies backpropagation to

take advantage of supervised training when provided with

labelled training examples.

In this study, we conducted a comparative analysis of

CG-CNN alongside other AI/ML methods, such as CNN

and Autoencoders, to demonstrate its efficacy in texture

classification using vibrotactile signals. The application of

AI in tactile and vibration sensing systems holds great

promise across diverse fields [11], [12]. Our study presents a

novel approach by utilizing CNNs and Contextually Guided

CNN (CG-CNN) for texture classification on the VibTac-12

dataset. This research is the first of its kind and demonstrates

the feasibility of extending the CG-CNN algorithm through

a semisupervised framework.

This paper is structured as follows: Section II provides

a review of relevant literature, with a focus on CG-CNN.

Section III introduces the proposed semisupervised extension

of CG-CNN, called BeiimNet. In Section IV, we present the

experimental results conducted on the VibTac-12 dataset for

texture classification using vibrotactile signals. The experi-

ments focus on evaluating the transferability of the extracted

features to new texture classification tasks and assessing their

effectiveness in accurately classifying previously unseen

textures. Finally, Section V concludes the paper.

II. BACKGROUND

Local invariance, the ability of CNNs to recognize objects

regardless of their position within an image, and com-

positionality, their capability to assemble more complex

features from simpler ones, are two significant advantages of

Convolutional Neural Networks (CNNs) [13]. According to

[13], in the initial layers, CNNs identify basic elements like

edges by applying specialized filters, laying the groundwork

for detecting more complex shapes in the subsequent layers.

With every successive convolutional layer, CNNs learn to

distinguish more specific features, which are then used

to make predictions. CNNs use pooling layers to achieve

representation of the image patches, enabling classification

of objects in the image without considering their exact

location. [14] presents a method for discriminative unsu-

pervised feature learning using exemplar CNNs that only

uses unlabelled data. The network discriminates between

surrogate classes, which are generated from randomly gener-

ated image patches, called seeds, that are transformed using

a family of transformations. The features generated from

this method exhibit robustness to transformations that is

not present in classic supervised approaches. The study is

based on unsupervised learning of invariant features, and

several instances of invariant feature generation/utilization

are present in both unsupervised and supervised learning.

However, while this method outperforms traditional unsuper-

vised feature generation methods, it cannot achieve the same

performance as classic supervised learning methods. The

method starts by selecting a random sample of image patches

from unlabelled images and applying various transforma-

tions to create surrogate training data. The CNN network is

then trained to discriminate between these surrogate classes.

In [15], the focus is on unsupervised learning and maxi-

mizing the mutual information between the input and output

of deep encoders. However, computing mutual information is

a complex and challenging task, and therefore, the proposed

Deep Infomax method incorporates the input’s locality into

the objective to highlight the significance of the structure.

The primary concept is to increase the mutual information

between input and output, which is achieved by using an

adversarial learning model consisting of an encoder and a

decoder. While the Deep Infomax method outperforms many

unsupervised learning tasks, it falls short of the performance

levels expected from supervised learning.

Contextually-Guided CNN (CG-CNN) is an unsupervised

approach that enables the extraction of highly discriminative

and transferable features [3], [4]. In its application to natural

images, the features developed in its first layer (the first

convolutional area) resembled those of other state-of-the-

art deep learning architectures [17], [18]. In its simplest

form, the complete system consists of a single convolutional

layer known as the Feature Generator connected to a linear

classifier. Once a convolutional area is developed, then it

can be used as input to other CG-CNN layers to form

deep networks in a bottom-up manner. CG-CNN training

utilizes transfer learning by creating different classification

problems for self-supervision, allowing it to learn what to

transfer. In other words, the Feature Generator gradually

learns more discriminative features that the discriminator can

adapt to its ever-changing classification problems, providing

feedback to the Feature Generator (see Algorithm 1). While

the modular nature of CG-CNN shares a resemblance with

deep autoencoders, where networks can be stacked to form

multiple convolutional areas, the current exploration of CG-

CNN is purposefully confined to a single convolutional

area (consisting of one convolutional layer followed by a

ReLU activation). Although this initial setup with single-area

has its limitations in capturing complex representations, it

offers essential foundational insights, particularly in its self-

supervised operation. CG-CNN self-supervision operates by

presenting a selected input pattern — typically a small

image window extracted from one of the internally generated

contextual groups — to the network. This process allows the

computation of feature values based on the current model

architecture, subsequently feeding these extracted features

into the classifier. The classifier is trained to differentiate

all contextual groups of the current task from one another.

The prediction error of the contextual group’s input patterns

is backpropagated to the classifier and the convolutional

layer. The backpropagation algorithm alternately adjusts

the connection weights of the softmax-classifier and the

convolutional-layer. By minimizing the prediction error of

26

Authorized licensed use limited to: North Carolina A T State University. Downloaded on July 08,2024 at 14:46:01 UTC from IEEE Xplore.  Restrictions apply. 



(a) Data flow and error backpropagation in
the CG-CNN architecture. (b) Contextual group demonstration.

Fig. 1: In its application to natural images, CG-CNN used small, e.g., 19×19, image patches for training. Each task contains

one image only, and within that image, there are four contextual groups created (each group is shown with a different

color and with three snipped image patches). In its application to tactile signals, these patches are snipped from sensor

recordings that describe small regions of textures shown in Figure 2.

Fig. 2: Images of the 12 texture classes recorded in the

VibTac-12 dataset [16].

these internally generated and ever-changing classification

tasks, the features of CG-CNN gradually become more

inferential than its inputs [4], [19]. The classes (contextual

groups) of the tasks are internally generated (i.e., self-

supervised and not related to any external supervision/class-

labels) [14] (Figure 1). The training of the system involves

multiple iterations, with each iteration using a unique set of

contextual groups as training classes [19]. In each iteration,

a small unsupervised set of training examples is drawn from

the database, which includes many nearby image windows

organized into (e.g., 50) contextual groups, and the system is

trained to discriminate against them. After the completion of

training, another small set of classes is selected, and training

continues on this new set without resetting the already devel-

oped CNN connection weights. By the contextual guidance

[4] principle, all the transformations of a given seed image

patch are contextually related and are considered examples

of a single class.

III. THE PROPOSED SEMI-SUPERVISED CG-CNN

The original CG-CNN method [3], [4] trains a convo-

lutional layer so that the feature set gradually becomes

more pluripotent for discriminating any set of contextually

related input patterns. In the initial CG-CNN model, only

unlabeled examples were used. This is particularly relevant

at the first layer, where neurons’ small receptive fields render

supervised class labels less effective. The network snipped

the image patches from the large unlabelled images, and

all examples within close proximity in that image (i.e.,

contextually-related image patches) were given a unique

group label that was to be discriminated maximally from

other such groups (hence the name “pluripotent”). However,

we believe that in a stack of CG-CNN layers, higher-

order features should utilize more global (more expansive)

receptive fields at the higher CG-layers. As these features

get more sophisticated, the feature tuning in higher con-

volutional layers should gradually benefit from supervised

examples to exhibit more utility for supervised classification

tasks. This step will help develop better features instead of

preserving/transforming the data while maintaining all the

contextual regularities.

Our method, selects a new small task (supervised or unsu-

pervised) from a large pool of data containing both labeled
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ALGORITHM 1

CG-CNN for semi-supervised texture feature extraction

CG-CNN=[
/ / F i r s t , t h e I n p u t l a y e r wi th 2 s e c window (400 samples ) and 3 s e n s o r s (X, Y, Z )

Layer −1: I n p u t L a y e r ( i n p u t s i z e = (400 \ t i m e s 3 )
/ / Then , t h e CNN l a y e r s o f F e a t u r e G e n e r a t o r wi th 3 a r e a s ( Conv+ReLU+MaxPool ) :

Layer −2: ConvLayer ( k e r n e l s i z e = (10 \ t i m e s 3 ) , o u t c h a n n e l s = 25)
Layer −3: ReLULayer
Layer −4: MaxPool ( k e r n e l s i z e = 3× 3 )
Layer −5: ConvLayer ( k e r n e l s i z e = (5 \ t i m e s 1 ) , o u t c h a n n e l s = 50)
Layer −6: ReLULayer
Layer −7: MaxPool ( k e r n e l s i z e = 3× 3 )
Layer −8: ConvLayer ( k e r n e l s i z e = (3 \ t i m e s 1 ) , o u t c h a n n e l s = 100)
Layer −9: ReLULayer
Layer −10: MaxPool ( k e r n e l s i z e = 3× 3 )
Layer −11: Features = G l o b a l A v e r a g e P o o l i n g ( )

/ / Las t , t h e C l a s s i f i e r l a y e r ( D i s c r i m i n a t o r ) :
i f s u p e r v i s e d : / / Use D = 12 t e x t u r e c l a s s e s

Layer −12: Posterior = S o f t m a x C l a s s i f i c a t i o n L a y e r ( o u t p u t s i z e = 12)
e l s e i f u n s u p e r v i s e d : / / Use C a u x i l a r y c l a s s e s

Layer −12: Posterior = Softmax ( o u t p u t s i z e = C ) ]
Randomly i n i t i a l i z e w e i g h t s W of Laye r s 2 , 5 , and 8
Repea t E−M i t e r a t i o n s

/ / New t a s k :
C r e a t e a new t a s k ( d a t a s u b s e t ) w h i l e a l t e r n a t i n g between s u p e r v i s e d&u n s u p e r v i s e d
S p l i t t h e t a s k d a t a s e t i n t o t h e E− d a t a s e t and M− d a t a s e t

/ / E− s t e p :
S e t l e a r n i n g r a t e t o 0 f o r t h e c o n v o l u t i o n a l w e i g h t s W

Randomly i n i t i a l i z e t h e new C l a s s i f i e r w e i g h t s V of Layer −12
T r a i n V on t h e E− d a t a s e t

/ / Compute t h e c l a s s&group a c c u r a c y ( F i g u r e 5 ) on t h e t e s t (M− d a t a s e t )
Use t h e new V and t h e e x i s t i n g W on t h e M− d a t a s e t t o check c o n v e r g e n c e

/ /M− s t e p :
S e t l e a r n i n g r a t e t o 0 f o r t h e w e i g h t s V of Layer −12
R e s t o r e l e a r n i n g r a t e f o r W of Layers −2 , 5 , and 8 .
C o n t i n u e u p d a t i n g ( r e t r a i n ) t h e e x i s t i n g w e i g h t s W by u s i n g t h e M− d a t a s e t

End E−M

and unlabeled examples, as shown in Figures 1 and 2. The

training task (dataset) for each Expectation-Maximization

(EM) iteration is either supervised or unsupervised (see

Algorithm 1 and Figures 3 and 4). In the unsupervised

case, C classes are used and a seed image patch is chosen

for each class, generating input patches with additional

data augmentations. In the supervised case, D classes are

used. Like the original CG-CNN, the classifier layer in the

contextually guided network is trained to differentiate the C

contextual groups using existing features, referred to as the

E-step of the EM algorithm. Conversely, for a supervised

task, the method selects labeled training examples from D

classes. Typically, we can use all classes, say D = 12 for

the VibTac-12 dataset, but D can be a subset of classes as

well. This way, new classes can be continuously added for

continuous/online learning [20]. Data augmentation methods

can be utilized to enhance convergence in both unsupervised

and supervised cases [21], [22]. Next, the task resets the

discriminator (now with D output units for the D classes)

and initiates the E-step of the EM optimization. In the E-

step, the method trains the discriminator (SoftMax) using the

class-labeled examples in the task, while keeping the feature

generator/convolutional layers fixed. The M-step then begins

at which the discriminator is frozen and the feature generator

is allowed to learn from the weights backpropagated from

the previous E-step. Additionally, the M-step minimizes

the feature generator’s error through backpropagation. This

is where the learned features develop to better support

supervised classification. The end of the M-step marks the

start of another EM iteration in which the proposed method

creates a new task and alternates between supervised and

unsupervised learning. The number of iterations can be set or

continue until convergence is reached. The proposed method

monitors the transfer utility, which is group accuracy for

unsupervised tasks and class accuracy for supervised tasks

and tracks their fluctuation task by task and over time, these

accuracies are expected to converge as the iterations progress

(as shown in Figure 5).

IV. EXPERIMENTAL EVALUATIONS

Although CG-CNN was originally designed to work with

image data, it can also be applied to any types of data that

have contextual regularities, such as data collected from sen-

sors in IoT devices. The evaluation of the proposed method

is done using a dataset of vibrotactile signals collected

by authors in [12]. This dataset consists of 12 classes of

textures and comprises 20 seconds of recordings from a 3D

accelerometer sensor attached to a probe rubbing against
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Fig. 3: Proposed method diagram. Feature Generator grad-

ually learns more discriminative features that Discriminator

can adapt to its ever-changing classification problems, pro-

viding feedback to Feature Generator.

Fig. 4: 3-layered CNN architecture used in the experiments.

While the size of the receptive fields of the neurons doubles

from one convolutional area to the next, the number of

feature maps is doubled as well (e.g., for the 3-layer CNN,

25, 50, and 100 neurons were used in the first, second, and

third layers, respectively.

a rotating drum covered with textured materials. Figure 2

displays photographs of segments of the texture materials

utilized in the data collection process. The 3D accelerometer

helps record data in X, Y, and Z channels, which were

resampled at 200 Hz, resulting in a 3-by-4000 dataset.

A. Experimental Setup

We have defined a sampling window that randomly slides

over the first and second 10-seconds of sensor data to create

training and test set signals, respectively.

As for the proposed architecture, which utilizes semi-

supervised learning, its training process involved alternat-

ing between supervised and unsupervised learning in each

iteration of the algorithm, as discussed in section III. For

supervised tasks, the algorithm leverages the first 10 seconds

of the recordings along with the available class labels. For

unsupervised tasks, the algorithm employs the remaining

10 seconds of the recordings and relies on the contextual

guidance principle. With regards to the tactile dataset, the

use of 30 contextual groups was found to be nearly optimal

for training the proposed architecture. Increasing the num-

ber of contextual groups had limited impact on accuracy,

while reducing the number of contextual groups resulted in

decreased transferability of features and decreased accuracy.

As illustrated in Figure 5, the supervised classification ac-

curacy of CG-CNN, an unsupervised network, is lower than

that of BeiimNet, a semi-supervised network. This can be

attributed to the improved performance of semi-supervised

learning through contextually guided training. On the other

hand, the supervised network, which does not incorporate

contextual guidance, exhibits a lower generalization ability

compared to BeiimNet.

V. CONCLUSIONS

Contextually Guided Convolutional Neural Networks

(CG-CNN) use unlabeled examples for contextual guidance

in auxiliary classification tasks. By treating temporally adja-

cent sensor windows as similarly labeled, they form classes

for internal supervision. By generating and solving these

subtasks, CG-CNN learns the inherent structure and patterns

present in the data, resulting in robust and transferrable

representations. In this paper, we extended the application

of CG-CNN to texture classification by incorporating semi-

supervision. We achieved this extension by alternating be-

tween supervised and unsupervised cycles, which encour-

aged CG-CNN to develop increased sensitivity to the labeled

examples during representation learning. Our experiments on

the VibTac-12 texture dataset demonstrated that CG-CNN

features generalize well to new and unseen textures, even

with limited labeled training examples. By harnessing the

wealth of unlabeled contextual data alongside the labeled

examples, CG-CNN generated comprehensive and discrim-

inative representations and performed favorably on VibTac-

12 for texture classification with simple tactile sensors,

such as accelerometers. By combining tactile sensing, self-

supervision, and semi-supervised learning, we obtain robust

and transferrable representations that have the potential to

enhance various applications in robotics, prosthetics, mate-

rial science, and haptic interfaces and to enable improved

perception of textures in real-world scenarios.

ACKNOWLEDGMENT

This work was supported, in part, by the National Science

Foundation under grants No. 2003740 and No. 2302537.

REFERENCES

[1] J. Enguehard, P. O’Halloran, and A. Gholipour, “Semi-supervised
learning with deep embedded clustering for image classification and
segmentation,” IEEE Access, vol. 7, pp. 11 093–11 104, 2019.

[2] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-supervised learn-

ing. MIT press, 2010.

29

Authorized licensed use limited to: North Carolina A T State University. Downloaded on July 08,2024 at 14:46:01 UTC from IEEE Xplore.  Restrictions apply. 



(a) 2-layer network (b) 2-layer network

(c) 3-layer network (d) 3-layer network

Fig. 5: Accuracy of Supervised, Unsupervised, and Semi-Supervised networks on tactile dataset (Z-sensor). ’Class accuracy’

refers to the network’s ability to correctly predict the texture class of an input. ’Group accuracy’ denotes the network’s

success in accurately identifying the contextual classes associated with the input.

[3] O. Kursun, S. Dinc, and O. V. Favorov, “Contextually guided convolu-
tional neural networks for learning most transferable representations,”
in 24th IEEE International Symposium on Multimedia (IEEE-ISM),

Naples, Italy, December 2022.

[4] O. Kursun and O. V. Favorov, “Suitability of features of deep con-
volutional neural networks for modeling somatosensory information
processing.” [Online]. Available: https://doi.org/10.1117/12.2518573.

[5] O. Kursun, S. Dinc, and O. V. Favorov, “Contextually guided
convolutional neural networks for learning most transferable
representations,” arXiv:2103.01566 [Cs], March. [Online]. Available:
http://arxiv.org/abs/2103.01566.

[6] O. V. Favorov and O. Kursun, “Neocortical layer 4 as a pluripotent
function linearizer,” Journal of neurophysiology, vol. 105, no. 3, pp.
1342–1360, 2011.

[7] O. Kursun, E. Alpaydin, and O. V. Favorov, “Canonical
correlation analysis using within-class coupling,” Pattern Recogn.

Lett, vol. 32, no. 2, p. 134–44, 2011. [Online]. Available:
https://doi.org/10.1016/j.patrec.2010.09.025.

[8] J. Hawkins, S. Ahmad, and Y. Cui, “A theory of how columns in
the neocortex enable learning the structure of the world,” Frontiers in

neural circuits, p. 81, 2017.

[9] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, A. M. Umar,
O. U. Linus, H. Arshad, A. A. Kazaure, U. Gana, and M. U. Kiru,
“Comprehensive review of artificial neural network applications to
pattern recognition,” IEEE Access, vol. 7, pp. 158 820–158 846, 2019.

[10] B. Sarsekeyev, “Beiimnet: Semi-supervised contextually guided con-
volutional neural networks,” Master’s thesis, University of Central
Arkansas, Dept. of Computer Science, 4 2021, advisor: Your Name.

[11] J. Zhou, L. Zheng, Y. Wang, and C. Gogu, “A
multistage deep transfer learning method for machinery fault
diagnostics across diverse working,” Conditions and Devices.”IEEE

Access, vol. 8, p. 80879–98, 2020. [Online]. Available:
https://doi.org/10.1109/ACCESS.2020.2990739.

[12] O. Kursun and A. Patooghy, “An embedded system for
collection and real-time classification of a tactile dataset,”

IEEE Access, vol. 8, p. 97462–73, 2020. [Online]. Available:
https://doi.org/10.1109/ACCESS.2020.2996576.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

[14] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox,
“Discriminative unsupervised feature learning with convolutional neu-
ral networks,” Advances in neural information processing systems,
vol. 27, 2014.

[15] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal,
P. Bachman, A. Trischler, and Y. Bengio, “Learning deep
representations by mutual information estimation and maximization,”
2018. [Online]. Available: https://arxiv.org/abs/1808.06670

[16] O. Kursun and A. Patooghy, “Vibtac-12: Texture dataset
collected by tactile sensors,” 2020. [Online]. Available:
https://dx.doi.org/10.21227/kwsy-x398

[17] M. Aminolroaya and S. Nahavandi, “Cg-cnn: a convolutional neural
network with compact feature representation,” Neural Computing and

Applications, vol. 33, no. 16, pp. 9551–9567, 2021.
[18] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable

are features in deep neural networks?” arXiv:1411.1792 [Cs],
November. [Online]. Available: http://arxiv.org/abs/1411.1792.

[19] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on

machine learning. PMLR, 2017, pp. 1126–1135.
[20] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter,

“Continual lifelong learning with neural networks: A review,” Neural

Networks, vol. 113, no. May, p. 54–71, 2019. [Online]. Available:
https://doi.org/10.1016/j.neunet.2019.01.012.

[21] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with
deep learning: A review,” arXiv:1807.05511 [Cs], April. [Online].
Available: http://arxiv.org/abs/1807.05511.

[22] C. Shorten and T. M. Khoshgoftaar, “A survey on image data
augmentation for deep learning,” Journal of Big Data, vol. 6, no. 1,
p. 60, 2019. [Online]. Available: https://doi.org/10.1186/s40537-019-
0197-0.

30

Authorized licensed use limited to: North Carolina A T State University. Downloaded on July 08,2024 at 14:46:01 UTC from IEEE Xplore.  Restrictions apply. 


