

Communication

Complexity-Building ESIPT-Assisted Synthesis of Fused Polyheterocyclic Sulfonamides.

Srinivas Beduru and Andrei G. Kutateladze*

Department of Chemistry and Biochemistry, University of Denver, USA, 80208

* Correspondence: Andrei.Kutateladze@du.edu

Abstract: Excited State Intramolecular Proton Transfer (ESIPT), originally discovered and explored in depth in a number of extensive photophysical studies, is recently rediscovered as a powerful synthetic tool, offering rapid access to complex polyheterocycles. In our prior work we have employed ESIPT in aromatic *o*-keto amines and amides, leading to diverse primary photoproducts – complex quinolinols or azacanes possessing a fused lactam moiety – which could additionally be modified in short, high-yielding postphotochemical reactions to further grow complexity of the heterocyclic core scaffold and/or to decorate it with additional functional groups. Given that sulfonamides are generally known as privileged substructures, in this study we pursued two goals: (i) to explore whether sulfonamides could behave as proton donors in the context of ESIPT-initiated photoinduced reactions, and (ii) to assess the scope of subsequent complexity-building photochemical and postphotochemical steps, which give access to polyheterocyclic molecular cores with fused cyclic sulfonamide moieties. In this work we show that this is indeed the case. Simple sulfonamide-containing photoprecursors produced the sought-after heterocyclic products in experimentally simple photochemical reactions accompanied by significant step-normalized complexity increases as corroborated by the Böttcher complexity scores.

Keywords: photoassisted synthetic chemistry; ESIPT; polyheterocycles; sulfonamides; molecular complexity

Dedicated to Professor V. Ramamurthy, great photochemist and colleague.

Citation: To be added by editorial staff during production.

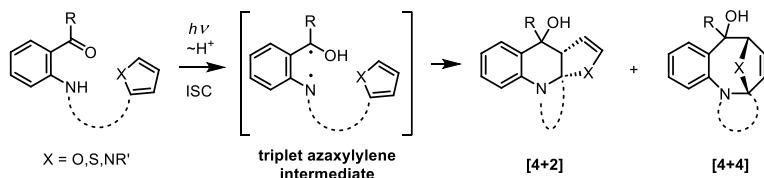
Academic Editor: Firstname Lastname

Received: date

Revised: date

Accepted: date

Published: date

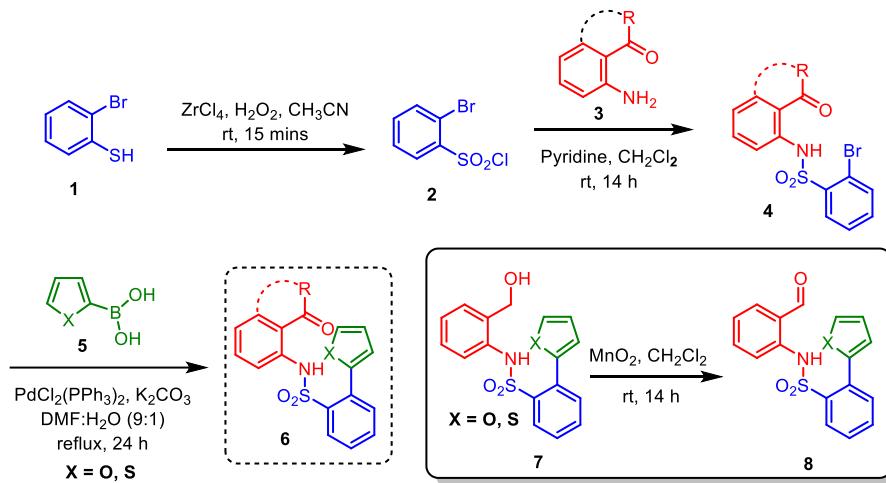


Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

Excited State Intramolecular Proton Transfer (ESIPT) in aromatic *o*-amido-ketones was studied extensively by photophysicists, including groundbreaking work of Smith and Barbara [1] and later Blank [2]. Relatively recently it was rediscovered as a useful synthetic tool, offering rapid access to complex polyheterocycles [3–8], especially in the context of diversity-oriented synthesis [9]. Porco and Stephenson employed ESIPT in 3-hydroxyflavone derivatives and methyl cinnamate [10], *trans*-stilbene [11], *trans,trans*-1,4-diphenyl-1,3-butadiene (DPBD) [12] as dipolarophiles generating 1,3-dipolar reactive intermediates and accessing [3+2] photocycloaddition products [13].

We have demonstrated that ESIPT in aromatic *o*-amino ketones and their derivatives generates aza-*o*-xylylenes, capable of intramolecular cycloadditions to tethered unsaturated pendants, including five-membered aromatic heterocycles (see Scheme 1) and benzoid aromatic moieties.[3–8] While the *ortho*-amido and amino ketones were explored most extensively, we also achieved similar synthetic goals with *ortho*-hydroxy ketones accessing complex 2,6-epoxybenzazocines [14]. *ESIPT in sulfonamides, however, was not studied.*



Scheme 1. Synthetic utilization of ESIPT-generated azaxylylenes.

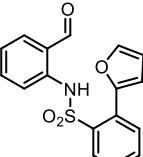
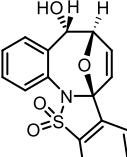
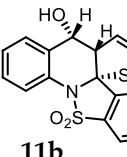
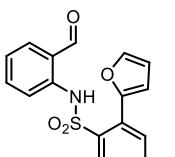
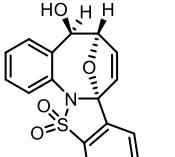
Given that the sulfonamide moiety is prominently featured in approved drugs and other biologically active compounds [15–22], in this study we set out to explore ESIPT in sulfonamides and assess its synthetic utility. As noted above, another aspect of this work was to evaluate the compatibility of this molecular complexity-building photoassisted synthetic chemistry approach with fundamental principles of combinatorial chemistry and diversity-oriented synthesis [9]. This includes the mutually interrelated goals of (i) modular design of photoprecursors from readily available building blocks and (ii) incursions into the unexplored areas of chemical space, especially via diversification of the core polyheterocyclic scaffolds.

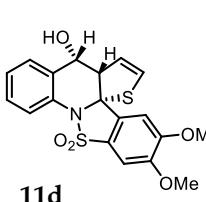
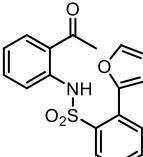
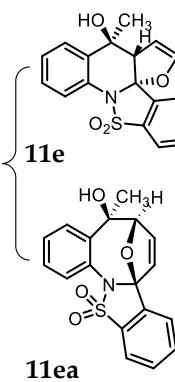
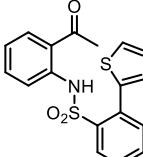
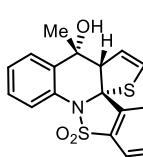
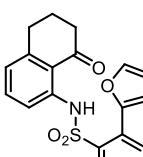
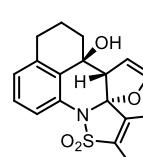
2. Results

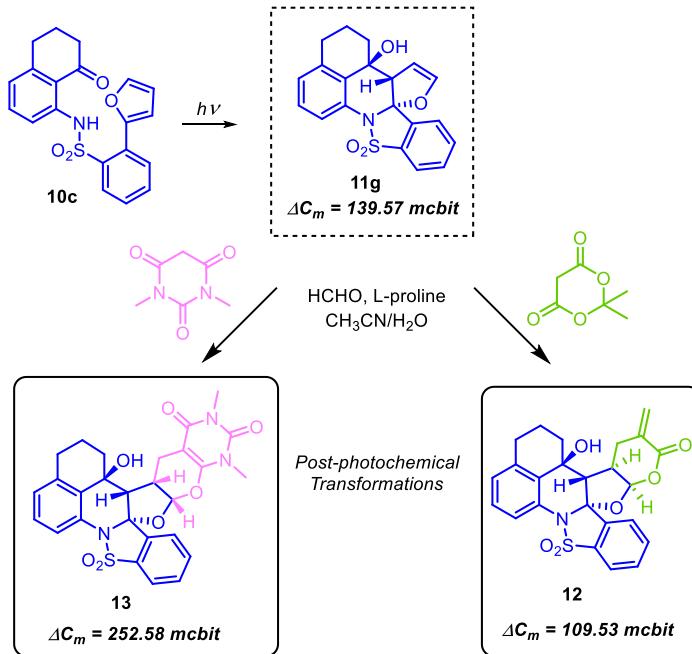
Photoprecursor sulfonamides were readily synthesized in a modular fashion as shown in Scheme 2. Well-established high yielding reactions were chosen to link the building blocks together, i.e. the likes of Suzuki coupling or effective coupling of aromatic amines with sulfonyl chlorides. Generally, three diversity inputs (the photoactive core, i.e. aminoketone, the sulfonamide tether, and the unsaturated pendant) allow for added flexibility in exploring the chemical space traversed by the resulting photoproducts. Subsequent postphotochemical modifications offer opportunities for additional diversity inputs.

Scheme 2. Modular synthesis of photoprecursors.

Irradiation of photoprecursors in DMSO with 365 nm UV LED yielded the products of [4+2] or [4+4] cycloadditions in good yields, see Table 1.

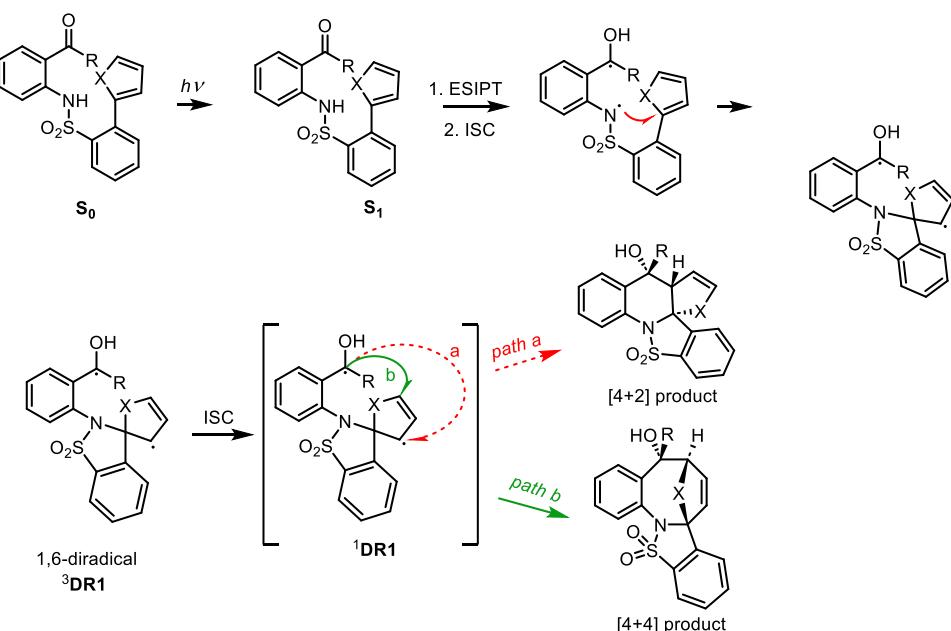







Entry	Photoprecursor	Photoproduct(s)	Isolated yields
1			87%
2			81%
3			83%
4			78%
5			79% 14%
6			78%
7			91%


Table 1. Photoprecursors, primary photoproducts (isolated yields).

The now-ubiquitous UV LEDs @365nm, based on Al-doped gallium nitride, with rather high radiant power are available commercially, making them the UV source of choice for large scale irradiations. LED irradiators with shorter wavelengths are becoming more accessible but the prices are still significantly higher. Additionally, the higher energy photons are more prone to causing unwanted side reactions. The 365nm wavelength offers the optimal cost-benefit outcomes, provided that the photoprecursors absorb at this wavelength. As shown in Table 2, the precursor sulfonamides do have significant absorption at 365nm, with molar extinction coefficients ranging from 830 to 1770 $M^{-1}cm^{-1}$.

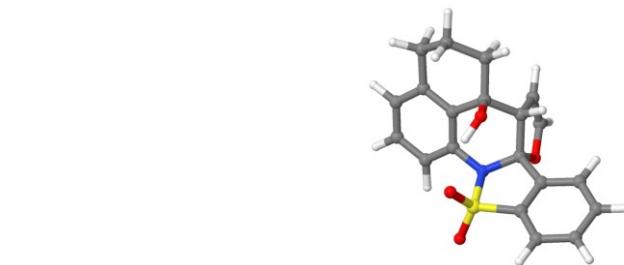
Table 2. UV absorption of photoprecursors at 365nm

Entry	Photo-precursor	Absorbance (A)	Concentration (M)	Extinction coefficient ($M^{-1} cm^{-1}$)
1	8a	0.051	6.11×10^{-5}	0.83×10^3
2	8b	0.084	5.82×10^{-5}	1.44×10^3
3	8c	0.052	5.16×10^{-5}	1.00×10^3
4	8d	0.088	4.95×10^{-5}	1.77×10^3
5	8e	0.066	5.86×10^{-5}	1.12×10^3
6	8f	0.080	5.60×10^{-5}	1.42×10^3
7	10c	0.077	5.44×10^{-5}	1.41×10^3


Post photochemical modifications of **12** and **13** were carried out as shown in Scheme 3 via the [4+2] (hetero-Diels-Alder) reaction of the dihydronfuran moiety in primary photoproduct (**11g**) and hetero-dienes generated *in situ* from either Meldrum's acid (green) or *N,N*-dimethylbarbiturate (pink) and formaldehyde, under L-proline catalysis.

Scheme 3. Postphotochemical modifications of primary photoproduct **11g** resulting in complex polyyheterocycles **12** and **13** (Böttcher complexity scores are shown).

3. Discussion


Results presented above indicate clearly that sulfonamides undergo ESIPT, generating N-sulfonyl aza-*o*-xylylenes capable of intramolecular cycloadditions to yield complex heterocycles possessing a fused cyclic sulfonamide moiety. Detailed photophysical study is ongoing and will be published in due course. Given that both [4+2] and [4+4] reaction topologies are realized, we hypothesize that – as in the previously reported reactions of amides – sulfonamides most likely react in their triplet state. This is a beneficial feature, as it expands the synthetic utility of these reactions giving access to higher diversity of polyheterocyclic cores in the primary photoproducts, i.e. the sulfonylated quinolinols and sulfonylated azacanes. Overall, the yields of sulfonamides are generally higher than lactams derived from amidoketones. This could be attributed either to more efficient ESIPT in sulfonamides, or the higher reactivity of *N*-sulfonyl aza-*o*-xylylenes (or both). Proposed mechanistic rationale is presented in Scheme 4.

Scheme 4. Plausible mechanistic rationale.

The regiochemical outcome, i.e. the competition between *path a* and *path b* in Scheme 4, is likely being controlled by the spin density in the 1,6-diradical **DR1** formed as a result of the initial attack of the N-centered radical on the π -system of the heterodienic (i.e. furan or thiophene) pendant. In this study, photoprecursors containing thiophene produced the [4+2]-product exclusively (*path a*), while the reactions with furan gave both [4+2] and [4+4] products, indicating that *path b* was becoming increasingly more competitive with *path a* in the case of furan pendants.

Product structures were determined by NMR. Given the complexity of these polyheterocyclic products, experimental NMR characterization was augmented with computational study, i.e. the experimental data were matched with spectra calculated with our machine learning-augmented DFT method, DU8ML [23–24]. All structures showed convincing matches with the computed data, for example, rmsd values for ^{13}C NMR chemical shifts were in the 1.1–1.3 ppm range and the calculated spin-spin coupling values were in keeping with the experimental observations. A typical result of DU8ML calculations of NMR parameters is shown in Table 3

Table 3. Typical DU8ML computations exemplified by primary photoproduct **11g** (rmsd=0.99ppm). 156

Atom type	Exp $\delta_{13}\text{C}$	Calcd $\delta_{13}\text{C}$	$\Delta\delta_{13}\text{C}$
C	139.24	139.54	0.30
C	138.93	139.61	0.68
C	133.08	134.83	1.75
C	131.69	131.33	-0.36
C	130.77	130.05	-0.72
C	97.43	98.48	1.05
C	68.61	70.73	2.12
CH	146.94	146.34	-0.60
CH	134.35	135.92	1.57
CH	131.07	130.51	-0.56
CH	129.11	129.38	0.27
CH	128.63	128.61	-0.02
CH	124.54	125.49	0.95
CH	123.22	124.98	1.76
CH	121.55	121.99	0.44
CH	100.52	99.66	-0.86
CH	61.98	63.12	1.14
CH ₂	34.59	34.53	-0.06
CH ₂	29.54	29.33	-0.21
CH ₂	18.15	18.77	0.62

157

158

4. Materials and Methods

159

4.1. General Information

160

Common solvents were purchased from Fisher Scientific and used as is. Common reagents, 2-keto amines, boronic acids and thiols, were purchased from Sigma-Aldrich, TCI America, AK Scientific, Oakwood Chemical or AstaTech and used without additional purification. NMR spectra were recorded at 25 °C on a Bruker Avance III 500 MHz instrument in CDCl_3 (unless noted otherwise) using residual solvent peaks as an internal standard (δH 7.26 ppm, δC 77.16 ppm for CDCl_3 ; δH 2.50 ppm, δC 39.52 ppm for $\text{DMSO}-d_6$). The description of signals includes s = singlet, d = doublet, dd = doublet of doublets, t = triplet, dt = doublet of triplets, td = triplet of doublets, q = quartet, m = multiplet, br.s = broad singlet. The structural assignments were made with additional information from gCOSY, gHSQC, and gHMBC experiments. Flash column chromatography was performed using Teledyne Ultra-Pure Silica Gel (230 – 400 mesh) on a Teledyne Isco CombiFlash Rf. The light-promoted reactions were carried out using in-house built UV LED-based illuminators equipped with seven (total power 20.3 W) LED Engin chips (18 V, 700 mA, 2.9 W, λ = 365 nm). Borosilicate glass reaction vessels were typically distanced from a light source in a range of 5-7 cm.

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

4.2. Experimental Procedures and Characterization Data

176

4.2.1 General procedure for sulfonamide reactions (General procedure A)

177

A mixture of 2-bromobenzenethiol (1.0 gr; 5.3 mmol), 30% H₂O₂ (1.5 mL, 8.0 mmol), and ZrCl₄ (1.23 gr, 5.3 mmol) were stirred in MeCN (15 mL) at 25 °C for 10 min. The reaction mixture was quenched by adding H₂O (30 mL), and extracted with EtOAc (4 × 50 mL). The organic extract was dried with anhydrous Na₂SO₄ and the filtrate was evaporated under vacuum to afford **2** as red crystals (1.23 gr, 92%).

To a stirred solution of 2-bromobenzenesulfonyl chloride (**2**, 3.91 mmol), the corresponding aniline (3.91 mmol), and anhydrous pyridine (1.0 mL, 11.7 mmol) in anhydrous dichloromethane (15 mL) was stirred under an argon atmosphere. The resulting mixture was stirred at room temperature for 14 h. After completion of the reaction (the progress of the reaction was monitored by Thin layer chromatography), the reaction mixture was diluted with washed with saturated NaHCO₃ (20 mL). The reaction mixture was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic extracts were washed with water (2 × 40 mL), separated, dried over anhydrous Na₂SO₄, then concentrated in vacuo to give a crude yellow oil. The crude product was purified by flash chromatography on silica gel.

4.2.2. General procedure for synthesis of aldehyde photoprecursors (General procedure B)

The bromide (2.0 mmol, 1.0 equiv.), the corresponding boronic acid (3.0 mmol, 1.5 equiv.), PdCl₂(PPh₃)₂ (0.07 mmol, 0.04 equiv.) and K₂CO₃ (8.0 mmol, 4.0 equiv.) are suspended in DMF : H₂O (9 : 1) and heated to reflux in oil bath for 14 hours. Upon completion of the reaction as indicated by ¹H NMR, the mixture was diluted with EtOAc (30 mL) and washed with a saturated solution of NaHCO₃ (2 × 40 mL). Combined organic phase was washed with H₂O (20 mL) and dried over anhydrous Na₂SO₄. After concentration a crude product was used for the next oxidation reaction. To a stirred solution of the corresponding alcohol (2.5 mmol, 1.0 equiv.) in CH₂Cl₂ (20 mL), was added MnO₂ (12.5 mmol; 5.0 equiv.) at ambient temperature, and the resulting mixture was stirred at room temperature overnight. Upon completion (the progress of the reaction was monitored by ¹H NMR), the solids were filtered off by passing the mixture through celite pad, and the pad was washed with additional 20 mL of CH₂Cl₂. After concentration crude product was purified by flash chromatography on silica gel to give a desired photoprecursor.

N-(2-Formylphenyl)-2-(furan-2-yl)benzenesulfonamide (8a):

Following the general procedure **B**, compound **8a** (126 mg, 79%) was obtained from the oxidation of **7a** (160 mg) as a brown solid.

¹H NMR (500 MHz, CDCl₃): δ 11.08 (s, 1H), 9.81 (s, 1H), 8.32 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 1.8 Hz, 1H), 7.60 (ddd, *J* = 8.7, 6.1, 4.3 Hz, 4H), 7.54 – 7.48 (m, 1H), 7.45 (t, *J* = 8.2 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 3.4 Hz, 1H), 6.59 (dd, *J* = 3.3, 1.8 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 194.11, 149.86, 143.75, 139.69, 136.08, 136.03, 135.65, 133.05, 131.24, 130.98, 130.09, 127.96, 122.24, 121.42, 116.29, 111.88, 111.82 ppm; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₃NO₄SnA 350.0457; found: 350.0453.

N-(2-Formylphenyl)-2-(thiophen-2-yl)benzenesulfonamide (8b):

Following the general procedure **B**, compound **8b** (190 mg, 83%) was obtained from the oxidation of **7b** (230 mg) as a colorless red powder.

¹H NMR (500 MHz, CDCl₃): δ 10.32 (s, 1H), 9.66 (s, 1H), 8.42 – 8.36 (m, 1H), 7.56 (ddt, *J* = 10.2, 4.9, 2.0 Hz, 3H), 7.43 (d, *J* = 4.0 Hz, 1H), 7.41 – 7.33 (m, 2H), 7.28 (s, 1H), 7.27 (s, 1H), 7.16 (dd, *J* = 5.2, 3.5 Hz, 1H), 7.09 (t, *J* = 7.5 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 193.66, 139.35, 137.96, 137.76, 135.74, 135.45, 134.07, 133.72, 132.83, 130.83, 129.90, 128.22, 127.64, 127.12, 122.06, 121.11, 115.69 ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄NO₃S₂ 344.0409; found: 344.0416.

N-(2-Formylphenyl)-2-(furan-2-yl)-4,5-dimethoxybenzenesulfonamide (8c):

Following the general procedure **B**, compound **8c** (130 mg, 73%) was obtained from the oxidation of **7c** (180 mg) as a white solid.

¹H NMR (500 MHz, CDCl₃): δ 10.90 (s, 1H), 9.77 (s, 1H), 7.79 (s, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.3 Hz, 1H), 7.43 (t, J = 7.9 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.01 (s, 1H), 6.92 (d, J = 3.4 Hz, 1H), 6.57 (dd, J = 3.5, 1.9 Hz, 1H), 4.02 (s, 3H), 3.93 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): 194.01, 152.12, 149.39, 148.05, 143.18, 139.70, 136.01, 135.55, 128.07, 124.08, 122.20, 121.36, 116.28, 113.65, 113.37, 111.84, 111.52, 56.51, 56.24 ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₈NO₆S 388.0849; found: 388.0873.

N-(2-Formylphenyl)-4,5-dimethoxy-2-(thiophen-2-yl)benzenesulfonamide (8d):

Following the general procedure B, compound **8d** (135 mg, 91%) was obtained from the oxidation of **7d** (150 mg) as yellow solid.

¹H NMR (500 MHz, CDCl₃): δ 10.26 (s, 1H), 9.65 (s, 1H), 7.84 (s, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.42 – 7.32 (m, 3H), 7.25 (d, J = 8.5 Hz, 1H), 7.14 – 7.05 (m, 2H), 6.82 (s, 1H), 4.05 (s, 3H), 3.92 – 3.84 (m, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): 193.63, 151.79, 148.26, 139.47, 137.82, 135.70, 135.43, 129.68, 127.54, 127.33, 126.75, 122.59, 121.94, 121.11, 116.04, 115.68, 113.29, 56.60, 56.25 ppm; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₉H₁₇NO₅S₂Na 426.0440; found: 426.0441.

4.2.3 General procedure for synthesis of keto photoprecursors (General procedure C)

The bromide (2.0 mmol, 1.0 equiv.), the corresponding boronic acid (3.0 mmol, 1.5 equiv.), PdCl₂(PPh₃)₂ (0.07 mmol, 0.04 equiv.) and K₂CO₃ (8.0 mmol, 4.0 equiv.) are suspended in DMF : H₂O (9 : 1) and heated to reflux in oil bath for 14 hours. Upon completion of the reaction as indicated by ¹H NMR, the mixture was diluted with EtOAc (30 mL) and washed with a saturated solution of NaHCO₃ (2 × 40 mL). Combined organic phase was washed with H₂O (20 mL) and dried over anhydrous Na₂SO₄. After concentration the crude product was purified by flash chromatography on silica gel to give a desired keto photoprecursor.

2-(Furan-2-yl)-N-(8-oxo-5,6,7,8-tetrahydronaphthalen-1-yl)benzenesulfonamide (10c):

Following the general procedure C, compound **10c** (184 mg, 64%) was obtained from the Suzuki coupling of **9b** with **6a** (300 mg) as white solid. ¹H NMR (500 MHz, CDCl₃): δ 12.16 (s, 1H), 8.31 (d, J = 8.0 Hz, 1H), 7.67 – 7.53 (m, 3H), 7.48 (t, J = 7.7 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.24 (t, J = 8.0 Hz, 1H), 6.98 (d, J = 3.4 Hz, 1H), 6.80 (d, J = 7.4 Hz, 1H), 6.60 – 6.55 (m, 1H), 2.90 (t, J = 6.1 Hz, 2H), 2.62 (t, J = 6.4 Hz, 2H), 2.04 (p, J = 6.3 Hz, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 201.78, 149.73, 146.35, 143.42, 140.74, 136.42, 134.46, 132.71, 131.06, 130.97, 130.07, 127.82, 122.30, 118.01, 114.63, 112.02, 111.86, 40.17, 30.76, 22.55 ppm; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₀H₁₇NO₄SNa 390.0770; found: 390.0758.

4.2.4. Irradiation of photo precursors (General procedure D)

A solution of photo precursor (0.30 mmol) in DMSO (80 mL, unless otherwise mentioned) was degassed by bubbling of nitrogen or argon for 45 min. The solution was irradiated with UV LED based illuminator, seven 2.9 W (total power 20.3W) @ 365 nm LED Engin chips. After completion of the reaction (progress of the reaction was monitored by ¹H NMR), the solvent was removed under vacuum, and a residue was subjected to purification by flash chromatography on silica gel to obtain photoproducts with moderate to good yields.

(5S,6S,8aS)-5-Hydroxy-5,6-dihydro-6,8a-epoxybenzo[g]benzo[4,5]isothiazolo[2,3-a]azocine 13,13-dioxide (11a):

General procedure D was followed on 0.100 g (0.30 mmol) scale of photoprecursor **8a**. After the photochemical reaction (irradiation time = 1 h), the crude product was purified by flash chromatography (SiO₂, 0-40% ethyl acetate in hexanes) which afforded 87 mg (87%) of photoproduct (**11a**) as a white amorphous solid.

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.08 (d, J = 7.6 Hz, 1H), 7.91–7.86 (m, 1H), 7.85–7.81 (m, 2H), 7.73 (dd, J = 5.9, 3.4 Hz, 1H), 7.65 (d, J = 7.4 Hz, 1H), 7.35 (dd, J = 6.1, 3.4 Hz, 2H),

6.79 (dd, $J = 5.7, 1.8$ Hz, 1H), 6.30 (d, $J = 6.5$ Hz, 1H), 6.12 (d, $J = 5.7$ Hz, 1H), 5.00 (s, 1H), 4.97 (dd, $J = 6.5, 3.3$ Hz, 1H) ppm; ^{13}C NMR (126 MHz, DMSO-*d*₆) δ 138.95, 137.44, 135.61, 135.13, 134.64, 132.30, 130.41, 129.03, 128.08, 126.95, 126.77, 126.26, 125.51, 121.37, 99.35, 84.95, 74.51 ppm; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₈H₁₅NO₄SNa 350.0457; found: 350.0455.

(4*b*R,7*a*S,8*R*)-8-Hydroxy-7*a*,8-dihydrobenzo[4,5]isothiazolo[2,3-*a*]thieno[2,3-*b*]quinoline 14,14-dioxide (**11b**):

General procedure **D** was followed on 0.100 g (0.29 mmol) scale of photoprecursor **8b**. After the photochemical reaction (irradiation time = 4 h), the crude product was purified by flash chromatography (SiO₂, 0-60% ethyl acetate in hexanes) which afforded 81 mg (81%) of photoproduct (**11b**) as a brown solid.

^1H NMR (500 MHz, CDCl₃) δ 7.85 (dtd, $J = 23.1, 16.9, 15.1, 7.9$ Hz, 3H), 7.64 (s, 1H), 7.64 – 7.49 (m, 2H), 7.42 (q, $J = 4.6$ Hz, 2H), 6.24 (dd, $J = 6.7, 2.7$ Hz, 1H), 5.41 (dd, $J = 6.7, 2.3$ Hz, 1H), 5.05 (d, $J = 5.7$ Hz, 1H), 4.45 (dt, $J = 5.7, 2.6$ Hz, 1H), 2.40 (s, 1H; OH) ppm; ^{13}C NMR (126 MHz, CDCl₃) δ 140.12, 136.14, 134.27, 133.88, 130.91, 130.27, 128.28, 128.03, 127.28, 126.06, 125.53, 124.46, 121.36, 117.41, 82.49, 67.17, 66.48 ppm; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₃NO₃S₂Na 366.0229; found: 366.0242.

(5*R*,6*R*,8*a*R)-5-Hydroxy-10,11-dimethoxy-5,6-dihydro-6,8*a*-epoxybenzo[*g*]benzo[4,5]isothiazolo[2,3-*a*]azocine 13,13-dioxide (**11c**):

General procedure **D** was followed on 0.100 g (0.26 mmol) scale of photoprecursor **8c**. After the photochemical reaction (irradiation time = 2 h), the crude product was purified by flash chromatography (SiO₂, 0-40% ethyl acetate in hexanes) which afforded 83 mg (83%) of photoproduct (**11c**) as a brown solid.

^1H NMR (500 MHz, DMSO-*d*₆) δ 8.08 (d, $J = 7.6$ Hz, 1H), 7.91-7.86 (m, 1H), 7.85-7.81 (m, 2H), 7.73 (dd, $J = 5.9, 3.4$ Hz, 1H), 7.65 (d, $J = 7.4$ Hz, 1H), 7.35 (dd, $J = 6.1, 3.4$ Hz, 2H), 6.79 (dd, $J = 5.7, 1.8$ Hz, 1H), 6.30 (d, $J = 6.5$ Hz, 1H), 6.12 (d, $J = 5.7$ Hz, 1H), 5.00 (s, 1H), 4.97 (dd, $J = 6.5, 3.3$ Hz, 1H) ppm; ^{13}C NMR (126 MHz, DMSO-*d*₆) δ 138.95, 137.44, 135.61, 135.13, 134.64, 132.30, 130.41, 129.03, 128.08, 126.95, 126.77, 126.26, 125.51, 121.37, 99.35, 84.95, 74.51 ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₈NO₆S 388.0849; found: 388.0857.

(4*b*R,7*a*S,8*R*)-8-Hydroxy-2,3-dimethoxy-7*a*,8-dihydrobenzo[4,5]isothiazolo[2,3-*a*]thieno[2,3-*b*]quinoline 14,14-dioxide (**11d**):

General procedure **D** was followed on 0.100 g (0.24 mmol) scale of photoprecursor **8d**. After the photochemical reaction (irradiation time = 8 h), the crude product was purified by flash chromatography (SiO₂, 0-60% ethyl acetate in hexanes) which afforded 78 mg (78%) of photoproduct (**11d**) as a white amorphous solid.

^1H NMR (500 MHz, CDCl₃) δ 7.55 (dd, $J = 6.4, 2.7$ Hz, 1H), 7.50 (dd, $J = 5.8, 3.0$ Hz, 1H), 7.41 (dd, $J = 6.2, 2.8$ Hz, 2H), 7.24 (s, 1H), 7.13 (s, 1H), 6.23 (dd, $J = 6.7, 2.8$ Hz, 1H), 5.39 (dd, $J = 6.6, 2.2$ Hz, 1H), 5.04 (d, $J = 5.7$ Hz, 1H), 4.39 (dt, $J = 5.5, 2.6$ Hz, 1H), 4.03 (s, 3H), 4.00 (s, 3H) ppm; ^{13}C NMR (126 MHz, CDCl₃) δ 154.15, 151.26, 136.48, 132.70, 131.22, 128.24, 128.09, 127.28, 125.94, 125.88, 124.39, 117.56, 106.66, 102.21, 82.58, 67.11, 66.24, 56.66, 56.59 ppm; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₉H₁₇NO₅S₂Na 426.0440; found: 426.0442.

(4*b*R,7*a*S,8*S*)-8-Hydroxy-8-methyl-7*a*,8-dihydrobenzo[4,5]isothiazolo[2,3-*a*]furo[2,3-*b*]quinoline 14,14-dioxide (**11e**):

General procedure **D** was followed on 0.100 g (0.29 mmol) scale of photoprecursor **10a**. After the photochemical reaction (irradiation time = 5 h), the crude product was purified by flash chromatography (SiO₂, 0-40% ethyl acetate in hexanes) which afforded 79 mg (79%) of photoproduct (**11e**) and 14 mg (14%) of photoproduct (**11ea**) as a white solid.

¹ H NMR (500 MHz, CDCl ₃) δ 7.90 (d, <i>J</i> = 7.9 Hz, 1H), 7.81 (t, <i>J</i> = 7.8 Hz, 1H), 7.69 (q, <i>J</i> = 8.3, 7.8 Hz, 3H), 7.49 (q, <i>J</i> = 7.8 Hz, 2H), 7.38 (t, <i>J</i> = 7.5 Hz, 1H), 6.47 – 6.42 (m, 1H), 4.83 (s, 1H), 4.20 (s, 1H), 2.99 (s, 1H; OH), 1.75 (s, 3H) ppm; ¹³ C NMR (126 MHz, CDCl ₃) δ 147.12, 138.79, 135.71, 134.40, 133.14, 131.81, 131.15, 129.94, 127.79, 125.90, 125.71, 124.51, 121.55, 100.29, 97.35, 70.39, 63.44, 24.59 ppm; HRMS (ESI) m/z: [M + Na] ⁺ calcd for C ₁₈ H ₁₅ NO ₄ SnA 364.0614; found: 364.0599.	338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
<i>(5R,6S,8aS)-5-Hydroxy-5-methyl-5,6-dihydro-6,8a-epoxybenzo[g]benzo[4,5]isothiazolo[2,3-a]azocine 13,13-dioxide (11ea):</i>	345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
¹ H NMR (500 MHz, CDCl ₃) δ 7.96 (d, <i>J</i> = 7.3 Hz, 1H), 7.75 (dt, <i>J</i> = 13.0, 7.8 Hz, 3H), 7.64 (d, <i>J</i> = 7.8 Hz, 1H), 7.59 (d, <i>J</i> = 7.2 Hz, 1H), 7.37 (dt, <i>J</i> = 18.7, 7.4 Hz, 2H), 6.62 (d, <i>J</i> = 5.5 Hz, 1H), 5.88 (d, <i>J</i> = 5.8 Hz, 1H), 4.91 (s, 1H), 3.62 (s, 1H; OH), 1.81 (s, 3H) ppm; ¹³ C NMR (126 MHz, CDCl ₃) δ 138.62, 138.33, 135.98, 135.24, 133.54, 131.35, 130.13, 129.23, 129.02, 128.20, 127.74, 125.47, 124.35, 121.36, 99.40, 89.60, 78.06, 24.62 ppm; HRMS (ESI) m/z: [M + Na] ⁺ calcd for C ₁₈ H ₁₅ NO ₄ SnA 364.0614; found: 364.0593.	347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
<i>(4bR,7aS,8R)-8-Hydroxy-8-methyl-7a,8-dihydrobenzo[4,5]isothiazolo[2,3-a]thieno[2,3-b]quinoline 14,14-dioxide (11f):</i>	353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
General procedure D was followed on 0.100 g (0.28 mmol) scale of photoprecursor 10b . After the photochemical reaction (irradiation time = 3 h), the crude product was purified by flash chromatography (SiO ₂ , 0-60% ethyl acetate in hexanes) which afforded 78 mg (78%) of photoproduct (11f) as a white solid.	356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
¹ H NMR (500 MHz, CDCl ₃) δ 7.82 – 7.74 (m, 3H), 7.61 (dd, <i>J</i> = 13.3, 7.4 Hz, 2H), 7.47 (d, <i>J</i> = 7.5 Hz, 2H), 7.36 (t, <i>J</i> = 7.7 Hz, 1H), 6.22 (dd, <i>J</i> = 6.9, 3.1 Hz, 1H), 5.13 (d, <i>J</i> = 6.7 Hz, 1H), 4.36 (s, 1H), 1.80 (s, 3H) ppm; ¹³ C NMR (126 MHz, CDCl ₃) δ 142.08, 136.61, 134.03, 132.53, 132.21, 130.03, 129.97, 127.84, 127.16, 126.31, 125.75, 125.62, 121.48, 118.29, 82.62, 71.21, 71.02, 25.61 ppm; HRMS (ESI) m/z: [M + Na] ⁺ calcd for C ₁₈ H ₁₅ NO ₃ S ₂ Na 380.0385; found: 380.0392.	360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
<i>(3aR,15aS,15bS)-15a-Hydroxy-14,15,15a,15b-tetrahydro-13H-benzo[de]benzo[4,5]isothiazolo[2,3-a]furo[2,3-b]quinoline 8,8-dioxide (11g):</i>	367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
General procedure D was followed on 0.100 g (0.27 mmol) scale of photoprecursor 10c . After the photochemical reaction (irradiation time = 2 h), the crude product was purified by flash chromatography (SiO ₂ , 0-50% ethyl acetate in hexanes) which afforded 91 mg (91%) of photoproduct (11g) as a pale-yellow solid.	369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
¹ H NMR (500 MHz, CDCl ₃) δ 7.89 (d, <i>J</i> = 7.8 Hz, 1H), 7.81 (t, <i>J</i> = 7.6 Hz, 1H), 7.75 – 7.66 (m, 2H), 7.50 (d, <i>J</i> = 7.7 Hz, 1H), 7.35 (t, <i>J</i> = 7.8 Hz, 1H), 7.16 (d, <i>J</i> = 7.8 Hz, 1H), 6.47 (t, <i>J</i> = 3.0 Hz, 1H), 4.87 (t, <i>J</i> = 2.7 Hz, 1H), 4.20 (t, <i>J</i> = 2.6 Hz, 1H), 3.03 (s, 1H; OH), 2.87 – 2.81 (m, 1H), 2.75 (ddd, <i>J</i> = 16.9, 12.1, 5.2 Hz, 1H), 2.10 – 2.00 (m, 2H), 1.91 – 1.85 (m, 1H), 1.84 – 1.76 (m, 1H) ppm; ¹³ C NMR (126 MHz, CDCl ₃) δ 146.94, 139.24, 138.93, 134.35, 133.08, 131.69, 131.07, 130.77, 129.11, 128.63, 124.54, 123.22, 121.55, 100.52, 97.43, 68.61, 61.98, 34.59, 29.54, 18.15 ppm; HRMS (ESI) m/z: [M + Na] ⁺ calcd for C ₂₀ H ₁₇ NO ₄ SnA 390.0770; found: 390.0780.	373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
4.2.5. Post photo modifications (General procedure E)	381 382 383 384 385 386 387 388 389
Typically, 1 equiv. photoproduct and 1 equiv. 1,3-dicarbonyl compound were dissolved in 0.7 mL dry acetonitrile. To this solution, 0.08 equiv. L-proline and 1.3 equiv. 37% aqueous formaldehyde solution were added. The reaction was stirred at ambient temperature until complete consumption of the photoproduct, as determined by ¹ H NMR analysis. The reaction was diluted with water and extracted with EtOAc. The organic layer was separated, dried over Na ₂ SO ₄ , and concentrated under vacuum. The mixture was then purified by flash chromatography.	382 383 384 385 386 387 388 389

(5aR,17aS,17bS)-17a-Hydroxy-2-methylene-1,2,4a,16,17,17a,17b,17c-octahydro-3H,15H-benzo[de]benzo[4,5]isothiazolo[2,3-a]pyrano[3',2':4,5]furo[2,3-b]quinolin-3-one 10,10-dioxide (12):

General procedure E was followed using 50 mg (11g; 0.13 mmol), 20 mg of Meldrum's acid (0.13 mmol), 3.0 mg L-proline (0.04 mmol), and 0.03 mL formaldehyde solution (37 % w/w) in water (0.11 mmol) to generate the title compound 12 (33 mg, 54%).

¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 7.9 Hz, 1H), 7.79 (t, *J* = 7.7 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.21 (d, *J* = 7.7 Hz, 1H), 6.54 (s, 1H), 5.84 (d, *J* = 5.7 Hz, 1H), 5.77 (s, 1H), 3.32 (d, *J* = 10.5 Hz, 1H), 3.02 (s, 1H; OH), 2.95 – 2.85 (m, 2H), 2.85 – 2.74 (m, 2H), 2.40 (dtd, *J* = 11.1, 5.7, 3.0 Hz, 1H), 2.04 – 1.93 (m, 2H), 1.92 – 1.84 (m, 1H), 1.72 (td, *J* = 13.1, 2.8 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 164.41, 139.52, 138.85, 134.83, 132.54, 131.58, 131.38, 131.04, 130.04, 129.90, 129.22, 129.06, 124.83, 124.01, 121.49, 103.54, 98.87, 69.47, 58.18, 40.54, 34.87, 31.24, 29.51, 17.86 ppm.

(5aR,17aS,17bS)-17a-Hydroxy-2-methylene-1,2,4a,16,17,17a,17b,17c-octahydro-3H,15H-benzo[de]benzo[4,5]isothiazolo[2,3-a]pyrano[3',2':4,5]furo[2,3-b]quinolin-3-one 10,10-dioxide (13):

General procedure E was followed using 50 mg (11g; 0.13 mmol), 22 mg of 1,3-dimethylbarbituric acid (0.13 mmol), 3.0 mg L-proline (0.04 mmol), and 0.03 mL formaldehyde solution (37% w/w) in water (0.11 mmol) to generate the title compound 13 (32 mg, 43%).

¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 7.7 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.21 (d, *J* = 7.8 Hz, 1H), 5.77 (d, *J* = 4.8 Hz, 1H), 3.46 (s, 3H), 3.42 (s, 3H), 3.27 (d, *J* = 11.2 Hz, 1H), 3.02 (d, *J* = 17.1 Hz, 1H), 2.88 (d, *J* = 16.5 Hz, 1H), 2.77 – 2.69 (m, 2H), 2.47 – 2.39 (m, 1H), 1.99 (d, *J* = 11.0 Hz, 1H), 1.92 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 162.59, 153.72, 151.03, 139.83, 138.91, 134.19, 133.10, 131.13, 131.00, 129.82, 129.51, 128.84, 124.10, 123.05, 121.77, 103.55, 99.41, 83.96, 69.70, 57.53, 39.90, 35.40, 29.68, 28.80, 28.17, 19.99, 18.03 ppm.

5. Conclusions

Aromatic sulfonamides, readily accessible via a modular “assembly” from common building blocks/diversity inputs, undergo excited state intramolecular proton transfer (ESIPT) yielding N-sulfonyl aza-*o*-xylylenes, which are capable of intramolecular [4+2] and [4+4] cycloadditions with tethered unsaturated pendants, most likely in the triplet manifold. The primary photoproducts are amenable to experimentally simple postphotochemical ground state reactions, offering opportunities to introduce additional diversity inputs and further grow molecular complexity as quantified by the Böttcher complexity indices. These findings expand the scope of ESIPT-based synthetic approaches and, generally, enhance the toolchest of photoassisted synthetic chemistry.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.com/xxx/s1, NMR spectra.

Funding: This research is funded by the US National Science Foundation, grant CHE-2247411.

Data Availability Statement: The data presented in this study are available in SI www.mdpi.com/xxx/s1

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Smith, T. P.; Zaklika, K.A.; Thakur, K.; Barbara, P. F. Excited-State Intramolecular Proton Transfer in 1-(Acylamino)anthraquinones. *J. Am. Chem. Soc.* **1991**, *113*, 4035–4036.

2. Schmidtke, S.; Underwood, D. F.; Blank, D. A. Probing Excited-State Dynamics and Intramolecular Proton Transfer in 1-Acylaminoanthraquinones via the Intermolecular Solvent Response. *J. Phys. Chem. A* **2005**, *109*, 7033–7045. 437

3. Mukhina, O. A.; Bhuvan Kumar, N. N.; Arisco, T. M.; Valiulin, R. A.; Metzel, G. A.; Kutateladze, A. G. Rapid Photoassisted Access to N,O,S-Polyheterocycles with Benzoazocine and Hydroquinoline Cores: Intramolecular Cycloadditions of Photo-generated Azaxylylenes. *Angew. Chem. Int. Ed.* **2011**, *50*, 9423–9428. 438

4. Umstead, W. J.; Mukhina, O. A.; Bhuvan Kumar, N. N.; Kutateladze, A. G. Photoinduced Cycloadditions in the Diversity-Oriented Synthesis Toolbox: Increasing Complexity with Straightforward Post-Photochemical Modifications. *Aust. J. Chem.* **2015**, *68*, 1672–1681. 439

5. Umstead, W. J.; Mukhina, O. A.; Andrei G. Kutateladze, A. G. Conformationally Constrained Penta(hetero)cyclic Molecular Architectures by Photoassisted Diversity-Oriented Synthesis. *Eur. J. Org. Chem.* **2015**, *2015*, 2205–2213. 440

6. Mukhina, O. A.; Kutateladze, A. G. Oxazolines as Dual-Function Traceless Chromophores and Chiral Auxiliaries: Enantioselective Photoassisted Synthesis of Polyheterocyclic Ketones. *J. Am. Chem. Soc.* **2016**, *138*, 2110–2113. 441

7. Cronk, W. C.; Olga A. Mukhina, O. A.; Kutateladze, A. G. Intramolecular Photoassisted Cycloadditions of Azaxylylenes and Postphotochemical Capstone Modifications via Suzuki Coupling Provide Access to Complex Polyheterocyclic Biaryls. *J. Org. Chem.* **2014**, *79*, 1235–1246. 442

8. Cronk, W. C.; Mukhina, O. A.; Kutateladze, A. G. Photoinduced “Double Click” Cascade Offers Access to Complex Polyheterocycles from Readily Available Isatin-Based Photoprecursors *Org. Lett.* **2016**, *18*, 3750–3753. 443

9. Schreiber, S. L. Target-Oriented and Diversity-Oriented Organic Synthesis in Drug Discovery. *Science*, **2000**, *287*, 1964–1969. 444

10. Gerard, B.; Jones, G.; Porco, J. A. A Biomimetic Approach to the Rocaglamides Employing Photogeneration of Oxidopyryliums Derived from 3-Hydroxyflavones. *J. Am. Chem. Soc.* **2004**, *126*, 13620–13621. 445

11. Roche, S. P.; Cencic, R.; Pelletier, J.; Porco, J. A. Jr. Biomimetic photocycloaddition of 3-hydroxyflavones: synthesis and evaluation of rocaglate derivatives as inhibitors of eukaryotic translation. *Angew. Chem. Int. Ed.* **2010**, *49*, 6533–6538. 446

12. Wang, W.; Clay, A.; Krishnan, R.; Lajkiewicz, N. J.; Brown, L. E.; Sivaguru, J.; Porco, J. A., Jr. Total Syntheses of the Isomeric Aglain Natural Products Foveoglin A and Perviridisin B: Selective Excited-State Intramolecular Proton-Transfer Photocycloaddition. *Angew. Chem., Int. Ed.* **2017**, *56*, 14479–14482. 447

13. Karkas, M. D.; Porco, J. A., Jr.; Stephenson, C. R. J. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. *Chem. Rev.* **2016**, *116*, 9683–9747. 448

14. Reddy, D. S.; Mikhina, O. A.; Cronk, W. C.; Kutateladze, A. G. Polyheterocycle-carbohydrate chimeras: photoassisted synthesis of 2,5-epoxybenzoxazines and 2,5-epoxybenzazocine scaffolds and their postphotochemical hydroxylations. *Pure Appl. Chem.* **2017**, *89*, 259–268. 449

15. Shi, Z.; Li, Y.; Li, N.; Wang, W.-Z.; Lu, H.-K.; Yan, H.; Yuan, Y.; Zhu, J.; Ye, K.-Y. Electrochemical Migratory Cyclization of N-acylsulfonamides. *Angew. Chem., Int. Ed.* **2022**, *61*, e202206058. 450

16. Kornahrens, A. F.; Cognetta III, A. B.; Brody, D. M.; Matthews, M. L.; Cravatt, B. F.; Boger, D. L. Design of Benzoxathiazin-3-one 1,1-Dioxides as a New Class of Irreversible Serine Hydrolase Inhibitors: Discovery of a Uniquely Selective PNPLA4 Inhibitor. *J. Am. Chem. Soc.* **2017**, *139*, 7052–7061. 451

17. Awakawa, T.; Barra, L.; Abe, I. Biosynthesis of sulfonamide and sulfamate antibiotics in actinomycete. *Journal of Industrial Microbiology and Biotechnology*, **2021**, *48*, kuab001. 452

18. Ovung, A.; Bhattacharyya, J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. *Biophysical Reviews* **2021**, *13*, 259–272. 453

19. Kiran, I. N. C.; Reddy, R. S.; Lagishetti, C.; Xu, H.; Wang, Z.; He, Y. Selective Aza Diels–Alder and Domino [4+2]/[2+2] Cycloaddition Reactions of Arynes with N-Sulfonyl Ketimines. *J. Org. Chem.* **2017**, *82*, 1823–1832. 476

20. Majumdar, K. C.; Mondal, S. Recent Developments in the Synthesis of Fused Sultams. *Chem. Rev.* **2011**, *111*, 7749–7773. 477

21. Tumey, L. N.; Robarge, M. J.; Gleason, E.; Song, J.; Murphy, S. M.; Ekema, G.; Doucette, C.; Hanniford, D.; Palmer, M.; Pawlowski, G.; Danzig, J.; Loftus, M.; Hunady, K.; Sherf, B.; Mays, R. W.; StrickerKrongrad, A. S.; Brunden, K. R.; Bennani, Y. L.; Harrington, J. 3-Indolyl sultams as selective CRTH2 antagonists. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3287–3290. 479

22. Malleron, J. L.; Comte, M. T.; Gueremy, C.; Peyronel, J. F.; Truchon, A.; Blanchard, J. C.; Doble, A.; Piot, O.; Zundel, J. L.; Huon, C.; Martin, B.; Mouton, P.; Virooulaud, A.; Allam, D.; Betschart, J. Naphthosultam Derivatives: A New Class of Potent and Selective 5-HT2 Antagonists. *J. Med. Chem.* **1991**, *34*, 2477–2483. 480

23. Novitskiy, I. M.; Kutateladze, A. G. DU8ML: Machine Learning-Augmented Density Functional Theory Nuclear Magnetic Resonance Computations for High-Throughput In Silico Solution Structure Validation and Revision of Complex Alkaloids. *J. Org. Chem.* **2022**, *87*, 4818–4828. 485

24. Novitskiy, I. M.; Kutateladze, A. G. Brief overview of recently reported misassigned natural products and their in silico revisions enabled by DU8ML, a machine learning-augmented DFT computational NMR method. *Nat. Prod.* **2022**, *39*, 2003–2007. 488

491

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 492

493

494