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Convergence analysis of an adaptively regularized
natural gradient method

Jiayuan Wu, Jiang Hu, Hongchao Zhang, and Zaiwen Wen

Abstract—In this paper, we study the convergence properties
of the natural gradient methods. By reviewing the mathematical
condition for the equivalence between the Fisher information
matrix and the generalized Gauss-Newton matrix, as well as
the comparisons on the computation and storage, we reveal
the popularity of the natural gradient method. To ensure the
global convergence, an adaptively regularized natural gradient
method is proposed. By requiring sufficient probabilistic accurate
estimations on both the function and the gradient evaluations, we
establish the almost sure convergence. In the local convergence,
we employ the local error bound condition and show the
convergence rate can be quadratic by adding mild assumptions
on the stochastic estimates of gradients and Fisher information
matrices. Preliminary numerical experiments on the regularized
logistic regression are performed to support our findings.

Index Terms—Fisher information matrix, natural gradient
method, adaptive regularization, local error bound, quadratic
convergence rate

I. INTRODUCTION

We consider the optimization problem

1N
min A(6) = N;Lwi,f(xi,e)» (1)
where {(z;,y)}Y, C R? x R™ is a set of data points
satisfying (z;,v;) ~ Q4 with the true data distribution @ ,,
and corresponding density q(x,y) = q(x)q(y|x), f(-,0)
R? — R™ is the input-output mapping with parameter 6, and
L is the single-data loss function. We mainly focus on the
negative log-probability loss function

L(y7f<x79)) = —logp(y\f(af,H)), 2

where p(y|f(z,0)) is the density function of y conditioning
on f(x,0). However, our analysis can be applied to other loss
functions as long as the required conditions and assumptions
are satisfied. The connection between several loss functions L
and its corresponding conditional distribution are established
in [1], e.g., the square loss and standard Gaussian distribution,
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cross-entropy loss and the multinomial distribution. The equiv-
alence between the negative log probability loss and Kullback-
Leibler divergence is shown in [1] as well.

A. Literature review

Problem (1) is ubiquitous in deep learning [2], [3], rein-
forcement learning [4], signal processing [5], [6], and quantum
physics/chemistry [7], [8]. For a multi-layer feed-forward
neural network, f(x,0) is the output of the last layer with
respect to the input x and the network parameters 6. For
the loss L, it is usually set to the cross-entropy loss for
the image classification task. Various algorithms have been
developed to solve (1). The first-order methods include the
stochastic gradient method [9], the stochastic variance-reduced
gradient method [10], SAGA [11] and adaptive gradient
methods [12], [13]. We refer to the book [14] for more
details. By exploiting the log-probability structure of the loss
function, an efficient natural gradient method (NGM) using
the information geometry of the parameter space is initially
proposed in [15]. A Fisher’s method of scoring based on the
full-batch gradient and the exact Fisher information matrix
is also presented in [16]. Later, it is shown in [2], [17]-
[21] that the natural gradient-type method can outperform
the stochastic gradient-type methods when tackling large-scale
learning problems. Approximate Newton and quasi-Newton
methods [22]-[26] have been developed to achieve faster
convergence than stochastic gradient-type methods. Compared
with these methods, the natural gradient-type methods are
more suitable to solve large-scale learning problems in terms
of computation and efficiency, especially when the Kronecker
factored approximations are used.

The convergence of the stochastic gradient-type methods
are extensively studied in [27]-[34]. In the nonconvex case,
the Lipschitz continuity of Vh and bounded variance are
standard assumptions for the almost sure convergence of
the gradient norm. However, the theoretical bound in their
analysis with these assumptions suggests slower convergence
than the empirical performance. The Polyak-Lojasiewicz con-
dition proposed in [35] is utilized [36] to prove the linear
convergence rate of the stochastic gradient method. Recently,
the Kurdyka-t.ojasiewicz inequality [37] is also investigated
to derive the convergence of the iteration sequence, as well
as the convergence rate. As to the natural gradient method,
the linear convergence from random initialization has been
shown in [38] for an over-parameterized neural network model
under an additional stable Jacobian condition. It is well-
known that Newton-type methods, such as the Gauss-Newton
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method and the Levenberg—Marquardt method, enjoy locally
superlinear or quadratic convergence rate [39, Subsection 10.3]
for deterministic optimization.

B. Contribution

Although the practicability of the NGM has been verified
in a wide range of applications, its theoretical property has
not been well understood. The goal of this paper is to
derive global convergence of the NGM through an adaptive
stochastic trust region framework and establish its fast local
convergence by utilizing the regularity conditions of h and the
connections between the Fisher information matrix (FIM) and
the Hessian of the objective function. We first review several
definitions of the FIMs and establish their connections to the
generalized Gauss-Newton (GGN) matrix. Both mathematical
and computational comparisons between the FIMs and the
GGN matrix reveal the popularity of the NGM. Furthermore,
the contributions of this paper are summarized as follows.

« A strategy of adaptive regularization in the stochastic trust
region framework is proposed to ensure the global con-
vergence of NGM. Our main contributions in the analysis
lie in the generalization of the results of stochastic trust
region method in [40] from the trust-region constraint to
the adaptive regularization for solving the optimization
problem (1). Besides, with the assumption of sufficiently
probabilistic accurate estimations on the objective func-
tion values, we have weakened the condition of the
acceptance of the iterates, i.e., removed the dependency
on the gradient norms.

« We investigate the local error bound condition instead
of the locally strong convexity in the analysis of the
locally quadratic convergence rate of NGM. With two
stochastic conditions on the estimates of function values
and gradients, we prove the locally quadratic convergence
of NGM. The key tools exploited here are the equivalence
between the FIM and GGN matrices, and the perturbation
analysis used in the eigenvalue and singular value de-
compositions under the local error bound condition. The
quadratic convergence rate of the iterates achieved in this
work is significantly stronger than the linear convergence
rate of the outputs reported in [38, Theorem 2].

Notation. For any n € N, we use the abbreviation [n] :=
{1,...,n}. For a vector z € R™, we use ||z|| to denote its /5
and || X|| are defined
as the spectral norm and the Frobenius norm, respectively.
The notations X > 0 and X > 0 denote the sets of positive
semidefinite and positive definite matrices, respectively.

Organization. In Section II, we give the definitions of FIMs
and the GGN, and clarify their connections. A globalized
NGM together with almost sure convergence in the gradient
norm is presented in Section III. In Section IV, we show the
local quadratic convergence rate of the iterates. Numerical
experiments on the logistic regression problem are reported
in Section V.

II. RELATIONS BETWEEN THE HESSIAN, THE GGN
MATRIX, AND THE FIM

The goal of this section is to review when the FIM may
serve as a good approximation of the Hessian matrix of h.
The key is to establish the connection with the GGN matrix.
As the GGN matrix is computationally expensive in the large-
scale optimization setting, the NGM based on FIM gains much
attention due to its tractable computation. We assume in the
following that h is sufficiently regular, which holds if the loss
function L and the input-output mapping function f and log p
are sufficiently regular, such that the corresponding Hessian
and the FIM are well-defined.

A. Computation of the Hessian matrix and the GGN matrix

Let V,h and V2h denote the gradient and Hessian of a real-
valued function h with respect to a variable v, respectively.
The j-th component of f(x,6) € R™ is expressed as f;(x,0).
The Jacobian matrix J¢(, gy(¢) of f(z,0) with respect to 6 is
defined as

Vo fi(z,0)"

Jf(a:,@) (6) = VQf(J?, 9)T = c R™X,

ngm&;;:,H)T
For {(x;,y;)}Y,, we denote
(1,00 (0)
J(0) = :
Ti(n.0)(0)

and
VeL(y1,2)|=f(21,0)
G(6) = s eRM
VLN, 2)|2=f(an )
We also define two block diagonal matrices:
Hy(0)
Hu(6) = e R
Hy (0)

and

c RmemN
Hy(0)

where H;(0) = V2L(yi, 2)|.=f(z:,00€ R™*™ and H;(0) =
VzL(yiv Z)lz:f(wi,G)sz(yh Z)T|z:f(wi,0)e Rmxm,
By the chain rule, the Hessian matrix of & is given by

Z [qu )

v L(yla )|z:f(zi,9) Jf(cnl,@)(e)j|

2:HQN(9)€R" Xn

m

Z Vg[fj (xiv 9)} ijL(yiv Z) ‘z:f(a:,-,,@)

=1
3

1 N
+N;
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Here, H9V (6) is called the GGN matrix [41]. Based on the
previous notations, we have

HN () = L

J(0) " Hr(0)J(6).
When 0* is a local minimum with V. L(y;, 2)|.— f(z,,6+) = 0
for each (x;,y;) (which happens if each training pair (z;,y;)
is fitted accurately by the network f), the GGN matrix can
serve as a good approximation of V2h(6).

“4)

B. Computation of various FIMs

By [42], the FIM of h defined (1) with the loss function (2)
is defined as

with bf" = |B¥| . N¥ and |B¥| being the cardinality of B

Note that the minibatch FIM F involves resampling to
approximate B, _p v, () By utilizing the observed data points
{(zs,y:)}Y,, the Empmcal FIM (EFIM) is proposed in [41]
for practical purpose, namely,

N
ﬂ®=%2ﬁM%M%ﬂm®WM%M%ﬂm@f
=1
N

E:

J(@)TﬁL(e)J(G).

(10)
Different from the FIM, the definition of EFIM does not rely
on the exact expression of p. Hence, the EFIM can also be

H;(0)J(z:.0)(0) =

N
%Z ) [Volog p(ylzi, 0)Ve log p(ylzs, Q)T] defined for loss functions L, which do not obey the form of

4)
where py., (0) = pylf(z,0)) and p(yle;,0) =
p(y|f(x;,0)). Then, by chain rule we have
Vologp(ylzi,0) = Vo f(zi,0)V:logp(y|z)|.=f(z:,00€ R™.

(6)

Using L(y, z) = —logp(y|z) by (2) and changing the order
of taking the integral and the derivatives, one has

Eyp, o (0) [V2108D(Y12) 2= (2,00 V108 (y]2) o= f (0]

:Ey,\,py‘mi(g) |:.H;i| = ﬁl(Q),
_ (7
where H; = ng(y,z)|z:f<%9) and the first equality holds
because
]Eywp(y\z)[fv2 logp(y| )]
/Vp (yl2)Vp(yl2) " = plyl2)Vip(ylz)
p*(y[2)

=Eyp(y)2)[Vz1og p(y|2) V. log p(y|2)

p(ylz)dz

V/ (yl2)

Then, by plugging (6) and (7) into (5), an equivalent formu-
lation of F' is given by

N ZJf(%
1
= IO THO)I0),

where H() is a block diagonal matrix with i-th block being
H;(6).

When the conditional expectation Ey,\,py‘mi(g) does not
have an explicit form, a sampling approach can be used to
approximate this expectation. Specifically, for each xz;, we
can sample y from the density Py, () multiple times to get
yl, -+, yN" with N¥ € N. In addition, a minibatch B¥ C [N]
can also be sampled to further reduce computation. Thus, we
can obtain the minibatch FIM given by

Hi(0)J 2,0/ (0)
(8)

Ny
_ 1 . , )
F(0) = F Z Zve log p(y?, f(xi,0)) Ve 1ogp(yg,f(xi79))Tlearnmg problems, see, e.g.,

ieBF j=1

€))
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negative log probability [1, Section 11.1]. Analogous to the
minibatch FIM, the minibatch sampling of [N] in (10) can also
be utilized to approximate F'(f) and reduce the computations.

C. Connections between FIMs and the GGN matrix

From (4), (8), and (10), we see the differences between
FIMs and the GGN matrix lie in three matrices, #(6),
Hr(0) and Hr(0). Tt follows the definition of H;(6) that
if V2L(y,z) does not depend on y, we will have H,(f) =
V2L(Yi, 2)|a=f(x:,0)> and in this case, F(0) = HIN(9). It is
noted in [1] that this independence condition will be satisfied
by the loss L from the standard Gaussian distribution and the
multinomial distribution. For more general distributions, one
can refer to [1, Section 9.2]. As pointed out in [43], since y;
may not be sampled from the predictive distribution p(y|z;, 6),
the EFIM is not a Monte Carlo estimate of the FIM and the
equivalence between the EFIM and the FIM relies on strong
assumptions, e.g., a correct model f and enough data relative
to model capacity. In the case that y; ~ f(x;,0), the EFIM
goes to zero while the FIM and the GGN matrix approach the
Hessian. They also explain the practical success of the EFIM
based methods from the perspective of variance adaptation.

Although the FIM coincides with the GGN matrix mathe-
matically under the above-mentioned independence condition,
the computation of the FIM only involves the gradient of & and
the expectation, which can be obtained without formulating the
Jacobian. In particular, for f from the deep neural network
applications, the explicit storage of the Jacobian is costly and
not available in pytorch and tensorflow. These tools often
provide the access to the Jacobian vector products but the
cost is still expensive when the batch size is large. In the
construction of mini-batch FIM and EFIM, we only need
to compute the gradients on the resampled or observed data
points, which can be efficiently calculated through the back
propagation. These comparisons are summarized in Table I,
while the connections between different FIMs and the GGN
matrix are presented in Figure 1. Due to tractability of the
computation, the minibatch FIM and the EFIM are two popular
approximations widely used in the literature for solving deep
[2], [3], [44]. However, the
convergence properties of FIM based stochastic methods are
not well explored. In the following of the paper, we would
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TABLE I: Comparisons on computations among different
FIMs and the GGN matrix.

Computation ingredients and storage
J(0). H(0)
{VGL(yv f(l', 0))}966{951,A.A:cn}xywpy‘m(e)
{VoL(y:, flzi, )},

The GGN matrix
Minibatch FIM

EFIM

derive the global and local convergence of NGMs through the
connections between the FIMs and the GGN matrix, which
could help us to better understand their practical efficiency.

III. GLOBAL CONVERGENCE OF AN ADAPTIVELY
REGULARIZED NGM

Note that the FIMs are always positive semidefinite. By
adding a regularization term, the commonly used iterative
scheme of the NGM [2], [3], [17], [19] is given by

Or+1 = Ok + di, (11)
where dj, is obtained by the solution of
1
; T 4T
min my(d) i= gy d+ 5d° (F+ M T)d. (12)

Here, F), = 0 is the minibatch EFIM or minibatch FIM
approximation of F'(6j), Ay > 0 is a regularization scalar,
and g = g (0x) is a mini-batch approximation of the gradient
Voh(0y), where

1
gr(0r) = W Z VoL(yi, f(s,0k)) (13)
k ieBg
1
= > T w0y O VL1, 2) = f(a00)
k ieBy
1
= ijk(ek)Tgk(ek) (14
k:
with Bg = {ik,17' N 7ik,bi} C [N], bz = |BZ N
[Tt .0(0)
Jk(e) = )
Tt ,,.0)(0)
L L (15)
sz(yik,laZ)|z:f(fﬂik,1"9)
_VzL(yiksz 9 Z)|z:f(mlk,bi ’9)

Since F, + A\ = 0, the solution of (12), (Fy +AxI) " 1gs, al-
ways exists uniquely. In general, the update (11) may not lead
to convergence. The behaviour highly relies on the specific
choice of the step size o, (which is 1 in (11)). One of our goals
is to ensure global convergence by adaptively updating the
regularization scalar \j. Of course, another possible strategy is
to adapt a diminishing step size oy, by using the backtracking
line search as in [45], [46], and to update 051 = Oy + g dk.
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A. An adaptively regularized NGM

Denoting G, = Gi(0x), our adaptively regularized NGM
sets the regularization scalar

ok
Vi

where the regularization parameter oy, is adaptively updated in
the algorithm. In addition to the mini-batch approximations in
(13), at the k-th iteration, we define mini-batch approximations
of h ~ h(fy) and h{ ~ h(0) + di), respectively, by

)\k = ||gk||7 (16)

W= 3 Ly £ 01),

k ieBh
! (17)
hil = o > L(yi, f(wi, 0 + di).
k ieBh
For evaluation of the step dj, we introduce
PR Sl SR Ll (18)
my(0) —my(dr) — —my(di)
and use the update rule
0, +d if pr >
Opis — k+adg, 1 pg = N1, (19)
0, otherwise,

with some parameter 7; € (0,1). Due to the stochastic
inexactness of the sample average estimates hg,hg,gk, the
classic updating rule [39] for o, only depending on pj does
not guarantee the convergence. Here, we use an updating rule
for regularization parameter oy, in spirit similar to the strategy
used in [47], [48],

if pr > m and [|lgrl| = 2

= o’
1

=0 otherwise
’Y ) )

{maX{wk, Omin},
Ok+1 =

(20)
where 0 < v < 1, 72 > 0 and o, > 0 are constants.
Our adaptively regularized NGM is presented in Algorithm 1.
In contrast to the algorithms in [32] and [33] that use the
Gauss-Newton matrix-based Levenberg—Marquardt method,
Algorithm 1 is a FIM-based natural gradient method for
solving problem (1) and its convergence is more complicated
due to the use of inexact function evaluations. We note that a
stochastic trust-region algorithm is presented in [40]. In com-
parison to their method, where 6y, 11 = 0 +dj if both pi, > 1y
and ||lgx|| > 22, Algorithm 1 utilizes adaptive regularization
and has a less strict acceptance rule as defined in equation
(19), i.e., removing the dependency on the gradient norms.
In addition, the subproblem (12) can be efficiently solved if
the cost of the inverse of the matrix F), + A/ and a vector
multiplication is low. In [2], the authors employ the multi-layer
structure of the neural network and give a Kronecker-factored
approximation of Fj to reduce the large scale matrix into
the Kronecker product of two smaller matrices. In addition, a
block diagonal approximation is investigated to further reduce
the computations of the inverses.
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Resample y from Py, (6)

Empirical distribution {(z;,v;)}

Minibatch FIM

The GGN matrix

FIM EFIM

for Py, (6)
nVEL(y, z) does not depend on y

Fig. 1: Implications between different concepts of the FIMs and the GGN matrix.

Algorithm 1 An adaptively regularized NGM.

Input: Parameters 6y, oo and constants 7; € (0,1), v €
(0, 1), N2 > 0, omin > 0. Set k=0.
while stopping conditions not met do
Choose mini-batch index set B; C [N], and compute gy,
and Gj.
Compute F}, and set \j, =

711Gk |-

bg
Compute dj as the solution ofk( 12).
Choose mini-batch index set B! C [N], compute h) and
h.
Calculate ratio pi by (18).
Update 641 by (19) and o1 by (20).
k=k+1
end while

B. Global convergence

Before presenting the convergence, let us start with some
necessary notations. We use M}, to denote the random model
in the k-th iteration and my, = M}, (w) to denote its realization.
Consequently, the iterates Oy, the regularization parameters
Ak, Xk, and the iteration steps Dy are also random quan-
tities. Let 6, = Ok(w), \x = Ax(w), o = Xg(w), and
d. = Di(w) be their realizations. Besides, we use {09, O¢}
to denote the stochastic estimates of {h(Oy), h(Oy + Di)}.
Their realizations are represented by h{ = O(w) and h¢ =
Of¢(w). Let Gy be the stochastic estimate of VA(©) with
gr = G (w) being its realization. Hence, a stochastic process
{©k, Gy, My, Dy, Og, Og, Yk, Ax} is generated by Algorithm
1.

For the simplicity in emphasizing the dependency of ran-
dom quantities, we define }',?1’10 as the o-algebra gener-
ated by Mo,...,My_1, and OF,0%,...,0%_,,0¢_,. Let
}",?{’10/2 be the o-algebra generated by My,..., M) and
0%,0%,...,0% ,,0¢_|. Let FM | be the o-algebra gener-
ated by My, ..., My_1. To derive global convergence, we need
the following assumption.

Assumption 1. Define L£(0y) = {6 € R™ : h(6) < h(6p)}.

(a) The function h is twice continuously differentiable and
bounded from below. Its gradient is Lipschitz continuous
with modulus Ky, ie., for any 01,05,

[VR(01) = VR(02)[| < knl|61 — O2]|.

In  addition,  the  Jacobian — Jy, ¢)(0)  and
V.L(yi,2)|.=f(a;,0) are bounded on L(6y) with con-

2y
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stants k5 and kg, i.e., for all i € [N] and any 6 € L(6y),
1ol < kg IV2L(yis 2)s=p 0|l < Kg-

(b) The approximate FIM F}, is bounded from above for all
k, i.e., there exists kg such that

| Fell < Kfim, VE=1,2,... (22)

(c) The mini-batch index set B} is chosen such that the
sequence of random gradients {Gy} is at least %-
probabilistically ;—Z—ﬁrst—order accurate, i.e.,

P(Eyg|F10) > (23)

1

27
where Ej, ¢ 1= {||G;C — Vh()| < ;—Z} with kg > 0.

(d) The mini-batch index set B,@ is chosen such that the

sequence of random function values {OY, Og} is at least
(1 — 71,)-probabilistically €,-zero-order accurate, i.e.

P(Ek,o|]-',i\{’lo/2) >1—1 (24)

with a sequence {1y} such that 7, € [0,1), > o, T <
oo and the event

Eo = {|0} — h(6k)| < €5, |Of — h(0) + di)| < €6},
(25)

n1llgwl® KO
L9 5 and ko >
8(I1Fxll+or/y/bLNGel) " ok

where €& = min{
0 is a constant.

Remark 1. The Assumptions I (a) and (b) are standard in the
analysis of optimization methods [31], [39]. In addition, the
Assumptions (c) and (d) can be satisfied if the batch sizes for
evaluating gradient and function estimations are large enough.
We refer to [40], [48] for similar assumptions.

The global convergence proof can be split into the following
steps. Firstly, we show o, will go to infinity almost surely.
Secondly, we show that the trial step 6 + dj, will be accepted
as 041 for sufficiently large o if the gradient and func-
tion value estimates are sufficiently accurate. Finally, by the
martingale theorem [49, Exercise 5.3.1], we show the almost
sure convergence of the gradient norms. Let us start with the
sufficient function value reduction under Ej, o.

Lemma 1. Suppose that Assumption 1 (b) holds. For any
successful update at 0y, (i.e., p, > n1), when the event Ej o
happens, we have

mllgel?

4 (o + 2/ VEDIGH])

h(0k4+1) < h(0k) — (26)
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where Ey, o is defined in (25).

Proof. By (12) and F}, > 0, it holds that
1 |lgxl g |I®
—my(dg) > - = .
2IEA ML 2 (1B + o0/ VBDIIGH])
(27)
So, for a successful update ;1 = 6y, + di, by (19) we have

2
B — b > —nyme(dy) > 1| g |

~ 2 (I + o/ VEDIGH)

Under event Ej, o, we have h% and hg are e’é-accurate. Hence,

by Assumption 1 (b) and (25), we have
h(0k) — h(Ok41) = h(Ok) — hY + hY) — h{ + b — h(Ok11)

mllgell® 1 llgw|I*

> > .
= a(IFl+r/NODIGH) T 4 (Rimt ok /A /BD G )
0

Lemma 2. Suppose that Assumption 1 (a), (b), and (d) hold.
Let {X}.} be generated by Algorithm 1. Then, it holds almost
surely that

lim > = +oo.
k—o0

(28)
Proof. First, for any € € (0, 1), it follows from 74, € [0,1) and
> e Tk < oo in Assumption 1 (d) that there exists a K > 0
such that

- In(1 —
Z T < —% and 7 € [0,1/2) for all k > K,
k=K

which implies that

H(l—rk) > exp (—227k> >1—e
k=K k=K

Hence, by Assumption 1 (d), we have

oo
P(E;%O happens for all k > K) > H (I1—-7,)>1—¢.
k=K

(29)
In the following, conditioning on the event that F; o happens
for all £ > K, we show by contradiction as in [48, Lemma
2.5] that limy_,o, o = oo, where the sequence {oy} is any
realization of {Xj}.

Suppose that o, does not go to co. Then, there exist ¢ such
that the set S; = {k : o), < &} is infinite. (Otherwise, if such
¢ does not exist, o goes to 00.) Due to 0 < v < 1, the set
Sy :={k : 0, < &/} is also infinite. Consider the set

S3 = {k‘ €9y : Ok+1 < O‘}g}. 30)

We claim that S5 is also infinite. If not, there exists a constant
Ny € S5 such that o1 > oy for all £ > Ny and k € Ss.
Since o, > /v for all k ¢ S,, by the updating rule (20) of
o, there exists a Ny > Ny such that o, > & for all kK > N;.
This conflicts to the infiniteness of S;. Hence, S5 is infinite.
Now, from the update rule (20) and the definition of Ss, it
holds that

Vk € Ss.

2|

Hng > %7 Pk > m, and o <
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Since E o happens for all k£ > K, we have from the updating
rule (19) of 6y, that the sequence {h(6y)} 72 x is monotonically
nonincreasing, and from Lemma 1 that

B m lgx|®
h(Ok) — h(Ox11) > -
4 (v + (on//BDIIGN)
mns mnsy®

= 403 (Kfim + okkg) — 462 (YKfim + OKg)

for all £ € S3 and £ > K, where the second inequality
follows from Assumption 1 (a) and [|Gy| < kgy/b. Since
the sequence {h(0y)}72 j is nonincreasing, for all £ > K we

have
>

h(0k) — M(Oer1) >
jESs3, K<j<(

> )

JE€Ss, K<j<t

h(8;) — h(0j+1)

mnsy°
462 (ykfim + Okg)

Taking ¢ — +o0 and noticing the infiniteness of S3, the above
inequality contradicts with the bounded below assumption of
h.

Hence, for any 0 < € < 1 we have

P <klirn Y = oo) > P (E}),0 happens for all £ > K) > 1—e.
—00

Then, by the arbitrary choice of 0 < € < 1, limy_, o, 2 = 00

almost surely. O

The following lemma reveals that when both events E ¢
and Ej o happen and oy, is sufficiently large, we will have
the update 01 = 0y + dk.

Lemma 3. Suppose that Assumption 1 (a) and (b) hold. When
the events Ey, ¢ and Ey, o happen and

. 2

o Zmax{lﬁﬁm74ﬁgl€J(lﬁ:g+lﬁ:h) -5-28Iﬁ:g/430}7 G1)
Kg (L =n0)llgxl

it holds that py, > m1 and 011 = 0, + di.

Proof. Tt follows from Assumption 1 (a) and the definition of

gr. in (13) that

1
7 Z I s 0) OV L(Yi, 2) o= f (a1.0)

gkl =
i€By]

1

< bj Z ‘J}l—(zi’g)(e)vzl/(yi,Z)|z=f(:ci,0)H (32)
k ieBy
KR Ry

< a0kl = —= 19k,
by VE NG

where the second inequality is due to ||J¢(,, 6l < % and
Gr = G(0y) is defined in (13).

Since o > Kfim/kg and the assumption ||F:| < Kfm,
recalling ||Gx|| < kg \/bTJ, (27) and F), = 0, we have

||9k||2
mi(dk) 2 4Uk/<ag’

(5t NG o

K
<t
Ok

i

k|l =
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where the second inequality uses (32). Then, by the Lipschitz
continuity of Vh in Assumption 1 (a), when the event Ej o
happens, we have

h(Ok + dk) — h(0)) — mk(dk)
< dL(VA(B) - ) + S|l

(33)
(34)
”3(/‘59 + Kn)

0.2

K
< ZEdg| + snlldi]? <
Ok pa

Hence, when the event Ej), o also happens, we have

7mk(dk) — hg + hg

and zj be its realization. By Lemma 2, limy_,o, 2 = o0
almost surely. So, when K is sufficiently large, we have

P(inequality (40) holds for all k > K) >1—7, (39

where
Bk > B(¢) =
{259 202 Kam 16kgK5 (kg + Kn) + 326gKO  Omin }
max< ——— > ’ .
£ & Kg (1 —m)&?

Y
A (40)
Combing (37) and (39), it gives P(E) > 7, where the event
F is defined as

E={|IVh(©8)]| > & Ex.0 happens

b= —my(dy)
_ —mi(dy) = h(Bx) + POk + di) + h(0) — hi — h(0k + di) + h§
a —my,(dy)

K5 (kg + kp) /0% +2k0/0}  AkgkT (kg + K1) + 8Kgko

gk ll?/(4okkg)
S 1-— m,

orllgrl?

which implies pr > 11. Then, ;1 = 0 + dj, follows from
the updating rule (19), pr > n1. We complete the proof. [

From Lemmas 1, 2, and 3, we are going to show the almost
sure convergence of Algorithm 1. To proceed it, we need the
following result on the convergence of submartingales.

Proposition 1. [49, Exercise 5.3.1] Let Qy be a submartin-
gale, i.e., a sequence of random variables which, for every k,

E[QuFEL] = Quor, where FE, = o(Qo, ..., Quon) is

7Qk’—17 and E |:Qk|\/_'.]?_1i|
denotes the conditional expectation of Qj given the past
history of events ]-",?71. If Qr — Qr—1 < C < o0, for every k,
then,

P <{ lim Q < oo} U {limsuka = oo}) =1.
k—oo k—o0
With the above proposition, there is at least a subsequence

generated by Algorithm 1 converging to a stationary point
almost surely.

the o-algebra generated by ), . . .

Theorem 1. Suppose that Assumption I holds. Let {Oy} be
the random iterates generated by Algorithm 1. Then, it holds
almost surely that

liminf | VA(Oy)| = 0. (35)
k—o00

Proof. We prove (35) by way of contradiction. If (35) does
not hold, then there exist 7 > 0, £ > 0, and an integer K > 0
such that

P(IVR(Ok)] = & forall k> K) > 37, (36)

By (36) and the inequality (29) with ¢ = 7, when K is
sufficiently large, we have

P(||Vh(9k)|| > ¢ and Ej, o happens for all k£ > K) > 27,
37
Let us define a random variable

Zy = log,yq(E;l) (38)
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and inequality (40) holds for all £k > K }

In the following, let us consider the stochastic process gen-
erated by Algorithm 1 conditioning on the event E. Without
loss of generality, let us simply assume K = O in the rest of
the proof.

First, let the event Ekg be the event Ej ¢ conditioning on
E. Then, by Assumption 1 (c) and the definition (23) of Ej, g,
we have

P(Ejc|FM,) = P(Ejc|FM,,E) = P(E;c|FM)) > 1/2.

' 41)
Let W; = Y7 ,(2- {Ek,c — 1) with 1Ek,§ being the
characteristic function of Ej, ¢, i.e., 1 Brc is 1 if Fy, ¢ happens
and O otherwise. Then, ‘

W,_ 1, ifl, =1,
Wj — j—1 + 1 EJ"G- (42)
W;_1—1, otherwise,
which gives
[W; —W;_1] =1 43)

Using (41) and (42), the conditional expectation satisfies
E(W)IFM ) = B, P2 + E@ 14, — 1FM)
=W;_1+ QP(EJ',GU:]A/_IJ -1
ZWj—l‘i‘Q'%_l = Wij-1,

which implies W; is a submartingale. By (43) and Proposition
1, we have

P (hm supW; = oo) =1. (44)

j—o0

Conditiqning on E let us Aconsider two cases at the k-th
iteration: E, ¢ happens and Ej ¢ does not happen.

. EkG happens (i.e. Ey, ¢ happens conditioning on E): In

this case, we have ||gr — Vh(0;)]] < :—i < % Then,
S
gkl 2 IVROR) = [VR(Ok) = gkl = 3-

It follows from (40) and Lemma 3 that ||gx|| > 12/0%
and pg > m for all £ > K. Then, it follows from the oy
updating rule (20) and o) > opin/7y that ogy1 = Yok
Therefore,

Zk+1 = IOg'y*l(Uk_il) = IOg'yfl(f}’ilak_l) =2zp+ 1.
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Let wj, be the realization of W;,. Then, since 1 oo = 1,

by (42) it holds that
241 — 2k = Wgp1 — wg = L. (45)

e I o does not happen (i.e. Ej, ¢ conditioning on E does
not happen): In this case, by the o updating rule (20),
we always have o411 < (1/7)o. Then,

2kl = logv_l(ogjl) > 1og7_1(’ya;1) =z, — 1.
Then, since 1 oo = 0, by (42) it holds that
(46)

241 — 2k 2> Wg1 — wWg = — 1.

Combining (45) and (46), we have z; > wy —wg + zo. Hence,
by (44), one has

P (lim sup Zp, = 00 ‘ E) —1. 47)
k—oo
Since P(E) > 7 > 0, we have
P <1imsup Iy = oo) >71>0. (48)
k—o0

By the definition of Z in (38) and limy_, o, 3 = co almost

surely by Lemma 2, we have limy_,o, 2 = —oo almost
surely, which contradicts with (48). So, (35) holds almost
surely, and we complete the proof. [

Remark 2. Note that the upper boundedness of ||Fy| is
sufficient for the global convergence. This allows using more
practical approximations of FIMs to further reduce the com-
putation, e.g., the Kronecker-factored approximation in [2].

We also note that the result of Theorem 1 can be improved to
the full sequence limy_, ||Vh(Ok)|| = 0 by a similar proof in
[40, Theorem 4.18]. Moreover, the explicit complexity bound
on the expected number of iterations required to achieve e-
accuracy could be obtained by similar approaches in [50],
which presents the iteration complexity for a class of trust
region based stochastic optimization methods.

The requirement of gradually increasing accuracy on the
estimates of the objective function and gradient is a common
assumption in the context of probabilistic model based algo-
rithms, including [40]. However, these analyses do not rely on
the boundedness of the variance of the estimates, which is often
used in analyzing the stochastic gradient methods. Addition-
ally, we are able to establish the almost sure convergence of
the gradient norms. This is more reliable than the existing the
convergence with expectation or high probability of stochastic
gradient type methods. Although we may need large batch
sizes to obtain accurate gradients and functional evaluations
given by Assumption 1, it will not affect the effectiveness of the
natural gradient methods as large batch training [51]-[53] is
commonly used and could improve numerical performance.

Remark 3. We note that the prox-linear method in [54]
for solving our problem (1) reduces to a stochastic Gauss-
Newton method. This is different from our FIM-based natural
gradient method, where the Jacobian approximation in [54]
is not needed. In addition, since our method is based on the
probabilistic model and the trust-region like adaptive strategy,
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both the algorithmic framework and the convergence analysis
are quite different with their method.

Algorithm 2 Local NGM

Input: Choose an initial parameter 6. Set k = 0.
while stopping conditions not met do
Choose Bf = Bj =: By C [N] and N/ e N.
Compute g, and F}, and set \r, = ||Gi||//|Bk|-
Compute dj; as the solution of (12).
Set 011 = O, + d.
k=k+1.
end while

In the following section, we examine the local convergence
speed of a NGM type Algorithm 2.

IV. LOCAL CONVERGENCE ANALYSIS OF THE NGM

In the previous section III, we have applied an adaptive
regularization and a trust region type technique to ensure
global convergence. This results the regularization parameter
Yk approaches to infinity almost surely (see Lemma 2). In
fact, from the proof of Theorem 1 we can see that given
any & > 0, as long as ¥ > 3(¢) holds almost surely
for all k sufficiently large, where Y (&) is defined in (40),
we will have liminf, o |[VA(Or)]] < & almost surely.
Hence, in the practical application of NGM Algorithm 1,
we can set up a sufficiently large upper bound S of .
When X reaches this upper bound 3 and ||gi|| does not
get reduced sufficiently often, we may consider switching to
the local NGM Algorithm 2 to accelerate the convergence. In
Algorithm 2, we update 0,1 = 0y + dj at each iteration,
where dy, is the solution of (12), and simply set o = 1 for
convenience of local analysis. However, setting oy, to be any
positive constant, for instance setting o, = 3 for all k, will not
affect the analysis of local convergence speed. In addition, at
each iteration of Algorithm 2, we set the minibatch sampling
sets Bf = BY =: Bj, C [N] with |Bg| = by.

For local convergence analysis, we consider the loss func-
tions L(y, z), which are twice continuously differentiable with
respect to z and V2 L(y, z) does not depend on y. In this case,
by (7), we have H;(#) = V2L(y, 2)|z=f(ws,0) = Hi(0). Since
no samplings on y is needed, we have N; = 1. Consequently,
in this case, the minibatch EFIM defined in (9) will be the
same as the minibatch FIM. Furthermore, we assume the
matrix Fj in the quadratic model (12) can be theoretically
written in the form of
1
=
where H(0) = Diag(H,;(0)
submatrix of H(9).

F T (0k) T H1(0%) Tr (%), (49)

1 i € By) is a block-diagonal

Remark 4. Note that the Hessian of L with respect to z,
ie., V2L(y,z), does not depend on y in many practical
applications in machine learning. For example, it holds for
the following commonly used loss functions:

2, it holds

o For the square loss function L(y, z) = ||y — z
that V2L(y, z) = L.
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o Consider the cross-entropy loss function L(y,z) =
—ylogz—(1—y)log(1—Z2) with Z = Sigmoid(z). Then,
we obtain V2L(y,z) = diag(z © (1 — 2)).

o For the cross-entropy loss L(y, z) = — Y _[y]; log[Z]; with

Z = Softmax(z), we obtain V2L(y, z) = diag(?)—z2".

Let ©* be the set of local minimums of (1), which is a
closed set, and let us define

dist(#, ©*) := ||# — 6| with § € arg min [|§ — 6]
0cO*

To establish local convergence speed in this section, we also
need the following assumptions.

Assumption 2. Define B(0*,b) = {0 : dist(,0*) < b},
where b > 0 is some constant.

(a) For all i € [N|, the Jacobian Jg(,,¢)(0), the gra-
dient NV L(Yi, 2)|.=f(x:,6), and the Hessian H;(0) =
V2L(yi: 2)|s=f(zi,0) are Lipschitz continuous over
B(©*,b) with respect to 0. There exist positive constants
Lg and Ly such that for any 01,6, € B(©*,b) and any
i€ [N],

||VZL(y17 Z)|z:f(a:i,91) - VZL(yia Z)|z:f(zi,92) ||

(50)
<Lgl|f1 — 02|,

and
1 ¢(:,0)(01) = Jp(ai,0)(02)]| 7 < Lyl|61 — O2]].
In addition, for any i € [N] and 6 € B(©*,b), we assume
onl 2 Hi(0) = VEL(Yi, 2)|a=f(ai0) X 02D, (52)

619

where 0 < a1 < aig < 00 are two constants, and for any
0" € 07,

o (F(6%)) > 5 >0, (53)

where o (F(0%)) is the smallest positive eigenvalue of a
F(0*) > 0 and > 0 is some constant.

(b) G(0) has zero residue on ©%, i.e., IG(@)|| = 0 for any
0 € ©*.

(¢c) A local error bound condition holds for G(0), that is there
exists T > 0 such that for all § € B(©*,b), it has
1
VN
(d) The batch index sets B = B = By C [N] with |By| =
by, are chosen such that for any 0y, € B(©*,b),

P (EFLy) > (1= 6),

1G()]| > 7|6 — 8] (54)

with a constant 0y, € [0,1) and the event
1
Epy=3X:00k) >p| —=1G(0
o= {00 2 0 (llo )
and |[Fi — F(0r)|| < LrAi(0x)} .

where p > 0 and Lr > 0 are two constants, \i(0) =
ﬁﬂgk(é)k) , F(9) and Gi(0) are defined in (8) and
(15), respectively.

Remark 5. The smoothness conditions (50) and (51) in As-
sumption 2 (a) are satisifed if f and H are twice continuously
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differentiable. Remark 4 states that the boundedness of H;
in (52) is satisfied by the commonly used loss functions.
The condition (53) holds if ©* is connected and compact.
Assumption 2 (b) is satisfied if y; = f(xi,0), which is the
case when the number of parameters m is larger than the
number of examples N.

Remark 6. Note that Assumption 2 (c) is weaker than assum-
ing the positive definiteness of V2h(0*). Moreover, we can
see from (49), the definition of F(0) in (8) and the definition
of Gi(0) in (15) that for any 6, € [0,1), Assumption 2
(d) will hold by choosing the batch size |By| sufficiently
large. Assumptions 2 (b) and (c) are used in [48], [55] for
the Levenberg-Marquardt method. Assumption 2 (d) on the
accuracies of the estimates of the gradient and the FIM is
crucial in controlling the stochasticity in our NGM.

Remark 7. Due to the possibility of the FIM not being
positive definite, the authors [38] explore a deterministic
natural gradient method using the generalized inverse of the
FIM and a step size. To ensure the well-posedness of the
method, they require that the Jacobian J(0%) is full row-
rank and that the loss function L is strongly convex and with
Lipschitz continuous gradient. By assuming a stable-Jacobian
condition, they obtained a linear convergence rate on the
output uF = f(x,0%). This is a first-order type convergence
analysis on the output space, and it does not take into account
the relationship between the FIM and the Hessian matrix. In
addition, the convergence rate of 0% cannot be determined
based on their assumptions. In this work, we will show the
quadratic convergence rate of the natural gradient method,
Algorithm 2, by using the error bound condition. We note that
the stable-Jacobian condition and the local error bound are
independent of each other.

Remark 8. From the Lipschitz continuity of H;(6) in As-
sumption 2 (a) and (62), Hl-l/ 2(9) is also Lipschitz continuous
over the bounded set B(©*,b) due to the differentiability of
the square root of positive definite matrices. Furthermore,
by the Lipschitz continuity of Jf(w%g)(ﬂl) in Assumption 2
(a), one has the Lipschitz continuity of H? (0)J (4, 0)(0) and
Hi(0)J f(z,.0)(0) over B(©*,b), namely, there exists positive
constants Ly1/25 and Lyj such that for any 01,602 €
B(©*,b) and any i € [N],

HHi(Ol)l/QJf(wi,G)(al) - Hi(02)1/2<]f(w7;,9)(92) H

(55)
<Ly |01 — 02|,
and
| Hi(01) T f(21.0)(01) — Hi(02) T (0.0)(02)|| < Lz |61 —062]-
(56)

Moreover, from (55), (56) and the definitions of H(0) in (8)
and My, in (49), for any 01,65 € B(©*,b) and any i € [N],
we can derive

#2007 01) = #2(02)762)|| < L2 VW01 03]

) ) (57)
|42 020 7(02) = 945 (02) 1u(02)|| < Lygsre Vo)1 = 2],
(58)
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and
[H(01)T(01) — H(02) T (02)]| < Lz sV N[0y — 2], (59)

1H4(61) Tk (61) — H(62) T (62)| < Lz /bil|61 — 2.
(60)
Furthermore, from (50) in Assumption 2 (a) and the definition
of Gr(0) in (15) that
1G (6) = G (On) Il < V/brLg |6k — Okl (61)
Finally, for any § € B(©*,b), by the definition of Hy, in (49)
and (52), we have

arl = Hy(0) = aol, (62)
where 0 < a; < ag < 00 are given in Assumption 2 (a).

Firstly, let us validate the Assumption 2 (c) through the
following proposition.

Proposition 2. Consider the optimization problem
| XN

2N & 1(y»

f(zs,0))2. (63)

min
OcRn

(i) Assume that y; = f(x;,0
O, and

*) for all (x;,y;), where 8* €

Eong, [J;z’o)(e*)Jf(w)(e*)] > al

Sor some o > 0. Then, for any § € (0,1), Assumption 2
(c) is satisfied with c¢; = \/g and probability 1 — § if
N € N is sufficiently large.

(ii) In particular, for the choice

(64)

f(a,0) = aTp(Wx) (65)

Zajqﬁ ' wj)

with a € R, W = [wy,...,wg,] € R>%, g € RY,
0 = [w,...,wy]", and ¢ is a smooth activation
function (e.g., GELU [56]), suppose that the matrix
G(6*) € RW@A)X@d) yig jts (i, §)-th d-by-d block given
by

[G(07))ij = Exonq, [aiaj¢/(xwa)¢’(xTw;f

satisfies G(0*) > ol for some o > 0, where 0% =
[(wi)", ..., (w;)"]". Then, (64) holds. Hence, for any
6 € (0,1), Assumption 2 (c) is satisfied with ¢; = \/5
and probability 1 — § if N € N is sufficiently large.

Jaz ']

Proof. We first note that for the problem (63), we have

G()

]
((fm,m )T (fla,0) ymT)

with 6 = €6 + (1 — £)#* for some ¢ € [0, 1]. Then, we obtain

1 2
I4Q]
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(<f<a:1,e> @ 0T (Fan0) f<xN,e*)>T)

((Jf(wl,o)(é)w = 9*))T e (Jf(wN,O)(é)(e - 9*))T>

=(0-07)" ( Zszlm ()T, 9><9>> (0 —07).

By (64), there exists N € Nand b € (0, 1) such thatif N > N,
then

Z‘]f (2:,6)(

holds for all § € B(6*,b) with probability 1 — 6. This yields

1 o *
—190)]> ﬁne o

with probability 1 — §. Hence, Proposition 2 (i) holds.

Now, we show that (64) holds for the choice of f in (65).
The derivative of f is V., f(z,0) = a;¢'(z"w;)x. Hence,
the 1-by-dd; Jacobian of f(x,#) with respect to 6 is

0)J t(x..0)(0) =

M\Q
~

(66)

Jt(z,0)(0) (10 (xTw)z ", ... aq, ¢ (x wg, )z ]
T,
where ® is the Kronecker product and a =
(a1¢/ (@ wy), ..., aq,¢'(x"wa,)). So, by direct calculation,
we have
Eonq, |1]0) 0500 (07)] = Eona, [(@0T) © 227
=G(0%) = al.

Then, Proposition 2 (ii) follows from Proposition 2 (i). O

Remark 9. The distribution Q, in Proposition 2 can
be either discrete or continuous. For the finite datasets
(x1,91),---,(xs,ys), taking Q. as the uniform distribution
over {x1,...,xs}, Assumption 2 (c) will hold for large
N (< 8) if yi = f(x;,0%) for all i ., S and
%Ziszl J}r(mi’g)(O*)Jf(%g)(O*) = ad. The positive definite-
ness condition in (64) basically corresponds to the strong
convexity of a population-form of (63). Hence, the error bound
condition used in Assumption 2 can be seen as a generalization
of the strong convexity to a nonconvex problem.

In the following, for notation simplicity, we let Hy
Hk(ék), Ak /\k(ek) and J, = Jk(ek) and define the
function

(67)

1 1 2
or(d) 1= || ¥ G+ H i+ bl

Then, we can observe from (13) and (49) that the quadratic
model defined in (12) can be rewritten as

1

o) - 5 [ |
and

dy, = arg ;Iel]gll my(d) = arg min ¢ (d).

T deR™

The local quadratic convergence rate of Algorithm 2 can
be shown in the following two steps: Firstly, by utilizing
Assumptions 2 (a), (b) and (c), we show that the projections of
generahzed residual H, 2 Gy to the left singular vector space
of H?Jj, can be controlled by |0 — 0| and [|6x — x>
This further gives the bound of the direction dj, and ensures
the iterations staying in the neighborhood B(©*,b). Secondly,
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with the local error bound condition given in Assumption 2
(c), the distance to the optimal solution set ||fg1+1 — Opv1]]
is controlled by the residual G (ek_i'_l)i which can be further
related to the generalized residual 7, Gy, by the Assumption
2 (a). Combining with the established estimation for the
generalized residual and Assumption 2 (d), the quadratic
convergence rate is then obtained.

We now derive some inequalities and set up some notations
which will be used in our following proof of theorems. First,
for any 6, € B(©*b), we do the following eigenvalue
decomposition of F'(f) = 0:

_ 1 - _ _ o
F(6) = NJ(Gk)TH(Hk)J(Qk) = ViV,
where VJ Vi, = I and Ay, has the format
_ A _ o _
A = < k,1 0) , A1 = Diag (/\k71, .. -7)‘k,rk) = 0,
and 7y, is the rank of F'(6). And here, by (53) and ), € ©%,

we can assume that

Mot = Ak > oo > Ay, >0

(68)

Suppose that 6y is sufficiently close to ©*. Then, from the
Lipschitz continuity assumption in Assumption 2 (a), we can
have the eigenvalue decomposition of F'(6)) > 0:

F(0y) = %J(Gk)T'H(@k)J(@k) = ij\kv/ja

where ‘7,: f/k =1 and Xk has the format

(A
A = ’ ~
' ( Ak’2>

with /N\k,l = diag (kal, .. ,Xk,rk) > 0, Kk’g > 0. Since it
holds that
1

N

T
PO = (00600 ) (et 6076,).
F(6 L 230,700 ' VEICAVIL.

00 = (i enaen) (ertesen).
by the relationships between the eigenvalue decomposition and
singular value decomposition (SVD), we have the following
SVDs:

%Naéwmm — Wy <<Ak71>2 0) A
and
1 s . (K’“f ; _
ﬁﬂz (0k)J (0)) = Wi, (IN\M) 2 (Vi)

where WJW;C =TI and WJ% = I. Here, we assume /7\;6,1
has the same size with Ay ;. Then, by the continuation of
matrix singular values and (57), we have

(er)" = ()

N|=

(i)
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1

<— [HE @I - 2 00 760)|

1
wid

1 _ _
S\/N\/N'LHUUH(% — Okl = Ly1/2510k — O]l

So, for 6y, sufficiently close to ©* and (68), we have

~ 3~ 30 ~ _
Ap1 = lAk,l b ZI and HAk,zH < L3 a0k — 012
(69)

On the other hand, we also have the eigenvalue decomposition
of Fj, = iJ,;r’Hka = VkAkaT, where VkTVk =1,

[ Aga
= (M)

and the following SVD:

1 1 Alg,l
——=H I =Wy A

172
Vi F

1
k2 (70)

0

where WkT W), = I. Here, we assume A1 and Ay o have the
same size with Ay ; and Ay o, respectively. By Assumption 2
(b), we have Gi,(0r) = 0 since 6, € ©*. If the event Ej, in
Assumption 2 (d) happens, by (61), we have

1 ~
|Fr — F(0)]l < LEAR(0k) = L - a”gk(@k) — Gi(Or)|?
< LpL%||0k — 0>

Therefore, by the matrix eigenvalue perturbation theory [57],
when the event Ej in Assumption 2 (d) happens, we have

A1 — /N\m N
Apo—Ago

Hence, by (69), for 8 sufficiently close to 6*, we have

< [[Fx — F(0r)]l

< LpL}||0k — 01>

Y

A (71
kel < |[Basl|+ 15 - F o0l

< (L31)2;, + LpLg) |16k — 0k

1 _
§Ak71 b %I and

N

(72)

1 1
Let X1 = \/bkA,';”l and X = \/bkA,’j’Q. Denote W), =
(Wi.1, Wi2, Wi 3) and Vi, = (Vi 1, Vi 2, Vie,3). Then, we can
rewrite the SVD (70) as

. Y1
HE T = Wi, Wi2, Wi 3)

Now, let b* € (0,b] be sufficiently small such that if
0, € B(0*,b*) and the event Ej in Assumption 2 (d)
happens, then the inequalities (69) and (71) hold for any 6 €
B(0*,b*). Then, based on the above preliminary analysis, we
have the following lemmas on the control of the projections

of generalized residuals H, 2Gy.
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Lemma 4. Suppose that Assumption 2 (a), (b) and (c) hold,
and 6y, € B(©*,b*). Then, we have

_1 _1 _
|Wea Wil 26| < a7 2ov/be - 102~ Bl

_1 _1 —
(WiaWilaH, 2G| < o * Lias Vo - 0 = 0ul12. (75)

If, in addition, the event L}, in Assumption 2 (d) happens, we
have

(74)

T, -1
vzt
_1 1 _
< (o7 Lus+ LiLg + Loy ) Vorlox - 6,1C6)

Proof. For the first inequality (74), we have from Wk Wi =
I, Gr(6x) = 0, (62) and (61) that

Josaviio ) <
<ay ?1Gu(8) — G ()l < ) 2 Lg/by. - |6k — Byl

_1 1
Defining s, = arg m]%n H?—lk 2Gr +H Jis||,
seR™

ond inequality (75), we have from the SVD of Hé Ji in (73)
that

HWk,3WkT,3H;:%QkH < HH;%gk +’H1%Jk3kH
< H”H;%Qk + H%Jk(ék - 91@)H
<[ (6 — 01|

<a;§LHJ\/bk . ||9k — Q_kH2,

where the last inequality is from (62) and (56).
Finally, we prove the third inequality (76). To this end, we
define

5 = argsrrel]%ll H?—[;%gk + (WS Vih) sH :
Then, due to W, W}, = I, it holds that
(WiaWilot 26| = [ 2+ (Wia S Vi)
<[ e+ (WaaSavilh) @ — 04|
< H'H;%gk +HE T (0, — ek)H 1| (Wi 2Sk2Vil) 0k — 1)

_1 — _
<ay 2\ b Lul|0k = Okl” + Skl - 10k — Okl

If the event E} in Assumption 2 (d) happens, by the choice
of X o and (71), we have

1wl = Ve ||Af <

which together with (77) implies (76) holds.

7

Ve (Ligisag + LiLg ) 18 = Ol
O

Then, we can bound the direction dj, by the distance of 6y
to the optimal solution set, i.e., ||#x — Oy||. This ensures that
0r+1 remains within the neighborhood of Assumption 2 if 6
is close enough to ©*.

Lemma 5. Suppose that Assumption 2 (a), (b) and (c) hold,
and 0, € B(©*,b*). If the event Ej in Assumption 2 (d)
happens, we have

el Okll® + 116x — Okl

L2
< L), — (78)
T

Moreover; if 0;, € B(©*,b), we have
il < 2)|0k — O, (79)
where b = min{b*, pray /L%, }.

Proof. First, we observe from the definition of ¢y, in (67) and
d = arg én%{n vk (d) that
e n

i I? < < #r(dr) ok (O — O1)
br Ak br Ak
L L > (80)
[ b+ 0 — 00| )
= + 110 — 01 ]1*.
b g

Notice that

1 1 _ 2 _
762 G+ 1 110k — 00) | < e Ly 10 — 04"
(1)
By Assumption 2 (c), when the event E}, in Assumption 2 (d)
happens, we get

1 _
e =M (0) > p | —=|1G(0 > p7l|0k — Okl (82
e~ M00) = o (10001 = rl ~ Bl 52)
Then, (80)-(82) l_ead to (_78). Finally, (79) follows from (78)
and ), € B(©*,b) with b = min{b*, prasy /L% ;}. O

Combining above and using Assumption 2 (d), we show the
local quadratic convergence rate of Algorithm 2.

Theorem 2. Suppose that Assumption 2 holds and 0; €

B(©*,b/3). Then, we have
Tpl0rs1 = Orsa | < C |16x — Oil? (83)

with grobabilily at least 1 — 6y, where b > 0 is defined in (79),
and C' is a constant given in (85).

Proof. Since

_1 1 2
i = arg min (d) = HHk 3Gy + M2 JdeF SWIFE
R Y VAN T T

-1 T 43
Yk oWy oH,, Gk,

~Viea (B30 + beAel)
—Vio (Zig + be )
we obtain
H;%gk + /H% Jidy;
=M, 2 G — Wit Sk (321 + bided) ™ S Wil Hy, 2 G
— Wi oYk 2 (2%72 + bk)\kIf1 Ek,2W;I2H,;%Qk
Wi s W1 G+ b AW (53 + b )™
+ b Wia (52,5 + bidd) WioH, Gy

_1

Wi1H,, G
(84)

In the following, suppose the event Ej in Assumption 2 (d)

happens. Then, by (71), we have Ay > %I holds. So, we
1
have from ¥ ; = \/bkA,il that

-1 _ 1 B )
[+ o)™ <22 = o 42 < 1

and
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1 _
N 1Gk(0)]| < Lg ||0x — Ok -

Using the above inequalities, we have from (84) and Lemma 4
that

)\k: = )\k(e}c) =

_1 1
HH’“ *Gr +H; JkdkH

LHJ\fH9k—9k||2 f||9k—9k\|2
+ (a;ELHJ +LaLg + LH%J) Vo0 — Bi]12.

Since 041 = 0 + di, when the event Ej in Assumption 2
(d) happens, we have from (79) that

16141 = O || < 10k — Ora [l + [[di]

<10k — Orsall + 20105 — Ol < 3|6k — O,
which, by 0. € B(©*,b/3) and 011 € ©*, implies 011 €
B(©*,b). Then, under the event Elk in Aslsumption 2 (d), it
?|| < aZ by (62), and (79)

that
_ p 1
0 —0 < 0 < — 0.+ d
7|0k +1 — Oppa]| < ﬁHg( k)|l < ﬁkagk( K+ di)l

fngk + My Jrdy|| + L de

a 1 1 ~ _
STZTCH/Hk 2Gr + H Jrdiel| + L sl di|l® < C|160k — Ok,
where
¢ =2, /a (Lits +L3/0)+v/as (LiLg + L,y ) +4Li,.

(85)

By Assumption 2 (d), the event Ej happens with at least
probability 1 — ;. Hence, the inequality (83) holds with at
least probability 1 — ;. This completes the proof. O

V. NUMERICAL EXPERIMENTS
In this section, we would like to perform some simple tests
on examining both global and local convergence properties
of our proposed NGM on the following logistic regression
problem:

N

T Yign2

%ﬁh( ;log (1 + exp (=b; (a; 9)))+5||0|| ,
(86)
where {(a;,b;)}X,, where a; € R" and b € {-1,1},

is the dataset and v > 0 is the regularization parame-
ter. In the numerical tests, v is set to 0.01. Let g =
|B£’|ZzeBg Vo log (14 exp (=b; (a; 0))) +v0 and V, be an
upper bound of the variance of g,. For comparisons, we
also present the results of the probabilistic model based first-
order method, STORM given by [40]. Default algorithmic
parameters are used except for the initial trust-region radius
Ag. We set Ag = 0.8 as it will give better performance than 1.
By the Chebyshev’s inequality [49, Exercise 4.1.2], we have
for any v > 0,

v,
By w2

P [lge = VR ()] = v | 71T <
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TABLE II: A description of binary datasets. The integers N
and n denote the number of the samples and the dimension
of data, respectively.

Dataset N n Reference

news20 19996 1355191 [58]
revl 20242 47236 [59]

SUSY 5000000 18 [60]
kdd 19264097 748401 [61]

Then, the condition (23) holds as long as |B}| > 2‘25202.
We test two settings on the sample size for two algorithi]ns,
linearly increasing sample size |Bj| = [min{N, max{100k +
1000,07}}] and the exponentially increasing sample size
|BY| = [min{N,max{500 - 1.8%,02}}]. To test the local
quadratic convergence, we adopt a more accurate estimation on
the objective function values, gradients, and FIMs by setting

|BY| = [min{N, max{200, [1/A\7]}}1, (87)

where Ay, is set as 0.01]|Gx||. When the sample size is given,
we randomly draw the samples from {1,2,..., N} without
replacement. The datasets used with descriptions are presented
in Table II.

For the implementation, we set 7; = 0.1,72 = 0.001,~v =
2, Omin = 1078. The initial g is chosen as 1 and 0.01 to test
the global and local convergence, respectively. We first run Al-
gorithm 1 and then transit to Algorithm 2 when |[|gx | < 1074
To ensure the boundedness of oy, in the local phase, we add an
extra projection, o, = min(oy, 101°). In this way, the resulting
algorithm could enjoy both global convergence and fast local
convergence as presented in our previous analysis. With both
linearly and exponentially increasing sample sizes, we present
the results in Figure 2. We can see our adaptively regularized
NGM converges in both cases, while the exponentially sample
strategy often converges to a point with lower objective
function value. Compared with STORM, our NGD returns a
point with a lower function value in much smaller epochs,
which indicates the advantage of using Fisher information.
We note that the per-epoch computational cost of NGD is
higher than that of STORM, as computing the natural gradient
direction involves solving a linear equation. For the sample
size (87), Figure 3 clearly shows the quadratic convergence of
the norms of gradients.

VI. CONCLUSION

Due to the computational efficiency of the FIMs, the natural
gradient method (NGM) attracts much attention recently, while
its global convergence and local convergence properties were
not fully studied in the literature. We propose a trust region
based adaptive regularization technique for ensuring global
convergence of NGM under the assumption that the gradi-
ent and function evaluations are probabilistically sufficiently
accurate. By utilizing the connections between the FIM and
the GGN matrix and exploiting the properties of eigenvalue
and singular value decompositions under the local error bound
conditions, we show the quadratic convergence rate of our
proposed method. Our numerical experiment on the logistic
regression problems verifies the global and local convergence
analysis results given in the paper.
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Fig. 2: Numerical tests for linearly and exponentially increasing batchsizes, i.e., |BY| = [min{N, max{100k + 1000, 03 }}]
and |B}| = [min{N, max{500 - 1.8*, 62}}].
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