
Distributed Speed Scaling in Large-Scale Service Systems
Daan Rutten

Georgia Institute of Technology

Atlanta, GA, USA

Martin Zubeldia

University of Minnesota

Minneapolis, MN, USA

Debankur Mukherjee

Georgia Institute of Technology

Atlanta, GA, USA

ABSTRACT
We consider a large-scale parallel-server loss system with an un-

known arrival rate, where each server is able to adjust its processing

speed. The objective is to minimize the system cost, which con-

sists of a power cost to maintain the servers’ processing speeds

and a quality of service cost depending on the tasks’ processing

times, among others. We draw on ideas from stochastic approxima-

tion to design a novel speed scaling algorithm and prove that the

servers’ processing speeds converge to the globally asymptotically

optimum value. Curiously, the algorithm is fully distributed and

does not require any communication between servers. Apart from

the algorithm design, a key contribution of our approach lies in

demonstrating how concepts from the stochastic approximation

literature can be leveraged to effectively tackle learning problems

in large-scale, distributed systems. En route, we also analyze the

performance of a fully heterogeneous parallel-server loss system,

where each server has a distinct processing speed, which might be

of independent interest.

CCS CONCEPTS
• Theory of computation → Stochastic control and optimiza-
tion; Distributed algorithms; Online learning algorithms; •Mathe-
matics of computing → Markov processes.

KEYWORDS
Load balancing; Rate-scaling; Distributed optimization

ACM Reference Format:
Daan Rutten, Martin Zubeldia, and Debankur Mukherjee. 2024. Distributed

Speed Scaling in Large-Scale Service Systems. In Abstracts of the 2024 ACM
SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS/PERFORMANCE
Abstracts ’24), June 10–14, 2024, Venice, Italy. ACM, New York, NY, USA,

2 pages. https://doi.org/10.1145/3652963.3655053

1 INTRODUCTION
Massive power consumption by data centers is a growing concern in

recent years. If left unchecked, the electricity demand of data centers

is predicted to grow up to 8% by 2030 [2]. This issue has sparked a

renewed interest to not only consider performance metrics such

as user-perceived sojourn time, but also power consumption [1, 4–

6]. Processing tasks at a higher speed naturally reduces the user-

perceived sojourn time, but it comes at a higher power consumption

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMETRICS/PERFORMANCE Abstracts ’24, June 10–14, 2024, Venice, Italy.
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0624-0/24/06.

https://doi.org/10.1145/3652963.3655053

cost, which is typically cubic in the processing speed. Thus, the

servers must strike a delicate balance in this tradeoff. The above

can be formulated as an optimization problem, where a server must

choose its service rate to minimize certain global objective function.

Consider a system consisting of 𝑛 ∈ N parallel servers with unit

buffers, where server 𝑣 ∈ [𝑛] has processing rate 𝜇𝑛𝑣 > 0. Tasks

arrive as a Poisson process with rate 𝜆𝑛, and have i.i.d. exponential

sizes with unit mean. Upon arrival, tasks are either routed to an idle

server chosen uniformly at random, if there are any, or dropped

otherwise. The goal is for the servers to run at processing rates that

minimize the cost function

𝑟𝑛 (𝝁𝑛) := 𝜆𝑔

(
1

E𝝁𝑛 [𝑆𝑛]

)
+ 1

𝑛

∑︁
𝑣∈[𝑛]

ℎ(𝜇𝑛𝑣 )+𝑞
(
P𝝁𝑛

(
𝑄𝑛 = 𝑛

) )
, (1.1)

where 𝑆𝑛 is the processing time of a non-dropped task in steady-

state and 𝑄𝑛 ∈ {0, . . . , 𝑛} is the number of busy servers in steady-

state. Here, E𝝁𝑛 and P𝝁𝑛 denote expectation and probability, respec-

tively, when the processing rates equal 𝝁𝑛 . Moreover, 𝑔 : R+ → R+
represents the cost due to the processing time of tasks,ℎ : R+ → R+
represents the cost of maintaining a specific processing speed and

𝑞 : [0, 1] → R+ represents the cost of dropping tasks.

Key challenges. The first challenge arises from the fact that an ex-

pression for the processing time for heterogeneous systems (when

all servers have different service rates) is required to be able to

characterize the cost function. To the best of our knowledge, such

expressions under policies like the join-idle-queue are unknown till

date. Next, in terms of the algorithm design, the ‘gradient descent’

cannot be blindly applied to our current setup for several reasons:

First, as mentioned before, the lack of a simple expression for the

processing time in a heterogeneous system. Second, Even if such

expression is available, it would depend on the service rates of all

servers in the system and hence cannot be computed at a single

server. Similarly, unbiased noisy estimates of the processing time

cannot be obtained. Another challenge is created by the distributed

nature of the optimization problem. Since we do not allow any

explicit communication between servers, we need to effectively

use the sparse and implicit hints given by the actions of the load

balancing policy to change a server’s service rate. For example,

under the join-the-idle-queue policy, if a server is idle and received

a new task very fast, then it is likely that the system is overloaded

and the server should increase its service rate.

Our contribution. In this paper, we design a (simple) distributed

algorithm that updates the service rate of each server based only

on the current service rate and idle times of the local server. In

an appropriate asymptotic regime, we show that the cost of the

server rates under our algorithm converge to the globally optimal

cost. The keys to obtaining such a result are to characterize the

processing time of an heterogeneous loss system, and to show that

95

https://doi.org/10.1145/3652963.3655053
https://doi.org/10.1145/3652963.3655053
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673660.3655053&domain=pdf&date_stamp=2024-06-13


SIGMETRICS/PERFORMANCE Abstracts ’24, June 10–14, 2024, Venice, Italy. Daan Rutten, Martin Zubeldia, and Debankur Mukherjee

the expected service times become equal as the size of the system

increases. A full version of the paper can be found in [7].

2 MAIN RESULTS
In the formulation of Equation (1.1), we assume that the functions

𝑔, ℎ, and 𝑞 satisfy the following assumptions.

Assumption 2.1. There exist 0 < 𝜇− < 𝜆 < 𝜇+ such that:

(i) 𝑔(𝑥) and ℎ(𝑥) are twice continuously differentiable for all 𝑥 ∈
R+, 𝑔′′ (𝑥) ≥ 0 and ℎ′′ (𝑥) ≥ 0 for all 𝑥 ∈ R+ and 𝑔′′ (𝑥) ≥
𝜎𝑔 > 0 and ℎ′′ (𝑥) ≥ 𝜎ℎ > 0 for all 𝑥 ∈ [𝜇−, 𝜇+];

(ii) 𝑔(𝑥) is non-increasing and ℎ′ (𝑥)/𝑥 is non-decreasing for all
𝑥 ∈ R+;

(iii) 𝜆𝑔′ (𝜆) + ℎ′ (𝜆) < 0;
(iv) for all 0 ≤ 𝑦 ≤ 1/𝜆, 𝑔′ (𝜇−) + ℎ′ (𝜇−) (𝑦 + 1/𝜇−) ≤ 0 and

𝑔′ (𝜇+) + ℎ′ (𝜇+) (𝑦 + 1/𝜇+) ≥ 0;
(v) lim𝑥→0 𝑞(𝑥) = 𝑞(0) = 0.

Theorem 2.2. Under Assumption 2.1, we have

lim

𝑛→∞
inf

𝝁𝑛∈R𝑛+
𝑟𝑛 (𝝁𝑛) = 𝜆𝑔(𝜇∗) + ℎ(𝜇∗),

where 𝜇∗ = argmin𝜇≥0{𝜆𝑔(𝜇) + ℎ(𝜇)} > 𝜆.

To establish this result, we show that, for any average rate, a

homogeneous rate vector minimizes the cost as 𝑛 → ∞. While the

convexity of ℎ easily implies that homogeneous processing rates

minimize the second term in equation (1.1) for any given average

rate, the fact that this also minimizes the first term crucially relies

on the fact that the expected idle times of servers become equal.

2.1 Adaptive algorithm
Since servers do not know the arrival rate 𝜆 and cannot communi-

cate with each other, we design an adaptive algorithm that learns

the optimal processing rates in a completely distributed way. The

algorithm is designed around the key insight that the average idle
time of each server becomes equal as 𝑛 → ∞, and thus servers may
use their idle times as ‘signals’ to gauge how its own service rate
compares to the average service rate, and adjust accordingly. Under
our algorithm, the service rate of each server is updated as follows:

𝜇
𝑛,𝑚
𝑣 (𝑡) = 𝜇

𝑛,𝑚
𝑣 (0) − 1

𝑚

∫ 𝑡

0

𝑔′ (𝜇𝑛,𝑚𝑣 (𝑠))

+ ℎ′ (𝜇𝑛,𝑚𝑣 (𝑠))
(
𝐼
𝑛,𝑚
𝑣 (𝑠) + 1

𝜇
𝑛,𝑚
𝑣 (𝑠)

)
d𝑠,

(2.1)

where𝑚 > 0 is a tunable hyperparameter, and 𝐼
𝑛,𝑚
𝑣 (𝑡) denotes the

idle time of server 𝑣 ∈ [𝑛]. That is, if server 𝑣 is idle at time 𝑡 , then

𝐼
𝑛,𝑚
𝑣 (𝑡) is the length of time since the last service completion, and

if server 𝑣 is busy at time 𝑡 , then 𝐼
𝑛,𝑚
𝑣 (𝑡) is the length of the last

idle period.

Note that Equation (2.1) resembles a continuous-time version of

a stochastic approximation algorithm with constant step size 1/𝑚.

In order to analyze it, we consider the asymptotic regime where

𝑚 → ∞. As𝑚 gets larger, the service rates are updated at a slower

pace, but with less randomness. Thus, if we accelerate time by a

factor of 𝑚, we obtain a deterministic limiting trajectory with a

constant learning rate. This is formalized in the following theorem.

Theorem 2.3. If 𝝁𝑛,𝑚 (0) → 𝝁𝑛 (0) weakly as 𝑚 → ∞, then
the sequence of trajectories

{
(𝝁𝑛,𝑚 (𝑚𝑡))𝑡≥0

}
𝑚∈N is relatively com-

pact with respect to the weak topology. Moreover, all limit points
(𝝁𝑛 (𝑡))𝑡≥0 satisfy

𝜇𝑛𝑣 (𝑡) = 𝜇𝑛𝑣 (0) −
∫ 𝑡

0

(
𝑔′ (𝜇𝑛𝑣 (𝑠))

+ ℎ′ (𝜇𝑛𝑣 (𝑠))
(
E𝝁𝑛 (𝑡 )

[
𝐼𝑛𝑣 (∞)

]
+ 1

𝜇𝑛𝑣 (𝑠)

))
d𝑠,

(2.2)

where E𝝁 [𝐼𝑛𝑣 (∞)] denotes the expected idle time of server 𝑣 ∈ [𝑛] in
steady state in a system where the service rate vector is fixed at 𝝁.

The proof of Theorem 2.3 is based on time-scale separation ideas

introduced in [3]. Note that the limiting trajectories given by Equa-

tion (2.2) are roughly the expectation of the original trajectories

given in Equation (2.1). In order to understand the limiting dynam-

ics given by Equation (2.2), we need to get a handle on E𝝁𝑛
[
𝐼𝑛𝑣 (∞)

]
,

which is the expected idle time of a system where the service rates

do not update and are fixed at 𝜇𝑣 for 𝑣 ∈ [𝑛]. As mentioned earlier,

in this setting, we prove that the expected idle times of different

servers become equal, as 𝑛 → ∞.

Theorem 2.4. There exist constants 𝑐𝑛 (𝝁𝑛) ≥ 0 such that

max

𝑣∈[𝑛]

����E𝝁𝑛 [
𝐼𝑛𝑣 (∞)

]
− 1 − 𝑐𝑛 (𝝁𝑛)

𝜆

���� → 0 as 𝑛 → ∞. (2.3)

Building upon this result, we obtain our main result that states

that the processing rates indeed converge to the optimal, static

processing rate 𝜇∗.

Theorem 2.5. Let 𝜇∗ be as in Theorem 2.2 and 𝝁𝑛 (𝑡) be as in
Theorem 2.3. Then,

max

𝑣∈[𝑛]

��𝜇𝑛𝑣 (𝑡) − 𝜇∗
�� → 0 as 𝑛 → ∞ and 𝑡 → ∞, (2.4)

where the limits are taken either jointly, or first as 𝑛 → ∞ and then
as 𝑡 → ∞.

Theorem 2.5 states that 𝜇𝑛 (𝑡), which is an asymptotic approxi-

mation of the original rate vector 𝜇𝑛,𝑚 (𝑡), converges to the optimal

processing rate in time, when the number of servers 𝑛 goes to infin-

ity. This indicates that our algorithm indeed solves the optimization

problem given in equation (1.1) when𝑚 and 𝑛 are large.

3 ACKNOWLEDGEMENTS
This work was partially supported by the NSF grants CIF-2113027

and CPS-2240982.

REFERENCES
[1] A. Gandhi, S. Doroudi, M. Harchol-Balter, and A. Scheller-Wolf. Exact analysis of

the M/M/k/setup class of Markov chains via recursive renewal reward. In Proc.
SIGMETRICS’13, pages 153–166, 2013.

[2] N. Jones. How to stop data centres from gobbling up the world’s electricity. Nature,
561(7722):163–167, 2018.

[3] T. G. Kurtz. Averaging for martingale problems and stochastic approximation. In

Applied Stochastic Analysis, pages 186–209. Springer, 1992.
[4] V. J. Maccio and D. G. Down. On optimal policies for energy-aware servers. Perf.

Eval., 90:36–52, 2015.
[5] D. Mukherjee, S. Dhara, S. C. Borst, and J. S. H. Van Leeuwaarden. Optimal service

elasticity in large-scale distributed systems. Proc. ACM Meas. Anal. Comput. Syst.,
1(1):25, 2017.

[6] D. Mukherjee and A. Stolyar. Join-Idle-Queue with service elasticity: Large-scale

asymptotics of a non-monotone system. Stoch. Syst., 9(4):338–358, 2019.
[7] D. Rutten, M. Zubeldia, D. Mukherjee. Distributed rate scaling in large-scale

service systems. arXiv:2306.02215, 1–32, 2023.

96


	Abstract
	1 Introduction
	2 Main results
	2.1 Adaptive algorithm

	3 Acknowledgements
	References



