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Abstract— Network control theory (NCT) offers a robust an-
alytical framework for understanding the influence of network
topology on dynamic behaviors, enabling researchers to deci-
pher how certain patterns of external control measures can steer
system dynamics towards desired states. Distinguished from
other structure-function methodologies, NCT’s predictive capa-
bilities can be coupled with deploying Graph Neural Networks
(GNNs), which have demonstrated exceptional utility in various
network-based learning tasks. However, the performance of
GNNs heavily relies on the expressiveness of node features, and
the lack of node features can greatly degrade their performance.
Furthermore, many real-world systems may lack node-level
information, posing a challenge for GNNs. To tackle this
challenge, we introduce a novel approach, NCT-based Enhanced
Feature Augmentation (NCT-EFA), that assimilates average
controllability, along with other centrality indices, into the
feature augmentation pipeline to enhance GNNs performance.
Our evaluation of NCT-EFA, on six benchmark GNN models
across two experimental setting—solely employing average
controllability and in combination with additional centrality
metrics—showcases an improved performance reaching as high
as 11%. Our results demonstrate that incorporating NCT into
feature enrichment can substantively extend the applicability
and heighten the performance of GNNs in scenarios where
node-level information is unavailable.

I. INTRODUCTION

Network Control theory (NCT), with its rigorous math-
ematical foundation and practical applicability, has been
instrumental in crafting systems that respond predictably
to inputs, ensuring stability, efficiency, and desired per-
formance [1]. Its principles permeate modern engineering,
deftly guiding everything from simple home appliances to
sophisticated aerospace vehicles [2]. Enter graph machine
learning, an emerging field that thrives on the abstraction and
analysis of relational data, inherently capturing the intricacies
of complex systems as networks [3]. By intertwining the
predictive prowess of graph-based models with the robust
framework of control theory, there lies a profound opportu-
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nity to revolutionize how we understand, design, and manage
dynamic systems [4].

Average controllability is a critical metric in systems
theory that quantifies the ability of a node within a network
to influence the system’s overall behavior through the in-
troduction of external inputs [5]. It captures the essence of
a node’s role in controlling the dynamical landscape of a
network by measuring the system’s response to impulses,
effectively gauging a node’s intrinsic capability to steer the
system’s states.

As such, this metric is invaluable for discerning the un-
derlying structural properties that dictate how control energy
proliferates through the network, offering a window into the
architecture’s innate information flow.

Building on the insights provided by average controlla-
bility within the purview of NCT, network science on the
other hand offers an expansive framework to further dissect
and enhance our understanding of systemic influence and
regulation [6]. Centrality measures within network science
have emerged as pivotal tools in this venture, quantifying the
roles and significance of individual nodes amid the complex
web of interactions that typify controlled systems. Closeness
centrality reveals those nodes that efficiently affect the entire
network, due to their minimized path lengths to all other
nodes, underpinning their strategic value for swift and com-
prehensive system-wide influence [7]. Eigenvector centrality
takes into account the notion that connections to highly
influential nodes contribute more significantly to a node’s
importance, emphasizing the network’s inherent hierarchy
and influence distribution. Meanwhile, betweenness central-
ity captures the nodes that frequently serve as bridges in
the shortest paths between others, highlighting their critical
role in facilitating or bottling the flow of control through the
network [8]. These centrality metrics, thus, encapsulate vital
information about the network structure, and play vital role
in many modeling tasks [9].

Graph Neural Networks (GNNs) have emerged as a so-
phisticated approach for performing machine learning on
graph-structured data, harnessing the framework of message
passing to learn refined node representations that are critical
for a variety of downstream machine learning tasks [10]. The
message passing mechanism - central to the functionality of
GNNs - iteratively updates node representations by aggre-
gating features from their respective neighborhoods, thereby
encapsulating both local and global structural information
within the graph [11]. Nevertheless, the performance of
GNNss is intrinsically linked to the initial availability and
quality of the node features; deficient feature sets can sig-



nificantly curtail the representational capacity of the learned
embeddings [12]. A prevalent challenge arises in circum-
stances where node features are sparse or entirely missing.
Under such constraints, the customary practice involves the
utilization of one-hot encoding of node degrees as surrogate
features, injecting a rudimentary form of structural informa-
tion into the model [13]. Despite this adaptation, the absence
of rich, discriminative features often results in GNNs that
struggle to achieve the depth of understanding necessary
for complex inference tasks, thereby revealing a limitation
in their ability to thoroughly exploit the intricate relational
patterns present within graph data [14].

To address the challenge of feature impoverishment in
GNN:gs, our study proposes leveraging network controllability
and centrality measures to enrich node feature sets, poten-
tially improving GNN performance. Our main contributions
are as follows:

o Feature augmentation: We propose integrating met-
rics like average controllability, betweenness centrality,
closeness centrality, and eigenvector centrality as node
features within the GNN framework.

Unique representation of average controllability: We
use a new node representation method to encode average
controllability as a node feature. Through an ablation
study, we demonstrate the effectiveness of the proposed
scheme in enhancing classification performance.
Evaluation and comparison: In social network clas-
sification domain, where node features are missing,
we evaluate several GNN models using our proposed
approach. We compare these models with baseline tech-
niques such as one-hot-degree encoding. Our results
demonstrate the superior performance of our proposed
method.

By incorporating these additional metrics and exploring
novel representations, our study aims to enhance the capabil-
ities of GNNs and address the challenge of missing feature
in network analysis tasks.

II. RELATED WORK

The field of integrating NCT with graph machine learning
is still in its early stages, with few studies exploring this
intersection. To the best of our knowledge, only one study
has been proposed that uses NCT metrics to derive graph
representations for downstream graph classification tasks [4].
However, no existing study has integrated NCT with GNNs
to advance the field. In the following, we briefly present
[4] and provide references for further reading to interested
readers. Due to space limitations, we keep the related work
section concise.

The authors in [4] introduce an intriguing approach to
integrate NCT with graph machine learning. The core idea
of the paper involves using various controllability metrics
to derive expressive graph representations. Specifically, this
study explores the controllability gramian as a source of
controllability information. It considers metrics such as trace,
rank, and the first and last three eigenvalues of the controlla-
bility gramian as potential features for graph representations.
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Moreover, it uses different numbers of leaders and repeats
the process to derive an expressive set of features for the
final graph representation. This study serves as a catalyst for
further research to explore the potential of integrating NCT
with GNNs, opening new avenues for advancing the field of
graph machine learning.

In the realm of graph machine learning, the field is
characterized by a rapid pace of research, primarily focusing
on two main approaches: graph embedding methods and
GNNs. Graph embedding methods employ various graph-
theoretic and statistical techniques to derive representations
of graphs, which are then utilized independently to train ma-
chine learning models such as support vector machines and
random forests [15], [16]. A few notable and recent graph
embedding methods include [17], [18], [19]. On the other
hand, GNNs are deep learning-based approaches that are
trained in an end-to-end fashion. They utilize techniques such
as message passing, spectral methods, and recurrent neural
networks to learn representations at the node and graph
levels. GNNs offer an advantage over embedding methods
by effectively leveraging both the graph’s topology and its
node and edge features [20], [13]. For further exploration of
these concepts, interested readers are encouraged to refer to
(31, [10], [21], [22].

III. METHODOLOGY

NCT is a powerful paradigm originally rooted in the
domain of systems and control engineering, which has found
its footing in the study of social networks by offering
a sophisticated mathematical framework for understanding
how influence and information propagate through complex
relational systems. When applied to social networks, NCT
can provide a nuanced perspective on the capacity of indi-
vidual nodes, or users within the network, to affect overall
network behavior, based on the topology and dynamics of
social interactions [23].

A. Network Controllability Metrics

By identifying key control nodes within a social net-
work—akin to the influential nodes in a social net-
work—NCT enables us to tailor node representations such
that they encapsulate not only the structural attributes of
these entities but also their potential to exert control over the
network state. This could include their capability to dissem-
inate information effectively or to reconfigure connections
for desired social outcomes strategically. Employing NCT
to parameterize and analyze control nodes allows for the
enhancement of node features, which can, in turn, improve
the performance of models on downstream tasks such as
social influence prediction, node classification, and graph
classification, among others.

The structural composition of NCT encapsulates a network
defined by the adjacency matrix A € RV*N of N = |V|
nodes and a control set B € RV *™_ Within this framework,
it posits that the temporal evolution of the state of any given
node, denoted x;(t), is governed by a composite function.
This function represents the cumulative influence of all



preceding nodes, expressed as x;(¢), in conjunction with any
external inputs, u(t), each modulated by appropriate weights
within the network’s topology. When the progression of node
states is conceptualized through the lens of rates of change,
such that the activity from preceding nodes influences the on-
going rate of state alteration in subsequent nodes, the model
adopts the construct of a differential equation presented as
follows:

d
—x(t) = Az + Bu(t) (1)

dt
where x(t) = [z1(t),22(t),...,2,(t)]" is the vector
of node states, A is the adjacency matrix, and w(t) =
[y (t), uz(t), ..., un(t)]T is the vector of control signals.

BN*™ quantifies the effects of inputs on each node. In our
experiments, the control set matrix BY*" is defined as the
identity matrix, representing a uniform full control set.

The controllability Gramian is a powerful mathematical
concept that plays a crucial role in understanding the control
behavior of a network [24], [25]. By utilizing the control-
lability Gramian, we can measure the ease with which we
can transition from one state to another in terms of the
necessary control energy. In the context of the system defined
in Equation 1, the infinite horizon controllability Gramian
can be formally expressed as follows:

W:/ e AT(=B)(=B)Te 4 Tdr € RN/Ns - (2)
0

When the system is stable, implying that all eigenvalues of
—A possess negative real parts, YV converges asymptotically
and can be determined through the Lyapunov equation.

(AW +W(-A)T +(-B)(-B)T =0, (3

The formulation presented in Equation 1 provides us
with a framework to derive various NCT metrics from the
observed system—among these, a key parameter of interest is
average controllability, which is the focal point of the current
study.

Average Controllability: Average controllability quan-
tifies the extent to which the state vector, x(¢), can be
modulated in response to input stimuli administered to an
individual node within the network [9]. A node that exhibits
a higher degree of average controllability possesses an en-
hanced capacity to utilize the underlying graph structure to
disseminate an impetus across the entire network. Average
controllability is defined as the trace of the controllability
Gramian, expressed as:

Co =tr(W)

Next, we detail GNNs, that will be used as a learning
architecture for social network classification task.
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B. Graph Neural Networks

GNNs represent an innovative class of neural networks
specifically designed to operate on graph-structured data [3].
GNNs are particularly adept at learning from graph-based
data due to their ability to capture the inherent relationships
and interdependencies between nodes through a process of
iterative information aggregation [10]. Unlike traditional neu-
ral networks that assume independent and identical distribu-
tion of data, GNNs embrace the irregularities and topological
characteristics of graphs, enabling them to learn and make
predictions on data that exhibits rich relational context. This
capability makes GNNs the preferred choice for a multitude
of applications ranging from social network analysis, brain
networks, and recommendation systems to traffic network
flow optimization, where relational patterns are of paramount
importance [26], [3].

Building upon the foundation of GNNs, Message Passing
Neural Networks (MPNNs) extend this concept with a spe-
cific focus on node features and their interactions. MPNNs
operate on the principle that each node’s feature representa-
tion is updated by recursively aggregating features from its
neighbors, thereby encapsulating both local structures and
global context within the graph. This process is formalized
by the message passing equation:

h{Y) = UPDATE ({", AGGREGATE (h{!) : u € N'(v)))

Here, th‘H) represents the updated feature vector of node
v at iteration (¢ + 1); UPDATE and AGGREGATE are func-
tions that define the updating and aggregation mechanisms,
respectively; hgt) is the feature vector of a neighboring
node w; and N (v) denotes the set of neighbors of node v.
The power of MPNNSs lies in the expressiveness of learned
node representations, which can significantly enhance model
performance on downstream tasks. Consequently, integrating
better features through improved UPDATE and AGGRE-
GATE functions can result in more expressive GNN models,
capable of capturing complex patterns and ultimately leading
to more accurate predictions.

C. Constructing Node Features

In many real-world networks, the absence of node features
is commonplace, attributable to a variety of factors including
privacy constraints, data collection errors, proprietary infor-
mation protection, and instances where features may be un-
observed or inherently non-existent. In situations where node
attributes are lacking, strategies like one-hot-degree encoding
or the employment of randomly assigned features are often
utilized to facilitate the training of MPNNs. However, the
performance of these models can be compromised due to the
paucity of informative features, a limitation corroborated by
numerous preceding studies [12]. To mitigate this challenge
and endow graphs devoid of node features with enriched
representations, we advocate for the integration of NCT
which has been described in section III-A. In the following
section, we detail the rest of the network science measures
that we use for enriching the node features.
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Closeness Centrality: Closeness centrality is a measure
used in network analysis to identify the relative importance
of a node within a graph, based on its proximity to all other
nodes. It is calculated as the reciprocal of the sum of the
shortest path distances from a given node to all other nodes in
the network. Nodes with higher closeness centrality are seen
as having better potential to quickly interact with all others
due to their central positioning in the graph’s structure.

Betweenness Centrality: Betweenness centrality quanti-
fies the significance of a node within a network by measuring
the extent to which the node acts as a bridge along the
shortest paths between other nodes. It is computed as the
fraction of all-pairs shortest paths that pass through a given
node, indicating its role as an intermediary in facilitating
communication or connectivity within the network. Nodes
with high betweenness centrality are often crucial for the
flow of information, resources, or influence across the net-
work, as they can control and influence the interactions
between different parts of the graph.

Eigenvector Centrality: This is a measure of influence
within a network that assigns relative scores to all nodes
based on the principle that connections to high-scoring nodes
contribute more to the score of a node than equal connections
to low-scoring nodes. This centrality considers not only the
number of connections or edges a node has but also the
quality of those connections in terms of the centrality of
its neighbors. It is calculated by finding the eigenvector
corresponding to the largest eigenvalue of the network’s
adjacency matrix, with the components of this principal
eigenvector giving the centrality scores of the nodes.

Building upon the four central measures—we compute
these metrics for each individual node within the network
and collate them into a feature vector representative of
the node’s structural characteristics. This vector of network
attributes effectively captures the node’s connectivity profile,
potential for information dissemination, and overall influence
within the network structure. To aid in understanding and
visualizing this methodology, an illustrative representation
of how these features are computed and assembled for every
node has been shown in Figure 1.

Ranks one-hot encoding: In various systems, there’s
often a need to introduce external inputs or amplify the
influence of key users to alter the system’s behavior. One
example could be considering the influential users in a social
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network. In such cases, traditional network science measures
that focus solely on graph topology may not suffice. Instead,
we may rely on average controllability as a node feature.
However, using a single real number as a feature may not
be optimal for the model’s performance. To address this,
we propose encoding average controllability in the following
manner.

Given the average controllability vector for the entire
graph, computed as described in [23] where each value corre-
sponds to a node in the graph, we create a histogram H with
k bins to represent the distribution. Each bin corresponds to
a range of average controllability values, and the height of
each bin represents the frequency of nodes with average con-
trollability values falling within that range. This histogram
provides a summary of the controllability distribution across
nodes in the graph, highlighting the prevalence of certain
controllability levels. To create a feature vector for a node
v using H, we one-hot encode the feature vector based on
the index (i) where the average controllability of node v
falls. Formally, the one-hot encoding for the feature vector
hY can be expressed as:

() = {

The final component of our framework is dedicated to
learning over the attributed graph. Within this context, we
may employ any message passing-based GNN variant and
adhere to conventional training protocols to fine-tune the
model. In training our model for the graph classification
task, we employ a binary cross-entropy loss to optimize the
learning process. After training, the model is then applied
to the binary classification task, using its learned features to
distinguish between two separate classes.

1 if Co(v) € H(2)
0 otherwise

IV. NUMERICAL EVALUATION

In this section, we evaluate the efficacy of our proposed
methodology under two distinct experimental settings. Ini-
tially, we undertake a comparative analysis between the
comprehensive feature set—encompassing average controlla-
bility, closeness centrality, betweenness centrality, and eigen-
vector centrality—and the baseline one-hot-degree encoding
method. This comparison aims to establish the superiority of
our enriched feature set in capturing the intricate topological
nuances of the graph data. Subsequently, we show the



TABLE I
DATASET STATS

Dataset Graphs Nodes Density Diameter Classes Task
P Min | Max Min Max Min | Max
Reddit Threads 203,088 11 97 0.021 | 0.382 2 27 2 Graph Classification
GitHub Stargazers 12,725 10 957 0.003 | 0.561 2 18 2 Graph Classification
TABLE I

COMPARISON OF ROC AUC SCORES OF THE PROPOSED METHOD AGAINST ONE-HOT-DEGREE ENCODING (DEG)

k-GNN SAGE

Datasets

GCN

UniMP ResGatedGCN GAT

deg NCT-EFA deg NCT-EFA deg

NCT-EFA

deg NCT-EFA deg NCT-EFA deg NCT-EFA

Reddit Threads 83.72 84.06 83.64 83.90 82.83

83.79 83.83 83.96 84.01 84.12 83.88 83.86

GitHub Stargazers 71.21 79.03 66.27 75.82 68.34

74.51 68.39 77.48 74.97 79.37 64.21 75.90

effectiveness of employing one-hot-encoded ranks derived
from average controllability measures. This second setting
allows us to assess the impact of prioritizing nodes based
on their average controllability and to ascertain the resultant
performance gains in our graph neural network model.

A. Datasets

We consider the following two social network datasets in
our experimental setup.

Reddit Threads: This dataset comprises an assortment of
threads extracted from the Reddit platform, all of which were
gathered during the month of May 2018. It encompasses
both discussion and non-discussion based threads, presenting
a diverse range of community interactions. The task is to
distinguish between threads that facilitate discussion and
those that do not, thereby classifying the content based on
its conversational nature and potential for user engagement
[27].

GitHub Stargazers: This is a social network dataset of
developers who have starred notable machine learning and
web development repositories on GitHub. The task involves
classifying these networks to ascertain if they correspond to
web development or machine learning repositories based on
their stargazing activities [27].

Both of these datasets correspond to a graph classification
task. We present the statistics of these datasets in Table I.

B. Experimental Setup and Results

We consider six well-known baselines graph convolu-
tion methods that include k—GNN [28], GraphSAGE [11],
GCN [10], Transformer Convolution (UniMP) [29], Residual
Gated Graph ConvNets (ResGatedGCN) [20] and Graph
Attention Network (GAT) [21].

The proposed learning framework comprises three layers
of GNNS, each containing 64 hidden units. Post these layers,
Sort Aggregation [30] is applied. Following the aggregation
step, we employ two layers of 1D convolution complemented
by Max Pooling. This is succeeded by a multi-layer per-
ceptron with two layers, each having 32 hidden neurons.
For model evaluation, we resort to 10-fold cross-validation,
training each model for a duration of 100 epochs. We set
the learning rate at 1e~* and the weight decay at 5e=2. All
experiments are conducted on a Lambda machine equipped
with an AMD Ryzen Threadripper PRO 5995W X 64—Core

Fig. 2. Comparison of ROC AUC scores of the encoded ranks (average
controllability) against degree one-hot-encoding.
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C. Results with Full Set of Features

We present the ROC AUC (Receiver Operating Char-
acteristic Area Under the Curve) classification results for
both datasets using the full set of features in Table II. We
maintained consistent architecture and experimental settings
for evaluation, comparing the performance of both one-hot-
degree encoding (deg) and the proposed method (NCT-EFA).
Overall, we observed improved performance with NCT-EFA
on both datasets, except for the GAT results on the Reddit
dataset, which exhibited a slight (0.02%) decrease. Notably,
NCT-EFA yielded an 11.69% improvement with GAT on
the GitHub Stargazers dataset, a 9.55% improvement with
GraphSAGE, and a 9.09% improvement with UniMP. These
results underscore the effectiveness of the proposed NCT-
EFA approach for downstream classification tasks. It is worth
noting that the relatively minor difference between one-hot-
degree encoding and NCT-EFA on Reddit Threads dataset
can be attributed to the dataset’s graph topology playing a
more significant role in classification than the node features.

D. Numerical Results with Average Controllability

To illustrate the effectiveness of using only the average
controllability, we conducted additional experiments. In this
setup, we maintained the same architecture and experimental
configuration but utilized one-hot encoded average control-
lability values, as discussed in Section III-C. We computed
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the average controllability for each node and then encoded
these values to create the corresponding node features. Sub-
sequently, we trained the same models using this encoded
dataset and compared the results with those using one-hot-
degree encoding. The results are presented in Figure 2.

Our results (ROC AUC) indicate that encoding average
controllability significantly enhances the performance of
all the GNN models. Specifically, we observed a 9.98%
improvement with GAT, 9.15% with UniMP, and 7.63%
with GraphSAGE. Notably, the improvements seen with the
full set of features in the previous section were 11.69%,
9.55%, and 9.05%, respectively. This suggests that average
controllability contributes significantly more compared to the
other features in these datasets.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have introduced a novel feature augmen-
tation approach based on NCT, aimed at enhancing node
features to boost the performance of GNNs in graph classifi-
cation task within social networks. Our method leverages av-
erage controllability, closeness centrality, betweenness cen-
trality, and eigenvector centrality as node features, which we
evaluated with six different GNN architectures. Additionally,
we introduced a novel rank encoding scheme that constructs
expressive node features from average controllability, further
enhancing the approach’s effectiveness.

Our experimental results across various GNNs and a
diverse social network dataset demonstrate consistent per-
formance improvements, underscoring the efficacy of our
proposed approach. These promising results motivate several
key avenues for future exploration. For instance, combin-
ing various controllability metrics to augment GNNs could
enhance their capabilities further. Additionally, integrating
controllability metrics directly into the message passing
mechanism of GNNs presents an intriguing research direc-
tion. Lastly, leveraging controllability metrics for construct-
ing expressive graph embeddings represents another exciting
path for future investigation.

The field of integrating controllability metrics with GNNs
is relatively young but shows immense potential for de-
veloping more expressive graph machine learning methods.
We believe that our work lays a foundation for exploring
the integration of these two fields, paving the way for
groundbreaking advancements in graph machine learning.
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