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Abstract—Texture classification plays a crucial role in ap-
plications ranging from object recognition and product design
to surface exploration. Utilizing deep learning methods with
sensors, such as accelerometers, offers a way to identify key
surface features without the need to precisely replicate human
touch. A Contextually Guided Convolutional Neural Network
(CG-CNN) employs contextual guidance by developing auxil-
iary tasks during its training. These tasks offer implicit, yet
rigorous, internal supervision signals. When trained with these
subtasks, CG-CNN learns to represent the innate structure and
patterns within the data, resulting in robust, transferrable,
and local/contextual-neighborhood-preserving domain repre-
sentations. This paper extends the CG-CNN framework for
texture classification by integrating semisupervised learning.
Empirical evaluations on the VibTac-12 texture dataset reveal
that CG-CNN effectively generalizes to novel and unfamiliar
textures, even when trained with scarce labeled examples. By
harnessing vast amounts of unlabeled, contextually relevant
data alongside the labeled samples, CG-CNN ensures robust
and precise texture classification. Such advancements hold
promise for applications in robotics, prosthetics, and haptic
interfaces.

Index Terms—Deep Learning for Texture Classification,
Contextual Guidance, Semisupervised Auxiliary Tasks.

I. INTRODUCTION

Semi-supervised learning bridges the gap between super-
vised and unsupervised methods, harnessing both labeled
and unlabeled data during training [1], [2]. This approach
becomes essential in areas like texture classification and
tactile perception. Capturing the essence of a touch de-
mands controlled environments to obtain clear labels. In
our daily interactions, while humans touch myriad surfaces,
rarely do we consciously recognize or categorize them in
terms of supervised labels. This makes gathering accurate
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labeled tactile data challenging, often facing issues of noise,
time constraints, or simple feasibility. Leveraging semi-
supervised methodologies, we can better harness available
data and also offer a more resource-efficient approach to
learning.

While traditional deep Convolutional Neural Networks
(CNNs) learn features through error backpropagation, which
involves passing the error (e.g., classification or reconstruc-
tion) from the higher layers down to lower layers, the
emergence of features in the visual cortex is local and self-
organized. This emergence can be attributed to their local
high transfer utility [3]. The Contextually Guided Convo-
Iutional Neural Network (CG-CNN) introduced by [3]-[5]
offers a bottom-up approach distinct from the traditional top-
down deep CNNs. While both employ error backpropaga-
tion, CG-CNN prioritizes preserving important data, ensur-
ing the retention of neighborhood or contextual information
throughout the learning process. CG-CNNs use local con-
textual information instead of solely relying on supervised
backpropagation, offering an autoencoder-like approach to
learning descriptive (pluripotent) features. This approach,
which we derived from our computational neuroscientific
studies of cerebral cortical networks [4]—[6], attributes an
objective function to maximize for each convolutional area
and, thus, eliminates the need for backpropagating the error
from the top layers [4], [7], [8]. CG-CNN approach reduces
the risk of mode collapse and vanishing gradients [9]. For
each convolutional area, it uses a self-supervised shallow
CNN, and thus, the first area learns its features from small,
unlabeled datasets, instead of relying on large, manually
labeled datasets. Higher areas can be built using the outputs
of the previous CG-CNN areas. CG-CNN offers a natural
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extension for semisupervised learning, which involves using
both labeled and unlabeled data [1], [10]. In a semisu-
pervised setting CG-CNN self-supervises when provided
with unlabelled examples, and applies backpropagation to
take advantage of supervised training when provided with
labelled training examples.

In this study, we conducted a comparative analysis of
CG-CNN alongside other AI/ML methods, such as CNN
and Autoencoders, to demonstrate its efficacy in texture
classification using vibrotactile signals. The application of
Al in tactile and vibration sensing systems holds great
promise across diverse fields [11], [12]. Our study presents a
novel approach by utilizing CNNs and Contextually Guided
CNN (CG-CNN) for texture classification on the VibTac-12
dataset. This research is the first of its kind and demonstrates
the feasibility of extending the CG-CNN algorithm through
a semisupervised framework.

This paper is structured as follows: Section II provides
a review of relevant literature, with a focus on CG-CNN.
Section III introduces the proposed semisupervised extension
of CG-CNN, called BeiimNet. In Section IV, we present the
experimental results conducted on the VibTac-12 dataset for
texture classification using vibrotactile signals. The experi-
ments focus on evaluating the transferability of the extracted
features to new texture classification tasks and assessing their
effectiveness in accurately classifying previously unseen
textures. Finally, Section V concludes the paper.

II. BACKGROUND

Local invariance, the ability of CNNs to recognize objects
regardless of their position within an image, and com-
positionality, their capability to assemble more complex
features from simpler ones, are two significant advantages of
Convolutional Neural Networks (CNNs) [13]. According to
[13], in the initial layers, CNNs identify basic elements like
edges by applying specialized filters, laying the groundwork
for detecting more complex shapes in the subsequent layers.
With every successive convolutional layer, CNNs learn to
distinguish more specific features, which are then used
to make predictions. CNNs use pooling layers to achieve
representation of the image patches, enabling classification
of objects in the image without considering their exact
location. [14] presents a method for discriminative unsu-
pervised feature learning using exemplar CNNs that only
uses unlabelled data. The network discriminates between
surrogate classes, which are generated from randomly gener-
ated image patches, called seeds, that are transformed using
a family of transformations. The features generated from
this method exhibit robustness to transformations that is
not present in classic supervised approaches. The study is
based on unsupervised learning of invariant features, and
several instances of invariant feature generation/utilization
are present in both unsupervised and supervised learning.
However, while this method outperforms traditional unsuper-
vised feature generation methods, it cannot achieve the same

performance as classic supervised learning methods. The
method starts by selecting a random sample of image patches
from unlabelled images and applying various transforma-
tions to create surrogate training data. The CNN network is
then trained to discriminate between these surrogate classes.

In [15], the focus is on unsupervised learning and maxi-
mizing the mutual information between the input and output
of deep encoders. However, computing mutual information is
a complex and challenging task, and therefore, the proposed
Deep Infomax method incorporates the input’s locality into
the objective to highlight the significance of the structure.
The primary concept is to increase the mutual information
between input and output, which is achieved by using an
adversarial learning model consisting of an encoder and a
decoder. While the Deep Infomax method outperforms many
unsupervised learning tasks, it falls short of the performance
levels expected from supervised learning.

Contextually-Guided CNN (CG-CNN) is an unsupervised
approach that enables the extraction of highly discriminative
and transferable features [3], [4]. In its application to natural
images, the features developed in its first layer (the first
convolutional area) resembled those of other state-of-the-
art deep learning architectures [17], [18]. In its simplest
form, the complete system consists of a single convolutional
layer known as the Feature Generator connected to a linear
classifier. Once a convolutional area is developed, then it
can be used as input to other CG-CNN layers to form
deep networks in a bottom-up manner. CG-CNN training
utilizes transfer learning by creating different classification
problems for self-supervision, allowing it to learn what to
transfer. In other words, the Feature Generator gradually
learns more discriminative features that the discriminator can
adapt to its ever-changing classification problems, providing
feedback to the Feature Generator (see Algorithm 1). While
the modular nature of CG-CNN shares a resemblance with
deep autoencoders, where networks can be stacked to form
multiple convolutional areas, the current exploration of CG-
CNN is purposefully confined to a single convolutional
area (consisting of one convolutional layer followed by a
ReLU activation). Although this initial setup with single-area
has its limitations in capturing complex representations, it
offers essential foundational insights, particularly in its self-
supervised operation. CG-CNN self-supervision operates by
presenting a selected input pattern — typically a small
image window extracted from one of the internally generated
contextual groups — to the network. This process allows the
computation of feature values based on the current model
architecture, subsequently feeding these extracted features
into the classifier. The classifier is trained to differentiate
all contextual groups of the current task from one another.
The prediction error of the contextual group’s input patterns
is backpropagated to the classifier and the convolutional
layer. The backpropagation algorithm alternately adjusts
the connection weights of the softmax-classifier and the
convolutional-layer. By minimizing the prediction error of
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Fig. 1: In its application to natural images, CG-CNN used small, e.g., 19x19, image patches for training. Each task contains
one image only, and within that image, there are four contextual groups created (each group is shown with a different
color and with three snipped image patches). In its application to tactile signals, these patches are snipped from sensor
recordings that describe small regions of textures shown in Figure 2.
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Fig. 2: Images of the 12 texture classes recorded in the
VibTac-12 dataset [16].

these internally generated and ever-changing classification
tasks, the features of CG-CNN gradually become more
inferential than its inputs [4], [19]. The classes (contextual
groups) of the tasks are internally generated (i.e., self-
supervised and not related to any external supervision/class-
labels) [14] (Figure 1). The training of the system involves
multiple iterations, with each iteration using a unique set of
contextual groups as training classes [19]. In each iteration,
a small unsupervised set of training examples is drawn from
the database, which includes many nearby image windows
organized into (e.g., 50) contextual groups, and the system is
trained to discriminate against them. After the completion of
training, another small set of classes is selected, and training
continues on this new set without resetting the already devel-
oped CNN connection weights. By the contextual guidance

[4] principle, all the transformations of a given seed image
patch are contextually related and are considered examples
of a single class.

III. THE PROPOSED SEMI-SUPERVISED CG-CNN

The original CG-CNN method [3], [4] trains a convo-
lutional layer so that the feature set gradually becomes
more pluripotent for discriminating any set of contextually
related input patterns. In the initial CG-CNN model, only
unlabeled examples were used. This is particularly relevant
at the first layer, where neurons’ small receptive fields render
supervised class labels less effective. The network snipped
the image patches from the large unlabelled images, and
all examples within close proximity in that image (i.e.,
contextually-related image patches) were given a unique
group label that was to be discriminated maximally from
other such groups (hence the name “pluripotent”). However,
we believe that in a stack of CG-CNN layers, higher-
order features should utilize more global (more expansive)
receptive fields at the higher CG-layers. As these features
get more sophisticated, the feature tuning in higher con-
volutional layers should gradually benefit from supervised
examples to exhibit more utility for supervised classification
tasks. This step will help develop better features instead of
preserving/transforming the data while maintaining all the
contextual regularities.

Our method, selects a new small task (supervised or unsu-
pervised) from a large pool of data containing both labeled
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ALGORITHM 1
CG-CNN for semi-supervised texture feature extraction

CG-CNN=[

// First , the Input layer with 2 sec window (400 samples) and 3 sensors
Layer—1: InputLayer(input_size = (400 \times 3)

// Then, the CNN layers of Feature Generator with 3 areas
Layer—2: ConvLayer (kernel_size = (10 \times 3),
Layer -3: ReLULayer
Layer —4: MaxPool(kernel_size = 3 X 3)
Layer—5: ConvLayer (kernel_size = (5 \times 1),
Layer —6: ReLULayer
Layer —7: MaxPool(kernel_size = 3 x 3)
Layer —8: ConvLayer (kernel_size = (3 \times 1),
Layer -9: ReLULayer

Layer —10: MaxPool(kernel_size = 3 x 3)
Layer—11: Features = GlobalAveragePooling ()
//Last, the Classifier layer (Discriminator):
if supervised: //Use D =12 texture classes
Layer—12: Posterior =
elseif unsupervised: //Use C auxilary classes
Layer —12: Posterior =
Randomly initialize weights W of Layers 2, 5,
Repeat E-M iterations
//New task:
Create a new task (data

and 8

SoftmaxClassificationLayer (output_size =

subset) while alternating between
the E-dataset and M-dataset

X, Y, 2)

(Conv+ReLU+MaxPool ):

out_channels = 25)

out_channels = 50)

out_channels = 100)
12)

Softmax (output_size = C) ]

supervised&unsupervised

Split the task dataset into

//E-step:
Set learning rate to O for the convolutional weights W
Randomly initialize the new Classifier

Train V on the E-dataset

// Compute the class&group accuracy (Figure 5) on the
the existing W on the M-dataset

Use the new V and
//M=step :

Set learning rate

weights V of Layer—12

test (M-dataset)
to check convergence

to 0 for the weights V of Layer-12

Restore learning rate for W of Layers-2, 5, and 8.
Continue updating (retrain) the existing weights W by using the M-dataset

End E-M

and unlabeled examples, as shown in Figures 1 and 2. The
training task (dataset) for each Expectation-Maximization
(EM) iteration is either supervised or unsupervised (see
Algorithm 1 and Figures 3 and 4). In the unsupervised
case, ' classes are used and a seed image patch is chosen
for each class, generating input patches with additional
data augmentations. In the supervised case, D classes are
used. Like the original CG-CNN, the classifier layer in the
contextually guided network is trained to differentiate the C'
contextual groups using existing features, referred to as the
E-step of the EM algorithm. Conversely, for a supervised
task, the method selects labeled training examples from D
classes. Typically, we can use all classes, say D = 12 for
the VibTac-12 dataset, but D can be a subset of classes as
well. This way, new classes can be continuously added for
continuous/online learning [20]. Data augmentation methods
can be utilized to enhance convergence in both unsupervised
and supervised cases [21], [22]. Next, the task resets the
discriminator (now with D output units for the D classes)
and initiates the E-step of the EM optimization. In the E-
step, the method trains the discriminator (SoftMax) using the
class-labeled examples in the task, while keeping the feature
generator/convolutional layers fixed. The M-step then begins
at which the discriminator is frozen and the feature generator

is allowed to learn from the weights backpropagated from
the previous E-step. Additionally, the M-step minimizes
the feature generator’s error through backpropagation. This
is where the learned features develop to better support
supervised classification. The end of the M-step marks the
start of another EM iteration in which the proposed method
creates a new task and alternates between supervised and
unsupervised learning. The number of iterations can be set or
continue until convergence is reached. The proposed method
monitors the transfer utility, which is group accuracy for
unsupervised tasks and class accuracy for supervised tasks
and tracks their fluctuation task by task and over time, these
accuracies are expected to converge as the iterations progress
(as shown in Figure 5).

IV. EXPERIMENTAL EVALUATIONS

Although CG-CNN was originally designed to work with
image data, it can also be applied to any types of data that
have contextual regularities, such as data collected from sen-
sors in IoT devices. The evaluation of the proposed method
is done using a dataset of vibrotactile signals collected
by authors in [12]. This dataset consists of 12 classes of
textures and comprises 20 seconds of recordings from a 3D
accelerometer sensor attached to a probe rubbing against
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Fig. 4: 3-layered CNN architecture used in the experiments.
While the size of the receptive fields of the neurons doubles
from one convolutional area to the next, the number of
feature maps is doubled as well (e.g., for the 3-layer CNN,
25, 50, and 100 neurons were used in the first, second, and
third layers, respectively.

a rotating drum covered with textured materials. Figure 2
displays photographs of segments of the texture materials
utilized in the data collection process. The 3D accelerometer
helps record data in X, Y, and Z channels, which were
resampled at 200 Hz, resulting in a 3-by-4000 dataset.

A. Experimental Setup

We have defined a sampling window that randomly slides
over the first and second 10-seconds of sensor data to create
training and test set signals, respectively.

As for the proposed architecture, which utilizes semi-
supervised learning, its training process involved alternat-
ing between supervised and unsupervised learning in each
iteration of the algorithm, as discussed in section III. For
supervised tasks, the algorithm leverages the first 10 seconds

of the recordings along with the available class labels. For
unsupervised tasks, the algorithm employs the remaining
10 seconds of the recordings and relies on the contextual
guidance principle. With regards to the tactile dataset, the
use of 30 contextual groups was found to be nearly optimal
for training the proposed architecture. Increasing the num-
ber of contextual groups had limited impact on accuracy,
while reducing the number of contextual groups resulted in
decreased transferability of features and decreased accuracy.

As illustrated in Figure 5, the supervised classification ac-
curacy of CG-CNN, an unsupervised network, is lower than
that of BeiimNet, a semi-supervised network. This can be
attributed to the improved performance of semi-supervised
learning through contextually guided training. On the other
hand, the supervised network, which does not incorporate
contextual guidance, exhibits a lower generalization ability
compared to BeiimNet.

V. CONCLUSIONS

Contextually Guided Convolutional Neural Networks
(CG-CNN) use unlabeled examples for contextual guidance
in auxiliary classification tasks. By treating temporally adja-
cent sensor windows as similarly labeled, they form classes
for internal supervision. By generating and solving these
subtasks, CG-CNN learns the inherent structure and patterns
present in the data, resulting in robust and transferrable
representations. In this paper, we extended the application
of CG-CNN to texture classification by incorporating semi-
supervision. We achieved this extension by alternating be-
tween supervised and unsupervised cycles, which encour-
aged CG-CNN to develop increased sensitivity to the labeled
examples during representation learning. Our experiments on
the VibTac-12 texture dataset demonstrated that CG-CNN
features generalize well to new and unseen textures, even
with limited labeled training examples. By harnessing the
wealth of unlabeled contextual data alongside the labeled
examples, CG-CNN generated comprehensive and discrim-
inative representations and performed favorably on VibTac-
12 for texture classification with simple tactile sensors,
such as accelerometers. By combining tactile sensing, self-
supervision, and semi-supervised learning, we obtain robust
and transferrable representations that have the potential to
enhance various applications in robotics, prosthetics, mate-
rial science, and haptic interfaces and to enable improved
perception of textures in real-world scenarios.
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