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We present a methodology based on the implementation of a fully connected neural network
to estimate the gravitational wave (GW) temporal evolution of the gmode fundamental resonant
frequency for a Core Collapse Supernova (CCSN). To perform the estimation, we construct a training
data set, using synthetic waveforms, that serves to train the ML algorithm, and then use several
CCSN waveforms to test the model. According to the results obtained from the implementation of
our model, we provide numerical evidence to support the classification of progenitors according to
their degree of rotation. The relative error associated with the estimate of the slope of the resonant
frequency versus time for the GW from CCSN signals is within 13% for the tested candidates
included in this study. This method of classification does not require priors or templates, it is based
on physical modelling, and can be combined with studies that classify the progenitor with other
physical features.

PACS numbers:

I. INTRODUCTION

We are witnessing the era of ground-based gravita-
tional wave (GW) detectors. Since 2015, the rate of
confirmed events, the sensitivity and accuracy of the
GW interferometers, and the detector network, have
been improved to levels that open the door to new and
complex Galactic sources of GW such as Core Collapse
Supernovae (CCSNe). (For a review, see [1, 2].) A
detection of this source type defines one of the main
challenges in the near future for the Advanced LIGO [3],
VIRGO [4], and KAGRA [5] detectors (LVK).

CCSNe designate the final life stage for a massive
star (M� > 8), a highly energetic process of stellar ex-
plosion recorded and observed since ancient times. (For
a review, see [6–11].) The explosion process begins once
the star’s iron core mass exceeds its Chandrasekhar limit
and collapses on itself. After core collapse, a compact,
dense (above nuclear matter density 1− 2× 1014g/cm3)
star is created, a Proto-Neutron Star (PNS), whose
physical properties are inherited from the progenitor
star. Several processes involving different regions of the
PNS are associated with the generation of high-frequency
(above 100 Hz) GW: convective instabilities, convective
overshoot, and accretion onto the PNS (e.g., see [12–14]).

A central problem in transient GW astronomy is
to reconstruct the physical parameters associated
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with the source of the gravitational radiation when
the signal is detected in laser interferometric data.
This problem involves two parts: The identification
of the relevant deterministic parameters, and the best
procedure to estimate them. The GW from CCSN
numerical simulations manifest as strongly stochastic
signals [12–51]; nevertheless, some features can be
classified as deterministic. A feature that emerges
from all CCSN numerical simulations is known as the
gmode [13, 14, 16, 20, 24, 25, 27–29, 31, 33–35, 40, 44–
46, 49, 50, 52–54].

This feature is recognizable in a time-frequency
spectrogram as a continuous, strictly increasing, and to
a first approximation linear feature, starting at around
100 Hz and increasing up to ∼ 1 − 2 KHz with time
after bounce. The rate of increase of the resonant
frequency of the fundamental mode of vibration of the
PNS (usually called fundamental gmode) is a deter-
ministic feature believed to be strongly correlated with
the degree of rotation of the progenitor and properties
of the PNS. The relationship between the slope of the
gmode and progenitor rotation is discussed, for example,
in [33]. A first attempt to estimate the slope of the
gmode with real interferometric noise was performed
in [55], applying a chi-squared method to a low-order
polynomial evolution of the resonant frequency. The
authors applied the procedures on CCSN events identi-
fied by cWB, the flagship algorithm for the detection of
GW bursts. Other studies [53], proposed an approach
involving normal mode decomposition, along with a
polynomial interpolation and simulated Gaussian noise,
to infer the time evolution of a combination of the mass
and radius of the compact remnant.
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In this work we use an optimized neural network
approach for the estimation of the slope of the gmode
from CCSN events detected by cWB. The results aim to
quantify the capability to use the slope of the gmode to
discriminate the degree of rotation of the progenitor, as
well as other of its physical parameters. Accordingly, the
numerical determination of the gmode slope constitutes
a critical component of a framework for parameter
estimation that can be used once the GW from a CCSN
are detected by the LIGO, Virgo, and KAGRA detectors.

In the rest of the text we focus our attention on
the estimation of the slope of the gmode. In order to
estimate the gmode slope, we develop a deep neural
network (DNN) model for regression. To do this, we
use Coherent WaveBurst (cWB) [56–59], a powerful
computational pipeline designed to detect and recon-
struct GW bursts with minimal assumptions about the
morphology of the signal. We perform a simulation
analysis in cWB on two different kinds of GW signals:
The first is used to train our algorithm, providing
known slopes associated with spectrograms that reveal
a linear growth of the gmode. These signals will be
designated as synthetic waveforms. Once the algorithm
is trained from the synthetic waveforms [52], a set
of gravitational waveforms from CCSN simulations
[12, 13, 15, 16, 24, 27, 31] are included as testing data.
Figure 1 illustrates the different steps proposed in this
manuscript. The accuracy of the DNN model is studied
in order to determine the capability of the algorithm to
estimate the slope of the gmode for an arbitrary CCSN
signal in real interferometric data.

The manuscript is organized as follows. Section II de-
scribes the stages for the construction of the training
and testing data sets, the cWB analyses performed to
obtain the signal triggers and likelihood maps for the
CCSN signals selected, the corresponding processing for
the cWB outcomes, and the topology of the neural net-
work model and the hyper-parameters that determine the
performance of the neural network. In section III we
present the results of the implementation and the accu-
racy of the model. Finally, in section IV we present the
conclusions and future directions for this work.

II. METHODOLOGY

In this section we describe the methodology carried out to
assess the feasibility of estimating the slope of the gmode
fundamental resonant frequency associated with CCSN
GW events detected with cWB. The methodology uses
(A) GW from CCSN signals, (B) cWB simulation analy-
ses to obtain likelihood time-frequency maps of detected
events, (C) processing of the likelihood time-frequency
maps to construct an image, and (D) the DNN model
used to estimate the gmode slope value.

Figure 2 illustrates the relationship between the gmode

slopes of the ten synthetic models and the seven core col-
lapse supernova models considered here. The lower and
upper slope limits are defined by Equations (1) and (2),
rspectively, and are obtained through the methodology
described in this section. Less (more) inclined slopes are
associated with rapidly (slowly) rotating progenitors.

fSR = 525 Hz/s. (1)

fRR = 4990 Hz/s. (2)

A. GW from CCSN signals

1. Synthetic signals

We created stochastic signals with increasing frequency
over time, observable in their spectrograms, thus emu-
lating CCSN GW signals containing the gmode feature.
The synthetic signals are to be used in cWB simula-
tion analyses to obtain a training data set of likelihood
time-frequency maps with known values of the gmode
slope. These signals were created based on the damped
harmonic oscillator with an external stochastic driving
force; i.e., a second order, non-homogeneous differential
equation, as proposed in recent work (see Equation (1)
in [16]). The solution to such differential equations is
performed numerically, and the choice of several param-
eters such as the duration, and initial and final frequen-
cies (which encode the gmode) can be modified easily
to obtain different solution signals. Even though these
synthetic signals do not carry any physical information,
they are highly beneficial because it is straightforward to
vary their associated parameters and because the com-
putational cost to generate them is very low. Therefore,
we can obtain signals that resemble GW from CCSN,
with the gmode feature, and for each signal we directly
have the value of the gmode slope, s, which is simply
computed as the difference between the higher and lower
frequency divided by its duration. We generated 100 dif-
ferent synthetic CCSN GW signals with gmode slopes
ranging from 500 to 5000 Hz/s, to cover the full range of
expected slopes from rapidly to slowly rotating progeni-
tors reported in the literature. Figure 3 shows a sample of
three synthetic CCSN GW signals included in this study,
with gmode slope values of 577, 2673, and 4335 Hz/s.

2. Numerical simulation signals

We also used CCSN GW signals from 2D and 3D numer-
ical simulations, all of which contain the gmode feature,
associated with slowly (including non-rotating), moder-
ately, and rapidly rotating progenitors, in order to cover
the different simulation scenarios reported in the litera-
ture. This set of GW from CCSN signals are used in our
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FIG. 1: Graphical description of the follow-up deep learning method proposed to estimate physical parameters of GW from
CCSN events detected with cWB – specifically, the slope of the gmode oscillatory feature. The cWB pipeline detects a GW event
and provides reconstructed signal information, such as the likelihood time-frequency map L. This time-frequency information
is processed to construct a gray-scale image X(t, f), which in turn is used as input for a deep learning regression model that
estimates the value of the gmode slope ŝ.

FIG. 2: Range of gmode slopes associated with (i) GW from CCSN signals included in this study [see section IIA 2] and (ii)
10 different synthetic signals [see section IIA 1].

FIG. 3: Example of three synthetic CCSN GW signals with gmode slopes of 577, 2673 and 4335 Hz/s representing rapidly,
moderately, and slowly rotating progenitors, respectively. The top panel shows the strain signals, while the bottom panel shows
their spectrograms. The solid white line in the spectrograms traces the rising frequency over time.
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FIG. 4: Strain signals (left panels) and time-frequency evolution spectrograms (right panels) for CCSN GW models: Model
s20 from Andresen et al. 2017, Model s15.nr from Andresen et al. 2019, Model Fiducial from Cerdá-Durán et al. 2013, Model
s15.0 from Kuroda et al. 2017, Model C15-3D from Mezzacappa et al. 2020, Model M10-DD2 from Morozova et al. 2018, and
Model mesa20 from O’Connor and Couch 2018. The solid white line in the spectrograms traces the gmode.



5

cWB simulation analyses as a test data set, with their
known values of the gmode slope in the likelihood time-
frequency maps. Specifically, we selected the following
set of GW from CCSN signals computed from different
progenitors and degree of rotation:

• Model s20 from Andresen et al. 2017 [60]. The
GW signal is extracted from a 3D approximately
general relativistic radiation (neutrino) hydrody-
namics simulation with a 20 M� non-rotating pro-
genitor.

• Model s15.nr from Andresen et al. 2019 [12].
The GW signals are extracted from three different
models based on 3D approximately general rela-
tivistic radiation (neutrino) hydrodynamics simula-
tions with a single progenitor with a zero-age main-
sequence mass (ZAMS) of 15 M�, solar metallicity,
and with different rotation rates 0 rad/s, 0.2 rad/s,
and 0.5 rad/s

• Model Fiducial from Cerdá-Durán et al. 2013 [16].
This is a GW signal generated from a 2D general
relativistic hydrodynamics simulation associated
with a low-metallicity, rapidly-rotating progenitor,
with a zero-age main-sequence mass of 35M� whose
initial central angular velocity is 2 rad/s.

• Model s15.0 from Kuroda et al. 2017 [24]. For this
signal, the GW emission is obtained from a 3D gen-
eral relativistic radiation (neutrino) hydrodynam-
ics with a 14 M�, solar metallicity, non-rotating
progenitor.

• Model C15-3D from Mezzacappa et al. 2020 [13].
For this signal the GW emission is computed for
a 3D approximately general relativistic radiation
(neutrino) hydrodynamics simulation with a non-
rotating 15 M� progenitor of solar metallicity.

• Model M10-DD2 from Morozova et al. 2018 [27].
This signal was generated from a 2D approximately
general relativistic radiation (neutrino) hydrody-
namics CCSN simulation with a 10 M� progeni-
tor with solar metallicity and moderate rotation:
0.2 rad/s.

• Model mesa20 from O’Connor and Couch 2018
[31]. In this model, the GW emission is modelled
from a 3D approximately general relativistic radi-
ation (neutrino) hydrodynamics CCSN simulation
with a 20 M�, solar metallicity, non-rotating pro-
genitor.

Note that all of these CCSN GW signals are from 3D nu-
merical simulations except for the signals models Fidu-

cial and M10-DD2, which correspond to 2D simulations.
In addition, these signals were used in recent studies in-
volving targeted searches [61], false detection rates [62],
and sensitivity analyses of GW’s from CCSNe [63], using
strain data of the LIGO, VIRGO, and KAGRA detectors.

Figure 4 shows the strain signals and the spectrograms of
signal models s20, s15.nr, Fiducial, s15.0, C15-3D, M10-

DD2, and mesa20. Note how the spectrograms manifest
the gmode feature.

B. cWB simulation analyses

Coherent WaveBurst (cWB) is a standard method for
detecting and reconstructing GW embedded in strain
data acquired with the LIGO, VIRGO, and KAGRA
[5] detectors. The method uses minimal assumptions
about the signal morphology [56–59], which is a neces-
sary condition in the search for un-modelled GW’s, as
those from CCSNe. The cWB algorithm (1) searches
for coincident signal power across detectors by project-
ing the multi-detector data onto the wavelet (i.e., time-
frequency) domain using the Wilson-Daubechiers-Meyer
transform [64], (2) identifies a collection of coherent time-
frequency components with amplitudes above noise lev-
els, and (3) clusters them to obtain a likelihood time-

frequency map L = {(ti, fi), li}
NL

i=1, where li is the like-
lihood point value at time ti and frequency fi, and NL

is the number of time-frequency points. Figure 5 shows
the likelihood time-frequency map L for a detected event
from a synthetic GW signal. We use in this study the like-
lihood time-frequency map L to estimate the gmode slope
value because it contains the significant time-frequency
information that is used to reconstruct the detected GW
signal. cWB simulation analyses were performed using
LIGO data from the second half of the third observ-
ing run (O3b) with a two-detector network (L1 and H1).
The aim was to obtain distributions of likelihood time-
frequency maps of detected GW from CCSNe, to train
and to test the deep learning algorithm that estimates
the value of the gmode slope. In these cWB analyses,
known GW from CCSN signals were injected every 50 s,
at a distance of 1 kpc and with equatorial orientation,
into the detector strain data. Then, the search for GW
is carried out, and for each detected event, the likelihood
time-frequency map L is computed, along with some re-
constructed signal attributes. All cWB simulation anal-
yses were performed in two separate stretches of strain
data. The first, comprising 1 day of coincident data, was
used to obtain the training data, while the second stretch
of data, comprising 8 days of coincident data, was used
to obtain the testing data. In addition, our cWB anal-
yses were performed separately with the synthetic and
with the CCSN GW signals containing the characteristic
gmode feature, as was described below. The set of syn-
thetic signals constructed as part of this study (see sub-
section IIA 1) was used in the first stretch of strain data,

to obtain the training data set, Dtrain = {Lj , sj}
Ntrain

j=1 ,
where Lj and sj are the likelihood time-frequency map
and the gmode slope value of the j-th detected event,
respectively, and Ntrain is the number of training in-
stances. Furthermore, the set of GW from CCSN signals
(see subsection IIA 2) was used in the second stretch of
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FIG. 5: Likelihood time-frequency map L of a detected event
from a synthetic signal and its corresponding two-dimensional
data matrix X(t, f) of dimension k × k with k = 28.

strain data, to obtain the test data set of likelihood time-
frequency maps, Dtest = {Lj , sj}

Ntest

j=1 , where Ntest is the
number of test instances. It is important to remark at
this point that training and test data sets are mutually
exclusive, which is a necessary condition to assess the ro-
bustness of the machine learning algorithm used to per-
form the estimation of the gmode slope with unknown
GW from CCSN signals.

C. Image construction

The likelihood time-frequency map, L = {(ti, fi), li}
NL

i=1,
varies across detected events in the number of points,
the frequency range, and the time range. Therefore, it
is necessary to produce a data representation with stan-
dard dimensions so that it can be used as input to the
machine learning model that estimate the slope of the
gmode. Hence, the goal is to define a function f(·) that
maps L into a two-dimensional data matrix X(t, f); that
is, f : L → X(t, f), where the width (t-dimension) and
height (f -dimension) are the same for any detected GW.

Given L = {(ti, fi), li}
NL

i=1, the image construction is car-
ried out through the following procedure. First, we select
the time-frequency point that has the maximum likeli-
hood value, {tm, fm}. Then, we select a region around tm
in the interval [tm−δt, tm+δt] (width in the t-dimension
of 2·δt), and around fm in the interval [50 Hz, 750 Hz],
where the cWB reconstructed signal is more accurate.
The length of δt is fixed at 0.3 s such that the time inter-
val is large enough to contain the primary evolution of the
early high-frequency gmode present in the GW from the
CCSN models considered in this study [see section IIA 2].
This region is then transformed into a high-resolution,
gray-scale image where the intensity is given by the like-
lihood value of the corresponding time-frequency points,
while pixels with no corresponding time-frequency points
are set to zero. Finally, this gray-scale image is downsized
to dimension Nr×Nc to obtain the final two-dimensional
data matrix or image X(t, f), where Nr and Nc represent
the number of rows and columns, respectively. Equiva-
lently, the data matrix or image X(t, f) can be flattened
to construct the N -dimensional column vector x ∈ R

N ,

where N = Nr ·Nc. Figure 5 shows the two-dimensional
data matrix X(t, f), with dimension Nr = Nc = 28, for
a likelihood time-frequency map, L, of a detected event
given a synthetic signal.

D. Deep Neural Network model for regression

To estimate the gmode slope of CCSN GW events de-
tected with cWB, we use a deep learning regression model
The input to this model is the column vector representa-
tion x ∈ R

N of the processed likelihood time-frequency
map, X(t, f), while the output is the estimated gmode
slope value ŝ. Note that the gmode slope values are con-
tinuous, real, and positive (i.e., s ∈ R

+), ranging from
500 Hz/s (lower limit for rapidly-rotating progenitors)
to 5000 Hz/s (upper limit for slowly-rotating progeni-
tors). Hence, there are several regression methods that
can be used to address this task; for instance, linear and
polynomial models, decision trees, and artificial neural
networks [63, 65–71]. For this study, we selected a fully-
connected deep neural network (DNN) regression model
because it can learn both linear and non-linear relation-
ships between the input and output data, it is more ap-
propriate for handling large-dimensional input data, and
it offers high performance at a low computational cost.

DNN are machine learning models inspired by biological
neural network models of the brain, consisting of many
interconnected processing units known as neurons, which
vaguely mimic biological neurons [66, 67, 72]. The struc-
ture of a DNN comprises an input layer, one or more
hidden layers, and an output layer, thus resembling a
brain neural network [67, 69, 71]. The input layer con-
sists of nodes that receive the input data and pass them
directly into the first hidden layer for further processing,
whereas hidden and output layers consist of many neu-
rons [67, 72] interconnected by weighted synaptic links.
In a DNN, the information flows from the input towards
the output while being processed in the layers through
the following function:

f : Rm 7−→ R
n, (3)

where m and n denote the number of nodes or neurons
of two successive layers. Therefore, the j-th neuron in
a layer (hidden or output) with n neurons is connected
to all of the m outputs of the preceding layer, via the
weighted synaptic connections [72], in such a way that
the neuron produces the output yj as a function of linear
combinations of the input information as follows:

yj = g

(

m
∑

i=1

wi,jxi

)

, (4)

where wi,j are the weights connecting all m inputs to the
j-th neuron and g(·) is a bounded, differentiable, real,
and nonlinear function known as an activation function
[66, 70]. The activation function allows the nonlinear-
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TABLE I: Architectural description of the deep neural net-
work (DNN) regression models used to assess the estimation
of the gmode slope from likelihood time-frequency maps.

# of hidden # of # of
layers neurons weights

M1 1 16 12,577
M2 2 32-16 25,665
M3 3 64-32-16 52,865
M4 4 128-64-32-16 111,361
M5 5 256-128-64-32-16 244,737

ity between the input–output relationship. In regression
problems, typical activation functions are linear, sigmoid,
or the rectified linear unit [72]. Note that the number of
nodes of the input layer corresponds to the input vari-
ables (in our case, N inputs), the number of neurons
in the output layer corresponds to the output variables
(in our case, one output), whereas the number of hid-
den layers, the number of neurons in each layer, and
the activation functions are hyper-parameters that can
be freely varied to obtain different DNN models. There-
fore, the synaptic weights are the parameters that are
fitted from a training data set. We considered five DNN
models with different numbers of hidden layers and neu-
rons. Table I presents the technical details of the DNN
models, which are named M1, M2, M3, M4, and M5.
In all models, the activation functions correspond to the
rectified linear unit (ReLu) in the hidden layers and to
the linear function in the output layer. The training of
the models (i.e., the fitting of the synaptic weights) was
based on the back-propagation learning algorithm using
the root-mean-squared propagator (MNSprop) with the
mean-squared error as a loss function, a learning rate of
0.001, a batch size of 512 samples of the training data,
and 300 epochs.

III. RESULTS

In this section we present the results of two analyses de-
voted to assessing the performance of the estimation of
the gmode slope of CCSN GW events using DNN regres-
sion models.

A. Hold-out cross-validation with Dtrain

We first assessed the effectiveness and reliability of
the proposed DNN model for the estimation of the
gmode slope, testing the training data set of likelihood
time-frequency maps, Dtrain, through a hold-out cross-
validation (HOCV) procedure [72, 73], where the entire
data set was randomly split into two parts for training
(70%) and for testing (30%). This procedure was
repeated 30 times to account for the randomness of the
process and to be able to compute distributions of the

performance metrics. Note that in each repetition the
training and testing data are mutually exclusive. The
training set is used to fit the weights of the DNN model,
while the test set is used to asses the model performance
[67, 71]. To assess the performance, we used the following
metrics: (i) the coefficient of determination (r2), which
measures for every model the linear correlation between
the known slopes (s) present in the likelihood maps
and the corresponding estimated slopes (ŝ); (ii) the
root-mean-square error (rmse), computed as the square
root of the difference between the estimated ŝ and known
values s of the gmode slope, which serves to discriminate
how far from the mean the estimated slopes are, and
finally (iii) the mean-absolute-percentage error (mape),
to evaluate the precision of each model performing the
estimation of the gmode slope. These performance
metrics provide support to evaluate the accuracy of each
model from different perspectives and clarify the out-
puts obtained. Table II shows the average values of the
performance metrics achieved with the five DNN models.

According to the scores presented in the table, we
conclude that model three (M3) (see Table I) exhibits
the best performance in estimating the slope of the
gmode, among the five different DNN architectures (M1
to M5), because (1) it has the higher linear correlation
(0.76) expressed through the r2 coefficient and (2) the
lowest residuals (594.64) and percentage error (21%)
reported by the rmse and mape, respectively. Figure
6 illustrates the performance metrics for each model.
Model 3 (in green) shows a lower dispersion with respect
to the mean of the estimated slopes for the gmode,
and lower residuals compared with those associated
with the remaining models: M1 (blue), M2 (orange),
M4 (red) and M5 (purple). To give a more individual
characterization of the different DNN models, Figure 7
illustrates how distinct architectures estimate a single
slope contained in the training data set. This figure
clarifies the fact that estimation performed by model
M3 produces the best fit compared with the other DNN
architectures.

B. Estimation of the gmode slope of 3D CCSN

GW signals

After the design [Section II], construction [Section IIC],
and successive sanity checks performed on the training
data set, Dtrain [SectionIIIA], we use the M3-DNN ar-
chitecture [See table I], along with the processed likeli-
hood maps for the GW from CCSN signals, as a test
data set, Dtest, in order to perform the estimation of
the gmode slope. Dtest is only composed of processed
likelihood maps obtained from CCSN signals [see IIA 2]
that were not considered in the training process; there-
fore, the estimation of the gmode slope is carried out on
Dtest, an unknown set of signals for the DNN architec-
ture. Table III contains the results of the implementation
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TABLE II: Summary (mean ± standard deviation) of the performance metrics r2, rmse, mae, and mape achieved with the
DNN regression models in the hold-out cross-validation procedure with the data set Dtrain.

Metric M1 M2 M3 M4 M5

r2 0.68± 0.02 0.72± 0.05 0.76± 0.01 0.74± 0.05 0.73± 0.07
rmse [Hz/s] 690.57± 32.86 651.27± 65.08 594.64± 26.31 616.79± 62.03 636.85± 81.94
mape [%] 0.27± 0.02 0.25± 0.04 0.21± 0.01 0.23± 0.05 0.24± 0.06

TABLE III: gmode slope estimation results. Each column contains the values associated with the slope, s, estimated slope, ŝ,
and its corresponding standard deviation, RMSE and MAPE. All of this is for the M3-DNN architecture.

Model s [Hz/s] ŝ [Hz/s] RMSE [Hz/s] MAPE

Fiducial from Cerdá-Durán et al. 2013 1288 1204.78± 120.75 142.37 0.09
s15.0 from Kuroda et al. 2017 3082 3169.36± 67.52 108.68 0.03

M10-DD2 from Morozova et al. 2018 1389 1193.24± 122.76 228.54 0.14
mesa20 from O’Connor and Couch 2018 2381 2525.21± 146.58 204.95 0.06

s15.nr from Andresen et al. 2019 2246 2263.17± 380.58 380.59 0.13
s20 from Andresen et al. 2019 1907 2399.42± 759.80 904.59 0.33

C15-3D from Mezzacappa et al. 2020 3406 3358.91± 619.03 719.98 0.20

for the DNN architecture [see Table I] on the different
GW from CCSN signals included in this study [see sec-
tion II]. The results reflect a mean standard deviation in
the estimation of the gmode slope of 266.33 Hz/s and
a mean-absolute-percentage error (mape) for this sample
of 13%, which include GW from CCSN signals for differ-
ent progenitor (ZAMS) masses, metallicities, and rota-
tion rates. In Figures 8 and 9, we show the distribution of
estimated slopes (in blue) for each CCSN GW signal in-
cluded in Dtest (left column). The vertical, black, dashed
line stands for the value of the slope, while the red solid
lines define the intrinsic error associated with the estima-
tion process, meaning that the range of slopes belonging
to this interval covers the values of the estimation. In the
right column, the spectrogram of each CCSN GW signal
illustrates the intrinsic error depicted in the histogram in
the left column. Solid magenta lines indicate the value
of the slope for every model, solid red lines indicate the
mean of the estimated slopes obtained from the DNN ar-
chitecture, while dashed white lines indicate the intrinsic
estimation error. An estimation of the GW temporal evo-
lution of the gmode fundamental resonant frequency for
a core collapse supernova was recently presented in [55],
using a chi squared approach in the context of a multi-
messenger analysis for the identification and parameter
estimation of the Standing Accretion Shock Instability
(SASI) with neutrino and GW signals. Following our
methodology based on the implementation of a neural
network (see sections II and III B), the estimation of the
slope of the gmode fundamental resonant frequency for a
CCSN is improved by 85% for model s15.0 from Kuroda
et al. 2017 when compared with the value presented in
the study of the SASI. This fact reveals that the imple-
mentation of a neural network model exhibits a substan-
tial improvement when compared with chi-squared-based
estimation. Finally, to frame our results, we also consider

the variation of the gmode slope with progenitor mass
and EOS. Table IV lists the gmode slopes of the models
considered here, by descending order in progenitor mass.
If we consider two models with the same rotation and
EOS – e.g., Model s20 and Model C15-3D – we see that
the variation of the slope is significant, with Model s20
having a slope of 1907 Hz/s and Model C15-3D having a
much larger slope of 3406. Of course, there is more than
just the progenitor dependence yielding different results
here. There are model dependencies [approximations of
the physics, different numerical methods deployed, differ-
ent simulation codes, different grid resolutions adopted,
differences in the input physics used (e.g., the weak inter-
action physics), etc.], though the UT–ORNL and MPA
models are very similar in most respects. Nonetheless,
the progenitor mass dependence of the gmode slope is
large, which will necessitate multimessenger signals in
order to break the redundancy of the dependence of the
gmode slope on both the progenitor rotation and mass if
we are to use the gmode slope to cull information about
the progenitor’s rotation. The EOS dependence is less
significant. For example, comparing Models s15.0 and
C15-3D, which are both initiated from the same progen-
itor mass and are both nonrotating, the slopes are 3082
Hz/s and 3406 Hz/s, respectively. Again, here too some
of the difference can be attributed to model dependen-
cies. Model s15.0 is general relativistic, with a minimum
set of neutrino weak interactions, whereas Model C15-3D
is only approximately general relativistic, but deploys an
extensive weak interaction set. Moreover, while the pro-
genitor mass may be the same in these two cases, the
progenitor structure is different [74, 75]. Nonetheless,
the gmode slope seems to be much more sensitive to the
progenitor mass.
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TABLE IV: Variation of the gmode slope across progenitor mass and EOS.

Model s [Hz/s] ŝ [Hz/s] EOS Mass M� Rotation

Fiducial, Cerdá-Durán et al. 2013 1288 1204.78 LS220 35 2 rad/s
mesa20, O’Connor and Couch 2018 2381 2525.21 SFHo 20 -

s20, Andresen et al. 2017 1907 2399.42 LS220 20 -
s15.0, Kuroda et al. 2017 3082 3169.36 SFHx 15 -

C15-3D, Mezzacappa et al. 2020 3406 3358.91 LS220 15 -
s15.nr, Andresen et al. 2019 2246 2263.17 LS220 15 0.5 rad/s

M10-DD2, Morozova et al. 2018 1389 1193.24 LS220 10 0.2 rad/s

FIG. 6: Distribution of the performance metrics r2, rmse and
mape achieved with the five DNN regression models in the
hold-out cross-validation procedure with the data set Dtrain.

FIG. 7: Distribution of estimated values ŝ achieved with the
five DNN models in the hold-out cross-validation procedure
with the data set Dtrain for the specific case of real values of
s = 3560.0 Hz/s (upper panel) and s = 1111.0 Hz/s (bottom
panel).

IV. SUMMARY

We incorporate a set of synthetic CCSN GW signals
(see section II) to train a DNN model (section IIIA)
to estimate the slope associated with the gravitational
wave temporal evolution of the gmode fundamental res-
onant frequency present in CCSN GW signals (section
IIA 2). We quantified the accuracy of distinct DNN
architectures using three different performance metrics
to evaluate the accuracy of every model under different
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FIG. 8: Estimation of slopes and intrinsic error associated to different CCSN signals included in this study. Left column shows
the estimated slopes (blue) and the intrinsic error associated to the estimation approach (red solid lines). At the right column
the representation of the intrinsic error on the spectrogram of the GW from CCSN signal is illustrated in white dashed lines.
In magenta the slope of the gmode, in red the mean of the estimated slopes obtained using the DNN.
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FIG. 9: Estimation of slopes and intrinsic error associated with different CCSN signals included in this study. The left column
shows the estimated slopes (blue) and the intrinsic error associated with the estimation approach (red solid lines). In the right
column, the intrinsic error is represented on the spectrogram with white dashed lines. Magenta designates the slope of the
gmode, and red designates the mean of the estimated slopes obtained using the DNN.

topologies, as presented in table II, searching for the
more accurate configuration to achieve estimation the
gmode slope. Our analysis and implementation of such
DNN architecture indicates, we can estimate the slope
of the gmode fundamental resonant frequency in real
interferometric data with an accuracy of 82% within
2.3 kpc, 65% within 3.0 kpc, and 52% within 10 kpc,
for galactic sources and different idiosyncrasies of GW’s
from CCSNe (section IIA 2). Tables V and VI shows the
gmode slope estimation with its corresponding STD for
seven different galactic sources; 1.0 kpc, 2.3 kpc, 3.1 kpc,

4.3 kpc, 5.4 kpc, 7.3 kpc and 10 kpc respectively. The
results obtained using our methodology reflect that, this
implementation could be applied to develop parameter
estimation in upcoming LIGO scientific runs. We leave
this aspect for future publications.
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TABLE V: Variation of the gmode estimated slope across different galactic distances 1.0 kpc, 2.3 kpc, 3.1 kpc and 4.3 kpc.

Model s [Hz/s] 1.0 kpc 2.3 kpc 3.1 kpc 4.3 kpc

Fiducial, Cerdá-Durán et al. 2013 1288 1204.78 1345± 221 1575 ± 496 1954 ± 596
mesa20, O’Connor and Couch 2018 2381 2525.21 2689 ± 145 2903 ± 312 3312 ± 396

s20, Andresen et al. 2017 1907 2399.10 2614± 223 3012 ± 496 3324 ± 342
s15.0, Kuroda et al. 2017 3082 3169.36 3243± 109 3472 ± 221 3723 ± 443

C15-3D, Mezzacappa et al. 2020 3406 3358.91 3443 ± 237 3743 ± 396 3978 ± 234
s15.nr, Andresen et al. 2019 2246 2263.17 2509 ± 207 2689 ± 441 2945 ± 504

M10-DD2, Morozova et al. 2018 1389 1193.24 1349 ± 115 1576 ± 396 1608 ± 503

TABLE VI: Variation of the gmode estimated slope across different galactic distances 5,4 kpc, 7.3 kpc and 10 kpc.

Model 5.4 kpc 7.3 kpc 10 kpc

Fiducial, Cerdá-Durán et al. 2013 2172 ± 598 2560 ± 698 3012 ± 723
mesa20, O’Connor and Couch 2018 3576 ± 696 3976 ± 621 4217 ± 876

s20, Andresen et al. 2017 3508 ± 554 4295 ± 662 4796 ± 883
s15.0, Kuroda et al. 2017 3998 ± 554 4209 ± 754 4873 ± 952

C15-3D, Mezzacappa et al. 2020 4110 ± 512 4675 ± 370 4975 ± 876
s15.nr, Andresen et al. 2019 3309 ± 555 3775 ± 875 4175 ± 576

M10-DD2, Morozova et al. 2018 1934 ± 634 2375 ± 772 2775 ± 902
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[61] M. J. Szczepań czyk, J. M. Antelis, M. Benjamin,
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