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ABSTRACT

We consider a large-scale parallel-server loss system with an un-
known arrival rate, where each server is able to adjust its processing
speed. The objective is to minimize the system cost, which con-
sists of a power cost to maintain the servers’ processing speeds
and a quality of service cost depending on the tasks’ processing
times, among others. We draw on ideas from stochastic approxima-
tion to design a novel speed scaling algorithm and prove that the
servers’ processing speeds converge to the globally asymptotically
optimum value. Curiously, the algorithm is fully distributed and
does not require any communication between servers. Apart from
the algorithm design, a key contribution of our approach lies in
demonstrating how concepts from the stochastic approximation
literature can be leveraged to effectively tackle learning problems
in large-scale, distributed systems. En route, we also analyze the
performance of a fully heterogeneous parallel-server loss system,
where each server has a distinct processing speed, which might be
of independent interest.
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1 INTRODUCTION

Massive power consumption by data centers is a growing concern in
recent years. If left unchecked, the electricity demand of data centers
is predicted to grow up to 8% by 2030 [2]. This issue has sparked a
renewed interest to not only consider performance metrics such
as user-perceived sojourn time, but also power consumption [1, 4-
6]. Processing tasks at a higher speed naturally reduces the user-
perceived sojourn time, but it comes at a higher power consumption
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cost, which is typically cubic in the processing speed. Thus, the
servers must strike a delicate balance in this tradeoff. The above
can be formulated as an optimization problem, where a server must
choose its service rate to minimize certain global objective function.

Consider a system consisting of n € N parallel servers with unit
buffers, where server v € [n] has processing rate pJ > 0. Tasks
arrive as a Poisson process with rate An, and have i.i.d. exponential
sizes with unit mean. Upon arrival, tasks are either routed to an idle
server chosen uniformly at random, if there are any, or dropped
otherwise. The goal is for the servers to run at processing rates that
minimize the cost function
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where S™ is the processing time of a non-dropped task in steady-
state and Q" € {0, ..., n} is the number of busy servers in steady-
state. Here, Eyn and Pyn denote expectation and probability, respec-
tively, when the processing rates equal p". Moreover, g : Ry — R4
represents the cost due to the processing time of tasks, h : Ry — Ry
represents the cost of maintaining a specific processing speed and
q : [0, 1] — Ry represents the cost of dropping tasks.

Key challenges. The first challenge arises from the fact that an ex-
pression for the processing time for heterogeneous systems (when
all servers have different service rates) is required to be able to
characterize the cost function. To the best of our knowledge, such
expressions under policies like the join-idle-queue are unknown till
date. Next, in terms of the algorithm design, the ‘gradient descent’
cannot be blindly applied to our current setup for several reasons:
First, as mentioned before, the lack of a simple expression for the
processing time in a heterogeneous system. Second, Even if such
expression is available, it would depend on the service rates of all
servers in the system and hence cannot be computed at a single
server. Similarly, unbiased noisy estimates of the processing time
cannot be obtained. Another challenge is created by the distributed
nature of the optimization problem. Since we do not allow any
explicit communication between servers, we need to effectively
use the sparse and implicit hints given by the actions of the load
balancing policy to change a server’s service rate. For example,
under the join-the-idle-queue policy, if a server is idle and received
a new task very fast, then it is likely that the system is overloaded
and the server should increase its service rate.

Our contribution. In this paper, we design a (simple) distributed
algorithm that updates the service rate of each server based only
on the current service rate and idle times of the local server. In
an appropriate asymptotic regime, we show that the cost of the
server rates under our algorithm converge to the globally optimal
cost. The keys to obtaining such a result are to characterize the
processing time of an heterogeneous loss system, and to show that
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the expected service times become equal as the size of the system
increases. A full version of the paper can be found in [7].

2 MAIN RESULTS

In the formulation of Equation (1.1), we assume that the functions
g, h, and q satisfy the following assumptions.

AsSUMPTION 2.1. There exist 0 < p— < A < py such that:

(i) g(x) and h(x) are twice continuously differentiable for all x €
Ri, g’ (x) > 0and h"'(x) > 0 forallx € Ry and g’ (x) >
og > 0andh’(x) 2 op > 0 forallx € [p—, pi];

(ii) g(x) is non-increasing and W’ (x)/x is non-decreasing for all

X €R+,’
(iii) Ag’ (X) +h’()L) < 0;
(iv) forall0 < y < 1/A4, ¢ (p=) + W' (u=)(y + 1/p~) < 0 and

g (ue) + 1 (ﬂ+)(y +1/py) > 0;
(v) limy—0 q(x) = q(0) = 0.

THEOREM 2.2. Under Assumption 2.1, we have

lim inf r"(p") = Ag(y") +h(y"),

n—co yn R
where ii* = arg ming>o{Ag(y) + h(p)} > A.

To establish this result, we show that, for any average rate, a
homogeneous rate vector minimizes the cost as n — co. While the
convexity of h easily implies that homogeneous processing rates
minimize the second term in equation (1.1) for any given average
rate, the fact that this also minimizes the first term crucially relies
on the fact that the expected idle times of servers become equal.

2.1 Adaptive algorithm

Since servers do not know the arrival rate A and cannot communi-
cate with each other, we design an adaptive algorithm that learns
the optimal processing rates in a completely distributed way. The
algorithm is designed around the key insight that the average idle
time of each server becomes equal as n — oo, and thus servers may
use their idle times as ‘signals’ to gauge how its own service rate
compares to the average service rate, and adjust accordingly. Under
our algorithm, the service rate of each server is updated as follows:

t
"0 =m0 - [ 9’(112""’(3))

(2.1)
+GET D876 + =) ds
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where m > 0 is a tunable hyperparameter, and I} (¢) denotes the
idle time of server v € [n]. That is, if server v is idle at time ¢, then
I>™(t) is the length of time since the last service completion, and
if server v is busy at time ¢, then I (¢) is the length of the last
idle period.

Note that Equation (2.1) resembles a continuous-time version of
a stochastic approximation algorithm with constant step size 1/m.
In order to analyze it, we consider the asymptotic regime where
m — oo. As m gets larger, the service rates are updated at a slower
pace, but with less randomness. Thus, if we accelerate time by a
factor of m, we obtain a deterministic limiting trajectory with a
constant learning rate. This is formalized in the following theorem.
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THEOREM 2.3. If p™™(0) — p"(0) weakly as m — oo, then
the sequence of trajectories {(p”’m(mt))tzo}meN is relatively com-
pact with respect to the weak topology. Moreover, all limit points

(™ (t))s>0 satisfy
t
W) = 10 -/0 (g'(uﬁ(s))
7 n n l
R 6D (B oy [1(0)] + #_(S))) @

where By [I}} ()] denotes the expected idle time of serverv € [n] in
steady state in a system where the service rate vector is fixed at y1.

(2-2)

The proof of Theorem 2.3 is based on time-scale separation ideas
introduced in [3]. Note that the limiting trajectories given by Equa-
tion (2.2) are roughly the expectation of the original trajectories
given in Equation (2.1). In order to understand the limiting dynam-
ics given by Equation (2.2), we need to get a handle on Eyn [I{,’ (00)] ,
which is the expected idle time of a system where the service rates
do not update and are fixed at y, for v € [n]. As mentioned earlier,
in this setting, we prove that the expected idle times of different
servers become equal, as n — oo.

THEOREM 2.4. There exist constants ¢ (u™) > 0 such that

1—c"(pu")
Eun I -
max [Byn |15 ()] 5

— 0asn — oo. (2.3)

Building upon this result, we obtain our main result that states
that the processing rates indeed converge to the optimal, static
processing rate u*.

THEOREM 2.5. Let yi* be as in Theorem 2.2 and p™(t) be as in
Theorem 2.3. Then,

—,u*l—>0asn—>ooandt—>00, (2.4)

max [12(1)

ve(n]
where the limits are taken either jointly, or first asn — co and then
ast — co.

Theorem 2.5 states that " (t), which is an asymptotic approxi-
mation of the original rate vector u™™(t), converges to the optimal
processing rate in time, when the number of servers n goes to infin-
ity. This indicates that our algorithm indeed solves the optimization
problem given in equation (1.1) when m and n are large.
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