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Abstract

This paper uses the technology of weighted triangulations to study discrete ver-
sions of the Laplacian on piecewise Euclidean manifolds. Given a collection of
Euclidean simplices glued together along their boundary, a geometric structure
on the Poincaré dual may be constructed by considering weights at the vertices.
We show that this is equivalent to specifying sphere radii at vertices and gen-
eralized intersection angles at edges, or by specifying a certain way of dividing
the edges. This geometric structure gives rise to a discrete Laplacian operator
acting on functions on the vertices. We study these geometric structure in some
detail, considering when dual volumes are nondegenerate, which corresponds
to weighted Delaunay triangulations in dimension 2, and how one might find
such nondegenerate weighted triangulations. Finally, we talk briefly about the
possibilities of discrete Riemannian manifolds.

1. Introduction

In this paper we shall explore Euclidean structures on manifolds which lead
to discrete Laplacians (sometimes called Laplace operators). Euclidean struc-
tures can be introduced on a triangulation of a manifold by giving each simplex
the geometric structure of a Euclidean simplex. This structure gives the man-
ifold a length space structure in the same way a Riemannian metric gives a
manifold a length structure: the length between two points is the infimum of
the lengths of paths between the two points. The length of a path is determined
by the fact that each simplex it passes through has the structure of Euclidean
space.

The purpose of this paper is to be able to do analysis on the piecewise
FEuclidean space. The Laplacian A is well defined on many geometric spaces,
and is especially important as a natural operator on a Riemannian manifold
and as a generator of Brownian motion. In this paper, we define a general
Fuclidean structure called a duality triangulation which not only allows one to
measure distance between points and volumes of simplices, but also allows one
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to describe a geometric dual cell decomposition and the volume of dual cells.
This allows one to define a Laplacian in a natural way. Similar Laplacians have
found applications in fields such as image processing [95, 73] and physics [94].

The duality triangulation structure is very similar to other Euclidean struc-
tures used in both pure and applied math; specifically, we address the connection
to weighted triangulations and Thurston triangulations. In addition, positivity
of volumes of certain duals correspond to Delaunay or weighted Delaunay tri-
angulations.

This paper is organized as follows. We begin in Section 3 with an intro-
duction to Euclidean structures by recalling the definitions of weighted and
Thurston triangulations, introducing dual triangulations, and relating the three
types of triangulations. In Section 4 we introduce the Laplace operator A
associated to a given duality triangulation and derive some of its properties.
In Section 5 we discuss weighted Delaunay triangulations and in Section 6 we
consider flip algorithms for constructing weighted Delaunay and Delaunay tri-
angulations. Finally, in Section 7 we briefly discuss the status of piecewise linear
Riemannian geometry.

Many of the results in this paper were motivated as generalizations of those
described in [17].

Remark 1. The original preprint version of this paper contained some of the
results published in [58].

2. Introduction to this update

The first version of this paper [59] appeared as a preprint. In this updated
version, we have updated the terminology to adhere to current trends, especially
the language regarding weighted Delaunay triangulations, and to give further
comments and references to more recent work that uses or is closely related to
the material herein. Other than these minor changes and additions, the paper
is largely the same as the most recent preprint version. The main contribution
of the original paper is to provide careful description of the types of duality
structures that are found commonly in many applications of discrete and discrete
differential geometry. The original paper also aimed to unite several different
viewpoints that each utilize similar concepts. Some more recent treatments can
be found as well, e.g. [1, 37].

Piecewise linear/piecewise Euclidean structures have been widely studied in
the last 20 years as part of the body of literature devoted to discrete conformal
structures and wider set of literature on discrete differential geometry. Moreover,
graph and discrete Laplacians have been widely used in many contexts in order
to describe both geometric and data generated questions. The work in this paper
lays a foundation for a geometric Laplacian that at the same time restricts the
class of weighted Laplacians to ones that are geometrically related to Laplace-
Beltrami operators on Riemannian manifolds and generalizes weighted graph
Laplacians to situations where weights are not always positive. In the latter
case, the geometric character of the operators still can allow analysis of the



operators even without the standard assumption of positive weights. Discussion
on this issue can be found in Section 4.3.

While the application of (unweighted) Delaunay triangulations via 2D finite
element is well-developed, a number of applications have found use for weighted
Delaunay triangulations and their relatives. First among these is the use of
finite volume methods where the control volumes can change, e.g., [47, 87].
Other applications involve modeling and simulation [93], mesh generation [99],
spectral parametrization [131], discrete tensor fields [38], geometric processing
[116], and surface representation [43].

3. Euclidean structures

3.1. Basic definitions

In this section we shall introduce three types of Euclidean structures: weighted
triangulations, Thurston triangulations, and duality triangulations. All struc-
tures begin with a topological triangulation 7 = {7y, 71, . . ., Tn} of an n-dimensional
manifold (we shall usually use n to denote the dimension of the complex in this
paper). The triangulation consists of lists of simplices o*, where the super-
script denotes the dimension of the simplex, and 7 is a list of all k-dimensional
simplices 0¥ = {ig,...,ix}. We shall often refer to 0-dimensional simplices as
vertices, 1-dimensional simplices as edges, 2-dimensional simplices as faces or
triangles, and 3-dimensional simplices as tetrahedra. We shall often denote ver-
tices as j instead of {j} . Let 7;" denote the directed edges, where we distinguish
(i,4) from (j,7). When the order does not matter, we use {i,j} to denote an
edge. A triangulation is said to be an n-dimensional manifold if a neighborhood
of every vertex is homeomorphic to a ball in R™. A two-dimensional manifold
is often referred to as a surface. Throughout this paper we will be dealing
exclusively with triangulations of manifolds or parts of manifolds.

In order to give the topological triangulation a geometric structure, each edge
{1, j} is assigned alength ¢;; such that for each simplex in the triangulation there
exists a Euclidean simplex with those edge lengths. We call such an assignment
a Fuclidean triangulation (T ,¢), where we think of ¢ as a function

0:T1 — (0,00).

The conditions on ¢ include the triangle inequality, but there are further re-
strictions in higher dimensions which ensure that the simplices can be realized
as (non-degenerate) Euclidean simplices. The restrictions can be expressed in
terms of the square of volume, which can be expressed as a polynomial in the
squares of the edge lengths by the Cayley-Menger determinant formula [117].
Each pair of simplices o' and o§ connected at a common boundary simplex
0"~ 1 is called a hinge. In a Euclidean triangulation every hinge can be embed-
ded isometrically in R™.

Remark 2. Throughout this paper, we will refer to simplices by their vertices,
and hence use notation such as £;; for edge {i,j}. The work can be generalized to



non-simplicial triangulations which may have multiple simplices that share the
same vertices, but for notational convenience we do not consider these cases.

Fuclidean triangulations have the structure of a distance space with an in-
trinsically defined distance. Given any path v whose length can be computed
on each Euclidean simplex, we can compute the total length of the path L (v)
as L(y) = >, Lo (yNo) where Ly (yNo) is the length of the path in the
simplex o (if the path intersects the simplex many times, we simply add the
contributions of each piece of the intersection) and the sum is over all simplices
of highest dimension that intersect . In particular, we can consider paths that
are differentiable when restricted to each simplex (these are called piecewise
differentiable paths or curves). The intrinsic distance is defined as

d(P,Q) =1inf{L (v) : v is a path from P to Q}. (1)

The class of paths can be either taken to be piecewise differentiable or piecewise
linear since length is minimized on piecewise linear paths, as explained in [119,
Section 2]. A path which locally minimizes length is called a geodesic and one
which globally minimizes is called a minimizing geodesic.

We are now ready to introduce more structures on Euclidean triangulations.

3.2. Weighted triangulations
We begin with weighted triangulations.

Definition 3. A weighted triangulation is a Euclidean triangulation (T,£) to-
gether with weights
w:Tog— R.

We think of the weight w; as the square of the radius of a circle centered
at the vertex i, although we do not assume that weights are positive. These
weighted triangulations are used in the literature on weighted Delaunay trian-
gulations such as [45] and [6]. Thinking of the weights in this way, in each
n-dimensional simplex there exists an (n — 1)-dimensional sphere which is or-
thogonal to each of the spheres centered at the vertices (this means they are
perpendicular if they intersect, or else orthogonal in the sense described in [103,
Section 40]). In this way, each simplex ¢ has a corresponding center C (o),
which is the center of this sphere, and the center has a weight w¢ () which is
the square of the radius of this sphere. See Figures 1 and 2.

An important particular case of weighted triangulations is that when w; = 0
for all vertices ¢. This is the setting for Delaunay triangulations, but may not
satisfy the Delaunay condition. We shall revisit this in Section 5.

3.3. Thurston triangulations
Definition 4. A Thurston triangulation is a collection (T ,w,c), where

w:To— R,
c:T1 =R,



Figure 1: A weighted or Thurston triangulation with corresponding circles at the vertices.

Figure 2: A weighted or Thurston triangulation with corresponding spheres at the vertices.



where ¢;; < w; +w; and such that the induced lengths

éij = £/ W; +’LU]‘ — Cij
make (T,£) into a Fuclidean triangulation.

For a Thurston triangulation, one considers the weight w; to be the square of
the radius r; of a sphere centered at vertex 4, just as for weighted triangulations,
and one considers ¢;; = 2r;r; cos (1 — 6;;) where 6;; is the angle between the
spheres centered at vertices ¢ and j. In this case, one derives the formula for
l;; by the law of cosines. By considering c;; instead of 0;;, we have included
some cases where the spheres do not intersect. These structures were studied by
W. Thurston in the context of proving Andreev’s theorem (see [120] and [92]).
Alternatively, one could consider circles with inversive distance as in [64].

An important special case is that when ¢;; = —2r;r; (i.e. 6;; = 0). This is
the case of a sphere packing on each simplex, since it corresponds to the spheres
being mutually tangent (as in [36, 56, 57]).

Remark 5. Note that weighted and Thurston triangulations are closely related
to spaces of spheres, as described in classical references such as [103, 126, 25].

3.4. Duality triangulations
Definition 6. A duality triangulation is a collection (T,d), where

d: ;" =R

which satisfies
47+ &3y, + diy = d3; + d3y, + di (2)

for each {i,j,k} € Tz and such that the induced lengths
éij = dij + dji
make (T,£) into a Fuclidean triangulation.

We think of the weight d;; as representing the portion of the length ¢;; of
edge {i,j} which has been assigned to vertex ¢ while dj; is the portion assigned
to vertex j. We thus call them local lengths. The total length of {7, j} is the sum
of the contributions d;; from vertex ¢ and dj; from vertex j. Hence each edge
is assigned a center C ({7,7}) which is distance d;; from vertex ¢ and distance
d;; from vertex j. The condition (2) ensures that for each triangle {7, j,k}, the
perpendiculars to the three edges through the edge centers meet at one point,
which can be called the center of the triangle, C ({7, j,k}). We shall soon see
that this condition on 2-dimensional simplices allows us to define a center for
every simplex in the triangulation.

There are two canonical examples which automatically satisfy the condition
(2). One is the case where d;; depends only on ¢ for all edges (7,7) (that is,
dij = dk, etc.). We call this a circle or sphere packing as in [56], and the



dual comes from the inscripted sphere, which is inscribed in the 1-skeleton. For
instance, the center C ({4, 7, k}) is the center of the circle inscribed in {3, j, k}
in 2D and the center C' ({4, j, k, £}) is the center of the sphere tangent to each of
the edges of the tetrahedron {4, j, k, ¢} in 3D. Another important case is where
d;j = dj;. This corresponds to the center C ({7, ], k}) coming from the circle
circumscribed about the triangle {i, 7, k} and similar for all higher dimensions.

The structure is called a duality triangulation because the existence of a
center C (o) for each o puts a piecewise-Euclidean length structure on the dual
of the triangulation in such a way that dual simplices are orthogonal to ordinary
simplices. For example, in two dimensions, if an edge {4,j} is incident on the
two simplices {i,j,k} and {7, j,¢}, then we can define the length of the dual
edge % {i,j} to be equal to the distance between the center C ({i, j, k}) of the
triangle {4, j,k} and the center C ({i,j}) of the edge {i,;j} plus the distance
between C ({7, 7,¢}) and C ({7, 5}). When the hinge is isometrically embedded
in R?, we see that % {i,j} is a straight line which is perpendicular to the edge
{i,7}. We shall now show that this can be done in all dimensions, and no
additional restrictions must be made besides (2) for each triangle.

Proposition 7. A duality triangulation in any dimension has unique centers
C (™) for each simplex o™ such that C(c™) is at the intersection of the
(m — 1)-dimensional hyperplanes through C ({i,j}) and perpendicular to {i,j}
for each {i,j} in ™.

Proof. We construct the centers C' (¢™) inductively for m-dimensional simplices.
Each pair of m-dimensional simplices meeting at an (m — 1)-dimensional sim-
plex (a “hinge”) can be embedded in R™ as two adjacent Euclidean simplices.
To make the notation more readable, we shall not distinguish between the em-
bedding of the hinge in R™ and the hinge as abstract simplices in the piecewise
Fuclidean manifold. A simplex ¢ is assumed to be Euclidean with the assigned
edge lengths given by ¢;;. We now inductively construct the centers of each sim-
plex. First, C ({i}) =i and C ({i,;}) is the point on {4, 7} which is a distance
d;; to {i} and a distance d;; to {j}. Now, given centers C (%) for k <m —1,
we construct C' (¢™) as follows. Label the vertices of o™ to be {0,1,...,m}.

Let IIy; ;3 denote the plane in R™ through C ({7, }) and perpendicular to
{i,7} (this is a hyperplane in R™). First we construct the center of a simplex
{0,1,2} (m = 2). One can embed the simplex in R? as the three vertices
(0,0), (o1,0), and (o2 cos Yo, L2 sin o) , where g is the angle at vertex 0. The
centers of the three edges are realized as C ({0,1}) = (do1,0), C ({0,2}) =
(dOQ COS Y0, dOQ sin ’)/0) y and C' ({1, 2}) = (601 — d12 COS Y1, d12 sin ’)/1) . Hence

o1y = {(do1,t) : t € R},
0,2y = {(do2 cosyo + tsinyo, doz sinyg — tcosyg) : t € R},
12y = {(fo1 — di2 cosy1 +tsinyy, diasiny; +tcosy) : t € R}.
A quick calculation (using the law of cosines to compute cos~y; and sin-~y; in

terms of d;;) shows that the three intersection points of these lines coincide if
and only if (2) holds.



We now construct C (¢™) given C (0™~!) for all (m — 1)-dimensional sim-
plices. Since 0™ is a nondegenerate Euclidean simplex, the planes Il 1y,. .., Il
intersect at one point, c. We need only show that the planes Il; ;; also intersect
c. This is true because inside {0,4, j}, the planes Il ;3 and Il ;; meet each
other and the plane IIy; ;3 at C ({0,4,7}). Furthermore, since these planes are
all perpendicular to {0,4, j} , the intersection Il ; NIIy; ;3 is equal to the inter-
section Ilgg ;3 NIy ;1 and hence contains c. We call this point C' (6™) = c. [

m}

Remark 8. Given the description in the previous proof using planes, it can be
seen that the orthogonal planes intersect simplex planes to form extensions of
dual edges. For this reason it is possible to find the simplex center by starting
at the edge center, moving orthogonally to the triangle center, then orthogonally
to the tetrahedron center, etc. to obtain simplex center. The plane description
above ensures that the center gotten in this way does not depend on the choice
of simplices along the way.

As noted by Hirani [73], assignment of centers allows a geometric description
of the Poincaré dual of the triangulation. Any triangulation of a manifold has
a cell complex which is its Poincaré dual (see, for instance, [21] or [67]). See
Figures 3 and 4 for two-dimensional and three-dimensional simplices with dual
cells included. Duality structures determine centers, and thus allow one to define
geometric duals (a realization of the Poincaré dual), each of which has a volume.
Hirani restricted himself to “well-centered” triangulations, which means that the
center of each simplex is inside the simplex. This is a very strong restriction,
for even Delaunay triangulations may not be well-centered. More recent work
replaces well-centered with Delaunay conditions, e.g. [74].

In general, some volumes may be considered to be negative. The k-dimensional
volume of a simplex o will be denoted |ak | (for instance |{7, j}| = ¢;;) and the
(n — k)-dimensional (signed) volume of the dual of a simplex %o* will be de-
noted |4o*|.

It is helpful to consider an example before considering the general definitions.
Given a triangulation of a three-dimensional manifold, one defines the duals as
follows (compare with Figure 4):

0. The dual of a 3-simplex {1, j, k, £} is the center, % {i, 7, k, ¢} = C ({i,j, k, £}),
and its volume is one.

1. The dual of a 2-simplex {4, j, k} contained in {4, j, k, ¢} and {4, j, k, m} is
a l-cell % {i,7,k}, which is the union of the line from C ({4, 7, k,¢}) to
C ({i,4,k}) and the line from C ({7, j, k,m}) to C ({i, 7, k}). Its volume is
slightly tricky. We define the volume as

1% {i, j, kY| = £d [C ({i, 5, k. £}) . C ({1, 4, k})] £ [C ({i, 5, k,m}) . C ({i, 5, k})]
==+d [C({Z7]7 k"7€}) 70({7’7]714"77"’})]

where d is the Euclidean distance in R?® (these are well defined because
we can embed the hinge in R3) and the signs are defined appropriately.
In the first line, the sign is positive if C ({i,7, k,¢}) is on the same side



Figure 3: Two triangles with the pieces of dual edges intersecting the triangles included.

Figure 4: Two tetrahedra with the pieces of dual edges and faces intersecting the tetrahedra
included.



of the plane containing the side {i, 7, k} as the simplex {4, j, k, ¢} is, and
negative if it is on the other side (similarly for {i,j,k,m}). The sign on
the second line is defined to be compatible with the first line. Note that
it is possible for |% {7, j, k}| to be negative.

. The dual of a 1-simplex {4,j} is the union of triangles. For each k,¢
such that {4, j, k, ¢} is a simplex, the intersection of the simplex with the
dual % {4, j} is the union of the right triangle with vertices C' ({4, j, k, }) ,
C ({i,4,k}), C ({i,7}) and the right triangle with vertices C ({4, j, k, £}) ,
C ({i,7,0}), C ({i,7}) . Each of these triangles has a signed area. The first
is

i%d [C ({5, k. 4}), C ({3, 5, kD] d]C({i,5}), C ({4, 5, k})]

and the second is defined similarly. The sign is defined as the product of
the appropriate signs in each of the two distances.
. The dual of a vertex {i} is a union of orthoschemes, which are tetrahe-
dra with many right angles (see [115] or [18]). For each j,k,¢ such that
{i, 7, k, ¢} is a simplex, the intersection of s {i} with {4, j, k, £} is the union
of the following six (orthoscheme) tetrahedra:
(a) the tetrahedron defined by the vertices C ({i,7, k,¢}), C ({3, 4,k}),
C ({i,j}), and 4,
(b) the tetrahedron defined by C ({i,7,k,¢}), C ({i,7,k}), C ({i,k}),
and 1,
(c) the tetrahedron defined by C ({, j, k, £}), C ({i,7,¢}),C ({i,5}) , and
i
(d) the tetrahedron defined by C ({i, 7, k,¢}), C ({4,4,¢}), C ({i,£}), and
i,
(e) the tetrahedron defined by C ({i,j,k,¢}), C ({i,k,¢}), C ({i,k}),
and 1,
(f) and the tetrahedron defined by C ({1, j, k, ¢}), C ({i,k,¢}), C ({i,4}),
and 7.

The volume of % {i} is the sum of the volumes of these tetrahedra, namely

iéd[C({i,j,k,f}) C({i,5, kD] d[C({i,5}),C ({5, 5, kD] di, C ({i,5})]

for the first and similarly for the others, where the signs are defined ap-
propriately.

Remark 9. Although we use terminology such as “intersection of % {i} with
{i,7,k, 0} ,” if the region has negative volume, this part of % {i} may physically
lie outside of {i, j,k, ¢} and have negative volume. It would be better termed the
piece of % {i} associated with {i,j,k,¢}.

We can define the geometric duals in a triangulation of an n-dimensional
manifold inductively as follows.

Definition 10. Define the dual of {0, ... ,n} to be % {0,...,n} =C ({0,...,n}),
and | % {0,...,n} = 1.

10



Definition 11. The signed distance
ds [C(c™),C (o™ 1)]

for o™=1 C o™ is equal to the distance between C(o™) and C (U"‘l) in any
isometric embedding o™ C R™ with the sign positive if C (c™) is on the same
side of the hyperplane defined by o™~1 C R™ as o™ is, and negative if C (a") is
on the opposite side.

Remark 12. This signed distance appears in different forms in other works,

e.g., [74, 40].

It will be useful to know the following formula for the distance between the
center of a triangle and the center of a side. Consider a triangle {7, j,k} . Then
some basic Euclidean geometry yields

_ dik — dij COS 7,

d+ [C ({i,5,k}),C ({i,5})] (3)

sin 7;
where v; is the angle at vertex i. The condition (2) ensures that

5 [0 (0.3, € ({0.3))) = gt

as well, where we have switched the ¢ and j.

Proposition 13. For any k > 1, the volume of a simplex ¥ is

k—

|o—’“|=% > :di[C(o—j),C(aj“)] (4)

" o0C-Cok j=

where o® is fized and the sum is over all strings of simplices contained in o*.

Proof. The proof is by induction on k. If k = 1, then [{3,j}| = d;; + dji.

Assume (4) is true and consider o**1. Let the boundary of o**1 be made up of
o§,...,08, 1. The volume can be computed as
|
o™ = =7 2 de [C (07) . C (e*)] o
i=0

where each term in the sum is the volume of the simplex consisting of the
center C (o**+1) union of and the signs for dy tell us whether to add the area
or subtract the area. It follows from the inductive hypothesis that

1

R s DI | LA CRCICT}

GOC - Coktl j=0
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Note that the above argument works for any choice of center C' (O'k) € RF
as long as C' (0’2) are the orthogonal projections onto the subspaces spanned by
ol for each subsimplex. The volume of a dual simplex is defined as follows.

Definition 14. The volume of a dual simplex %o is defined to be

*o =t X [lelc@).c@ o)
okC-.Com j=k

where o® is fized and the sum is over all strings of simplices containing o*.

Note that the volume is signed (it may be negative). The total volume is
expressible in terms of volumes of the dual simplices.

Proposition 15. Given a duality triangulation T of dimension n, the total
volume is
V=3 10" =3 % i)l (6)
o €Ty, i€To

Proof. Using (5) and (4), we see that it is sufficient to show that

> 2

i€To {i}C---Co™

> X

o"e€Ty, o9C---Co™

is a reordering of

Here is one way to see this. Make a graph whose vertices are all simplices
of all dimensions and whose edges connect two simplices if one simplex is in
the boundary of the other. An easy way to draw the graph in the plane is to
put vertices corresponding to n-dimensional simplices in a horizontal line on
top, then (n — 1)-dimensional simplices in a horizontal line below those, and
so on until at the bottom is a horizontal line containing all of the vertices
corresponding to O-dimensional simplices in the triangulation. Now draw the
edges, which can only connect a vertex in a row to a vertex in the row above
or below. Consider the sum over all paths between the top and bottom of this
graph. We can count this in two ways: first start at the bottom with each path
starting at a O-dimensional simplex, or first start at the top with each path
starting at an n-dimensional simplex. These are the two sums. O

3.5. Equivalence of metric triangulations

We shall now show that weighted triangulations are equivalent to Thurston
triangulations, and that, up to a universal scaling of the weights, both are
almost equivalent to the set of duality triangulations. This is motivated by the
geometric interpretations of the lengths, weights, angles, etc.

First we show the equivalence of weighted triangulations and Thurston tri-
angulations.

12



Theorem 16. There is a bijection between weighted triangulations and Thurston
triangulations.

Proof. The definition of Thurston triangulation gives the map to weighted tri-
angulations, keeping w; the same and assigning

éij = w; + ’UJj — Cz’j-

Since we assumed that w; + w; — ¢;; > 0, it follows that £;; must be positive.
Similarly, we can map the other way as

2
Cij = Wi +w; — é’t]

Note that since £;; > 0, we must have that w; +w; —c¢;; > 0. |

Next we map weighted triangulations to duality triangulations. Notice that
there is a one parameter family of deformations of a given weighted triangulation
of a triangle {4, j,k} which fix the center C ({7,7,%k}). These deformations are
given by

w; — w; +1 (7)

for varying t. We call these weight scaling deformations, or just weight scalings.

Theorem 17. Suppose the underlying manifold is connected. Then weighted
triangulations modulo weight scalings can be mapped injectively into the set of
duality triangulations. It is a bijection if the set of duality triangulations are

required to satisfy
Z (d?k’ik,1 - d’tzkflik) i 0 (8)
k=0

for all loops j = ig,i1, ..., = j, where {ig,ixr1} € T1.

Proof. Given spheres at the vertices of a simplex with radii /w;, one can always
construct a sphere which is orthogonal to each of these spheres. The center of
that sphere will be the center of the simplex, and for that reason is often called
the orthogonal center [45]. Then duals can be constructed for all dimensions;
we get d;; from the projections of the centers to the edges. One can do this very
easily by embedding the circles in a vector space of signature 1,1,1,—1 as in
[103, 40.2]. Given a center, one can draw the lines perpendicular to the sides of
the triangle through the center, and these determine d;;. A careful calculation
yields

gy = TR 0)

This is the map to duality triangulations. Note that the condition (2) is auto-
matically satisfied.

There appears to be more information in weighted triangulations, however,
because the new circle centered at the orthogonal center has a radius, which can

13



be calculated to be
dig — dij cosvin \
2 2 i ij ij _
ik = dij + (W —wj (10)
B d?j + szk — 2dijdik COS Yijk -

SiIl2 Vijk "

where ;1 is the angle at vertex i in triangle {7, j, k} . Note that rfjk = W ({ij k)
the weight assigned to the center of {i,7,k}. For any single triangle {i,j,k},
the weight scalings allow one to specify the value of rfjk while fixing the center
C ({i,4,k}) . Fixing the center means that each would map to the same duality
triangulation. It is easy to see that the formula (9) is unchanged by scaling de-
formations like (7). If one chooses 75 then the map is unique. Once this scale
is fixed in one triangle, however, the scale is determined on adjacent triangles,
because weights on shared vertices have been fixed, and the deformation (7)
must be done for all vertices ¢ in the triangle. Thus there is one free scaling
parameter for the whole triangulation.

The inverse map from duality triangulations to weighted triangulations must
take dj; + dj; to ¢;;. In order to get the weights, we must first fix wy for a
given vertex (this is a free parameter since we are considering the weighted
triangulation modulo scaling). Then each neighboring weight can be calculated
using (9):

We need only show that this is well defined. Suppose {1, j,k} € T3 and consider
a wy, which can be defined from w; or w;. Then we need that

iy — diy +wi = di; — A3y + wj.

But since w; = d3; — d; 4+ w;, this follows from the fact that di; — d3}, = di; —
d?k —|—d§i — d?j from (2). It follows by a similar argument that any null-homotopic
loop can be triangulated and property (8) holds automatically, showing that for
any null-homotopic loop j = ig,i1,...,i, = j of L vertices with {ig,ix+1} € 71,

L
2 2
wj = Z (dikik—l - dik—l’ik) + wj.

k=1

Thus, in general, we need to assume property (8) is satisfied for the weights to
be well-defined.

If we start with a weighted triangulation, property (8) is automatically sat-
isfied and thus the map from weighted triangulations to duality triangulations
is injective. ]

The following triangulation of the torus does not satisfy (8) for all loops. Tile
a torus with the two triangles {1,2,3},{1,2,4} where d3; =do; =doy =1 — ¢,
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Figure 5: A triangulation of the torus together with dual edges.

d13 = d12 = d42 =g, and d32 = d23 = d14 = d41 = % for small £, see Figure 5.
Note that

1
d%2+d§3+d§1:52+Z+(1_5)2:d§1+d%3+d§2

1
d§2+d§4+d21:52+Z+(1—s)2:d§1+d%’4+d22

and so on. The homotopy-nontrivial loop containing {1,2} does not satisfy
property (8).

The relationship between triangulations with duality structures and weighted
triangulation on flat tori was considered in [46], where the term reciprocal trian-
gulation is used to denote triangulations that admit duality structures and co-
herent triangulation to denote weighted Delaunay triangulations. The Maxwell-
Cremona correspondence described there relates reciprocal triangulations with
harmonic embeddings of graphs in a torus (see also [82]).

Corollary 18. For a triangulation of a simply connected manifold, there is a bi-
jection between weighted triangulations up to scaling and duality triangulations.

Proof. Since the manifold is simply connected, any loop bounds a 2-dimensional
disk, homeomorphic to D? = {x eR?: |z* < 1}, which is triangulated. One

can easily prove by induction on the number of triangles triangulating the disk
that on the boundary of any such disk, (8) holds. O

3.6. Discrete conformal structures

One of the motivation for the comparison of different metric structures is to
relate the discrete conformal geometry of circle packing and others, encapsulated
here in Thurston triangulations. Several types of discrete conformal structures
were proposed by Thurston [120] as circle packing and independently by Rocek-
Williams [113], Luo [89], and Bobenko-Pinkall-Springborn [19] as vertex scaling.
Each of these forms of discrete conformal structures led to significant study. In
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[60] the author gave an axiomatic viewpoint for discrete conformal structures as
motivated by the fact that variations of curvature produce discrete Laplacians
based on the duality structures described here. In [132] and [62] the possible
discrete conformal structures of this type were completely classified, and shown
to come from lengths assigned as

éfj = el 4 o 4 2my el

In this case, a discrete conformal variation arises from fixing all a; and all 7;;
and letting the functions f; of the vertices vary. It turns out that this is related
to the duality structure determined by

B aéij B OéiEin _|_mjefi+fj
fi lij '

This is consistent with results for circle packing, where «; = 1 for all ¢ and
n;; = 1 for all edges {7,7}, as well as with vertex scaling cases where a; = 0 for
all 4. It also encapsulates circles with fixed intersection angle and circles with
fixed inversive distance, or more generally Thurston triangulations as described
above with w; = azefi and Cij = 2mjefi+f1'. It was observed in [19] that
vertex scaling conformal structures correspond to fixed distance cross ratio (or,
equivalently, modulus of the cross ratio; see also [83]), and in [61] that other
forms correspond to a version of cross ratio involving power distance. Other
forms of discrete conformal structures that fix the argument of the cross ratio,
instead of the modulus, can be found in [81].

4. Laplacians

Laplacians on graphs and on piecewise Euclidean manifolds have been stud-
ied in many different contexts, for instance [17, 28, 31, 56, 57, 68, 72, 73, 95,
104, 123, 125, 124]. The purpose of this section is to consider the comments
from Bobenko and Springborn in [17], which suggests the use of Delaunay tri-
angulations as a natural context in which to describe Laplace operators. We
aim to generalize these comments to weighted Delaunay triangulations.

4.1. Laplacian defined

The suggested Laplacian on two-dimensional surfaces in [17] (also seen in
[73, 95, 39]) is the following operator on functions f : 7o — R,

A= > wi (fi—f) (12)

FRUYBISUE

where w;; is defined by

1
wij = 3 (cot Ykij + cotveiz)

16



if i, is the angle at vertex k in triangle {¢,7,k}, and the hinge containing
{i,j} consists of the triangles {i, 7, k} and {i, j,¢} . Note that if w;; > 0 then (i)
this is a Laplacian with weights on the graph defined by the one-skeleton of the
triangulation, and (ii) Af; > 0if f; is the minimal value of f and Af; < 0if f; is
the maximal value of f. Bobenko and Springborn note that if the triangulation
is Delaunay, then w;; > 0 and the Laplacian is a Laplacian on graphs in the
classical sense (see [31]).

A simple calculation shows that if we take the weights at all vertices to be
zero, then the signed distance

d [C({Z7]7 k}) 70({17]})] = Tijk COSVkij

where 755, is the circumradius of triangle {7, j, k}. Since the circumradius can
be computed to be

- 1 éij

a 2 sin Vkij

Tijk

we find that .
d+ [C ({i,5,k}),C ({i,j})] = 5%‘ cot Ykij,

which gives the well-known cotan formula for the finite element Laplacian.
In general, Hirani [73] suggests the following definition of Laplacian:

Definition 19. The Laplacian of a discrete function f is the discrete function
ANf given by

_ 1 x{i g} . .

This formula has roots in the divergence theorem for the smooth Laplacian:
/Ade: Vf-ndsS, (14)
U ou

where n is the unit normal to 9U. Taking U = % {i} and slightly rearranging
terms, we get the corresponding formula on piecewise Euclidean manifolds

, fi—1fi .
(D), 1% (i} = — [ (i),
o T

where Ii{%{l is the normal derivative and |% {i,j}| is the surface area measure
on the boundary of % {i}. This formula is well defined on any duality trian-
gulation (which is the motivation for the definition) and coincides with (12) in
the case of constant weights, except for the factor of |% {i}|. One can think of
the difference between considering the induced measure Af dV instead of the
pointwise Laplacian Af. It is, in fact, natural to consider the measure instead
since, if we consider the discrete Laplacian approximating a smooth one, the
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pointwise Laplacian is only accurate when considered on scales larger than the
scale of the discretization.

It is notable that the Laplacian appears in Discrete Exterior Calculus as a
special case of a Hodge Laplacian, also called Laplace-de Rham operator [39].
The Laplacian can be given as d” % d, where d is the coboundary operator from
vertices to edges considered as a matrix. Since we can also consider instead the
boundary homomorphism 0 from edges to vertices, which is the transpose of
d, an equivalent expression is 9 * 7. In finite elements literature, if piecewise
linear continuous Lagrange finite elements are used then the Laplacian is called
the stiffness matrix and the % matrix is called the mass matrix (see, e.g., [37]).

We also note that the Laplacian given by (13) is the same as the Lapla-
cian considered by Chow-Luo [28] in two dimensions as observed by Z. He [68§],
where the duality is defined by Thurston triangulations as described above. It
also appears in [56, 57] in three dimensions, where Thurston triangulations are
considered such that d;; depend only on 7. Also, the Laplacian described in [89]
is actually the cotan Laplacian described above in (12) with the same weights
w;j. The interest in these Laplacians is that they are not derived from means
such as (14) but instead as the induced time derivative of curvature quantities
under geometric evolutions.

The Laplacian defined in (13) is a Laplacian with weights on graphs in the
usual sense (see [31]) if the coefficients

% {7, 5}
[ {i}]

are each positive. In two dimensions we see that this is implied by d;; > 0 and
[ {7,7} > 0. Note that if we consider the Laplacian measure (the analogue
of Af dV), then the |¥ {i}| term is not present and we need only look at the
condition |y {i, 7}| > 0, which is the condition that the triangulation is weighted
Delaunay in two dimensions.

The Laplacian can be considered the gradient of a Dirichlet energy functional
as described in [17], which is the analogue of the smooth functional

E(ﬂ=:/;JVdeV

The Dirichlet energy functional induced by the duality triangulation is
1 % {4, 7}
E(f)=5 > Gy -5 (15)
woz )]
i,5}E€T

This specializes in the case where the w; = 0 for all i € Ty (or, equivalently,
dij = dj; = ¢;;/2 for all {i,j} € T1) to the Dirichlet energy in [17]. This energy
is positive if [¥ {,5}| > 0.

4.2. Laplace, Poisson, and heat equations
Given a Laplacian, we can consider the standard elliptic and parabolic equa-
tions, namely the Laplace and Poisson equations

Au =0, Au=f (16)
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and the heat equation

du
= A 1
dt u, (17)

where the heat equation is an ordinary differential equation since A is a dif-
ference operator. A solution u to the Laplace equation is called a harmonic
function. Two important properties we will study are the negative semidefinite-
ness of the operator A and the maximum principle for the heat equation.

It will sometimes be easier to consider Au = 0 as a matrix equation. We
think of u : 7o — R as a vector and A corresponds to a matrix L whose off-
diagonal pieces are

_ e g

Lij=—F—
T i)
and whose diagonal pieces are
Lii=— Z 7|T{{Z’i|}|
Z,
j{i.j}YeT1 J
Then one can write the Laplace equation as
Lu=0.

Notice that Poisson’s equation
Au=f (18)

is equivalent to to the vector equation
Lu = fV,

where (fV), = fi|[% {i}|. It is clear that L has the constant functions f; = a
(or the vector (a,a,...,a)) in the nullspace.

We first consider the definiteness of the A, which is the same as definiteness
for L. The first result concerns the case of % {i,5}| > 0.

Theorem 20. If [% {7, j}| > 0 for all edges {1, j} then L is negative semidefinite
with nullspace spanned by the constant vectors.

Proof. In this case we have an N x N matrix L with diagonal entries negative and
off-diagonal entries positive and with Z;V:1 L;; = 0. We reiterate an argument
from [36], though this is a standard result from linear algebra following from
the fact that the matrix is an M-matrix [77]. Let (v1,...,vn) be an eigenvector
corresponding to A > 0. We may assume that vy > 0 is the maximum of v;. We
wish to show that v; = v; for all 4, j. Observe

N N
)\1)1 = ZLMUZ' S ZLlivl =0.
i=1 =1

Equality holds if and only if v; = vy for all 7. O
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Corollary 21. If |% {i,j}| > 0 for all edges {i,j} then Poisson’s equation has
a solution for any f such that
> o

i€ 70

This is the analogue of the smooth result that Au = f has a solution if
/ u JdV = 0. One may also consider boundary conditions such as Dirichlet and
Neumann conditions. The condition | {4, j}| > 0 is equivalent to a property
called weighted Delaunay and will be studied in the next section. These cases
for Delaunay triangulations in two dimensions were studied by Bobenko and
Springborn [17]. This condition will also be important in our discussion of the
maximum principle.

There are other conditions which guarantee that the Laplacian is negative
semidefinite.

Theorem 22. For any two-dimensional triangulation such that d;; > 0 for
all (i,5) € T,;", the Laplacian matriz L is negative semidefinite with nullspace
spanned by the constant vectors.

We shall prove this by a sequence of claims. For all of the claims it is assumed
that the weights d;; are all positive. We shall use h,;; = d+ [C'({1,2,3}),C ({4, j})]
and ~; is the angle at vertex i¢. Consider only the 3 x 3 matrix M corresponding
to {1,2,3} with entries Mij = hzy/él] if 4 7é ] and M” = — Z];ﬁz M”

Claim 23. If h;; <0 then v; < 5 and v; < 3.

Proof. Let k be the third vertex so that {i,7,k} = {1,2,3}. We know that
hij _ dik — dlj COS 7,
sin -y,

by formula (3). If h;; < 0 then 0 < dir < d;jcos~y;. Hence cosvy; > 0 and
vi < m/2. We can also express h;; as

djk — dji COS 75

hij = :
sin v,

and follow the same logic. ]

Thus only one M;; may be negative. Suppose it is Mi».

Claim 24. M12 + M13 = fas(d1 0032121—2:(113 c0s 73) .

Proof. We calculate

do3 — d1 cosya  dzz — d31 cosy3

Mg + Mz = : :
{19 sin s {13 sinys
a3 (la3 — dyy cosyp — d31 cos y3)
B 2A123
and finally we use that fo3 = £13 cosya + £13 cos a. O
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Claim 25. dys cosys + djzcosvys > 0.

Proof. If both ~2 and 73 are less than or equal to 7/2 then this is clear (since
both may not be equal to 7/2). Since My2 < 0, and hence his < 0, we can only
have 3 > /2. Since h1a < 0 and hy3 > 0 we have that

da

di3 < cosyy <
- 1
di2 di3

S0 d12 > dy3. Furthermore, since v, + v2 < m we have that
0 < —cosvy3 = cos (71 + y2) < cosya

SO
—di13cos7y3 < d13COS V2.

Lemma 26. M;; < 0.

Proof. By the above argument, we know that My, = —Mi5 — My3 < 0. Similar
arguments hold for the other coefficients. O

Proof of Theorem 22. It is sufficient to prove that for any matrix M;;, 1 <
1,7 < 3, is negative semidefinite. We know that the vector (1,1,1) is in the
nullspace and we have already shown in Lemma 26 that the diagonal entries
are negative. Hence it is sufficient to show that the determinant of the 2 x 2
submatrix M;;, 1 < 4,5 < 2, is positive. We find that the 2 x 2 determinant
is equal to Mo M3 + Mo Mss + Mi3Mss. We compute the determinant to be
equal to
(dizhas + daghi3) sinya
l12013

(to do this calculation, begin by writing the terms in the determinant using
formula (3) choosing all of the denominators to contain sin~y; sin~,, then re-
arrange the terms using the facts that vi +v2 +v3 = 7, dij; + dj; = ¢;;, and
lij = Liy, cos~y;+Lj, cos vy, several times and finally recollecting hoz and hi3 again
using formula (3)). Note that the determinant is symmetric in all permutations
in 1,2,3. We know by the claim above that two of the three h;; must be posi-
tive, so choosing the two that are positive, we must have that the determinant
is positive. Hence the matrix is negative semidefinite. O

We consider d;; to be the length of a vector located at ¢ and in the direction
towards j. Thus the condition d;; > 0 is like a positivity (or Riemannian)
condition for a metric (which measures the length of vectors) and is thus a
somewhat natural condition.

In the case where all the weights are the same and the triangulation is a
triangulation of a domain in the plane, this is a well-known result that may be
proven in a very different way. In this case, the Laplacian can be derived as
the matrix L;; = V¢; - Vo, where ¢; are the standard basis of piecewise linear
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finite elements, where ¢, (i) = 1 and ¢; (j) = 0 for vertices j # 4. Thus L;;
comes from the restriction of a weak formulation of the differential Laplacian to
the space of piecewise linear functions, and hence the negative semidefiniteness
follows from the negative semidefiniteness of the differential Laplacian. This
formulation goes back at least to Duffin [42], who derived the well-known cotan
formula. Positive definiteness of discrete Hodge star matrices based on positivity
of volumes of dual structures was also considered in [74, Theorems 4,5,6].

The following is a result on definiteness of the Laplacian in three-dimensions.

Theorem 27. For a three-dimensional sphere packing triangulation, L is neg-
ative semidefinite with nullspace spanned by the constant vectors.

Proof. It is proven in [57] (see also [111]) that the matrix Agy 234 = (gﬁj ) i
<iyj<

is negative semidefinite with nullspace spanned by the vector (rq,...,74). If we
let Ry 234 be the diagonal matrix with 7, ¢ = 1,...,4 on the diagonal, we
see that
L= (Re3As3Rys)p.
o3eT3

where (M,3) ;, is the matrix extended by zeros to a |7o| x | To| matrix so that the
(My3) 5 acts on a vector (v1,...,v7;) only on the coordinates corresponding to
vertices in 0. Since r; > 0 for all i € Ty, it follows that L is negative semidefinite
with nullspace spanned by (1,...,1). O

These results indicate that positivity of the dual area is a stronger assump-
tion than the assumption that L is negative definite. If L is negative semi-
definite with nullspace spanned by the constant vector (1,...,1) then one can
always solve the Poisson equation for f such that Y f;A; = 0.

We now consider the maximum principle. The heat equation is the time-
dependent, linear ordinary differential equation

du

pri Lu,
whose short time existence is guaranteed by the existence theorem for ordinary
differential equations. One of the key properties of the heat equation is the
maximum principle, which says that the maximum decreases and the minimum
increases. This is true if |3 {7,j}| > 0.

Theorem 28. If |[% {i,j}| > 0 then for a solution u; (t) of the heat equation,
Umax (t) decreases and umin (t) increases, where umaxy = max{u; :i € To} and
Umin = min {u; : i € To} .

Proof. The proof is standard and is simply that for any operator Fu defined by
(Bu), = eij (uj — ui)
j#i
for some weights e;; > 0, then (Eu), < 0 if u; = umax and (Eu), > 0 if
U; = Umin- ([
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Note that the proof uses that the off-diagonal entries of the matrix L are pos-
itive, which is why satisfying the maximum principle is more restrictive than be-
ing negative semidefinite. However, for certain functions (geometric ones which
are related to the coefficients of the Laplacian), it may be possible to show that
the maximum decreases and the minimum increases. We call this a maximum
principle for the function f and we say that the operator is parabolic-like for
the function f. In [57] it is proven that the sphere-packing case is parabolic-like
for a curvature function K.

4.3. Remarks on Laplacian definiteness

We have seen that the maximum principal corresponds to triangulations be-
ing graph Laplacians with positive weights, which also corresponds to weighted
Delaunay triangulations. This is the most important case in which we have
both maximum principal and definiteness of the Laplacian operator. However,
it is clear that the condition of positive weights is not necessary for definiteness.
The most clear case is for that of the finite element Laplacian in two-dimensions,
which yields the cotan Laplacian. Since it is the restriction of a definite operator
to the subspace of piecewise linear functions, it is definite even if the triangula-
tion is not Delaunay. Above we proved that in two dimensions, it is sufficient
to have that the d;; are positive. In [58] it is found that the two-dimensional
Laplacian is definite if the centers of each triangle are inside the circumcircle of
the triangle. Definiteness in situations where the coefficients may be negative
occur in sphere packing [56] as well. Generalizations of these results in three
and higher dimensions can be found in [130, 40].

5. Weighted Delaunay triangulations

5.1. Introduction to weighted Delaunay triangulations

The study of the Laplacian motivates, in two dimensions, the study of
weighted Delaunay triangulations, also called coherent triangulations and regu-
lar triangulations. First, we recall the usual definition of a weighted Delaunay
triangulation (see, for instance, [45] or [6]). Let d (z,p) be the Euclidean dis-
tance between points p and x. Define the power distance

mp R =+ R

by
™ (z) = d (2,p)* —w, (19)

if p is a point weight w,. The power is important as a function which is zero
on the sphere centered at p with radius ,/w,, positive outside the sphere, and
negative inside the sphere. Notice that if p is a vertex of a simplex o and
¢ = C (o) then 7. (p) = wp and 7, (¢) = w,, where the weight w,. is defined as
the square of the radius of the orthogonal sphere as described in Section 3.2.

Since we can embed any hinge in R™, the following local definition of weighted
Delaunay makes sense on a piecewise Euclidean manifold.
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Definition 29. An (n — 1)-dimensional simplex 0™~ incident on two n-dimensional
simplices o} = 0" U{v1} and o = 0"~ U{vy} is locally weighted Delaunay

if Tey (V2) > Wy, and e, (V1) > wy,, where ¢; = C (o) is the center of ol

for i =1 or 2. If the weights are all equal to zero, a locally weighted Delaunay
simplex is said to be locally Delaunay.

Sometimes we will instead say that the hinge is locally weighted Delaunay. A
hinge is locally Delaunay if and only if it satisfies the local empty circumsphere
property: the sphere circumscribing o}’ does not contain vy. This is simply the
interpretation of the definition when the weights are equal to zero. Note that
the condition for being locally weighted Delaunay is unchanged by a weight
scaling of the type (7) due to formula (10) for we (g j x})-

There are actually global definitions of weighted Delaunay and Delaunay,
since the definition of power (19) makes sense globally using the intrinsic dis-
tance (1) described in Section 3.1.

Definition 30. An n-dimensional weighted triangulation is weighted Delaunay
if for every o™ € Ty, we have ¢ (gn) (v) > w, for every verter v in the comple-
ment of c™. In the case that the weights are all zero, we say the triangulation is
Delaunay.

It is a well known fact that for n-dimensional weighted Delaunay triangu-
lations of points in R™ [6] and for 2-dimensional piecewise Euclidean surfaces
with zero weights [17, 86] that every hinge being locally weighted Delaunay is
equivalent to the triangulation being weighted Delaunay. It is likely that the
proof in [86, Chapter 3] can be generalized to weighted Delaunay triangulations
of any dimension, but we do not do that here.

The argument in [6] uses the fact that a geodesic must be a straight line,
and along a geodesic line the power increases in the manner listed below. To
generalize that argument, one needs the following assumption:

Criterion 31. Suppose the hinge {U?,US, U"‘l} is locally weighted Delaunay.
Consider a minimizing geodesic ray vy starting at Xy which intersects a hinge
{U{L, oy, U”_l} by first entering o7 and then o%. The simplex o™~ determines a
plane which separates o} and o and contains all points x such that To(or) (z) =

WC(JQ) (:E) . Then WC(OT’) (Xo) < WC(JQ) (Xo) .

This criterion is an attempt to give a condition under which arguments for
triangulations in R™ can be extended to arguments on manifolds, as we will see
later.

One might try to prove Criterion 31 by “developing the geodesic” in the
plane in the following way (we consider two dimensions for simplicity). Start
with a triangle and embed it in R?. For each new triangle which the geodesic
goes through, embed a copy in R? adjacent to the previous triangle so that it
looks like we are unfolding the manifold. The geodesic must be a straight line
if it does not go through a vertex and so we may try to make comparisons on
this development. Note also that by the following theorem of Gluck, every two
points have a minimizing geodesic between them.
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Theorem 32 ([119, Prop. 2.1]). If a piecewise Euclidean manifold is complete
with respect to the intrinsic distance, in particular if M is a finite triangulation,
then there is at least one minimizing geodesic between any two points of M.

The problem with this is that geodesics do go through vertices and even by
varying the endpoints slightly, a minimizing geodesic may still go through the
vertex (see [96, Figure 14]). Hence it is not at all clear that Criterion 31 is
always satisfied.

Note that Bobenko and Springborn [17] are able to prove that Delaunay
is the same as all edges being locally Delaunay in general by developing the
triangulation (not along a geodesic). Their argument appears to strongly use
the fact that the edges are locally Delaunay (with all weights equal to zero),
but does not use Criterion 31.

For completeness, we include the proof for weighted Delaunay triangulations
of n-dimensional manifolds, assuming Criterion 31, which is proven using a
similar method.

Theorem 33. Under the assumption of Criterion 31, an n-dimensional weighted
triangulation is weighted Delaunay if and only if all of its hinges are locally
weighted Delaunay.

Proof. This proof is essentially the one seen in [6] for Delaunay triangulations.
Clearly if the triangulation is weighted Delaunay, then all hinges are locally
weighted Delaunay. Now suppose all of the hinges of a weighted triangulation
are locally weighted Delaunay. Given a vertex v and a simplex o™ such that v
is not in ¢, we may consider the line L from v to a point in the simplex o™.
Possibly by adjusting the line slightly, it must intersect, in order, a sequence of
n-dimensional simplices o7, ...} = ¢" where v is in a simplex bordering o}.
By Criterion 31 we know that

ﬂ-C(af) (U) < 7I'C(

) (@)

ot
fori=1,...,k — 1. Since the triangulation is locally weighted Delaunay,
Wy < To(op) (v).
Stringing these together, we get that
Wy < T (omy (V).
O

Although we have not proven that weighted Delaunay triangulations and
locally weighted Delaunay triangulations are the same, we will often suppress
the word “local” in the rest of this paper, always considering the local property.
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5.2. Weighted Delaunay triangulations and duality structures

In order to have a definition of locally weighted Delaunay in terms of duality
structures, we first look at the two-dimensional case. A weighted Delaunay
hinge {{4, j,k},{i,j,¢}} must satisfy

TC({i,5,k}) (é) = d(c ({Z7J7k}) 7{6})2 - Tink > wy
TC({i,4,£}) (k) =d(C({i,5,¢}), {k})z - Tinl > W

Proposition 34. The center C ({i,4,k}) and radius r;ji, are uniquely deter-
mined by the three equations

d(C ({i, 4, k})  {i})* = 13 = wi
d(C({i,4,k}), 1) =i = w;
d(C ({i,j.k}) Ak})" =iy = wy.
Proof. Put the triangle in Euclidean space with vertices v; = 6, v, V. We know

that C ({, j,k}) = 2v; +yv, for some = and y and let z be the unknown radius.
Now we can write the first two equations as

|zv; + yvk|2 — 22 = w;
2
(v + yor) — vi|” — 2% = w,

so
w; — 20; - (zv; + yo) + 6 = w;

which is linear in x, y. Similarly, we have
w; — 2v, - (2v; + Yyog) + G = wy.
So the problem reduces to a linear system
w; + é?j —wj; = 2€fjx + 20,05, (cosv;) y
w; + 03, — wg = 20;ilik (cos ;) T + 203y,
where ; is the angle at vertex ¢, with solutions

(wi + £3; —wj) Lap, — (w; + €3, — wy) L cos;
2 (sin2 'yi) é?j&k

(wi 4+ &, —wi) lij — (wi + £3; — wy) Lig, cos v
2 (sin® ;) £;;0%,

=

y:

and

2’2 = $2€?j + yzéfk + 2$y€”€1k COS7y; — W;.
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Corollary 35. If an edge is on the boundary of weighted Delaunay, i.e.

TC({i,5,k}) (é) = d(c ({Z7J7k}) ) {é})Q - Tink = Wy,
then C({7’7]7k}) = C({Z7]7 é}) and Tijk = Tije-

Proof. 1f d (C'({i,j, k}) .£)* =2, = wy then (C ({i, ], k}) ,rijx) satisfy the same
three equations as (C ({4, 7,¢}),7j¢) , which determine these uniquely. Hence
they must be equal. O

Corollary 36. An edge {i,j} is weighted Delaunay if and only if |% {i,j}| > 0.

Proof. Clearly |% {i,j}| = 0 on the boundary of weighted Delaunay as in Corol-
lary 35 since the centers are the same. It is clear that |% {4, j}| > 0 if the edge
is weighted Delaunay. |

One can now address the case of n dimensions. The corresponding proofs
go through essentially untouched, and one has the following characterization of
weighted Delaunay triangulations.

Proposition 37. An (n — 1)-dimensional simplex o™~1 which forms a hinge
with simplices of = o™~' U {i} and o = o™~' U{j} is weighted Delaunay if
and only if |*U"_1| > 0.

Note that %o~ ! is a one-dimensional simplex, so the property of being
weighted Delaunay has to do with lengths dual to (n — 1)-simplices being posi-
tive. The previous discussion motivates the following definitions which, in light
of Theorem 17, are slight generalizations of those for weighted triangulations.

Definition 38. An n-dimensional hinge at simplex o™~ is said to be locally

weighted Delaunay if |*U”_1| > 0. An n-dimensional duality triangulation T
is said to be locally weighted Delaunay if [% o™ | > 0 for all o"~1 € T,,_1.

The duality structure is called a Voronoi diagram in the case the triangula-
tion is Delaunay. Voronoi diagrams can be described in a more direct way. A
point z is in the Voronoi cell % {i} if it is closer to ¢ than to any other ver-
tex. The boundary of the Voronoi cells forms the (n — 1)-dimensional complex
called the Voronoi diagram. The analogue for weighted Delaunay triangula-
tions is called a power diagram. A point x is in the power cell % {i} if its power
distance m; (z) is less than 7; (x) for any j # i (see [6] [45]).

Remark 39. The dual cells described in Section 3.4 are slightly different than
the usual usage of power cell. Power cells are described by inequalities and so
the cells are either empty or have positive area. We have used equal power lines
to give nonempty dual regions to each vertex. Instead of having empty dual cells,
we have cells with negative area. From the perspective of duality triangulations,
this is quite natural. In the case that all vertex duals have positive area, the two
notions are the same.

An interesting question is how to find a weighted Delaunay triangulation of
a given manifold with given weights. A potential method of construction is via
so called “flip algorithms.”
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6. Bistellar Flips

In this section we investigate the use of bistellar flips as a way to con-
struct weighted Delaunay triangulations. While this method works well for
two-dimensional Delaunay triangulations, there are some issues that arise for
weighted Delaunay.

6.1. Flips in 2D

We first consider the case of two dimensions. One can imagine the following
notion of a flip. Given a hinge consisting of two triangles {i, j,k} and {i,j,¢}
incident on one common edge {i,j}, there exists a flip which exchanges this
hinge with a new hinge, namely {i, k, £} and {j, k,¢} . Note that the flip fixes
the boundary quadrilateral which consists cyclically of the vertices 4, k, 7, £. This
exchange is called a 2 — 2 bistellar flip, or Pachner move ([102]). If the hinge
is convex, then this can be done metrically. In fact, the flip can be made at the
level of a duality structure. Given the hinge described above, to do the bistellar
flip we need to construct dis and dg such that the condition (2) is satisfied
in each of the new triangles. This is done by solving the following system of
equations for die and dyy,

dije + dig + di; = dig; + dgy + diy
die + do, = d (k, 0)
where d (k, £) is the distance between vertex k and vertex ¢. This distance is the

Euclidean distance because the entire hinge can be embedded in R?. Note that
the first equation is equivalent to

&2+ diy + dy; = di; + d2y + diy

using (2) for triangles {7, j, k} and {7, 7, ¢} . The system can actually be written

in a form easier to solve:

di; + djy — dj; — 3,
d(k,?)

dye — dog. = (20)

dpe + dg, = d (k)

which is linear, although the dependence of d (k,¢) on the remaining d’s is not
obvious (although easy to find using trigonometry). Hence the 2 — 2 bistellar
flip is well defined on duality triangulations, and the triangle inequality follows
automatically. The two hinges which differ a bistellar flip are shown in Figure
6.

The flip requires that the quadrilateral is convex, otherwise the flip would
require that one part is folded back, which complicates matters. This motivates
the following definition:

Definition 40. A hinge is flippable if the quadrilateral defined by the hinge is
convex when embedded in R2.
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Figure 6: Two hinges differing by a bistellar flip, together with duals.

Now, given a convex quadrilateral, there exist two possible ways to make it
into a hinge. The duals are uniquely determined by an assignment of centers to
the edges on the quadrilateral. Let Ly; j; be the line perpendicular to {i, j} and
through C ({7,}). Then Ly; ;y and Ly meet at a point which is the center
C ({4, 4,k}) and similarly Ly; o, and Ly; ¢ meet at a point which is the center
C ({i,4,¢}) . However, also Ly; xy and Ly; g meet at a point which becomes
C ({i, k, £}) after the flip, and similarly with L xy and Lg; »y. Hence the centers
in the hinge form another quadrilateral dual to the hinge (see the right side of
Figure 6). One diagonal of the dual quadrilateral corresponds to % {i,j} and
the other corresponds to % {k, ¢} . One must have positive length and the other
negative length (or both are zero if all dual lines meet at a single point), so
either the hinge is weighted Delaunay, or it will become weighted Delaunay by a
flip. One can also think of the flip of the hinge corresponding to a flip of the dual
hinge. To make this argument rigorous, one simply uses the fact that % {i, 7}
must be perpendicular to {4, j}, and considers the possible cases for |% {i,j}|
being positive, negative, or zero. If it is negative, then it must look like the
right side Figure 6 and hence a flip makes |y {k, ¢}| positive. If | {7,j}| is
zero, then a flip maintains this.

6.2. Rippa’s theorem and its generalization

Rippa [110] showed that if one considers the Dirichlet energy (15) on a tri-
angulation of points in R? where the weights are zero (or equivalently, d;; =
d;; = ¢;;/2 for all edges {4, j}), flipping to make an edge Delaunay increases the
Dirichlet energy (see also [108]). Bobenko and Springborn [17] note that Rippa’s
Theorem extends trivially to piecewise Euclidean surfaces (2-dimensional man-
ifolds). We shall express Rippa’s theorem in a way closer to the exposition on
[17], which is in line with the notation in this paper.

Theorem 41 ([110]). Let (T,¢) be a piecewise Euclidean, triangulated surface
with assigned edge lengths £, which we think of as a weighted triangulation with
all weights equal to zero. Let Ty be the vertices of the triangulation and let
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f:To — R be a function. Suppose T’ is another triangulation which is gotten
from T by a 2 — 2 bistellar flip on edge e (in particular, Ty = T,) such that
the hinge 1s locally Delaunay after the flip. Then

Er (f) < Er(f),

where E+ and E7+ are the Dirichlet energies corresponding to T and T'. As a
consequence, the minimum is attained when all edges are Delaunay (and hence
the triangulation is a Delaunay triangulation).

In [58], the following generalization of Rippa’s theorem is proven for weighted
Delaunay triangulations:

Theorem 42. Let (T,d) be a duality triangulation of a surface with assigned
local lengths d. Let Ty be the vertices of the triangulation and let f : To — R
be a function. Suppose (T',d') is another duality triangulation which is gotten
from (T,d) by a 2 — 2 bistellar flip on edge e such that the hinge is locally
weighted Delaunay after the flip. Then

Er (f) < Er(f),

where B and E+ are the Dirichlet energies corresponding to (T, d) and (T',d’) .

In order to get the global statement, one needs to know that a weighted
Delaunay triangulation can be found using flips. In the equal weight case, this
is proved in [112] and [78]. This is not true in general (see [45]). However, we
will investigate some conditions when a flip algorithm does work in Section 6.3.

As a corollary of Rippa’s theorem, we get an entropy quantity that increases
under the action of flipping to make a hinge weighted Delaunay.

Corollary 43. Consider the entropy defined by

A:inf{E(f):fo:land Zfi:o}.

i€To i€To
Then A decreases when an edge is flipped to make the hinge weighted Delaunay.

Proof. Let A’ denote the entropy after the flip and let fy be the f which realize
A (since f is in a compact set, there must be an actual f which minimizes
E(f)). Then

AN = inf By (f) < E7 (fo) < ET(fo) = A
|

We see that A is essentially the smallest nonzero eigenvalue of —/A. There
are implications toward the eigenvalues of the Laplacian, e.g., [27].

In n dimensions, the weighted Delaunay condition corresponds to |*U"_1 | >
0 while good Dirichlet energy corresponds to |*01| > (. Hence the correspon-
dence between weighted Delaunay triangulations and the Dirichlet energy only
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occurs in dimension 2 because 1 = 2 — 1, which is why the theorem is only
described for dimension 2. Although we do not pursue it here, this may indicate
that the Laplacian should instead be defined on functions on vertices of the dual
complex, f : %7, — R, in which case the Laplacian would be

(Af)*ag = L Z LUEHN (f*a" - f*ag)

o5 2= Tk (0" Nog

where the sum is over all n-simplices. In this case, positivity of the coefficients
corresponds to being weighted Delaunay.

6.3. Flip algorithms

The most naive flip algorithm is to take a given weighted triangulation, look
for a flippable edge which is not weighted Delaunay, and flip it. Continue until
the triangulation is weighted Delaunay. This algorithm was first suggested by
Lawson and shown to find Delaunay triangulations for points in R? ([85], see
also exposition in [44] and related result in [84]). It was later shown to work
for any 2D piecewise Euclidean triangulation (where the weights are all equal)
independently in [78] and [112]. This turns out not to work to find higher di-
mensional Delaunay triangulations or to find weighted Delaunay triangulations
(if there are unequal weights) even in dimension 2. It was later found that
points in R™ can be triangulated with weighted Delaunay triangulations (for
any dimension) by incrementally adding one vertex at a time and doing all the
flips before adding additional vertices. In this case one must pay close atten-
tion to the order of the flipping and the algorithm must either sort the hinges
or dynamically decide which hinge to flip next [79] [45]. Unfortunately, it is
not yet clear how to extend these algorithms to piecewise Euclidean manifolds,
since their proofs rely on the fact that the triangulations are in R™. In this sec-
tion we propose a subset of the space of all weighted triangulations for which
the naive flip algorithm works, just as in the case of two-dimensional Delaunay
triangulations.

Consider the following set.

Definition 44. A 2-dimensional duality triangulation is said to be edge positive
if d;j > 0 for every directed edge (i,7) of the triangulation and for any possible
flip, i.e. any solution of (20).

Hence a triangulation is edge positive if the centers of each edge are inside
the edge and if the center of the new edge after any flip is also inside that edge.
This implies that any non-weighted Delaunay edge is flippable:

Lemma 45. Given a 2D edge positive duality triangulation, if an edge is not
weighted Delaunay, then it is flippable.

Proof. We prove the contrapositive. Suppose a hinge consisting of {i, j, k} and
{i, 7,0} is not flippable, i.e. the quadrilateral is not convex. There can only be
one interior angle larger than 7, and it must be at vertex ¢ or j. Say it is at i.

31



Let Ly be the line through vertex ¢ which is perpendicular to {7, k} and let L,
be the line through vertex ¢ which is perpendicular to {4, ¢}. Since d;; > 0, the
center C ({i,7,k}) must be on the side of Ly on which {i, k} lies; call this open
half-space Hj. Similarly, C ({, j,¢}) must lie on the side of L, on which {i, ¢}
lies; call this half space H,. Let H; be the half-space containing {7, j} whose
boundary is the line L; perpendicular to {7, j} through ¢. Then C ({3, j, k}) must
be in H,NH; and C ({4, j, £}) must be in HyNH,. Since Ly, L;, and L; intersect
at 7 and since the angle at 7 is more than 7, Hj N H; and H, N H; are disjoint
sectors in a half-space. Use Euclidean isometries to make put the hinge such
that 4 is at the origin, {7,;} is along the positive z-axis, and k has positive y-
value (and hence ¢ must have negative y-value). Any possible segment % {7, 7}
must be on a vertical line which intersects {i,7} . It is easy to see that any such
line must intersect Hy, N H; with a larger y-value than it intersects H, N Hj,
implying that |4 {7,7}| > 0. O

Theorem 46. The edge flip algorithm finds a weighted Delaunay triangulation
given an edge positive duality triangulation.

Proof. Since every flip maintains the edge positive property and every edge
which is not weighted Delaunay is necessarily flippable, we can always do a flip
if the triangulation is not weighted Delaunay. We now only need a monotone
quantity which measures the progress of the algorithm to complete the proof
in the same way as in [6, 45, 78, 112]. Since we are in two dimensions, we can
use the Dirichlet energy for almost any function, since the energy increases if a
flip makes the hinge weighted Delaunay (see Theorem 42). Since this function
increases every time we perform a flip and there are finitely many possible
configurations, the algorithm must terminate. Ol

Note that the edge flip algorithm to find Delaunay surfaces is a special case,
since in that case, d;; = £;;/2 > 0. In the next section, we suggest the analogue
of this proof for higher dimensions. However, the analogue of edge positive is
possibly less natural in this setting.

6.4. Higher dimensional flips

First let’s consider the analogue of the 2 — 2 bistellar move in higher di-
mensions. Recall that in any dimension, we can embed a hinge in R™, so
the type of relevant flips must take place inside one or two simplices in R".
The relevant flip is the 2 — n flip in R™ (see Figure 7 for the 3D version).
The flip takes two simplices o' = of~' U {i} and ol = o0~ U {5} meet-
ing at a common face ag—l = {k1,...,k,} and replaces it with n simplices
O'LLP = {i,j,kl, o ,l%p, .y ky ¢, where l%p indicates that k), is not present. The
same argument as above shows that d;; and d;; can be chosen so that the duality
conditions (2) hold for each face.

The duality structure gives each hinge a dual hinge. Figure 8 shows the 3D
case. The boundary of o consists of the faces o = {ki,...,k,} and U?kzl =
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Figure 7: A 2 — 3 flip. There are two tetrahedra on the left and three tetrahedra on the
right.

{i,kl,...,l%p,...,kn} for p = 1,...,n while the boundary of o} is similarly

n—1

decomposed. Let L,n-1 be the line through C' (a”_l) and perpendicular to o
for any (n — 1)-dimensional simplex. We know that L, —and L, intersect
at the point C'(o}") for every p,q = 1,...,n by Proposition 7. After the 2 — n

. . —1 -1 : —1
flip, the boundary of U,’gp consists of U?kp and O';-Lkp together with ngkq =

{i,j,kl,...,l%p,...,l%q,...,kn} for ¢ = 1,...,n and ¢ # p. Hence Lo, and
ngkp intersect at the point C (a}:p) for each p = 1,...,n. We find that there

is a polytope with vertices C'(a7), C (o7) , and C (a}}p) for p=1,...,n. This
is the dual hinge. The centers C (¢}) and C (a}’) are connected via the edge
*Ug_l. If |*0’g_1| < 0 then the flip on the hinge does a n — 2 flip on the dual

hinge which results in removing so{ ™' and replaces it with {*a,’;;,é}

b
q#p
n

which are (2) dual edges, each with positive length.

We see that this sort of flipping is exactly what is needed to make weighted
Delaunay triangulations via some sort of flip algorithm. However, the condition
of flippability is harder to guarantee. We now examine flippability.

Definition 47. An n-dimensional triangulation is said to be m-central if C (O'k)
is inside o for all k < m.

So edge positive is the same as 1-central. Furthermore, n-central is what is
called well-centered in [73]. We now show that (n — 1)-central assures that any
hinge which is not weighted Delaunay is flippable.

Lemma 48. Given an (n — 1)-central triangulation of an n-dimensional man-
ifold, if a hinge is not weighted Delaunay, then it is flippable.

Proof. The proof is essentially the same as the proof of Lemma 46. Consider
a hinge consisting of the simplices {4, k1, ..., k,} and {j, k1, ..., k,}. The first
claim is that if the hinge is unflippable, then at least one dihedral angle must
be greater than w. This is clear because if every dihedral angle is less than
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Figure 8: A flip in three dimensions together with dual cells.

or equal to m, then the hinge is the intersection of half-spaces defined by the
(n — 1)-simplices on the boundary and hence convex. Now consider the pairs
of hyperplanes whose dihedral angle is greater than m. By relabeling we may
assume that the hyperplanes are determined by faces 03;1 ={i,ki,... . kn_1}
and O';-Lk_nl ={j,k1,...,kn—1} and intersect at 03_2 ={k1,...,kn_1}. Because
C (0?,;1) C 05;1, the C' (") must be inside the half-space defined by the plane
IL;, , the plane through 03_2 and perpendicular to 0?,;1, on the side containing

03;1. We have the same for C' (a}’) and since the angle is larger than m we must

have that |*ag_1| > (0 by a similar argument to that in the proof of Lemma
45. O

Weighted Delaunay triangulations of points in R™ can be produced via an
incremental algorithm (see [45, 79]). The key observation is that if a new point
is inserted into a weighted Delaunay triangulation, then there is at least one
non-weighted Delaunay hinge which is flippable (or there are no non-weighted
Delaunay hinges and it is weighted Delaunay). The generalization to the man-
ifold setting is the following. Let Star (v), the star of a vertex v, be defined as
all simplices containing v.

Lemma 49. Suppose Criterion 31 is true. If every hinge in a triangulation
is weighted Delaunay except for hinges intersecting Star (v) for some vertex v,
then some if some hinge is not weighted Delaunay, there exists a flippable hinge
that is not weighted Delaunay. Hence the triangulation can be made weighted
Delaunay via a flipping algorithm.

Proof (sketch). The proof in [45] (also with exposition in [44, Section 12]) can
be applied to this situation. We are able to prove this lemma in the generality
of manifolds because we have supposed Criterion 31 in that generality. ]
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Using this lemma on subsets of R™, one is able to construct weighted De-
launay triangulations by: insert one vertex, make the triangulation weighted
Delaunay, and then insert the next vertex, make the triangulation weighted De-
launay, etc. Unfortunately, on a manifold, the topology is defined by the initial
triangulation, and so there is no obvious way to construct the triangulation
incrementally. Also, if one starts with any triangulation, one may not have a
weighted Delaunay triangulation which is reachable only by flips, as seen in the
example [45, Fig. 5.1].

7. Toward discrete Riemannian manifolds

Much of this work arose out of an attempt to describe Riemannian manifolds
using piecewise Euclidean methods. In this final section, we try to describe some
of the work already done toward this end. There are two different philosophies.
One is to find analogues of the Riemannian setting. The idea is to set up a
framework on which variational-type arguments may be made analogously to
those in the smooth setting. The other is to actually approximate smooth Rie-
mannian geometry with discrete geometric structures. We shall briefly consider
both of these.

7.1. Analogues of Riemannian geometry

In this paper we gave a discrete operator on duality triangulations which, it
was argued, is an analogue of the Laplacian on a Riemannian manifold, often
called the Riemannian Laplacian or Laplace-Beltrami operator. This gives rise
to a discrete heat equation, which is an ordinary differential equation. It is not
hard to imagine that similar arguments give rise to Laplace-Beltrami operators,
or Hodge Laplacians, on forms with the proper definition of forms. A k-form
can be defined to be an element of the dual space to the vector space spanned
by the k-dimensional simplices. There are also dual k-forms which are elements
of the space spanned by the duals of the (n — k)-dimensional simplices. Hirani
[73] describes how to use duality information as we have described to define the
Hodge star operation, and thereby the Hodge Laplacian on these forms. One
may then ask about an analogue of the Hodge theorem. This has also been
studied by Hiptmair [72]. Study of the Laplace-Beltrami operator on manifolds
is also related to the study of the Laplacian and harmonic analysis on metrized
graphs and electrical networks (see [41, 7, 8]).

Another important aspect of Riemannian geometry is the study of geodesics,
which we recall are locally length-minimizing paths. In the setting of piecewise
Fuclidean manifolds, the geodesics are piecewise linear. One may then ask
many questions about geodesics, such as the number of closed geodesics (see
Pogorelov’s work on quasi-geodesics on convex surfaces [105]) and the size of
the cut locus to a basepoint, the locus of points with two or more geodesics
connecting it to the basepoint (see Miller-Pak [96]). Many results on geodesics
on piecewise Euclidean manifolds were found by Stone [119], which lead him
to some possible definitions of curvature. The discrete geodesic problem for
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polytopes in R® was studied extensively in [98]. Geodesics as “straightest”
paths was considered by Polthier-Schmies in [106].

Much of modern Riemannian geometry is concerned with different notions
of curvature, such as sectional, Ricci, and scalar. In the piecewise Euclidean
setting, there are a number of definitions of curvatures, although it is still some-
what an open question which ones are the proper ones for classification purposes.
Since the literature in this area is vast, we simply indicate some of the principle
works. Stone [119] was successful in proving analogues of the Cartan-Hadamard
theorem (that negatively curved manifolds have universal cover homeomorphic
to R™) and Myer’s theorem (that positively curved manifolds are compact with a
bound on the diameter) on piecewise Euclidean manifolds using a quantity which
he calls bounds on sectional curvature. Regge introduced a notion of scalar cur-
vature which is described at each (n — 2)-dimensional simplex as 27 minus the
sum of the dihedral angles at that simplex [109]. This has been widely studied
as the so-called “Regge calculus” (see, for instance, [50, 65, 66, 4]). There are
even some convergence results, which we mention in the next section. Another
potential curvature quantity in three dimensions is described by Cooper and
Rivin in [36]. They consider the curvature at a vertex to be 47 minus the sum
of the solid (or trihedral) angles at the vertex. This curvature is certainly weaker
than the curvature introduced by Regge, but may be related to scalar curvature.
Generalizations of this scalar curvature have recently been studied by the au-
thor [60]. It is possible that the right curvature quantity will lead to a geometric
flow which simplifies geometry in a way similar to the way Ricci or Yamabe flow
do in the smooth category. This has been studied a bit in [28, 89, 56, 57], and
actually was the initial motivation for the definitions of Laplacian described in
this paper. Banchoff [9] presented results related to total curvature of embedded
polyhedra. Other applications of discrete analogues of Riemannian geometry or
geometric operators can be found in [17, 78, 95, 94, 104, 122, 13]. In addition,
techniques applying to metric spaces with sectional curvature bounded in the
sense of Alexandrov may apply (see [24]).

Discrete forms of Ricci curvature and geometric flows have been explored
through the lens of Regge calculus, e.g., [2, 97, 3, 55, 29]. Combinatorial forms of
Ricci curvature for graphs has also been considered, e.g., [49, 100, 88, 107, 101].

The geometric Laplacian appears naturally in variation of discrete conformal
structures. The first notice of the relationship of angle variation to discrete
Laplacians of this form is found in [68], generalizing the observation of Thurston
that the variation gives some weighted graph Laplacian [120]. This work was
generalized to sphere packings in [56] and more generally to two- and three-
dimensional discrete conformal structures in [60]. This work was generalized to
piecewise hyperbolic and spherical structures in [62]. Other discrete conformal
variations play key roles in arguments in [92, 35, 28, 89].

Laplacian spectrum results have been compared across the discrete and
smooth settings, e.g., [34, 33, 32]. Many invariants, such as the Cheeger and
Colin de Verdiere invariants, were inspired by similar invariants on Riemannian
manifolds.

There is also recent work on discrete vector bundles and discrete connections
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(including Riemannian connections) [30, 16].

7.2. Approximating Riemannian geometry

Another goal is to approximate Riemannian geometry by a discrete geometry
such as piecewise Euclidean triangulations. One would hope to be able to find
elements of Riemannian geometry such as Laplacian, Levi-Civita connection,
sectional curvature, scalar curvature, and so forth and not only have analogous
structures, but be able to show that as the triangulation gets finer and finer,
the discrete versions converge to the smooth versions. We mention here some
of the results which have been successful in this direction.

There has been some work on finite elements on manifolds, notably [75, 5, 76].
A general way of considering mappings of Euclidean simplices to manifolds with
bounds on the first and second derivative depending on curvature bounds can
be found in [121]. This allows for estimates of solutions to Poisson’s equation
using piecewise linear finite elements that map to geodesic simplices. Gawlik
used mixed finite elements to consider approximation of the Gaussian curvature
on surfaces [54].

One of the most influential works on curvature estimation is by Cheeger,
Miiller, and Schrader, who were able to relate discrete curvatures to Lipschitz-
Killing curvatures [26] (see also [80]). The relevant discrete curvature is the
sum certain angles and volumes of hinges. In particular, the scalar curvature
measure (RdV') is concentrated on (n — 2)-dimensional hinges in a triangula-
tion, and under a condition that the triangulation does not degenerate, they
find that the curvature quantity 27 minus the sum of the dihedral angles mul-
tiplied by the volume of the (n — 2)-dimensional hinge converges to the scalar
curvature measure. This version of scalar curvature is also the one suggested by
Regge [109] and used extensively in the Regge calculus. The work in [26] proves
convergence for each of the Lipschitz-Killing curvatures, and also gives a useful
approximate cosine law for general Riemannian surfaces. Barrett and Parker
[10] proved a pointwise convergence of piecewise-linear approximations of the
Riemannian metric tensor and certain types of tensor fields. Berchenko-Kogan
and Gawlik look at finite element approximation of the Levi-Civita connection
and curvature on surfaces [14]. In addition, there has been work on the approx-
imation of curvatures of submanifolds, notably by Brehm-Kiihnel [22], Fu [51],
and Borrelli-Cazals-Morvan [20],

G. Xu experimentally explored pointwise convergence of different discretized
Laplace-Beltrami operators to the smooth ones [128, 129]. Some of the dis-
cretizations are the same or similar to those considered in this paper, while some
are not. For surfaces embedded in R?, Hildebrandt-Polthier-Wardetzky [71] give
results on convergence of discrete Laplacians. On graphs (one-dimensional man-
ifolds and generalizations), it has been shown that the eigenvalues of the discrete
Laplacians on metrized graphs converge to the eigenvalues of the smooth Lapla-
cian on a metrized graph [52, 53, 48, 27]. There is also significant recent work on
Laplacians on point cloud representation of submanifolds, often by a Laplacian
on the k-nearest neighbor (KNN) graph, e.g., [11, 12, 15].
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It was W. Thurston’s idea to approximate the Riemann mapping between
subsets of C by mappings of circle packings. Such a discretization has been
shown to actually converge to the Riemann mapping [114, 69, 118]. Further
work on convergence of discrete conformal mappings of various types can be
found in [70, 90, 63, 133, 23, 127, 91, 127].
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