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Abstract. In this paper, we propose a unified proximal gradient method with
extrapolation (UPG-E) to solve a class of nonconvex and nonsmooth compos-
ite optimization. UPG-E provides a unified treatment to both convex and
nonconvex problems, and adaptively estimates the nonconvexity modulus of
the possibly nonconvex component function in the objective function. It is

shown that without restarting the extrapolation, UPG-E achieves the optimal
convergence rate of the first-order methods for solving convex composite opti-

mization. In the case that the problem is nonconvex, the method performs as
a proximal gradient method with extrapolation and guaranteed global conver-
gence. Moreover, a linear convergence rate can be achieved by UPG-E under
proper additional regularity assumptions. Our numerical experiments show the
performance of UPG-E is very promising compared with other well-established
proximal gradient methods in the literature.

1. Introduction. Let us consider the composite optimization problem

min
x∈X

F (x) := f(x) + p(x), (1)

where X ⊂ R
n is a closed convex set, f is Lipschitz continuously differentiable on

an open set containing X , but possibly nonconvex and p : X → R is a proper closed
convex, but possibly nonsmooth, function. Note that the constraint x ∈ X can be
also formulated as an indicator function of X into the function p. In applications,
the function f often serves as a model fitting term, while the function p usually plays
as a regularization term to promote certain solution structure and/or increase the
model stability. The model optimization problem (1) recently has many important
applications in machine learning, statistical inference, and image processing (e.g.,
[9, 8, 7, 5]), especially when the component objective function f is nonconvex.

In theory, problem (1) can be solved by standard Proximal Gradient (PG) meth-
ods, which in some sense are natural extensions of the gradient descent methods to
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solve the composite optimization. Hence, as the standard gradient descent method-
s, the PG methods could be quite slow. To accelerate the convergence speed, more
efficient proximal gradient algorithms exploiting extrapolation techniques have been
developed, that is to let yk = xk+βk(xk−xk−1) with extrapolation factor βk ∈ [0, 1]
and compute the next iteration as

xk+1 = argmin
x∈X

{
〈∇f(yk),x〉+ p(x) + η/2‖x− yk‖

2
2

}
,

where η > 0 is some constant and usually required to be greater than the Lips-
chitz constant of the gradient of f . When f is convex, one of the most well-known
methods using extrapolation techniques to solve (1) is the Fast Iterative Shrinkage-
thresholding Algorithm (FISTA) [1], which is in spirit similar to the Nesterov’s
accelerated gradient method [12, 13]. These methods can be shown to have optimal
O(1/k2) rate to reduce the function value gap, where k is the iteration number.
However, all these traditional optimal methods using extrapolation can be only
applied to convex optimization and can not guarantee convergence when f is not
convex. There are more recent developments of proximal gradient methods to deal
with the case that the component objective function f in (1) is not necessarily con-
vex, such as the methods developed in [5, 17, 18]. However, there is no convergence
rate analysis for these methods in either of the cases that the objective function is
convex or not. A more recent effective remedy for proximal gradient methods to
deal with the nonconvexity of f in (1) is proposed in [16] by the Proximal Gradien-
t method with Extrapolation (PGE), which restricts the extrapolation parameter
0 ≤ βk ≤ β for some β < 1. PGE is shown to have much better performance than
standard PG methods. But this crucial threshold β given in [16] depends explicitly
on the usually unknown nonconvexity modulus of f and a poor estimate of this
parameter could significantly affect the practical performance. Moreover, when f is
not explicitly known to be convex but has hidden convex structure, the restricted
extrapolation applied in PGE does not automatically reduce to the optimal ex-
trapolation used in the accelerated gradient methods such as FISTA or Nesterov’s
optimal methods. To overcome this drawback, some uniform proximal gradient
methods were proposed in [3, 4, 10]. These methods would automatically reduce
to an accelerated proximal gradient method when the objective function is convex,
while the global convergence is still guaranteed even when the objective function
is nonconvex. However, to ensure global convergence, [3] requires all iterates must
belong to a bounded set, which might not be theoretically justified in many ap-
plications, and the method in [4] would just reduce to a simple proximal descent
method without any momentum acceleration steps for nonconvex optimization. The
method in [10] is developed based on modifications of FISTA. However, it is unclear
how the extrapolation steps would apply when minimizing a nonconvex function.
In addition, all these uniform gradient methods do not provide a linear convergence
rate analysis for nonconvex optimization under certain additional proper regularity
conditions, which are often practically satisfied in many applications.

Motivated from the extrapolation techniques to accelerate convergence for both
convex and nonconvex optimization [1, 3, 16], we propose a new uniform proximal
gradient method with momentum extrapolation, called UPG-E, to solve (1). As
previous uniform gradient methods, our UPG-E guarantees global convergence for
solving the possibly nonconvex problem (1) and will automatically reduce to an op-
timal proximal gradient method, which ensures optimal iteration complexity, when
the objective is convex and no restart step is applied. Unlike the PGE method
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Initialization: Given x1 ∈ X, ρ > 1, λ ∈ [0, 1], integer t ≥ 3 and L > L;
Set x̆1 = x1, t0 = 0 and µ0 = 0.

For t = 1, 2, 3, . . .

1. Set βt = 2/(t+ 1− t0).

2. If βt == 1, let x̂t = xt and µt = µt−1;

3. Else choose the smallest integer j ≥ 0 such that βt = max{βt, τt},
x̂t = βtx̆t + (1− βt)xt and µt = min{µt−1 + ρj − 1, L} satisfy

f(xt)− f(x̂t)− 〈∇f(x̂t),xt − x̂t〉 ≥ −µt

2 ‖xt − x̂t‖
2,

where τt = λτ t + (1− λ)τ t, τ t =
1
2

(
1−

√
L−µt

L+µt

)
and τ t =

µt

L+µt
.

4. Set ηt = 2L/(2− βt) and γt = βtηt.

5. xt+1 = argminx∈X

{
〈∇f(x̂t),x〉+

ηt

2 ‖x− x̂t‖
2
+ p(x)

}
.

6. If mod(t, t) == 0, let t0 = t;

7. Else x̆t+1 = argminx∈X

{
〈∇f(x̂t),x〉+

γt

2 ‖x− x̆t‖
2
+ p(x)

}
.

end

Alg. 1. A unified proximal gradient method for nonconvex com-
posite optimization with extrapolation (UPG-E)

developed in [16], UPG-E adaptively estimates the nonconvexity modulus of the
possibly nonconvex function f , which essentially dynamically determines the exten-
t of extrapolation that can be used without losing global convergence. Moreover,
unlike the methods given in [3, 4], UPG-E does not require the boundedness of
the iterates and the extrapolation techniques are applied even for the nonconvex
minimization (see more detail discussions in the next section). Furthermore, under
some error bound conditions and strictly separated isocost surface conditions on
F , UPG-E achieves linear convergence rate on both the generated iterates and the
associated objective function values.

The paper is organized as follows. We first present our unified proximal gradient
method with extrapolation (UPG-E), Alg. 1, in Section 2. Then, we show the global
convergence of UPG-E in Section 3. The linear convergence rate of UPG-E under
additional proper assumptions is presented in Section 4. Numerical experiments
evaluating the performance of UPG-E are given in Section 5. We finally draw some
conclusions in Section 6.

2. Algorithm description. Throughout this paper, we use the following assump-
tion.

Assumption 2.1. The gradient of f is Lipschitz continuous, i.e., there exists a
constant L > 0 such that for any x,y ∈ X , we have

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (2)

From Assumption 2.1, there exists a constant µ ∈ [0,L] such that

−
µ

2
‖x− y‖2 ≤ f(y)− f(x)− 〈∇f(x),y − x〉 ≤

L

2
‖x− y‖2, (3)

for any x,y ∈ X . Clearly, when f is a convex function, then (3) holds with the
nonconvexity modulus µ = 0.
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Our uniform proximal gradient method with extrapolation (UPG-E) is proposed
in Alg. 1, for which we have the following comments.

First, the nonconvex modulus of µ of f is adaptively estimated by a line search
procedure in step 3 of Alg. 1. Hence, no prior knowledge of µ is needed. The
line search finds a proper µt such that the line search condition (the inequality)
in step 3 is satisfied. Since the parameter ρ > 1, we have ρj goes to infinity as
j goes to infinity. So, by the Lipschitz continuity (2) of ∇f and the setting of
µt = min{µt−1 + ρj − 1, L} with L > L, the line search condition in step 3 will be
satisfied for j sufficiently large. So, the line search in step 3 is well-defined.

Second, a momentum extrapolation is used in Alg. 1 with a dynamic momentum
factor θt := 1−βt ∈ [0, 1]. Note that the scalar τt in step 3 is dynamically adjusted
as a convex combination of 0 ≤ τ t ≤ τ t ≤ 1/2, which depends on the nonconvex
modulus estimation µt of f . When f is convex, it follows from the initial setting
µ0 = 0 that the line search condition in step 3 will be satisfied with j = 0 and
µt = 0 for all t ≥ 1. Then, we will have from the definitions of τ t and τ t in step 3
that τ t = τ t = 0, which gives τt = λτ t + (1 − λ)τ t = 0 for any λ ∈ [0, 1]. So, we
have βt = max{βt, τt} = βt = 2/(t+ 1− t0) for all t ≥ 1, where t0 is a nonnegative
integer with initial value zero and is possibly adjusted in step 6. In particular,
step 6 resets t0 to be t whenever mod(t, t) = 0 for restarting the extrapolation at
xt+1 every t iterations. Here, t is a fixed positive integer, which is an algorithm
parameter, and mod(t, t) returns the remainder after division of t by t. If no restart
is applied, i.e., t0 = 0, for example when the restart parameter t = ∞ or t ≤ t,
we will have βt = 2/(t + 1) and θt = 1 − βt = (t − 1)/(t + 1), which is just the
standard extrapolation factor of Nesterov’s optimal gradient method. On the other
hand, by restarting the extrapolation after every t ≥ 3 iterations, UPG-E will have
a linear convergence under certain proper conditions and often has better practical
performance. However, when f is nonconvex, µt could be strictly positive, and in
fact, would reach a positive limit µ > 0 after finite number of iterations. As a
result, τt would approach a limit t > 0 (see (26)) after finite number of iterations,
which by βt ≥ τt ensures that the extrapolation factor θt = 1−βt ≤ 1− τ is strictly
less than one. This is a key condition for ensuring global convergence when f is
nonconvex. Note that θt can be arbitrarily close to one when f is convex. The
adaptive updating formula of τt given by Alg. 1 is derived from our analysis. On
the other hand, observe that even when f is nonconvex, it is still possible that
µt = 0 for all t ≥ 1 in practical computations. This essentially implies that the
optimal aggressive extrapolation for convex optimization could be even applied to
nonconvex optimization in practice without losing convergence. Furthermore, we
can see that for the most nonconvex case, i.e. µ = L, the extrapolation factor θ can
be still as large as 1/2.

Third, two proximal gradient steps were performed in steps 5 and 7 of Alg. 1. In
our UPG-E algorithm, we assume that the function p(·) and the convex set X are
simple such that these convex proximal subproblems can be solved relatively easily
or by closed form solution. When f is convex and t = ∞, we have from step 4 that
the proximal parameter γt = βtηt = 2Lβt/(2− βt) = 2L/t, which corresponds to a
more aggressive stepsize 1/γt = t/(2L) as t goes to infinity. And even for the most
nonconvex case, i.e. µ = L, we have γt = 2L/3 for all t ≥ 2 and mod(t, t) 6= 1,
which is smaller than the gradient Lipschitz constant estimation L often used by
proximal gradient descent methods.
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3. Global convergence. In this section, to discuss the global convergence of UPG-
E, Alg. 1, we further need the following assumptions.

Assumption 3.1. Assume p has a strongly convex modulus ν ≥ 0, i.e., for any
x ∈ X , y ∈ X and p ∈ ∂p(x), it has

p(y)− p(x)− 〈p,y − x〉 ≥
ν

2
‖x− y‖2, (4)

where ∂p(x) is the subdifferential of the proper closed convex function p at x.

Note that ν = 0 simply means p is a convex function, instead of a strongly convex
function.

Assumption 3.2. Assume the function value of F on X is bounded below, i.e., we
have F > −∞, where F := infx∈X F (x).

We first show that when f is a convex function and no restart extrapolation is
used, i.e. by setting t = ∞, Alg. 1 will be just reduced to an accelerated gradient
method for solving convex composite optimization. In this case the convergence
properties of Alg. 1 are rather standard and similar convergence results have been
established in the literature [3]. Hence, here we just state the following convergence
theorem and only provide a sketch of its proof.

Theorem 3.3. Suppose the Assumptions 2.1 and 3.1 hold, and f is a convex func-
tion. If the solution set of problem (1) is not empty, for the iterates generated by
Alg. 1 with t = ∞, we have

F (xt+1)− F (x∗) ≤
2L

t(t+ 1)
‖x∗ − x1‖

2 (5)

and

min
k∈{1,...,t}

‖g(x̂k)‖
2 ≤

24L3

(L− L)t2(t+ 1)
‖x∗ − x1‖

2, (6)

where g(x̂k) = ηk(x̂k − xk+1) and x∗ is any optimal solution of (1).

Proof. Since µ0 = 0 and f is a convex function, we can see from Alg. 1 that

µt = 0 for all t ≥ 0, which implies τ t = 1
2

(
1−

√
(L− µt)/(L+ µt)

)
= 0 and

τ t = µt/(L+ µt) = 0 for all t ≥ 1. Hence, we have τt = 0 and βt = βt for all t ≥ 1.
In this case, if t = ∞, we will have mod(t, t) = t for all t ≥ 1, which by step 5 gives
t0 = 0. Then, βt = βt = 2/(t + 1 − t0) = 2/(t + 1) and Alg. 1 is just reduced to
an accelerated gradient method for solving convex composite optimization. Then,
following the similar convergence proofs given in [3], it is not difficult to show that
the iterates generated by Alg. 1 have the following property: for any x ∈ X , we
have

F (xt+1)− F (x) ≤ (1− βt)(F (xt)− F (x)) +
βtγt
2

[
‖x− x̆t‖

2 − ‖x− x̆t+1‖
2
]

−
ηt − L

2η2t
‖g(x̂t)‖

2 −
ηt
2
‖xt+1 − x̃t+1‖

2, (7)

where x̃t+1 = βtx̆t+1+(1−βt)xt, ηt−L = 2L/(2−βt)−L = L(t+1)/t−L > L−L > 0
and g(x̂t) = ηt(x̂t − xt+1). Dividing Γt = 2L/(t(t+1)), t ≥ 1, on both sides of (7),
for t ≥ 2, we obtain

1

Γt

(F (xt+1)− F (x)) +
ηt − L

2η2tΓt

‖g(x̂t)‖
2 +

ηt
2Γt

‖xt+1 − x̃t+1‖
2
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≤
1

Γt−1
(F (xt)− F (x)) +

βtγt
2Γt

[
‖x− x̆t‖

2 − ‖x− x̆t+1‖
2
]
,

which by ηt = L(t+ 1)/t, βt = 2/(t+ 1) and γt = 2L/t can be simplified to

1

Γt

(F (xt+1)− F (x)) +
L− L

4L3(t+ 1)/t3
‖g(x̂t)‖

2 +
(t+ 1)2

4
‖xt+1 − x̃t+1‖

2

≤
1

Γt−1
(F (xt)− F (x)) + ‖x− x̆t‖

2 − ‖x− x̆t+1‖
2. (8)

When t = 1, by (7) and β1 = 1, we have

1

Γ1
(F (x2)− F (x)) +

L− L

8L3
‖g(x̂1)‖

2 + ‖x2 − x̃t+1‖
2

≤ ‖x− x̆1‖
2 − ‖x− x̆2‖

2. (9)

Adding (8) and (9) for t = 1, . . . , k, we have

k∑

t=1

(
L− L

4L3(t+ 1)/t3
‖g(x̂t)‖

2 +
(t+ 1)2

4
‖xt+1 − x̃t+1‖

2

)
+

1

Γk

(F (xk+1)− F (x))

≤ ‖x− x̆1‖
2 = ‖x− x1‖

2, (10)

for any x ∈ X . Then, taking x = x∗ in (10) and noticing Γt = 2L/(t(t + 1)), we
can derive (5) and (6) by direct calculations.

In the following we focus on studying the convergence of Alg. 1 when f is not
necessarily a convex function. We first have the following lemma.

Lemma 3.4. Suppose the Assumptions 2.1 and 3.1 hold. Then, for the iterates
generated by Alg. 1, we have

F (xt+1) ≤ F (xt) +
µt + γt/βt

2
‖xt − x̂t‖

2

−
γt/βt

2
‖x̃t+1 − xt‖

2 −
ηt − L

2η2t
‖g(x̂t)‖

2

−
βtν

2
‖x̆t+1 − xt‖

2 −
ηt + ν

2
‖xt+1 − x̃t+1‖

2
, (11)

where

x̃t+1 = βtx̆t+1 + (1− βt)xt. (12)

Proof. We first observe that all the iterates xt, x̆t and x̂t are contained in X and
βt ∈ (0, 1] for all t ≥ 1. Then, by the definition of x̃t+1 in (12), we also have
x̃t+1 ∈ X , since X is a convex set. By (3), the following relations hold

f(xt+1) ≤ f(x̂t) + 〈∇f(x̂t),xt+1 − x̂t〉+
L

2
‖xt+1 − x̂t‖

2

= f(x̂t) + 〈∇f(x̂t),xt − x̂t〉+ 〈∇f(x̂t),xt+1 − xt〉+
L

2
‖xt+1 − x̂t‖

2

≤ f(xt) +
µt

2
‖xt − x̂t‖

2 + 〈∇f(x̂t), x̃t+1 − xt〉+
L

2
‖xt+1 − x̂t‖

2

+ 〈∇f(x̂t),xt+1 − x̃t+1〉 . (13)

Note that ηt = 2L/(2− βt) > L > L. Since

xt+1 = argmin
x∈X

{
〈∇f(x̂t),x〉+

ηt
2
‖x− x̂t‖

2
+ p(x)

}
(14)
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and x̃t+1 ∈ X , we obtain

〈∇f(x̂t),xt+1 − x̃t+1〉+ p(xt+1)

≤
ηt
2

(
‖x̃t+1 − x̂t‖

2
− ‖xt+1 − x̂t‖

2
)
+ p(x̃t+1)−

ηt + ν

2
‖xt+1 − x̃t+1‖

2
. (15)

By the definition (12) of x̃t+1 and x̂t = βtx̆t + (1− βt)xt, we have

βt(x̆t+1 − x̂t) + (1− βt)(xt − x̂t) = x̃t+1 − x̂t = βtst, (16)

where st = x̆t+1 − x̆t. Let us define

g(x̂t) = ηt(x̂t − xt+1). (17)

Then, it follows from (15), (16) and (17) that

〈∇f(x̂t),xt+1 − x̃t+1〉

≤
ηtβ

2
t

2
‖st‖

2 −
1

2ηt
‖g(x̂t)‖

2 + p(x̃t+1)− p(xt+1)−
ηt + ν

2
‖xt+1 − x̃t+1‖

2
.

So, by (13) and (16), x̃t+1 = βtx̆t+1 + (1− βt)xt, and the convexity of g, we have

F (xt+1) = f(xt+1) + p(xt+1)

≤ βt [f(xt) + 〈∇f(x̂t), x̆t+1 − xt〉+ p(x̆t+1)] + (1− βt) [f(xt) + p(xt)]

+
µt

2
‖xt − x̂t‖

2 +
ηtβ

2
t

2
‖st‖

2 −
ηt − L

2η2t
‖g(x̂t)‖

2 −
ηt + ν

2
‖xt+1 − x̃t+1‖

2

= βt

[
f(xt) + 〈∇f(x̂t), x̆t+1 − xt〉+

γt
2
‖st‖

2 + p(x̆t+1)
]
+ (1− βt)F (xt)

+
µt

2
‖xt − x̂t‖

2 +
ηtβ

2
t − γtβt

2
‖st‖

2 −
ηt − L

2η2t
‖g(x̂t)‖

2

−
ηt + ν

2
‖xt+1 − x̃t+1‖

2

= βt

[
f(xt) + 〈∇f(x̂t), x̆t+1 − xt〉+

γt
2
‖st‖

2 + p(x̆t+1)
]
+ (1− βt)F (xt)

+
µt

2
‖xt − x̂t‖

2 −
ηt − L

2η2t
‖g(x̂t)‖

2 −
ηt + ν

2
‖xt+1 − x̃t+1‖

2
, (18)

where the last equality follows from γtβt − ηtβ
2
t = 0. Now, it follows from

x̆t+1 = argmin
x∈X

{
〈∇f(x̂t),x〉+

γt
2
‖x− x̆t‖

2
+ p(x)

}
,

st = x̆t+1 − x̆t, xt ∈ X and (4) that

〈∇f(x̂t), x̆t+1 − xt〉+
γt
2
‖st‖

2 + p(x̆t+1)

≤
γt
2

(
‖xt − x̆t‖

2
− ‖xt − x̆t+1‖

2
)
+ p(xt)−

ν

2
‖xt − x̆t+1‖

2
.

Hence, by (18), we have

F (xt+1) ≤ βt

[
f(xt) +

γt
2

(
‖xt − x̆t‖

2
− ‖xt − x̆t+1‖

2
)
+ p(xt)

−
ν

2
‖xt − x̆t+1‖

2
]
+ (1− βt)F (xt) +

µt

2
‖xt − x̂t‖

2

−
ηt − L

2η2t
‖g(x̂t)‖

2 −
ηt + ν

2
‖xt+1 − x̃t+1‖

2

≤ F (xt) +
µt

2
‖xt − x̂t‖

2 +
βtγt
2

(
‖xt − x̆t‖

2
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−‖xt − x̆t+1‖
2
)
−

βtν

2
‖xt − x̆t+1‖

2
−

ηt − L

2η2t
‖g(x̂t)‖

2

−
ηt + ν

2
‖xt+1 − x̃t+1‖

2
. (19)

Note that

x̆t − xt =
1

βt

(x̂t − xt) and x̆t+1 − xt =
1

βt

(x̃t+1 − xt). (20)

Then, we have from (19) that (11) holds.

Based on Lemma 3.4, when t = ∞ in Alg. 1, we have the following result on a
potential energy reduction, which would play a key role for showing global conver-
gence.

Theorem 3.5. Suppose the Assumptions 2.1 and 3.1 hold. Then, for the iterates
generated by Alg. 1 with t = ∞, there exists an integer k0 ≥ 1 such that

Et+1 ≤ Et −
L− L

8L2
‖g(x̂t)‖

2 − cηt ‖xt − x̃t‖
2
−

βtν

2
‖x̆t+1 − xt‖

2 (21)

for all t ≥ k0, where x̃t is defined in (12), g(x̂t) = ηt(x̂t − xt+1) is defined in (17),
c > 0 is a constant, and

Et = F (xt) +
ηt−1

2
‖x̃t − xt−1‖

2 +
ηt−1 + ν

2
‖x̃t − xt‖

2
. (22)

Proof. For t ≥ 2, by (20) we obtain

x̂t − xt = βt(x̆t − xt) = βt ((x̆t − xt−1) + (xt−1 − x̃t)) + βt (x̃t − xt)

= βt

(
1

βt−1
(x̃t − xt−1) + (xt−1 − x̃t)

)
+ βt (x̃t − xt)

= θt(x̃t − xt−1) + βt (x̃t − xt) , (23)

where θt =
βt

βt−1
(1 − βt−1). By defining β0 = 1, x0 = x1 and x̃1 = x1, we can see

(23) also holds for t = 1. Hence, for t ≥ 1 it follows from (11) and L ≤ ηt < 2L
that

F (xt+1) ≤ F (xt) +
γt/βt + µt

2
‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖

2

−
γt/βt

2
‖x̃t+1 − xt‖

2 −
βtν

2
‖x̆t+1 − xt‖

2

−
ηt − L

2η2t
‖g(x̂t)‖

2 −
ηt + ν

2
‖xt+1 − x̃t+1‖

2

≤ F (xt) +
γt/βt + µt

2
‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖

2

−
γt/βt

2
‖x̃t+1 − xt‖

2 −
βtν

2
‖x̆t+1 − xt‖

2

−
L− L

8L2
‖g(x̂t)‖

2 −
ηt + ν

2
‖xt+1 − x̃t+1‖

2
. (24)

Now, since µt = min{µt−1 + ρj − 1, L} for some ρ > 1 and j ≥ 0, it follows from
L > L ≥ µ and (3) that the sequence {µt} is monotonically nondecreasing with
upper bound µup = min{L, ρ(µ+ 1)}. Hence, µt can only be increased in finite, in
fact at most dµup/(ρ − 1)e, number of times. So, there exist µ ≥ 0 and an integer

k ≥ 0 such that µt = µ for all t ≥ k.
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Since t = ∞ in Alg. 1, we have t0 = 0 during all iterations, which implies
βt = 2/(t+ 1− t0) = 2/(t+ 1) for all t ≥ 1. Moreover, since βt = max{βt, τt} and
µt = µ for all t ≥ k, defining κ = µ/L ∈ [0, 1], we have from Alg. 1 that

βt = max{βt, τ}, (25)

for all t ≥ k, where

τ :=
λ

2

(
1−

√
1− κ

1 + κ

)
+

(1− λ)κ

1 + κ
∈

[
0,

1

2

]
. (26)

Hence, for all t ≥ k, we have from (25) and βt = 2/(t + 1) that βt+1 ≤ βt, which
gives

ηt = γt/βt = 2L/(2− βt) ≥ 2L/(2− βt+1) = ηt+1 > L. (27)

For all t ≥ k + 1, it follows from (24) that

F (xt+1) +
ηt
2
‖x̃t+1 − xt‖

2 +
ηt + ν

2
‖xt+1 − x̃t+1‖

2

≤ F (xt) +
ηt−1

2
‖x̃t − xt−1‖

2 +
ηt−1 + ν

2
‖xt − x̃t‖

2
−

L− L

8L2
‖g(x̂t)‖

2

−
βtν

2
‖x̆t+1 − xt‖

2 −Rt, (28)

where

Rt =
ηt−1

2
‖x̃t − xt−1‖

2 +
ηt−1 + ν

2
‖xt − x̃t‖

2

−
ηt + µ

2
‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖

2 (29)

≥
ηt
2
‖x̃t − xt−1‖

2 +
ηt
2
‖xt − x̃t‖

2

−
ηt + µ

2
‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖

2

=
ηt − (ηt + µ)θ2t

2
‖x̃t − xt−1‖

2 +
ηt − (ηt + µ)β2

t

2
‖xt − x̃t‖

2

−(ηt + µ)θtβt‖x̃t − xt−1‖ ‖xt − x̃t‖ (30)

and the above second inequality follows from (27) and ν ≥ 0. We first show that
when t = 1 or t = 2,

Rt ≥ cηt

(
‖x̃t − xt−1‖

2 + ‖xt − x̃t‖
2
)

(31)

for c = 1/2. When t = 1, (31) holds for any c > 0 simply because our definition
of x0 = x̃1 = x1. When t = 2, (31) holds with c = 1/2 because x̃2 = β1x̆2 + (1 −
β1)x1 = x2 and θ2 = β2(1 − β1)/β1 = 0. In the following, we divide our analysis
into two cases on whether µ > 0 or whether µ = 0.

Case 1: µ > 0. Then, for all t ≥ k, we have from κ = µ/L > 0 and βt ≥ τ > 0
by (25) that

κt :=
µ

ηt
=

µ

L

2− βt

2
≤ κ

2− τ

2
= κ−

κτ

2
, (32)

where τ is defined in (26). In addition, for all t ≥ t̃ := max{k + 1, 3}, by (25), we
have βt ≤ 1/2 and βt/βt−1 ≥ t/(t+ 1) ≥ 3/4, which give

θt =
βt

βt−1
(1− βt−1) ≥

3

8
. (33)
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So, it follows from (30), (32) and (33) that

Rt

ηt
≥

1− (1 + κt)θ
2
t

2
‖x̃t − xt−1‖

2 +
1− (1 + κt)β

2
t

2
‖xt − x̃t‖

2

−(1 + κt)θtβt‖x̃t − xt−1‖ ‖xt − x̃t‖

≥ ht +
κτ

4

(
θ2t ‖x̃t − xt−1‖

2 + β2
t ‖xt − x̃t‖

2
)

≥ ht + c1

(
‖x̃t − xt−1‖

2 + ‖xt − x̃t‖
2
)
, (34)

for all t ≥ t̃, where

c1 =
κτ

4
min

{
9

64
, τ2
}

> 0 (35)

and

ht =
1− (1 + κ)θ2t

2
‖x̃t − xt−1‖

2 +
1− (1 + κ)β2

t

2
‖xt − x̃t‖

2

−(1 + κ)θtβt‖x̃t − xt−1‖ ‖xt − x̃t‖ . (36)

We now show ht ≥ 0 for all t ≥ t̃. By Cauchy-Schwarz inequality and (36), to show

ht ≥ t̃, it is sufficient to show
[
1− (1 + κ) θ2t

] [
1− (1 + κ)β2

t

]
≥ (1 + κ)

2
θ2t β

2
t , (37)

which is equivalent to

1− (1 + κ)
(
θ2t + β2

t

)
≥ 0. (38)

Notice that for all t ≥ t̃, we have βt ≤ βt−1. Hence, for all t ≥ t̃, we have

θt =
βt

βt−1
(1− βt−1) ≤ 1− βt, (39)

which gives

1− (1 + κ)
(
θ2t + β2

t

)
≥ 1− (1 + κ)

(
(1− βt)

2 + β2
t

)
. (40)

By the choice of βt, we have
1
2 ≥ βt ≥ τ ≥ τ̃ > 0 for all t ≥ t̃ ≥ 3, where τ is defined

in (26) and τ̃ = 1
2

(
1−

√
(1− κ)/(1 + κ)

)
, which implies

(1− βt)
2 + β2

t ≤ (1− τ̃)2 + τ̃2

for all t ≥ t̃. So, for all t ≥ t̃, we have from (40) and (26) that

1− (1 + κ)
(
θ2t + β2

t

)
≥ 1− (1 + κ)

(
(1− τ̃)2 + τ̃2

)
= 0.

Hence, (38) holds, which shows ht ≥ 0 and therefore (31) holds for all t ≥ t̃ with
c = c1 defined in (35). Since c1 < 1/2, by (31), we have in fact (31) holds for all
t ≥ k + 1 with c = c1. Then, (28) implies (21) holds with c = c1 for all t ≥ k + 1.

Case 2: µ = 0. Then, we have µt = 0 and τt = 0 for all t ≥ 1. So, k = 1 and for
all t ≥ 1, we have βt = βt = 2/(t+1), γt/βt = ηt and ηt = 2L/(2−βt) = L(t+1)/t.

In addition, we have θt =
βt

βt−1
(1− βt−1) =

t−2
t+1 < 1− βt. So, we have

‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖
2

≤ (θt‖x̃t − xt−1‖+ βt‖x̃t − xt‖)
2
≤ ((1− βt)‖x̃t − xt−1‖+ βt‖x̃t − xt‖)

2

≤ (1− βt)‖x̃t − xt−1‖
2 + βt‖x̃t − xt‖

2. (41)
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So, for all t ≥ 2, we have from (29) and ν ≥ 0 that

2Rt

ηt
=

t2

t2 − 1
‖x̃t − xt−1‖

2 +
t2

t2 − 1
‖xt − x̃t‖

2

−‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖
2

≥

(
t2

t2 − 1
−

t− 1

t+ 1

)
‖x̃t − xt−1‖

2 +

(
t2

t2 − 1
−

2

t+ 1

)
‖xt − x̃t‖

2

=
2t− 1

t2 − 1
‖x̃t − xt−1‖

2 +
t− 1

t+ 1
‖xt − x̃t‖

2
,

which implies for all t ≥ 3,

Rt ≥
L

t
‖x̃t − xt−1‖

2 +
ηt
4
‖xt − x̃t‖

2
. (42)

Then, we have from (28), (31) and (42) that (21) holds with c = 1/4 for all t ≥ 1.
Combing the above two cases, Case 1 and Case 2, we have (21) holds with

c = min{c1, 1/4} = c1 for all t ≥ k0 := k + 1, where c1 is defined in (35).

We now consider the case t < ∞ in Alg. 1. In this case, when mod(t, t) = 0, x̆t+1

is not computed in Alg. 1. To facilitate the convergence proof, when mod(t, t) = 0,
we still let x̆t+1 be defined as that in step 7 of Alg. 1, although it is not actually
calculated in Alg. 1. Then, based on Theorem 3.5, we can easily establish the
following properties on potential energy reduction.

Theorem 3.6. Suppose the Assumptions 2.1 and 3.1 hold. Then, for the iterates

generated by Alg. 1 with t < ∞, there exists an integer k̂0 ≥ 1 such that for all

t ≥ k̂0, if mod(t, t) = 1, we have

Et+1 ≤ Et −
L− L

8L2
‖g(x̂t)‖

2 −
1

2
ηt−1

(
‖xt−1 − x̃t‖

2
+ ‖xt − x̃t‖

2
)

(43)

−
βtν

2
‖x̆t+1 − xt‖

2;

otherwise, i.e., mod(t, t) 6= 1, we have

Et+1 ≤ Et −
L− L

8L2
‖g(x̂t)‖

2 − ĉηt

(
‖xt−1 − x̃t‖

2
+ ‖xt − x̃t‖

2
)

−
βtν

2
‖x̆t+1 − xt‖

2, (44)

where x̃t is defined in (12), g(x̂t) = ηt(x̂t − xt+1) is defined in (17), Et is defined
in (22) and ĉ > 0 is a constant.

Proof. Since t < ∞, it follows from Alg. 1 that βt ≥ 2/(t + 1) =: τ̂ , which implies
βt = max{βt, µt} ≥ τ̂ for all t. Again, since µt is monotonically nondecreasing with
upper bound µup = min{L, ρ(µ + 1)}, by the procedure of updating µt in Alg. 1,

we can choose k̂0 sufficiently large such that µt = µ for all t ≥ k̂0 and some µ ≥ 0.
When mod(t, t) = 1, we have from Alg. 1 that βt = 1. Then, the first inequality

in (43) holds by following from the same arguments for showing the case t = 1 in
Theorem 3.5. The second inequality in (43) follows from the definition Et of in (22)
and ν ≥ 0.

We now consider the case mod(t, t) 6= 1. In this case, we have βt−1 ≥ βt, which

implies βt−1 ≥ βt and ηt−1 ≥ ηt. Then, for t ≥ k̂0, it follows from (28) that

Et+1 ≤ Et −
L− L

8L2
‖g(x̂t)‖

2 −
βtν

2
‖x̆t+1 − xt‖

2 −Rt (45)
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where Rt is defined in (29). If µ > 0 or mod(t, t) = 2, by the same reasons as (31)
and (34), we have

Rt ≥ ĉ1ηt

(
‖xt−1 − x̃t‖

2
+ ‖xt − x̃t‖

2
)

(46)

where ĉ1 = κτ̂ min{9/64, τ̂2} > 0 and κ = µ/L. If µ = 0, same as (41), for all t ≥ 2
we have

‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖
2 ≤ (1− βt)‖x̃t − xt−1‖

2 + βt‖x̃t − xt‖
2.

If mod(t, t) 6= 2, we have τ̂ ≤ βt ≤ 1/2. So, if µ = 0 and mod(t, t) 6= 2, we have
from the definition of Rt in (29), ηt ≤ ηt−1 and 0 < τ̂ ≤ βt ≤ 1/2 that

2Rt

ηt
≥ βt‖x̃t − xt−1‖

2 + (1− βt)‖x̃t − xt‖
2 ≥ τ̂

(
‖xt−1 − x̃t‖

2
+ ‖xt − x̃t‖

2
)
,

which together with (46) gives Rt ≥ ĉηt

(
‖xt−1 − x̃t‖

2
+ ‖xt − x̃t‖

2
)
, where ĉ =

min{ĉ1, τ̂ /2}. Hence, if mod(t, t) 6= 1, we have (44) holds.

We say x∗ is a stationary point of problem (1) if −∇f(x∗) ∈ ∂p(x∗), where
∂p(x∗) is the subdifferential of p at x∗, which is equivalent to

x∗ = argmin
x∈X

{
〈∇f(x∗),x〉+

η

2
‖x− x∗‖

2
+ p(x)

}
(47)

for some η > 0. The following theorem on global convergence and convergence rate
can be easily obtained from Theorem 3.5 and Theorem 3.6.

Theorem 3.7. Suppose the Assumptions 2.1, 3.1 and 3.2 hold. Then, for the
iterates generated by Alg. 1, the following properties hold.
(i) There exists an integer k0 > 0 such that for T > k0 we have

min
t∈{k0,k0+1,...,T−1}

‖g(x̂t)‖
2 ≤

8L2(Ek0
− F )

L− L

1

T − k0
= O(1/T ), (48)

where g(x̂t) = ηt(x̂t − xt+1) is defined in (17). Furthermore, we have

lim
t→∞

‖g(x̂t)‖ = 0. (49)

(ii) The sequences {x̂t}, {xt} and {x̃t} have the same set of cluster points if it is
nonempty, which are all stationary points of problem (1).

Proof. First, since βt ∈ (0, 1], we have from ηt = 2L/(2−βt) that ηt ∈ (L, 2L] for all
t. Then, by Theorem 3.5, Theorem 3.6 and Assumption 3.2, there exists a k0 > 0
such that for all T > k0 we have

T−1∑

t=k0

(‖g(x̂t)‖+ ‖xt − x̃t‖) ≤
8L2(Ek0

− F )

L− L
, (50)

where g(x̂t) and x̃t are defined in (17) and (12), respectively. Then, both (48) and
(49) follow from (50).

Now, by (50) and g(x̂t) = ηt(x̂t − xt+1), we have

lim
t→∞

(‖xt+1 − x̂t‖+ ‖xt − x̃t‖) = 0. (51)

Thus, the sequences {x̂t}, {xt} and {x̃t} have the same set of cluster points if the
set is nonempty. Now, given any cluster point x̂∗ of {x̂t}, we can have from (14)
(51), ηt ∈ (L, 2L] and the closedness of p that −∇f(x∗) ∈ ∂p(x∗). Hence, the
statement (ii) holds.
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In terms of the convergence on the objective function value of problem (1), we
have the following corollary.

Corollary 3.8. Suppose the Assumptions 2.1, 3.1 and 3.2 hold.

(i) If one of the following conditions hold:
(a) f is a convex function;
(b) the parameter t < ∞ in Alg. 1;
(c) µ > 0, where µ = limt→∞ µt;
(d) ν > 0, where ν is defined in (4);
(e) {xt} and {x̆t} are bounded, e.g., when X is a bounded set,
we have limt→∞ F (xt) exists.

(ii) If F ∗ = limt→∞ F (xt), then for any cluster point x of {xt}, it has F (x) = F ∗.

Proof. We first show (i) by considering the cases (a) to (e) separately.
Case (a): By Assumption 3.2, there exists an F ∗ such that F ∗ = lim inft→∞ F (xt).
Then, when f is a convex function, it follows from (10) that for any ε > 0 and
xε such that F (xε) ≤ F ∗ + ε, we have limt→∞ F (xt) ≤ F ∗ + ε, which implies
limt→∞ F (xt) ≤ F ∗. Hence, limt→∞ F (xt) = F ∗.
Case (b): If the parameter t < ∞ in Alg. 1, we have from Theorem 3.6 that for any
integer ` > 0 sufficiently large, we have

F (xt`) ≥ Et`+1 ≥ Et`+2 ≥ · · · ≥ Et`+1
≥ F (xt`+1

),

where t` = `t. Hence, by Assumption 3.2 and F (xt) ≤ Et, there exists a F ∗ such
that F ∗ = limt→∞ F (xt) = limt→∞ Et.
Case (c): By Alg. 1, we have µt = µ for all t sufficiently large and some µ ≥ 0.
Suppose t = ∞. Otherwise, the claim holds by case (b). Then, if µ > 0, we have
from (28), (31) and (34) that

Et+1 ≤ Et −
L− L

8L2
‖g(x̂t)‖

2 − c1ηt

(
‖xt−1 − x̃t‖

2
+ ‖xt − x̃t‖

2
)

−
βtν

2
‖x̆t+1 − xt‖

2 (52)

for all t ≥ t+ 1, where Et is defined in (22) and c1 > 0 is a constant given in (35).
Then, by (52), Assumption 3.2 and ηt ∈ [L, 2L], we have

lim
t→∞

(‖x̃t − xt−1‖+ ‖xt − x̃t‖) = 0 (53)

and there are exists an F ∗ such that

lim
t→∞

F (xt) = lim
t→∞

Et = F ∗. (54)

Case (d): We again suppose t = ∞. Otherwise, the claim holds by case (b). If
ν > 0, it follows from Theorem 3.5 and Assumption 3.2 that

lim
t→∞

(‖x̃t − xt−1‖+ ‖xt − x̆t+1‖) = 0.

Then, by (20), (53) also holds and hence (54) holds by Theorem 3.5.
Case (e): Suppose the sequences {xt} and {x̆t} are bounded. If t < ∞ or µ > 0 , the
claim follows from Case (b) or Case (c). Hence, we only consider the case that t = ∞
and µ = 0, which gives βt = 2/(t+1) for all t ≥ 1 and therefore limt→∞ βt = 0. By
(12), x̃t+1 − xt = βt(x̆t+1 − xt). Hence, we have limt→∞ ‖x̃t+1 − xt‖ = 0 from the
boundedness of {xt} and {x̆t}, which together with (51) implies (53) holds. Hence,
(54) also holds.
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Now, we show (ii) holds. By (14), for any z ∈ X , we have

〈∇f(x̂t),xt+1 − z〉+ p(xt+1)

≤
ηt
2

(
‖z− x̂t‖

2
− ‖xt+1 − x̂t‖

2
)
+ p(z)−

ηt + ν

2
‖xt+1 − z‖

2
,

which by ν ≥ 0 gives

f(x̂t) + 〈∇f(x̂t),xt+1 − x̂t〉+
ηt
2
‖xt+1 − x̂t‖

2
+ p(xt+1)

≤
ηt
2
‖z− x̂t‖

2
+ f(x̂t) + 〈∇f(x̂t), z− x̂t〉+ p(z). (55)

For any z ∈ X , it follows from Assumption 2.1 that

|f(z)− f(x̂t)− 〈∇f(x̂t), z− x̂t〉| ≤
L

2
‖z− x̂t‖

2.

Hence, by (55), ηt ∈ [L, 2L] and L > L, for any z ∈ X , we have

F (xt+1) = f(xt+1) + p(xt+1) ≤ F (z) +
3L

2
‖z− x̂t‖

2

≤ F (z) + 3L ‖z− xt+1‖
2
+ 3L ‖xt+1 − x̂t‖

2
. (56)

Then, for any subsequence {xti+1} of {xt} converging to x ∈ X , we have from (56)
that

F (xti+1) ≤ F (x) + 3L ‖x− xti+1‖
2
+ 3L ‖xti+1 − x̂ti‖

2

Taking i to infinity in the above inequality, we have from limi→∞ xti+1 = x, (51) and
part (i) that F ∗ = limi→∞ F (xti+1) ≤ F (x). In addition, by the lower semicontinu-
ity of F , we have F (x) ≤ limi→∞ F (xti+1) = F ∗. Hence, we have F (x) = F ∗.

4. Linear convergence. In this section, we would like to discuss the linear con-
vergence of {xt} and {F (xt)}. Let us define h(x) = p(x) + δX (x), where δX (x) is
the indicator function on the closed convex set X . Let Ω∗ be the set of all stationary
points of problem (1), i.e.,

Ω∗ =
{
x∗ ∈ X : −∇f(x∗) ∈ ∂h(x∗)

}
=
{
x∗ ∈ X : x∗ satisfies (47)

}
. (57)

Note that Ω∗ is a closed set. Denoting Prox(v) be the proximal operator of any
closed convex function q at any v ∈ R

n, that is

Proxq(v) = argmin

{
q(x) +

1

2
‖x− v‖2 : x ∈ R

n

}
,

then we have x∗ ∈ Ω∗ if and only if x∗ = Proxτh (x
∗ − τ∇f(x∗)) for any τ > 0.

And, from Alg. 1, we have

xt+1 = Prox 1
ηt

h

(
x̂t −

1

ηt
∇f(x̂t)

)
and x̆t+1 = Prox 1

γt
h

(
x̆t −

1

γt
∇f(x̂t)

)
. (58)

For studying linear convergence, we need the following error bound condition and
the condition that the isocost surfaces of F are properly separated on the stationary
point set Ω∗.

Assumption 4.1. (a) For any ξ ≥ infx∈XF (x), there exists ε > 0 and σ > 0 such
that

dist(x,Ω∗) ≤ σ

∥∥∥∥Prox 1
η
h

(
x−

1

η
∇f(x)

)
− x

∥∥∥∥ , (59)
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whenever
∥∥∥Prox 1

η
h

(
x− 1

η
∇f(x)

)
− x

∥∥∥ < ε, F (x) < ξ and η ∈ [L, 2L].

(b) Ω∗ is nonempty and there exists ω > 0 such that ‖x − y‖ ≥ ω whenever x,
y ∈ Ω∗ and F (x) 6= F (y).

There are many functions of f and p satisfying the above Assumption 4.1 in-
cluding the case that f is a possibly nonconvex quadratic function or a composition
of a Lipschitz continuously differentiable strongly convex function with an affine
function and p is a polyhedral function. For more examples and discussions on
functions satisfying Assumption 4.1, one may refer to [16, 15, 14, 11] and the refer-
ences therein. Before establishing linear convergence, we first develop the following
lemma.

Lemma 4.2. Suppose the Assumptions 2.1, 3.1, 3.2 and 4.1 hold. We have

(i) limt→∞ dist(xt,Ω
∗) = 0;

(ii) in addition, if there exists a constant c̃ > 0 such that for all t suffciently large
it has

Ẽt+1 ≤ Ẽt − c̃dt, (60)

where

Ẽt = F (xt) +
ηt−1

2
‖x̃t − xt−1‖

2 +
ηt−1 + ν

2
‖x̃t − xt‖

2

+
L− L

8
‖xt − x̂t−1‖

2 +
βt−1ν

2
‖x̆t − xt−1‖

2 (61)

and

dt = ‖xt − x̂t−1‖
2 + ‖xt−1 − x̃t‖

2 + ‖xt − x̃t‖
2

+βt−1ν‖x̆t − xt−1‖
2, (62)

then for all t sufficiently large, we have

|F (xt)− F ∗| ≤ θ‖xt − x̂t−1‖
2 (63)

and

0 ≤ Ẽt+1 − F ∗ ≤ θ(Ẽt − F ∗), (64)

where θ > 0 and θ ∈ (0, 1) are constants and F ∗ = limt→∞ F (xt) = limt→∞ Ẽt.

Proof. By Theorem 3.5 and Theorem 3.6, there exists a ξ > 0 such that Et ≤ ξ for
all t ≥ 1, which implies F (xt) ≤ ξ for all t ≥ 1. In addition, by (49) and (58), we
have

0 = lim
t→∞

‖g(x̂t)‖ = lim
t→∞

‖xt+1 − x̂t‖

= lim
t→∞

∥∥∥∥Prox 1
ηt

h

(
x̂t −

1

ηt
∇f(x̂t)

)
− x̂t

∥∥∥∥ . (65)

By the nonexpansion property of the proximal operator, (58), ηt > L > L and
Assumption 2.1, we have

∥∥∥∥Prox 1
ηt

h

(
xt+1 −

1

ηt
∇f(xt+1)

)
− xt+1

∥∥∥∥

=

∥∥∥∥Prox 1
ηt

h

(
xt+1 −

1

ηt
∇f(xt+1)

)
− Prox 1

ηt
h

(
x̂t −

1

ηt
∇f(x̂t)

)∥∥∥∥

≤

∥∥∥∥
(
xt+1 −

1

ηt
∇f(xt+1)

)
−

(
x̂t −

1

ηt
∇f(x̂t)

)∥∥∥∥



16 MIAO ZHANG AND HONGCHAO ZHANG

≤

(
1 +

L

ηt

)
‖xt+1 − x̂t‖ ≤ 2‖xt+1 − x̂t‖.

Hence, it follows from ηt ∈ [L, 2L] and Assumption 4.1 (a) and (65) that

dist(xt+1,Ω
∗) ≤ σ

∥∥∥∥Prox 1
ηt

h

(
xt+1 −

1

ηt
∇f(xt+1)

)
− xt+1

∥∥∥∥
≤ 2σ‖xt+1 − x̂t‖. (66)

for t sufficiently large. So, we have (i) holds by (65).
Now, we prove (ii). Let us define xt ∈ Ω∗ such that dist(xt,Ω

∗) = ‖xt − xt‖.
By (60) and Assumption 3.2, we have limt→∞ dt = 0, where dt is defined in (62),
which gives

lim
t→∞

‖xt − xt−1‖ ≤ lim
t→∞

(‖xt − x̃t‖+ ‖x̃t − xt−1‖) ≤ lim
t→∞

√
2dt = 0.

Hence, we have from property (i) that

lim
t→∞

‖xt − xt−1‖ ≤ lim
t→∞

‖xt − xt‖+ ‖xt − xt−1‖+ ‖xt−1 − xt−1‖ = 0.

This together with the Assumption 4.1 (b) implies that F (xt) = F ∗ for all t suffi-
ciently large, where F ∗ is some constant. Hence, for t sufficiently large, replacing
t+ 1 by t and taking z = xt in (56), we have

F (xt)− F ∗ ≤ 3L ‖xt − xt‖
2
+ 3L ‖xt − x̂t−1‖

2

= 3Ldist(xt,Ω
∗)2 + 3L ‖xt − x̂t−1‖

2

≤ (12σ2 + 3)L ‖xt − x̂t−1‖
2
, (67)

where the last inequality follows from (66). On the other hand, since xt ∈ Ω∗, we
have from (47) that

〈∇f(xt),xt〉+ p(xt) ≤ 〈∇f(xt),xt〉+
η

2
‖xt − xt‖

2
+ p(xt)

for some η > 0, which by Assumption 2.1 and (66) gives

F ∗ = F (xt) = f(xt) + p(xt)

≤ f(xt) + 〈∇f(xt),xt − xt〉+
η

2
‖xt − xt‖

2
+ p(xt)

≤ f(xt) + p(xt) +
L+ η

2
‖xt − xt‖

2

= F (xt) +
L+ η

2
dist(xt,Ω

∗)2

≤ F (xt) + 2(L+ η)σ2 ‖xt − x̂t−1‖
2
. (68)

So, by (67) and (68), we have (63) holds. In addition, it follows from (60), limt→∞ dt =
0, (65) and (63) that

lim
t→∞

Ẽt = lim
t→∞

F (xt) = F ∗

and Ẽt ≥ F ∗ for all t sufficiently large. So, by (67) and the definitions of Ẽt

and dt in (61) and (62), respectively, there exists a constant c > 0 such that 0 ≤

(Ẽt − F ∗) ≤ cdt for t sufficiently large. Therefore, by (60) we have (64) holds with
θ = (c− 1)/c ∈ (0, 1).

Based on the Lemma 4.2, we can have the following linear convergence result.
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Theorem 4.3. Suppose the Assumptions 2.1, 3.1, 3.2 and 4.1 hold. If one of the
following conditions hold:

(a) the parameter t < ∞ in Alg. 1;
(b) µ > 0, where µ = limµt;
(c) ν > 0, where ν is defined in (4);

we have

(i) the sequence {F (xt)} converges R-linearly;
(ii) the sequence {xt} converges R-linearly to a stationary point of problem (1).

Proof. Let us consider each of the following cases.
Case (a) t < ∞ in Alg. 1. In this case, for all t sufficiently large, we have from
Theorem 3.6 that (43) and (44) holds, which together with g(x̂t) = ηt(x̂t − xt+1)
and ηt ≥ L gives

Et+1 ≤ Et −
L− L

8
‖x̂t − xt+1‖

2 − ĉL
(
‖xt−1 − x̃t‖

2
+ ‖xt − x̃t‖

2
)

−
βtν

2
‖x̆t+1 − xt‖

2,

where 0 < ĉ < 1/2 is the constant in (44). By rearranging the above inequality

with the definition of Ẽt in (61), we have

Ẽt+1 ≤ Ẽt −
L− L

8
‖xt − x̂t−1‖

2 − ĉL
(
‖xt−1 − x̃t‖

2
+ ‖xt − x̃t‖

2
)

−
βt−1ν

2
‖x̆t − xt−1‖

2,

which implies (60) holds with c̃ = min{(L− L)/8, ĉL, 1/2}.
Case (b) µ > 0. If t = ∞, since µ > 0, we have (52) holds. Then, similarly
as the proof of Case (a), for t sufficiently large, we can establish (60) holds with
c̃ = min{(L−L)/8, c1L, 1/2}, where c1 > 0 is the constant in (35). Hence, combining
with Case (a), we have (60) holds with c̃ = min{(L− L)/8, ĉL, c1L, 1/2}.
Case (c) ν > 0. If t = ∞, we have from Theorem 3.5 that (21) holds, which together
with g(x̂t) = ηt(x̂t − xt+1) and ηt ≥ L gives

Et+1 ≤ Et −
L− L

8
‖x̂t − xt+1‖

2 − c1L ‖xt − x̃t‖
2
−

βtν

2
‖x̆t+1 − xt‖

2

for all t sufficiently large. Again, by rearranging this inequality with the definition

of Ẽt in (61), we have

Ẽt+1 ≤ Ẽt −
L− L

8
‖xt − x̂t−1‖

2 − c1L ‖xt−1 − x̃t‖
2
−

βt−1ν

2
‖x̆t − xt−1‖

2,

which together with βt ∈ (0, 1] and x̆t − xt−1 = 1/βt−1(x̃t − xt−1) implies

Ẽt+1 ≤ Ẽt −
L− L

8
‖xt − x̂t−1‖

2 − c1L ‖xt−1 − x̃t‖
2
−

βt−1ν

4
‖x̆t − xt−1‖

2

−
ν

4
‖x̃t − xt−1‖

2.

Hence, for t sufficiently large we have from ν > 0 that (60) holds with

c̃ = min{(L− L)/8, c1L, 1/4, ν/4} > 0.

By the previous analysis, under either condition (a), (b) or (c), we have (60)
holds for sufficiently large t. So, by Lemma 4.2, we have (63) and (64) hold for t
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sufficiently large. Hence, by (60), (63), (64) and the definition of dt in (62), for t
sufficiently large, we have

|F (xt)− F ∗| ≤ θ‖xt − x̂t−1‖
2 ≤ θdt ≤

θ

c̃
(Ẽt − Ẽt+1) ≤

θ

c̃
(Ẽt − F ∗),

which together with (64) implies the R-linear convergence of F (xt) to F ∗, i.e.,
conclusion (i) holds. By (60), (64) and the definition of dt in (62), we also have

‖xt − xt−1‖
2 ≤ 2(‖xt−1 − x̃t‖

2 + ‖xt − x̃t‖
2) ≤ 2dt ≤

2

c̃
(Ẽt − F ∗),

for t sufficiently large. This inequality and (64) show R-linear convergence of ‖xt −
xt−1‖, which implies there exists an x∗ such that the sequence {xt} converges to x∗

R-linearly. Finally, the conclusion (i) of Lemma 4.2 shows x∗ is a stationary point
of problem (1). Hence, conclusion (ii) holds.

5. Numerical experiments. In this section, we evaluate the performance of our
unified gradient method with extrapolation (UPG-E) on solving two nonconvex
composite optimization problems: the smoothly clipped absolute deviation (SCAD)
penalty problem and the nonconvex quadratic programming with simplex constrain-
t. We compare UPG-E with three other algorithms: the standard proximal gradient
method (PG), the fast iterative shrinkage-thresholding algorithm (FISTA) [1] and
the proximal gradient algorithm with extrapolation (PGE) [16].

5.1. SCAD penalty problem. In this subsection, we apply Alg. 1 to solve the
smoothly clipped absolute deviation (SCAD) penalty problem, which is defined as

min
x∈Rn

1

2
‖Ax− b‖2 +

n∑

i=1

gκ(|xi|), (69)

where A ∈ R
m×n, b ∈ R

m and gκ is the SCAD penalty defined as

gκ(θ) =





κθ, θ ≤ κ,
−θ2 + 2cκθ − κ2

2(c− 1)
, κ < θ ≤ cκ,

(c+ 1)κ2

2
, θ > cκ,

(70)

with parameters c > 2 and κ > 0. The SCAD penalty corresponds to a quadratic
spline function with knots at κ and cκ, and combines the benefits of using l1 penalty
and hard thresholding penalty [2]. The SCAD problem is often used in statistic
applications for conducting variable selection when the noise level in the data is
low. One may refer to [2] for more details about the SCAD penalty problem.

The SCAD problem (69) is possibly nonconvex due to the SCAD penalty term.

However, it was shown that gκ(·) +
ω

2
| · |2 with ω ≥

1

c− 1
is convex [6]. Therefore,

we can rewrite problem (69) into the form of (1) with

f(x) :=
1

2
‖Ax− b‖2 −

1

2(c− 1)
‖x‖2 and p(x) :=

n∑

i=1

gκ(|xi|) +
1

2(c− 1)
‖x‖2

so that f is Lipschitz continuously differentiable but possibly nonconvex and p is
a convex function. Then, we can apply UPG-E, PG, PGE and FISTA to solve
this reformulated problem. We have to point out that FISTA does not guarantee
convergence when the objective function is nonconvex. We apply FISTA here simply
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for practical numerical comparison purpose. In this case, the two subproblems in
Alg. 1 can be solved as

x̆t+1 = argmin
x∈Rn

{
〈∇f(x̂t),x〉+

γt
2
‖x− x̆t‖

2 +
n∑

i=1

gκ(|xi|) +
1

2(c− 1)
‖x‖2

}

= argmin
x∈Rn

{
1

2ν1

∥∥∥∥x−
c− 1

γt(c− 1) + 1
(γtx̆t −∇f(x̂t))

∥∥∥∥
2

+

n∑

i=1

gκ(|xi|)

}
,

and

xt+1 = argmin
x∈Rn

{
〈∇f(x̂t),x〉+

ηt
2
‖x− x̂t‖

2 +

n∑

i=1

gκ(|xi|) +
1

2(c− 1)
‖x‖2

}

= argmin
x∈Rn

{
1

2ν2

∥∥∥∥x−
c− 1

ηt(c− 1) + 1
(ηtx̂t −∇f(x̂t))

∥∥∥∥
2

+

n∑

i=1

gκ(|xi|)

}
,

where ν1 = c−1
γt(c−1)+1 and ν2 = c−1

ηt(c−1)+1 . It can be easily verified that 1 + νi ≤ c

holds for i = 1, 2. In addition, it is known that the following minimization problem

min
x∈Rn

1

2ν
‖x− q‖2 +

n∑

i=1

gκ(|xi|) (71)

with 1+ν ≤ c and known q has a closed form solution [17]. Hence, the subproblems
for obtaining x̆t+1 and xt+1 in Alg. 1 can be solved trivially. Also note that the
subproblems in PG, PGE and FISTA can be also written in the format as (71).

In the numerical experiments, we vary the problem dimensions (n,m) as those
listed in Table 1. The matrix A ∈ R

m×n is generated with entries randomly gener-
ated from standard normal distribution. The vector b is obtained as b = Ab∗ + ε,
where b∗ ∈ R

n is a sparse uniformly distributed randomly generated vector with
density of 0.02 and ε ∈ R

m is a noise vector with entries being generated from nor-
mal distribution with mean 0 and standard deviation 0.01. The parameters c and κ
could be chosen by cross-validation in practice. Here, we simply choose c = 3.7 and
κ = 0.1. For all the comparison algorithms, we set the Lipschitz constant of ∇f as
L = max{|λmax(H)|, |λmin(H)|}, where H = ATA− c1I is the Hessian of f(x) with
c1 = 1/(2(c−1)). Here, λmax(H) and λmin(H) are the largest and smallest eigenva-

lues ofH, respectively. We set l = |λmin(H)| and take βt = 0.85
√

L
L+l

for better per-

formance of PGE. We choose ρ = 1.5, λ = 0.5 and t = min{b0.15min{n,m}c, 100}
for UPG-E.

The same starting point x0 ∈ R
n for all the comparison algorithms is randomly

selected with entries chosen from the uniform distribution in (0, 1). For all four
comparison algorithms, the algorithm stops when either

‖xt+1 − xt‖

max{‖xt+1‖, 1}
≤ 10−6, (72)

or the number of iterations exceeds 5000. The computational results are reported
in Table 1, where “iter” is the number of iterations where the algorithms stops and
“fval” is the minimum function value found by the algorithm. The “F” in Table 1
means the algorithm fails to find a reasonable solution in 5000 iterations. We can
see from the experimental results that among all the comparison algorithms, UPG-E
is very effective and always converges in much less number of iterations. Moreover,
UPG-E is very robust. As the problem dimension n and m increase, the other
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Table 1. Comparison of UPG-E, PGE, FISTA and PG for solving
the SCAD problem (69)

UPG-E PGE PG FISTA
(n,m) iter fval iter fval iter fval iter fval

(400, 200) 122 9.400 501 9.400 1401 9.400 4163 9.568
(600, 200) 91 1.410e1 180 1.410e1 322 1.410e1 4824 1.410e1
(600, 400) 230 1.410e1 F F F
(800, 200) 72 1.880e1 221 1.880e1 698 1.878e1 4833 1.880e1
(800, 400) 163 1.880e1 366 1.880e1 3312 1.880e1 F
(800, 600) 362 1.880e1 F F F
(1000, 200) 62 2.350e1 157 2.348e1 1951 2.345e1 3309 2.350e1
(1000, 400) 139 2.350e1 254 2.350e1 514 2.350e1 F
(1000, 600) 217 2.350e1 2207 2.350e1 F F
(1000, 800) 602 2.350e1 F F F

comparison methods start to fail while UPG-E still solves the problem in a good
number of iterations.

5.2. Nonconvex quadratic programming with simplex constraints. In this
subsection, we consider the following possibly nonconvex problem

minx∈Rn

1

2
xTHx− gTx, (73)

s.t. eTx = c, x ≥ 0,

where H ∈ R
n×n is not necessarily positive semidefinite, g ∈ R

n, e ∈ R
n is a vector

of ones and c is a positive number. We can easily rewrite (73) in the form of (1)
with

f(x) :=
1

2
xTGx− gTx and p(x) := δC(x),

where C = {y ∈ R
n : eTy = p, y ≥ 0} and δC(·) is the indicator function of the

simplex C. Note that p is a closed convex function since C is a closed convex set.
In this experiment, we vary the problem dimensions n as those listed in Table 2.

The matrix G ∈ R
n×n is generated with entries randomly generated from the nor-

mal distribution with mean 0 and standard deviation 10. Then, we set H = G′DG,
where D ∈ R

n×n is a diagonal matrix with diagonal entries D(i, i) = i − 20.
The vector g is generated by a standard normal distribution and the constant c
is selected as max{1, 10 ∗ t}, where t is a random scalar uniformly generated in
[0, 1]. Again, for all comparison algorithms, the Lipschitz constant of ∇f is set
as L = max{|λmax(H)|, |λmin(H)|}. As suggested in [16] for solving (73), we set

l = |λmin(G)| and βt = 0.98
√

L
L+l

for PGE. We again choose the parameter ρ = 1.5,

λ = 0.5 and t = min{b0.15nc, 100} for UPG-E.
The same feasible starting point x0 = (c/n)e is used for all comparison algo-

rithms. And for all the comparison algorithms, the algorithm stops when either

|F (xk)− F (xk−1)|

max{|F (xk)|, 1}
≤ 10−12

or the number of iterations exceeds 5000. The computational results are reported
in Table 2, where “iter” is the number of iterations where the method stops and
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(a) n = 500 (b) n=1000

(c) n=1500 (d) n=2000

(e) n=2500 (f) n=3000

Figure 1. Comparison of UPG-E, PG, PGE and FISTA for the
NQP problem: Relative function value gap vs iterations
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Table 2. Comparison of UPG-E, PGE, FISTA and PG for solving
the NQP problem (73)

UPG-E PGE PG FISTA
n iter fval iter fval iter fval iter fval
500 357 1.0434e5 665 1.0434e5 2497 1.0434e5 1134 1.0434e5
1000 346 3.1052e4 772 3.1052e4 1989 3.1052e4 1199 3.1052e4
1500 362 3.9881e5 704 3.9881e5 2486 3.9881e5 1310 3.9881e5
2000 349 2.7083e5 797 2.7083e5 2309 2.7083e5 1248 2.7083e5
2500 347 1.5133e5 790 2.7083e5 1980 2.7083e5 991 2.7083e5
3000 347 6.6941e5 796 6.6941e5 2229 6.6941e5 1142 6.6941e5

“fval” is the minimum function value found by the algorithm. Moreover, we plot
the relative function value gap against the iteration number in Figure 1, where

F Relative Error(k) :=
|F (xk)− Fmin)|

max{|Fmin|, 1}

and Fmin is the minimum objective function value obtained by all the comparison
algorithms. We can see from both Table 2 and Figure 1 that UPG-E outperforms
the other methods for solving this class of randomly generated nonconvex quadratic
problems (73) with simplex constraints. Furthermore, since the quadratic problem
(73) satisfies the Assumption 4.1 required for linear convergence, we can clearly see
from Figure 1 that the function value gap generated by UPG-E converges R-linearly
to zero for solving this quadratic programming problem.

6. Conclusion. In this work, we propose a unified proximal gradient method with
extrapolation (UPG-E) to solve a possibly nonconvex and nonsmooth composite
optimization problem, where one of the component functions in the objective is s-
mooth but possibly nonconvex and the other one is convex but could be nonsmooth.
The UPG-E exploits an extrapolation step to accelerate the convergence, where the
extrapolation parameter is adaptively adjusted according to the nonconvexity mod-
ulus of the smooth component objective function estimated by a line search tech-
nique. It is shown that UPG-E automatically maintains optimal convergence rate
of proximal gradient methods for minimizing convex composite optimization when
extrapolation is not restarted and also ensures global convergence when the objec-
tive function is nonconvex. Under further proper regularity assumptions, UPG-E
is shown to have a linear convergence rate for both the objective function value
gap and the generated iterates. Our numerical experiments show that UPG-E is
very robust and could significantly outperform the other well-established method-
s in the literature for solving the possibly nonconvex and nonsmooth composite
optimization (1).
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