
Connectivity Labeling and Routing with Multiple Vertex Failures∗

Merav Parter
Weizmann Institute of Science

Rehovot, Israel
merav.parter@weizmann.ac.il

Asaf Petruschka
Weizmann Institute of Science

Rehovot, Israel
asaf.petruschka@weizmann.ac.il

Seth Pettie
University of Michigan

Ann Arbor, USA
pettie@umich.edu

ABSTRACT
We present succinct labeling schemes for answering connectivity
queries in graphs subject to a speci!ed number of vertex failures.
An ! -vertex/edge fault tolerant (! -V/EFT) connectivity labeling is a
scheme that produces succinct labels for the vertices (and possibly
to the edges) of an "-vertex graph# , such that given only the labels
of two vertices $, % and of at most ! faulty vertices/edges & , one
can infer if $ and % are connected in# − & . The primary complexity
measure is the maximum label length (in bits).

The ! -EFT setting is relatively well understood: [Dory and Parter,
PODC 2021] gave a randomized scheme with succinct labels of
' (log3 ") bits, which was subsequently derandomized by [Izumi
et al., PODC 2023] with '̃ (! 2)-bit labels. As both noted, handling
vertex faults is more challenging. The known bounds for the ! -
VFT setting are far away: [Parter and Petruschka, DISC 2022]

gave '̃ ("1−1/2
Θ(!)

)-bit labels, which is linear in " already for ! =

Ω(log log").
In this work we present an e"cient ! -VFT connectivity labeling

scheme using poly(! , log") bits. Speci!cally, we present a random-
ized scheme with ' (! 3 log5 ")-bit labels, and a derandomized ver-
sion with ' (! 7 log13 ")-bit labels, compared to an Ω(!)-bit lower
bound on the required label length. Our schemes are based on a new
low-degree graph decomposition that improves on [Duan and Pet-
tie, SODA 2017], and facilitates its distributed representation into
labels. This is accompanied with specialized linear graph sketches
that extend the techniques of the Dory and Parter to the vertex
fault setting, which are derandomized by adapting the approach of
Izumi et al. and combining it with hit-miss hash families of [Karthik
and Parter, SODA 2021].

Finally, we show that our labels naturally yield routing schemes
avoiding a given set of at most ! vertex failures with table and
header sizes of only poly(! , log") bits. This improves signi!cantly
over the linear size bounds implied by the EFT routing scheme of
Dory and Parter.

CCS CONCEPTS
• Theory of computation→ Graph algorithms analysis; Data
structures design and analysis; Distributed algorithms.

∗Supported by NSF Grant CCF-2221980, by the European Research Council (ERC)
under the European Union’s Horizon 2020 Research and Innovation Programme, Grant
Agreement No. 949083, and by the Israel Science Foundation (ISF), Grant 2084/18.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649729

KEYWORDS
Labeling Schemes, Routing Schemes, Fault Tolerance

ACM Reference Format:
Merav Parter, Asaf Petruschka, and Seth Pettie. 2024. Connectivity Labeling
and Routing with Multiple Vertex Failures. In Proceedings of the 56th Annual
ACM Symposium on Theory of Computing (STOC ’24), June 24–28, 2024,
Vancouver, BC, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3618260.3649729

1 INTRODUCTION
Labeling schemes are fundamental distributed graph data structures,
with various applications in communication networks, distributed
computing and graph algorithms. Such schemes are concerned
with assigning the vertices (and possibly also edges) of a given
graph with succinct and meaningful names, or labels. The inherent
susceptibility to errors in many real-life networks creates a need for
supporting various logical structures and services in the presence of
failures. The focus of this paper is on labeling and routing schemes
for connectivity under a limited number of vertex faults, which is
poorly understood compared to the edge fault setting.

Let # = ((,)) be an "-vertex graph, and ! ≥ 1 be an integer
parameter. An ! -vertex fault tolerant (VFT) labeling scheme assigns
short labels to the vertices, so that given a query 〈$, %, & 〉 ∈ (×(×(!
≤ "

)
, one can determine if $ and % are connected in # − & , merely

by inspecting the labels of the query vertices {$, %} ∪ & . Edge fault
tolerant (EFT) labelings are de!ned similarly, only with & ⊆). The
main complexity measure of a labeling scheme is the maximal label
length (in bits), while construction and query time are secondary.

Since their !rst explicit introduction by Courcelle and Twigg [9]
and until recently, all ! -EFT and ! -VFT labeling schemes were
tailored to specialized graph classes, such as bounded treewidth,
planar, or bounded doubling dimension [1, 2, 8, 8, 9], or limited to
handling only a small number of faults [6, 20, 26].

Dory and Parter [10] were the !rst to provide ! -EFT connectivity
labels for general graphs. They developed a randomized scheme
with label size of' (log3 ") bits, regardless of ! , in which queries are
answered correctly with high probability, i.e., of 1−1/poly("). Their
construction is based on the linear graph sketching technique of [3,
18]. Notably, their labels can be used in an almost black-box manner
to yield approximate distances and routing schemes; see [6, 10]. By
increasing the label length of the Dory-Parter scheme to '̃ (!) bits,
the randomly assigned labels will, with high probability, answer
all possible "# (") queries correctly. Izumi, Emek, Wadayama, and
Masuzawa [16] provided a full derandomization of the Dory-Parter
scheme, where labels are assigned deterministically in polynomial
time and have length '̃ (! 2) bits.

Vertex faults are considerably harder to deal with than edge
faults. A small number of failing vertices can break the graph into a
possibly linear number of connected components. Moreover, known

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

823

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2357-2445
https://orcid.org/0009-0003-2325-2454
https://orcid.org/0000-0002-0495-3904
https://doi.org/10.1145/3618260.3649729
https://doi.org/10.1145/3618260.3649729
https://doi.org/10.1145/3618260.3649729
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649729&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Merav Parter, Asaf Petruschka, and Seth Pe!ie

structural characterization of how ! vertex faults change connec-
tivity are lacking, unless ! is small; see [4, 17, 28, 29]. By a naive
reduction from vertex to edge faults, the Dory-Parter scheme yields
VFT connectivity labels of size '̃ (Δ(#)), where Δ(#) is the maxi-
mum degree in# . This dependency is unsatisfactory, as Δ(#) might
be even linear in ". Very recently, Parter and Petruschka [26] de-
signed ! -VFT connectivity labeling schemes for small values of ! .
For ! = 1 and ! = 2 their labels have size ' (log") and ' (log3 "),

respectively, and in general the size is '̃ ("1−1/2
! −2

), which is sub-
linear in " whenever ! = * (log log"). By comparing this state of
a#airs to the EFT setting, the following question naturally arises:

Question 1.1. Is there an ! -VFT connectivity labeling scheme with
labels of poly(! , log") bits?

Compact Routing. An essential requirement in communication
networks is to provide e"cient routing protocols, and the error-
prone nature of such networks demands that we route messages
avoiding vertex/edge faults. A routing scheme consists of two al-
gorithms. The !rst is a preprocessing algorithm that computes
(succinct) routing tables and labels for each vertex. The second is
a routing algorithm that routes a message from $ to % . Initially the
labels of $, % are known to $. At each intermediate node + , upon
receiving the message, + uses only its local table and the (short)
header of the message to determine the next-hop, speci!ed by a
port number, to which it should forward the message. When deal-
ing with a given set & of at most ! faults, the goal is to route the
message along an $-to-% path in# − & . We consider the case where
the labels of & are initially known to $, also known as forbidden-set
routing.1.

The primary e"ciency measures of a routing scheme are the
space of the routing tables, labels and headers; and the stretch of the
route, i.e., the ratio between the length of the $-% routing path in
#−& , and the corresponding shortest path distance. In the fault-free
and EFT settings, e"cient routing schemes for in general graphs
are known; we refer to [10] for an overview. The known bounds for
VFT routing schemes in general graphs are much worse; there is no
such scheme with space bounds sublinear in ", even when allowing
unbounded stretch. This is in sharp contrast to the ! -EFT setting for
which [10] provides each vertex a table of '̃ (! 3"1/$) bits, labels of
'̃ (!) bits (for vertices and edges) and headers of '̃ (! 3) bits, while
guaranteeing a route stretch of' (, !). The current large gap in the
quality of routing schemes under vertex faults compared to their
edge-faulty counterparts leads to the following question.

Question 1.2. Is there an ! -VFT routing scheme for general graphs
with sublinear space bounds for tables, labels and headers?

The Centralized Setting and Low-Degree Decompositions. A closely
related problem is that of designing centralized sensitivity oracles
for ! -VFT connectivity, which, in contrast to its distributed labeling
counterpart, is verywell understood. Results of Duan and Pettie [12]
followed by Long and Saranurak [22] imply an '̃ (min{-, ! "})-
space data structure (where- is the number of edges), that updates
in response to a given failed set & ⊆ (, |& | ≤ ! within '̂ (! 2)
time, then answers connectivity queries in # − & in ' (!) time.

1This assumption is made only for simplicity and clarity of presentation. It can be
omitted at the cost of increasing the route length and the space bounds by factors that
are small polynomials in " , using similar ideas as in [10].

These bounds are almost-optimal under certain hardness assump-
tions [15, 21, 22]. See [29, 30] for similar oracles with update/query
time independent of ".

As previously noted, a major challenge with vertex faults, arising
also in the centralized setting, is dealing with large degrees. To
tackle this challenge, Duan and Pettie [12] used a recursive version
of the Fürer-Raghavachari [13] algorithm to build a low-degree
hierarchy. For any graph # , it returns a log"-height hierarchical
partition of((#) into vertex sets, each spanned by a Steiner tree of
degree at most 4. For ! -VFT connectivity queries, having an ' (1)-
degree tree is almost as good as having Δ(#) = ' (1). Duan, Gu, and
Ren [11] extended the low-degree hierarchy [12] to answer ! -VFT
approximate distance queries, and Long and Saranurak [22] gave
a faster construction of low-degree hierarchies (with "% (1) -degree
trees) using expander decompositions. However, prior usages of
such hierarchies seem to hinge signi!cantly on centralization, and
facilitating their distributed representation for labeling schemes
calls for new ideas.

Our Results. The central contribution of this paper is in settling
Question 1.1 to the a"rmative. We present new randomized and
deterministic labeling schemes for answering ! -failure connectivity
queries with label length poly(! , log"), which improves on [26]
for all ! ≥ 3. Our main result is:

Theorem 1.1. There is a randomized polynomial-time labeling
scheme for ! -VFT connectivity queries that outputs labels with length
' (! 3 log5 "). That is, the algorithm computes a labeling function . :

(→ {0, 1}# (" 3 log5 &) such that given .($), .(%) and {.(+) | + ∈ & }
where |& | ≤ ! , one can report whether $ and % are connected in# − & ,
which is correct with probability 1 − 1/poly(").

This resolves an open problem raised in [10], improves sig-
ni!cantly over the state-of-the-art poly(")-bit labels when ! ≥
3 [10, 26], and is only polynomially o# from an Ω(!)-bit lower
bound (see the full version [27]). The labeling scheme of Theo-
rem 1.1 is based on a new low-degree hierarchy theorem extending
the Duan-Pettie [12] construction, which overcomes the hurdles
presented by the latter for facilitating its distributed representation.

Further, in the full version [27] we derandomize the construction
of Theorem 1.1, by combining the approach of Izumi et al. [16]
with the deterministic “hit-miss hashing" technique of Karthik and
Parter [19], which addresses an open problem of Izumi et al. [16].

Theorem 1.2. There is a deterministic polynomial-time labeling
scheme for ! -VFT connectivity queries that outputs labels with length
' (! 7 log13 ").

To address Question 1.2, we use the labels of Theorem 1.1 that
naturally yield compact routing schemes in the presence of ! vertex
faults. In the full version [27] we show:

Theorem 1.3. There is a randomized forbidden-set routing scheme
resilient to ! (or less) vertex faults, that assigns each vertex + ∈ (a
label .(+) of' (! 3 log5 ") bits, and a routing table /(+) of' (! log")
bits. The header size required for routing a message is ' (! log2 ")
bits. The $-% route has ' (! " log") many hops.

824

Connectivity Labeling and Routing with Multiple Vertex Failures STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

This improves considerably upon the current linear space bounds
implied by the ! -EFT routing scheme of [10], with the same hop-
bound. The routing scheme can also be derandomized in a straight-
forward manner, using the deterministic labels of Theorem 1.2.

Preliminaries. Throughout, we !x the "-vertex input graph # =

((,)), assumed to be connected without loss of generality. For
0 ⊆ (, # [0] and # −0 denote the subgraphs of # induced by0
and(−0 , respectively. When 10, 11 are paths, 10 ◦11 denotes their
concatenation, de!ned only when the last vertex of 10 coincides
with the !rst vertex of 11. We use the operator ⊕ to denote both
the symmetric di#erence of sets (2 ⊕ 3 = (2 − 3) ∪ (3 −2)) and
the bitwise-XOR of bit-strings. The correct interpretation will be
clear from the type of the arguments.

2 TECHNICAL OVERVIEW
At the macro level, our main ! -VFT connectivity labeling scheme
(Theorem 1.1), is obtained by substantially extending and combin-
ing two main tools: (I) The Dory-Parter [10] labels for connectivity
in presence of edge faults, based on the linear graph sketching tech-
nique of [3, 18]. (II) The Duan-Pettie [12] low-degree hierarchy,
originally constructed for centralized connectivity oracles under
vertex failures.

We start with a short primer on graph sketching and the Dory-
Parter labeling scheme, since we build upon these techniques in
a “white box" manner. Our starting observation shows how the
Dory-Parter labels can be extended to handle vertex faults, when
assuming the existence of a low-degree spanning tree. We then intro-
duce the Duan-Pettie low-degree hierarchy, which has been proven
useful in the centralized setting; intuitively, such a hierarchy lets
us reduce general graphs to the low-degree spanning tree case. We
explain our strategy for using a low-degree hierarchy to obtain
an ! -VFT labeling scheme, which also pinpoints the hurdles pre-
venting us from using the Duan-Pettie hierarchy “as is" for this
purpose. Next, we discuss the resolution of these hurdles obtained
by novel construction of low-degree hierarchies with improved key
properties, and tie everything together to describe the resulting
scheme. Finally, we brie$y discuss how to optimize the label size
by a new combination of graph sketches with graph sparsi!cation
and low-outdegree orientations.

2.1 Graph Sketches and the Dory-Parter Labels
Graph Sketches. The linear graph sketching technique of [3, 18]

is a tool for identifying outgoing edges from a given vertex subset
0 ⊆ (. We give a short informal description of how it works,
which could be skipped by the familiar reader. Generate nested
edge-subsets) =)0 ⊇)1 ⊇ · · · ⊇)# (log&) = ∅ by sampling each
4 ∈)' into)'+1 with probability 1/2. Thus, for any ∅ ≠)′ ⊆),
some)' contains exactly one of the edges in)′, with some constant
probability. The sketch of)′, denoted sketch()′), is a list where the
5-th entry holds the bitwise-XOR of (the identi!ers) of edges from
)′ sampled into)' :

⊕
(∈)′∩)"

id(4). Crucially, the sketches are
linear with respect to the

⊕
operator: sketch()′) ⊕ sketch()′′) =

sketch()′ ⊕)′′). The edge sketches are extended to vertex subsets
0 ⊆ (as

sketch(0) =
⊕
*∈+

sketch({4 ∈) | 4 incident to 6}) .

By linearity, the0 ×0 edges cancel out, so sketch(0) is the sketch
of outgoing edges from 0 . Most entries in sketch(0) are “garbage
strings" formed by XORing many edges, but the sketch property
ensures that one of them contains id(4) of an edge 4 outgoing from
0 , with constant probability.

The Dory-Parter Labels. Our approach builds upon the Dory-
Parter [10] labels for edge faults, which we now brie$y explain.
Choose any rooted spanning tree 7 of # . Construct standard 7 -
ancestry labels: each + ∈ (gets an' (log")-bit string anc(+). Given
anc(6), anc(+) one can check if 6 is a7 -ancestor of + . These are the
vertex labels. The label of an edge 4 = {6, +} always stores sketch(4)
and anc(6), anc(+). The labels of tree edges are the ones doing the
heavy lifting: if 4 ∈) (7), we additionally store the subtree-sketches
sketch(((7*)) and sketch(((7,)), where 7- denotes the subtree
rooted at 8 .

Given the labels of $, % ∈ (and of failing & ⊆), the connectivity
query (i.e., if $, % are connected in # − &) is answered by a forest
growing approach in the spirit of Borůvka’s 1926 algorithm [5, 25].
Letting &. = & ∩) (7), observe that 7 − &. consists of |&. | + 1
connected parts P = {10, . . . , 1 |/# | }. Each part can be expressed as
1' =

⊕
- ((7-), where the

⊕
runs over some subset of endpoints

of &. . Thus, at initialization, the algorithm computes the sketch
sketch(1') by XORing subtree-sketches stored in the &. -labels. (It
knows which subtrees to XOR using the ancestry labels.) To avoid
getting outgoing-edges that are in & , the & -edges are deleted from
the relevant part-sketches: For each 4 = {6, +} ∈ & , we locate the
parts 1* , 1, ∈ P that contain 6, + (using ancestry labels), and if
1* ≠ 1, , we update the sketches of 1* , 1, by XORing them with
sketch(4). So, the part-sketches now refer to # − & instead of # .

We next run Borůvka, by working in ' (log") rounds. In each
round, we use the part-sketches to !nd outgoing edges and merge
parts along them, forming a coarser partition. The sketches of the
new parts are computed by XORing the old ones. By the !nal round,
the parts become the connected components of # − & , with high
probability. Finally, we locate which initial parts contained $, % using
the ancestry labels, and see if these ended up in the same !nal part.

2.2 Starting Point: Vertex Faults in Low-Degree
Spanning Tree

The intuition for our approach comes from the following idea.
Suppose we were somehow able to !nd a spanning tree 7 of #
with small maximum degree, say Δ(7) = '̃ (1). Since the tree edges
are the ones doing the heavy lifting in the Dory-Parter scheme
(by storing the subtree-sketches), the label of a failing vertex 8
may store only the '̃ (1) labels of 8 ’s incident edges in 7 . However,
there is an issue: how do we delete the non-tree edges incident to
failing vertices from the part-sketches? We cannot a#ord to store
the sketch of each such edge explicitly, as the degrees in # may be
high.

To overcome this issue, we use the paradigm of fault-tolerant
sampling, !rst introduced by [7, 31]. We generate ! 2 random sub-
graphs#1, . . . ,# " 2 . Each#' is formed by sampling each vertex w.p.
1/! , and keeping only the edges with both endpoints sampled. This
ensures that for every fault-set & ⊆ (, |& | ≤ ! , and every edge 4
of # − & , with constant probability, at least one #' contains 4 (#'
“hits" 4) but no edge incident to & (#' “misses" &). We replace the

825

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Merav Parter, Asaf Petruschka, and Seth Pe!ie

subtree-sketches stored in the labels with ! 2 basic sketches, one for
each #' . When trying to get an outgoing edge from a part 1 , the
guarantee is that with constant probability, there will be some basic
#' -sketch of 1 such that #' misses & but hits one of the outgoing
edges of 1 in# −& ; such a basic sketch which will provide us (again
with constant probability) a desired outgoing edge.

The label length of the approach above becomes '̃ (! 2 · Δ(7))
bits, as each vertex stores ! 2 basic sketches for each of its incident
tree edges.

2.3 The Duan-Pettie Low-Degree Hierarchy
The issue with the low-degree spanning tree idea is clear: such a
tree might not exist. The low-degree hierarchy of Duan and Pet-
tie [12] was designed for centrlized oracles for connectivity under
vertex faults, in order to tackle exactly this issue. Their construc-
tion is based on a recursive version of the Fürer-Raghavachari
algorithm [13], but understanding the algorithm is less important
for our current purposes. Rather, we focus on explaining its out-
put, namely, what the low-degree hierarchy is, and what are its key
properties.

The Duan-Pettie hierarchy2 H0 consists of a partition C of the
vertices (into components. We use the letter 9 to denote one such
component. So, (=

⋃
0 ∈C 9 , and 9 ∩ 9

′ = ∅ for any two distinct
components 9,9 ′ ∈ C. The components in C are hierarchically
placed as the nodes of a virtual tree (hence the name “hierarchy").
We call the virtual hierarchy edges links, to distinguish them from
the edges of the original graph # . For two components 9,9 ′ ∈ C,
we denote 9 ≺ 9 ′ if 9 is a strict descendant of 9 ′ (i.e., 9 ′ is a strict
ancestor of 9) in the hierarchy tree. Two components 9,9 ′ such
that 9 2 9 ′ or 9 3 9 ′ are called related. The key properties of the
hierarchy H0 are as follows:

(1) Logarithmic height: The hierarchy tree H0 has height
' (log").

(2) No lateral edges: There are no lateral #-edges that cross
between unrelated components. Namely, if {6, +} is an edge
of # , and 9* ,9, ∈ C are the components containing 6, +
respectively, then 9* and 9, are related.

(3) Connected sub-hierarchies:The vertices in each sub-hierarchy
induce a connected subgraph of # . Namely, let H0

0 be the

subtree of H0 rooted at component 9 ∈ C, and ((H0
0) =⋃

0 ′20 9
′ be the vertices appearing in descdedants of 9 (i.e.,

found in the nodes ofH0
0). Then the subgraph# [((H0

0)] is
connected.

(4) Low-degree Steiner trees: Each component 9 ∈ C is asso-
ciated with a Steiner tree 7 0 (9), whose terminal set is 9 . The
tree 7 0 (9) is a subgraph of # that spans all the vertices in
9 , and has maximum degree ≤ 4. However, it may contain
Steiner points: vertices outside 9 .

2.4 First Attempt: with Duan-Pettie Hierarchy
We now give an overview of how we would like to use the low-
degree hierarchy, by taking the following methodological approach:
First, we provide the general idea for constructing labels based

2The 0-superscript in the notation H0 is used since the Duan-Pettie hierarchy serves
as the initial point for other hierarchy constructions, introduced in Section 2.5.

on a low-degree hierarchy such as the Duan-Pettie hierarchyH0.
Then, we highlight the key properties that are missing from H0

to make it satisfactory for our purposes. In the following subsec-
tion (Section 2.5), we present our modi!ed low-degree hierarchy
constructions, which mitigate these barriers.

Preprocessing: Creating the Auxiliary “Shortcuts-Graph" #̂ . The
labels are built on top of an auxiliary graph #̂ computed in a prepro-
cessing step. The graph #̂ consists of all#-edges plus an additional
set of shortcut edges that are computed based on the hierarchy,
as explained next. For a component 9 , let : (H0

0) denote the set

of vertices outside ((H0
0) that are adjacent to some vertex inside

((H0
0) (that is, the neighbors of H0

0). Note that as there are no

lateral edges, : (H0
0) contains only vertices from strict ancestor

components of 9 . Also, by the connected sub-hierarchies property,
every distinct 6, + ∈ : (H0

0) are connected in# by a path whose in-

ternal vertices are contained in((H0
0). We therefore add a shortcut

edge between 6, + that represents the existence of such a path. To
make sure we know that this edge corresponds to a path through
((H0

0), the shortcut edge is marked with type “9". To conclude, the

auxiliary graph #̂ is the graph formed by starting with# , giving all
its edges type “original", and then, for each 9 ∈ C, adding a clique
on : (H0

0) with edges of type “9". Note that there may be multiple

edges (with di#erent types) connecting two vertices, so #̂ is an
edge-typed multi-graph.

Query: A!ected Components and the Query Graph #∗. We now
shift our attention to focus on how any speci!c connectivity query
〈$, %, & 〉 interacts with #̂ . First, we de!ne the notion of components
that are a!ected by the query. Intuitively, an a#ected component is
one whose corresponding shortcut edges are no longer trusted, be-
cause the path they represent might contain faults from & . Formally,
9 ∈ C is called a!ected if ((H0

0) ∩ (& ∪ {$, %}) ≠ ∅.3 Observe that
the set of a#ected components is upwards-closed: If 9 is a#ected,
then every 9 ′ 3 9 is also a#ected. As the query vertices & ∪ {$, %}
lie only in at most ! + 2 di#erent components, and the hierarchy
has . ≤ log" levels, there are only' (! log") a#ected components.
The query graph #∗ is de!ned as the subgraph of #̂ that consists
of all vertices lying in a#ected components, and all the edges of
#̂ that connect them and have una!ected types. Namely, we delete
“bad” shortcut edges whose types are a#ected. The key property
we prove about #∗ is that $, % are connected in # − & if and only if
they are connected in #∗ − & . Hence, we would like our labels to
support Borůvka execution in #∗ − & . Note that unlike #̂ , which
depends only on# , the graph#∗ is a function of# and of the query
elements $, % and & . As we will see, one of the challenges of the
decoding algorithm will be in performing computation on#∗ given
label information computed based on the preprocessing graph #̂ .

Key Obstacles in Labelizing the Duan-Pettie Hierarchy. The gen-
eral idea is that each a#ected component 9 has a low-degree span-
ning tree7 0 (9), enabling us to employ our approach for low-degree
spanning trees: store in the label of a vertex the sketches of subtrees

3In case there are no faults from / in! (H0
$) , we do not really care if 1 or 2 are there;

the shortcut edges with type “0 " are still reliable. However, it will be more convenient
(although not needed) to assume that 1, 2 are in a#ected components, hence we also
force this condition.

826

Connectivity Labeling and Routing with Multiple Vertex Failures STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

rooted at its tree-neighbors. Thus, for each a#ected component, we
can compute the sketches of the parts into which its tree breaks af-
ter the vertex-set & fails.4 Together, these parts constitute the initial
partition for running the Borůvka algorithm in #∗ − & . However,
there are two main obstacles:

(a) Steiner points. A vertex 8 appears only in one component
9- , but can appear in many trees 7 0 (9) with 9 ≠ 9- as a
Steiner point. So even though 8 only has ≤ 4 neighbors in
each such 7 0 (9), the total number of subtree-sketches we
need to store in 8 ’s label may be large.

(b) Large : (H0
0) sets. The decoding algorithm is required to

obtain sketch information with respect to the query graph
#∗. When constructing the label of a vertex 8 (in the prepro-
cessing step), we think of 8 as participating in an unknown
query, which gives only partial information on the future
graph #∗: all ancestor components 9 3 9- will be a#ected.
To modify #̂-sketches into sketches in the query graph#∗,
the shortcut-edges of type “9" should be deleted from the
given sketches. To this end, we would like to store in 8 ’s
label, for every 9 3 9- and every + ∈ : (H0

0), the sketch of

the edges)̂0 (+): edges with type “9" that are incident to + .
This is problematic as the neighbor-set : (H0

0) might be too
large.

2.5 Resolution: New Low-Degree Hierarchies
To overcome obstacles (a) and (b), we develop a new low-degree
decomposition theorem, which essentially shows how we can alter
the Duan-Pettie hierarchy H0 to (a) admit low-degree spanning
trees without Steiner points, and (b) to have small neighbor-sets of
sub-hierarchies.

The Unify Procedure. We start with tackling obstacle (a). The
idea is rather intuitive: our issue with the trees {7 0 (9)} is that
they may contain edges connecting two di#erent components. I.e.,
a problematic edge 4 = {6, +} appearing in 7∪ =

⋃
0 ∈C 7

0 (9)
is such that 9* ≠ 9, . To !x 4 , we want to unify 9* and 9, into
one component. As there are no lateral edges, 9* and 9, must be
related, say 9* 5 9, . If it happened to be that 9* is the parent
of 9, , then this is easy: we merge 9* ,9, into a new component
9&(3 = 9* ∪ 9, , associated with the tree formed by connecting
7 0 (9*),7

0 (9,) through 4 , i.e., 7 (9&(3) = 7 0 (9*) ∪ {4} ∪ 7 0 (9,).
The child-components of9* ,9, become children of the uni!ed9&(3 .
However, if 9* is a further-up ancestor of 9, , such a uni!cation
can cause other issues; it may violate the “no lateral edges" and
“connected sub-hierarchies" properties. The reason these issues did
not appear for a parent-child pair is that their uni!cation can be
seen as a contraction of a hierarchy link.

We therefore develop a recursive procedure called Unify, that
when asked to unify 9* and 9, , returns a connected set of hierarchy-
nodes that contains 9* ,9, . Further, Unify exploits the properties
of the low-degree hierarchy to also provide edges through which
we can connect the trees 7 0 (9) of the components 9 appearing
in this set (while keeping the degrees in the uni!ed tree small).
Thus, we can unify them and !x 4 . By iteratively applying Unify

4An a#ected component does not necessarily have / -vertices in it, so it could remain
as one intact part.

to !x problematic 7∪-edges, we end up with a spanning tree for
each component, rather than with a Steiner tree. Further, we prove
that this does not increase the maximum tree-degree very much; it
grows from 4 to only ' (log").

Hierarchies Based on “Safe" Subsets of Vertices. To tackle obstacle
(b), we exploit the following insight: The low-degree requirement
can be relaxed, as long as we ensure that the failed & -vertices have
low degrees in the trees; the degree of non-failing vertices does not
matter. At !rst sight, this might not seem very helpful, as we do
not know in advance which vertices are faulty (namely, we should
prepare to any possible set & of ! vertex faults). In order to deal
with this challenge, we randomly partition the vertices(into ! + 1
sets ;1, . . . , ;" +1. Each of these sets gets a tailor-made hierarchy
H(;') constructed for it (which is still a partition of (). When
constructingH(;'), we think of ;' as a set of safe vertices, that will
not fail, and are therefore allowed to have high degrees, while the
vertices in (− ;' should remain with small degrees. Note that for
every & ⊆ (with |& | ≤ ! , there is some ;' such that ;' ∩ & = ∅;
the hierarchy H(;') will be used to handle queries with faulty-set
& , so that & -vertices will have low degrees, as needed.

We now give a high-level explanation of how our relaxed degree
requirement, allowing large degrees for ;' -vertices, can be used for
eliminating large neighbor-sets of sub-hierarchies and obtaining
H(;'). We set the “large" threshold at Θ(! log"). Suppose 9 ∈ C
is some component with |: (H0

0) | = Ω(! log"). Our goal is to
eliminate this problematic component 9 . Again, the trick will be
uni!cations. Because each vertex in: (H0

0) has probability 1/(! +1)
to be an ;' -vertex, with high probability, there is some safe vertex
6 ∈ ;' ∩ : (H0

0). Therefore, there is some #-edge 4 = {6, +} with
9* 5 9 3 9, . We call Unify asking to unite 9* with 9, , through
the edge 4 . As Unify returns connected sets of nodes, the resulting
uni!ed component will also include the problematic component 9 ,
and it will be eliminated. On a high level, the reason we may use the
edge 4 for connecting trees is because we are allowed to increase
the degree of the safe vertex 6 ∈ ;' . So, after repeatedly eliminating
problematic components, all neighbor-sets of sub-hierarchies have
size ' (! log"), and the degree of all vertices in (− ;' (i.e., the
unsafe vertices) in the trees remains ' (log").

The New Hierarchies. To summarize, we get ! + 1 hierarchies
H(;1), . . . ,H(;" +1), each corresponding to one set from a parti-
tion (;1, . . . , ;" +1) of the vertices(. So as not to confuse them with

the Duan-Pettie Hierarchy H0, we denote the partition of (to
components in each hierarchy H(;') by K(;'), and denote com-
ponents such by the letter < (instead of 9). Now,H4 (;') denotes
the sub-hierarchy ofH(;') rooted at component < ∈ K(;'), and
: (H4 (;')) denotes its neighbor-set. Each hierarchyH(;') has the
following key properties:

(1) (Old) Logarithmic height: As before
(2) (Old) No lateral edges: As before.
(3) (Old) Connected sub-hierarchies: As before.
(4) (Modi!ed) Spanning trees with low-degrees of unsafe

vertices: Each < ∈ K(;') is associated with a tree 7 (<)
which is a subgraph of # containing only the <-vertices
(with no Steiner points), such that each vertex in < − ;' has
degree ' (log") in 7 (<).

827

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Merav Parter, Asaf Petruschka, and Seth Pe!ie

(5) (New) Small neighbor-sets: For every < ∈ K(;'), it holds
that |: (H4 (;')) | = ' (! log").

2.6 Putting It All Together
We can now give a rough description of how the labels are con-
structed and used to answer queries, ignoring some nuances and
technicalities.

Constructing Labels. We focus on the label of an (assumed to be)
faulty vertex 8 , as these do most of the work during queries. The
label .(8) is a concatenation of ! + 1 labels .' (8), one for each
hierarchyH(;'). We only care about sets ;' where 8 ∉ ;' , as the ;'
vertices are considered safe (otherwise, we leave .' (8) empty). We
construct an auxiliary shortcut graph #̂ (H (;')) based on H(;'),
by adding typed shortcut edges, exactly as explained in Section 2.4.
Let <- be the component containing 8 .

• For each neighbor= of8 in7 (<-), of which there are' (log")
since 8 ∉ ;' , let 75 (<-) be the subtree rooted at =. We store
sketch(((75 (<-))), constructed with respect to #̂ (H (;')).
These are akin to the subtree-sketches from Section 2.2.

• Next, we refer to the ' (log") components < 3 <- , which
we know will be a#ected.
– Our main concern is the ability to delete edges with type
“<" from the sketches, since these are unrelible when < is
a#ected. We thus store sketch()̂4 (+)), the sketch of the
“<”-type edges touching + , for every + ∈ : (H4 (;')).

– Also, to account for the possibility that no & -vertex will
lend in < , so < will be a part in the initial Borůvka parti-
tion, we store sketch(<)

The length of labels is bounded as follows. First, the sketches
are constructed using the fault-tolerant sampling approach of Sec-
tion 2.2, hence a single sketch(·) takes up '̃ (! 2) bits. As neighbor-
sets : (H4 (;')) are of size '̃ (!), the label .' (8) consists of '̃ (! 3)
bits. The !nal label .(8), which concatenates ! + 1 di#erent .' (8)-
labels, thus consists of '̃ (! 4) bits. In fact, we can reduce one ! -
factor from the size of sketches by using an “orientation trick",
explained in the following Section 2.7.

Answering Queries. Fix a query 〈$, %, & 〉 with & ∩;' ≠ ∅. It de!nes
the a#ected components inK(;'), and hence the query graph#∗ as
in Section 2.4, which is the subgraph of #̂ (H (;')) induced on ver-
tices in a#ected components, but only with the edges of una#ected
types. The parts to which each tree 7 (<) of an a#ected component
< breaks after the failure of & constitute the initial partition for
running Borůvka in #∗ − & . We compute part-sketches by XORing
subtree sketches, similarly to Section 2.2. We also delete the bad
edges from these, using the stored sketch()̂4 (+)) of every a#ected
< and + ∈ : (H4 (;')), so that the part-sketches now represent #∗.
Using these sketches we can simulate the Borůvka algorithm in
#∗ − & , and check if the initial parts containing $, % ended up in the
same !nal part. We answer that $, % are connected in # − & if and
only if this is the case.

2.7 Improvement: The “Orientation Trick"
In fact, we can save one ! factor in the length of the labels described
in the previous section, by an idea we refer to as the “orientation
trick". We !rst explain how this trick can be applied for the intuitive

approach of Section 2.2, where we are given a low-degree spanning
tree 7 of # .

Apply Nagamochi-Ibaraki [23] sparsi!cation, and replace# with
an ! -vertex connectivity certi"cate: a subgraph where all connectiv-
ity queries under ≤ ! vertex faults have the same answers as in # .
The certi!cate (which we assume is # itself from now on) has ar-
boricity ≤ ! , meaning we can orient the edges of # so that vertices
have outdegrees at most ! . We do not think of the orientation as
making# directed; an edge {6, +} oriented as 6 → + is still allowed
to be traversed from + to6. Rather, the orientation is a trick that lets
us mix the two strategies we have for avoiding edges incident to
& when extracting outgoing edges from sketches: explicit deletion
(as in Dory-Parter, Section 2.1), or fault-tolerant sketching (as in
Section 2.2).

The idea works roughly as follows. We generate just ! random
subgraph #1, . . . ,# " (instead of ! 2). Each #' is generated by sam-
pling each vertex w.p. 1/! , and only keeping the edges oriented as
6 → + with + sampled (even if 6 is not sampled). We now have !
basic sketches instead of every #-sketch; one for each #' . When
we extract an outgoing edge from a part 1 , we can avoid edges
oriented as 1 → & , i.e., outgoing edges from 1 that are incoming
to a failed vertex from & . However, we may still get edges oriented
in the reverse & → 1 direction. It therefore remains to delete from
the sketches the edges that are outgoing from & -vertices. To this
end, we !rst replace the independent sampling in generating the
sketches with pairwise independent hash functions, maintaining
the ability to extract an outgoing edge with constant probability.
Now, each failed vertex can store all its ≤ ! outgoing edges along
with a short '̃ (1) random seed, from which we can deduce their
sketches for explicit deletion. So now, each failed vertex stores only
! basic sketches for each incident tree edge, and additional '̃ (!)

information regarding its outgoing edges, resulting in '̃ (! Δ(7))-bit
labels.

In order to apply this trick on the hierarchy-based sketches,
i.e., upon each auxiliary shortcut graph #̂ (H (;')) constructed for
hierarchyH(;'), we develop a di#erent sparsi!cation procedure
than [23], which is sensitive to the di#erent types of edges, and
produces a low-arboricity “certi!cate" that can replace #̂ (;').

2.8 Organization
In Section 3 we construct the new low-degree hierarchies. Section 4
de!nes the auxiliary graphs used in the preprocessing and query
stages, and walks through their use in the query algorithm at a high
level. In Section 5 we construct the '̃ (! 3)-bit vertex labels, and
Section 6 gives the implementation details of the query algorithm.
Proofs and !gures are omitted due to space constraints; they appear
in the full version [27].

3 A NEW LOW-DEGREE DECOMPOSITION
THEOREM

In this section, we construct the new low-degree hierarchies on
which our labeling scheme is based. Recall our starting point is
Duan and Pettie’s low degree hierarchy [12], whose properties are
overviewed in Section 2.3. We state them succinctly and formally
in the following Theorem 3.1.

828

Connectivity Labeling and Routing with Multiple Vertex Failures STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Theorem 3.1 (Modi!cation of [12, Section 4]). There is a partition
C of ((#) and a rooted hierarchy tree H0 = (C,) (H0)) with the
following properties.

(1) H0 has height at most log".
(2) For 9,9 ′ ∈ C, 9 ≺ 9 ′ denotes that 9 is a strict descendant of 9 ′.

If {6, +} ∈) (#), and 9* ,9, ∈ C are the parts containing 6, + ,
then 9* ≺ 9, or 9, 2 9* .

(3) For every 9 ∈ C, the graph induced by ((H0
0)

def
=

⋃
0 ′20 9

′

is connected. In particular, for every 9 ∈ C and child 9 ′,) ∩
(9 ×((H0

0 ′)) ≠ ∅.

(4) Each 9 ∈ C is spanned by Steiner tree 7 0 (9) (that may have
Steiner vertices not in 9) with maximum degree at most 4.

Further, for 7∪
def
=

⋃
0 ∈C 7

0 (9), it holds that the maximum

degree in 7∪ is at most 2 log".

We note that Long and Saranurak [22] recently gave a fast con-
struction of a low degree hierarchy, in ' (-1+% (1)) time, while
increasing the degree bound of Theorem 3.1(4) from 4 to "% (1) .
The space for our labeling scheme depends linearly on this de-
gree bound, so we prefer Theorem 3.1 over [22] even though the
construction time is higher.

The following Theorem 3.2 states the properties of the new
low-degree hierarchies constructed in this paper, as overviewed
in Section 2.5.

Theorem 3.2 (New Low-Degree Hierarchies). Let ! ≥ 1 be an
integer. There exists a partition (;1, . . . , ;" +1) of((#), such that each
; ∈ {;1, . . . , ;" +1} is associated with a hierarchyH(;) of components
K(;) that partition ((#), and the following hold.

(1) H = H(;) = (K(;),) (H (;))) is a coarsening ofH0. K(;)
is obtained by unifying connected subtrees of H0. H inherits
Properties 1–3 of Theorem 3.1. In particular, de"neH4 to be the

subhierarchy rooted at < ∈ K(;), and((H4)
def
=

⋃
4 ′24 <

′.
Then the graph induced by ((H4) is connected, and if <

′ is
a child of < then) ∩ (< ×((H4 ′)) ≠ ∅.

(2) Each < ∈ K(;) has a spanning tree 7 (<) in the subgraph
of # induced by < . All vertices in < − ; have degree at most
3 log" in 7 (<), whereas ;-vertices can have arbitrarily large
degree.

(3) For < ∈ K(;), de"ne : (H4) to be the set of vertices in
(−((H4) that are adjacent to some vertex in ((H4). Then
|: (H4) | = ' (! log").

The remainder of this section constitutes a proof of Theorem 3.2.
We !rst choose the partition (;1, . . . , ;") of(uniformly at random
among all partitions of (into ! + 1 sets.

Fix some ; = ;' . We now explain how its corresponding hier-
archy H = H(;) is constructed. We obtain K = K(;) from C by
iteratively unifying connected subtrees of the component tree H0.
Initially K = C and H = H0. By Theorem 3.1 each < = 9' ∈ C'
is initially spanned by a degree-4 Steiner tree 7 (<) = 7 0 (9') in
7'+1−3'+1. We process each 9 ∈ C in postorder (with respect to the
treeH0). Suppose, in the current state of the partition, that <0 ∈ K
is the part containing 9 . While there exists a <1 ∈ K such that <1
is a descendant of <0 and one of the following criteria hold:

(i) 7∪ ∩ (<1 × 9) ≠ ∅, or

(ii)) ∩ (<1 × (9 ∩ ;)) ≠ ∅,

then we will unify a connected subtree ofH that includes <0 ,<1
and potentially many other parts of the current partition K . Let 40
be an edge from set (i) or (ii). If <1 is a child of <0 then we simply
replace<0 ,<1 inK with<0 ∪<1, spanned by7 (<0)∪ {40 }∪7 (<1).
In general, let <0 be the child of <0 that is ancestral to <1. We
call a procedure Unify(<0, {<1}) that outputs a set of edges)′ that
connects <0,<1 and possibly other components. We then replace
the components inK spanned by)′ ∪ {40 } with their union, whose
spanning tree consists of the constituent spanning trees and)′ ∪
{40 }. This uni!cation process is repeated so long as there is some 9 ,
some descendant <1, and some edge 40 in sets (i) or (ii).

In general Unify takes two arguments: a <0 and a set L of de-
scendants of <0.

Algorithm 1 Unify(<0,L)

Input: A root component <0 and set L of descendants of <0.
Output: A set of edges)′ joining {<0} ∪ L (and possibly others)

into a single tree.

1: if {<0} ∪ L = {<0} then
2: return ∅ ⊲ Nothing to do

3:)′ ← ∅
4: De!ne <1

0 , . . . ,<
2
0 to be the children of <0 that are ancestral to

some component in L.
5: for 5 = 1 to % do
6: Let L' ⊆ L be the descendants of <'0.
7: Let 4' ∈)∩ (<0×((H4"0

)) be an edge joining <0 and some

descendant <' of <'0.
8:)' ← Unify(<'0,L' ∪ {<' }).
9:)′ ←)′ ∪)' ∪ {4' }

10: return)′

Lemma 3.3. Unify(<0,L) returns an edge set)′ ⊆) (#) that
forms a tree on a subset0 of the components in the current state of
the hierarchy H . The subgraph of H induced by 0 is a connected
subtree rooted at <0 and containing {<0} ∪ L.

LetH(;) = (K(;),) (H (;))) be the coarsened hierarchy after
all uni!cation events, and 7 (<) be the spanning tree of < ∈ K(;).
Lemma 3.3 guarantees that each uni!cation event is on a connected
subtree of the current hierarchy. Thus, the !nal hierarchy H(;)
satis!es Part 1 of Theorem 3.2.

Lemma 3.4. 7 (<) is a spanning tree of < ; it contains no Steiner
vertices outside of < . For all + ∈ < − ; , deg. (4) (+) ≤ 3 log".

Part 2 of Theorem 3.2 follows from Lemma 3.4. Only Part 3
depends on how we choose the partition (;1, . . . , ;" +1). Recall this
partition was selected uniformly at random, i.e., we pick a coloring
function > : (→ {1, . . . , ! + 1} uniformly at random and let
;' = {+ ∈ (| > (+) = 5}. Consider any 9 ′ ∈ C with |: (H0

0 ′) | ≥

3(! + 1) ln". For any such 9 ′ and any index 5 ∈ {1, . . . , ! + 1},

Pr[: (H0
0 ′) ∩ ;' = ∅] ≤

(
1 −

1

! + 1

)3(" +1) ln&
< "−3 .

Taking a union bound over all (9 ′, 5), : (H0
0 ′) ∩ ;' ≠ ∅ with proba-

bility at least 1− 1/". Assuming this holds, let 40 be an edge joining

829

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Merav Parter, Asaf Petruschka, and Seth Pe!ie

an ;' -vertex in 9 and some vertex in 9 ′ ≺ 9 . When processing
9 , we would therefore !nd the type-(ii) edge 40 that triggers the
uni!cation of 9,9 ′. Thus, 9 ′ cannot be the root-component of any
< ∈ K(;') in the !nal hierarchyH(;'), for any 5 ∈ {1, . . . , ! + 1}.

This concludes the proof of Theorem 3.2.

4 AUXILIARY GRAPH STRUCTURES
In this section, we de!ne and analyze the properties of several aux-
iliary graph structures, that are based on the low-degree hierarchy
H(;) of Theorem 3.2 and on the query 〈$, %, & 〉, as described at a
high-level in Section 2.4.

Recall that ; ∈ {;1, . . . , ;" +1} are vertices that are not allowed
to fail, so whenever the query 〈$, %, & 〉 is known, ; = ;' refers to a
part for which ;' ∩ & = ∅.

We continue to use the notation H = H(;), K = K(;), H4 ,
((H4), : (H4), 7 (<), etc. In addition, for + ∈ ((#), <, ∈ K is
the component containing + . Also, for 6 ∈ < ∈ K , 7* (<) is the
subtree of 7 (<) rooted at 6, where 7 (<) is rooted arbitrarily at
some vertex ?4 ∈ < .

4.1 The “Shortcuts-Graph" #̂ forH(;)

We de!ne #̂ = #̂ (H (;)) as the edge-typed multi-graph, on the
vertex set ((#), constructed as follows: Start with # , and give its
edges type original. For every component< ∈ K(;), add a clique on
the vertex set : (H4), whose edges have type “< .” Intuitively, these
are “shortcut edges" which represent the fact that any two vertices
in : (H4) are connected by a path in# whose internal vertices are
all from ((H4). We denote the set of #̂-edges by)̂ =)̂ (H (;)).

Lemma 4.1. Let 4 = {6, +} ∈)̂.5 Then <* and <, are related by the
ancestry relation in H .

Lemma 4.2. For any< ∈ K , let :̂ (H4) be all vertices in(−((H4)

that are adjacent, in #̂ , to some vertex in ((H4). Then :̂ (H4) =
: (H4).

4.2 The Query Graph #∗

We now de!ne and analyze notions that are based on the connec-
tivity query 〈$, %, & 〉 to be answered. A component < ∈ K(;) is
a!ected by the query 〈$, %, & 〉 if((H4) ∩ (& ∪ {$, %}) ≠ ∅. Note that
if < is a#ected, then so are all its ancestor components. An edge
4 = {6, +} ∈)̂ of type @ is valid with respect to the query 〈$, %, & 〉 if
both the following hold:

(C1) @ = original or @ = < for some una#ected < , and
(C2) <* and <, are a#ected.

We denote the set of valid edges by)∗ =)∗ (H (;), 〈$, %, & 〉). Intu-
itively, two vertices 6, + in a#ected components are connected by a
valid edge if there is a reliable path between 6, + in # , whose inter-
nal vertices all lie in una#ected components, and therefore cannot
intersect & . The query graph #∗ = #∗ (H (;), 〈$, %, & 〉) is the sub-
graph of #̂ consisting of all vertices lying in a#ected components
ofH(;), and all valid edges)∗ w.r.t. the query 〈$, %, & 〉.

5Throughout, we slightly abuse notation and write (= {*, ,} to say that (has
endpoints *, ,, even though there might be several di#erent edges with these same
endpoints, but with di#erent types.

The following lemma gives the crucial property of #∗ which we
use to answer queries: To decide if $, % are connected in # − & , it
su"ces to determine their connectivity in #∗ − & .

Lemma 4.3. Let #∗ be the query graph for 〈$, %, & 〉 and hierarchy
H(;). If 8,= ∈ (− & are vertices in a!ected components of H(;),
then 8 and = are connected in # − & i! they are connected in #∗ − & .

4.3 Strategy for Connectivity Queries
The query 〈$, %, & 〉 determines the set ; = ;' for which ; ∩ & = ∅.
The query algorithm deals only with H(;) and the graph #∗ =

#∗ (H (;), 〈$, %, & 〉). In this section we describe how the query algo-
rithm works at a high level, in order to highlight what information
must be stored in the vertex labels of $, %, & , and which operations
must be supported by those labels.

The query algorithm depends on a sketch (probabilistic data
structure) for handling a certain type of cut query [3, 18]. In subse-
quent sections we show that such a data structure exists, and can
be encoded in the labels of the failed vertices. For the time being,
suppose that for any vertex set 1 ⊆ ((#∗), sketch(1) is some data
structure subject to the operations

Merge(sketch(1), sketch(1 ′)) : Returns sketch(1 ⊕ 1 ′).
GetEdge(sketch(1), &) : If & ∩ 1 = ∅, |& | ≤ ! , returns an edge
4 ∈)∗ ∩ (1 × ((− (1 ∪ &))) with probability A = Ω(1) (if
any such edge exists), and fail otherwise.

It follows from Theorem 3.2 and ; ∩ & = ∅ that the graph⋃
a#ected 4 (7 (<) − &) consists of ' (! log") disjoint trees, whose

union covers ((#∗) − & . Let P0 be the corresponding vertex par-
tition of ((#∗) − & . Following [3, 10, 12, 18], we use Merge and
GetEdge queries to implement an unweighted version of Borůvka’s
minimum spanning tree algorithm on #∗ − & , in ' (log") parallel
rounds. At round 5 we have a partition P' of ((#∗) − & such that
each part of P' is spanned by a tree in#∗ − & , as well as sketch(1)
for every 1 ∈ P' . For each 1 ∈ P' , we call GetEdge(sketch(1), &),
which returns an edge to another part of P' with probability A ,
since all edges to & are excluded. The partition P'+1 is obtained by
unifying all parts of P' joined by an edge returned by GetEdge; the
sketches for P'+1 are obtained by calling Merge on the constituent
sketches of P' . (Observe that distinct 1, 1 ′ ∈ P' are disjoint so
1 ⊕ 1 ′ = 1 ∪ 1 ′.)

Once the !nal partitionP# (log&) is obtained, we report connected
if $, % are in the same part and disconnected otherwise. By Lemma 4.3,
$, % are connected in # − & i# they are connected in #∗ − & , so
it su"ces to prove that P# (log&) is the partition of #∗ − & into
connected components, with high probability.

Analysis. Let :' be the number of parts of P' that are not al-
ready connected components of #∗ − & . We claim E[:'+1 |:'] ≤
:' − (A/2):' . In expectation, A:' of the calls to GetEdge return
an edge. If there are B successful calls to GetEdge, the B edges
form a pseudoforest6 and any pseudoforest on B edges has at
most 7B/28 connected components. Thus after C ln" rounds of
Borůvka’s algorithm, E[:6 ln&] ≤ "(1 − (A/2))6 ln& < "1−67/2.
By Markov’s inequality, Pr[:6 ln& ≥ 1] ≤ "1−67/2. In other words,
when C = Ω(1/A), with high probability :6 ln& = 0 and P6 ln& is
exactly the partition of #∗ − & into connected components. Thus,

6A subgraph that can be oriented so that all vertices have out-degree at most 1.

830

Connectivity Labeling and Routing with Multiple Vertex Failures STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

any connectivity query 〈$, %, & 〉 is answered correctly, with high
probability.

4.4 Classi!cation of Edges
The graph #∗ depends on H(;) and on the entire query 〈$, %, & 〉. In
contrast, the label of a query vertex 8 is constructed without know-
ing the rest of the query, so storing #∗-related information is chal-
lenging. However, we do know that all the ancestor-components
of <- are a#ected. This is the intuitive motivation for this section,
where we express #∗-information in terms of individual vertices
and (a#ected) components. Speci!cally, we provide technical struc-
tural lemmas that express cut-sets in#∗ in terms of several simpler
edge-sets, exploiting the structure of the hierarchy H(;). Sketches
of the latter sets can be divided across the labels of the query ver-
tices, which helps us to keep them succinct, as explained in the
later Section 5, while enabling the Borůvka initialization described
in Section 6.

Fix the hierarchy H = H(;) and the query 〈$, %, & 〉. Note that
H determines the graph #̂ whereas 〈$, %, & 〉 further determines #∗.
We de!ne the following edge sets, where < ∈ K(;), + ∈ (

•)̂ (+,<): the set of all #̂-edges with + as one endpoint, and
the other endpoint in < .

•)̂4 (+): the set of all #̂-edges of type < incident to + .

•)̂up (+)
def
=

⋃
434%)̂ (+,<). I.e., the #̂-edges incident to +

having their other endpoint in an ancestor component of <, ,
including <, itself.

•)̂down (+)
def
=

⋃
4≺4% , 4 a#ected)̂ (+,<). I.e., the #̂-edges inci-

dent to + having their other endpoint in an a!ected compo-
nent which is a strict descendant of <, .

•)̂bad (+)
def
=

⋃
4 a!ected)4 (+). I.e., the #̂-edges incident to +

having a#ected types.
•)∗ (+): the set of all)∗-edges (valid #̂-edges) incident to + ,
de!ned only when + ∈ ((#∗).

We emphasize that despite their similarity, the notations)̂ (+,<)
and)̂4 (+) have entirely di#erent meanings; in the !rst < serves as
the hosting component of the non-+ endpoints of the edges, while
in the second, < is the type of the edges. Also, note that the !rst
three sets only depend on the hierarchy H = H(;) while the rest
also depend on the query 〈$, %, & 〉.

The following lemma expresses)∗ (+) in terms of)̂ (+,<) and
)̂4 (+) for a#ected < ∈ K(;).

Lemma 4.4. Let + be a vertex in #∗. Then:

)̂down (+) =
⊕

4 a!ected, ,∈8 (H&)

)̂ (+,<) . (1)

)̂bad (+) =
⊕

4 a!ected, ,∈8 (H&)

)̂4 (+) . (2)

)∗ (+) =)̂up (+) ⊕)̂down (+) ⊕)̂bad (+) . (3)

We next consider cut-sets in #∗. For0 ⊆ ((#∗), let)∗cut (0) be
the set of edges crossing the cut (0 ,((#∗) −0) in #∗.

Observation 4.5.)∗cut (0) =
⊕

,∈+)
∗ (+).

We end the section with the following Lemma 4.6 that provides a
useful formula for cut-sets in #∗. The proof is by easy applications
of Lemma 4.4 and Observation 4.5.

Lemma 4.6. Let0 ⊆ ((#∗). Then

)∗cut (0) =

(⊕
,∈+

)up (+)

)
⊕
+,
-

⊕
4 a!ected

⊕
,∈+∩8 (H&)

)̂ (+,<) ⊕)̂4 (+)
./
0
.

(4)

4.5 Sparsifying and Orienting #̂
In this section we set the stage for using the “orientation trick",
overviewed in Section 2.7, that ultimately enables us to reduce
the label size in our construction further. We show that we can
e#ectively sparsify #̂ to have arboricity '̃ (! 2), or equivalently, to
admit an '̃ (! 2)-outdegree orientation, while preserving, with high
probability, the key property of #∗ stated in Lemma 4.3, that 8,=
are connected in # − & i# they are connected in #∗ − & . This is
formalized in the following lemma:

Lemma 4.7. There is a randomized procedure that given the graph
#̂ = #̂ (H (;)), outputs a subgraph #̃ of #̂ with the following proper-
ties.

(1) #̃ has arboricity ' (! 2 log2 "). Equivalently, its edges can be
oriented so that each vertex has outdegree ' (! 2 log2 ").

(2) Fix any query 〈$, %, & 〉, |& | ≤ ! , and consider the query graph
#∗ = #∗ (H (;), 〈$, %, & 〉). Let #̃∗ = #∗ ∩ #̃ be the subgraph
of #∗ whose edges are present in #̃ . Let 8,= ∈ (− & be two
vertices in a!ected components. With high probability, 8,= are
connected in # − & i! they are connected in #̃∗ − & .

Henceforth, we use #̂ to refer to the sparsi!ed and oriented
version of #̂ returned by Lemma 4.7, i.e., #̂ is now #̃ . Note that the
edges of #̂ now have two extra attributes: a type and an orientation.
An oriented graph is not the same as a directed graph. When {6, +}
is oriented as 6 → + , a path may still use it in either direction.
Informally, the orientation serves as a tool to reduce the label size
while still allowing GetEdge from Section 4.3 to be implemented
e"ciently. Each vertex 6 will store explicit information about its
'̃ (! 2) incident out-edges that are oriented as 6 → + .

5 SKETCHING AND LABELING
In this section, we !rst develop the specialized sketching tools that
work together with each hierarchyH = H(;), and then de!ne the
labels assigned by our scheme, which store such sketches.

5.1 Sketching Tools
Fix ; ∈ {;1, . . . , ;" +1} and the hierarchy H = H(;) from Theo-
rem 3.2. All presented de!nitions are with respect to this hierarchy
H .

IDs and Ancestry Labels. Before formally de!ning the sketches,
we need several preliminary notions of identi!ers and ancestry
labels. We give each + ∈ (a unique id(+) ∈ [1,"], and also each
component < ∈ K(;) has a unique id(<) ∈ [1,"]. We also assign
simple ancestry labels:

Lemma 5.1. One can give each + ∈ (an' (log")-bit ancestry label
anc(+). Given anc(6) and anc(+) for 6, + ∈ (, one can determine
if <* 3 <, and if equality holds. In the latter case, one can also
determine if 6 is an ancestor of + in 7 (<*) = 7 (<,) and if 6 =

831

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Merav Parter, Asaf Petruschka, and Seth Pe!ie

+ . Ancestry labels are extended to components < ∈ K , by letting

anc(<)
def
= anc(?4) where ?4 is the root of 7 (<).

The type of each 4 ∈)̂ is denoted by type(4) ∈ {⊥} ∪ {id(<) |
< ∈ K}, where ⊥∉ [1,"] is a non-zero ' (log")-bit string repre-
senting the original type. Let)̂all be the set of all possible edges
having two distinct endpoints from (and type from {⊥} ∪ [1,"].
Each 4 ∈)̂all is de!ned by the ids of its endpoints, its type, and its
orientation. Recall that)̂-edges were oriented in Section 4.5; the

orientation of)̂all−)̂ is arbitrary. LetD
def
= 7log(|)̂all |)8 = ' (log").

The following lemma introduces unique edge identi"ers (uids).
It is a straightforward modi!cation of [14, Lemma 2.3], which is
based on the notion of E-biased sets [24]:

Lemma 5.2 ([14]). Using a random seed Sid of ' (log2 ") bits, one
can compute ' (log")-bit identi"ers uid(4) for each possible edge
4 ∈)̂all, with the following properties:

(1) If)′ ⊆)̂all with |)′ | ≠ 1, then w.h.p.
⊕

(′ ∈)′ uid(4
′) ≠

uid(4), for every 4 ∈)̂all. That is, the bitwise-XOR of more
than one uid is, w.h.p., not a valid uid of any edge.7

(2) Let 4 = {6, +} ∈)̂all. Then given id(6), id(+), type(4) and Sid,
one can compute uid(4).

Next, we de!ne ' (log")-bit extended edge identi"ers (eids). For
an edge 4 = {6, +} ∈)̂all oriented as 6 → + ,

eid(4)
def
= 〈uid(4), id(6), id(+), type(4), anc(6), anc(+)〉 .

The point of using uids is the following Lemma 5.3, allowing to
distinguish between eids of edges and “garbage strings" formed by
XORing many of these eids:

Lemma 5.3. Fix any)′ ⊆)̂. Given
⊕

(∈)′ eid(4) and the seed
Sid, one can determine whether |)′ | = 1, w.h.p., and therefore obtain
eid(4) for the unique edge 4 such that)′ = {4}.

De"ning Sketches. First, we take two pairwise independent hash
families: a family Φ for hashing edges of functions F :)̂all →
[0, 29), and a family H for hashing vertices of functions ℎ : (→
[1, 2!]. These serve to replace the independent sampling of edges
and vertices in forming sketches, as described in Section 2.1 and
Section 2.2 respectively, so as to enable the use of the “orientation
trick" overviewed in Section 2.7.

Let H
def
= 7C log"8 for a su"ciently large constant C . For any

I ∈ [1, H] and 5 ∈ [1, !] we choose random hash functions ℎ:,' ∈ H
and F:,' ∈ J . Recalling that #̂ is oriented, the subgraph #̂:,' of #̂
has the same vertex set (, and its edge set is de!ned by

) (#̂:,')
def
= {4 = {6, +} ∈) (#̂) | orientation is 6 → + and ℎ:,' (+) = 1}.

We then create the corresponding nested family of edge-subsets for
#̂:,' , de!ned as

) (#̂:,') =)̂:,',0 ⊇)̂:,',1 ⊇ · · · ⊇)̂:,',9

where

)̂:,', ;
def
= {4 ∈) (#̂:,') | F:,' (4) < 29− ; }.

7We emphasize that this holds for any "xed)′ w.h.p., and not for all)′ ⊆)̂all
simultaneously.

Now, for an edge subset)′ ⊆)̂, we de!ne its sketch as follows. For
I ∈ [1, H], 5 ∈ [1, !]:

sketch:,' ()
′)

def
=

〈 ⊕
(∈)′∩)̂',",0

eid(4), . . . ,
⊕

(∈)′∩)̂',",(

eid(4)

〉
,

sketch: ()
′)

def
=

〈
sketch:,1 ()

′), . . . , sketch:," ()
′)
〉
,

sketch()′)
def
=

〈
sketch1 ()

′), . . . , sketch< ()
′)
〉
.

We can view sketch as a 3D array with dimensions H × ! × (D + 1),
which occupies ' (H ! D · log") = ' (! log3 ") bits.

Observation 5.4. Sketches are linearw.r.t. the ⊕ operator: if)1,)2 ⊆
)̂ then sketch:,' ()1 ⊕)2) = sketch:,' ()1) ⊕ sketch:,' ()2), and this
property is inherited by sketch(·).

Note that hash functions in H ,J can be speci!ed in ' (log")
bits, so a random seed Shash of ' (! log2 ") bits speci!es all hash
functions {ℎ:,' ,F:,' }. The following lemma essentially states we
can use this small seed to compute sketches from eids:

Lemma 5.5. Given the seed Shash and eid(4) of some 4 ∈)̂, one
can compute the entire sketch({4}).

The following Lemma 5.6 provides the key property of our
sketches: an implementation of the GetEdge function (needed to
implement connectivity queries, see Section 4.3), so long as the
edge set contains no edges oriented from an & -vertex.

Lemma 5.6. Fix any & ⊆ (, |& | ≤ ! , and let)′ ⊆)̂ be a set of
edges that contains no edges oriented from an & -vertex, and at least
one edge with both endpoints in (− & . Then for any I ∈ [1, H], with
constant probability, some entry of sketch: ()′) is equal to eid(4), for
some 4 ∈)′ with both endpoints in (− & .

We end this section by de!ning sketches for vertex subsets, as
follows:

sketchup (0)
def
=

⊕
*∈+

sketch()̂up (6)) for0 ⊆ ((#),

sketch∗ (0)
def
=

⊕
*∈+

sketch()∗ (6)) for0 ⊆ ((#∗).

Note that sketchup (0) depends only on the hierarchyH = H(;),
and thus it can be computed by the labeling algorithm. However,
sketch∗ (0) also depends on the query 〈$, %, & 〉, so it is only possible
to compute such a sketch∗ (·) at query time.

5.2 The Labels
We are now ready to construct the vertex labels. We !rst construct
auxiliary labels .H(=) (<) for the components ofH(;) (Algorithm 2),
then de!ne the vertex labels .H(=) (+) associated with H(;) (Al-
gorithm 3). The !nal vertex label .(+) is the concatenation of all
.H(=") (+), 5 ∈ {1, . . . , ! + 1}.

The "nal labels. The !nal label .(+) is the concatenation of the
labels for each of the hierarchiesH(;1), . . . ,H(;" +1) from Theo-
rem 3.2.

.(+)
def
=

〈
.H(=1) (+), .H(=2) (+), . . . , .H(=! +1) (+)

〉
.

832

Connectivity Labeling and Routing with Multiple Vertex Failures STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Algorithm 2 Creating label .H(=) (<) of a component < ∈ K(;)

1: store id(<) and anc(<)
2: store sketchup (<)
3: for each + ∈ : (H4) do
4: store id(+) and anc(+)
5: store sketch()̂ (+,<) ⊕)̂4 (+))

Algorithm 3 Creating label .H(=) (+) of a vertex + ∈ (

1: store Sid and Shash
2: store id(+) and anc(+)
3: for < 3 <, do
4: store .H(<)

5: if + ∉ ; then
6: store sketchup (7, (<,))
7: for each child 6 of + in 7 (<,) do
8: store id(6) and anc(6)
9: store sketchup (7* (<,))

10: for each edge 4 = {+,6} ∈)̂ incident to + , oriented as
+ → 6 do

11: store eid(4)

Length analysis. First, !x H = H(;). The bit length of a com-
ponent label .H(=) (<) is dominated by |: (H4) | times the length
of a sketch(·). By Theorem 3.2(3), |: (H4) | = ' (! log"), resulting
in ' (! 2 log4 ") bits for .H(=) (<). A vertex label .H(=) (+) stores
.H(=) (<) for every < 3 <, . There are at most log" such compo-

nents< by Theorem 3.2(1), resulting in' (! 2 log5 ") bits for storing
the component labels. In case + ∉ ; , the bit length of the sketchup (·)
information stored is dominated by deg. (4%) (+) times the length
of a sketchup (·). By Theorem 3.2(2), deg. (4%) (+) < 3 log", so this

requires additional ' (! log4 ") bits. The eids stored are of edges
oriented away from + , and, by Lemma 4.7, there are ' (! 2 log2 ")
such edges, so they require an additional ' (! 2 log3 ") bits. The
length of .H(=) (+) can therefore be bounded by ' (! 2 log5 ") bits.

In total .(+) has bit length ' (! 3 log5 ").

6 ANSWERING QUERIES
We now explain how the high-level query algorithm of Section 4.3
is implemented. Let 〈$, %, & 〉 be the query. To implement the Borůvka
steps, we need to initialize all sketches for the initial partition P0

in order to support GetEdge andMerge.
The query algorithm !rst identi!es a set ;' for which ;' ∩ & = ∅;

we only use information stored in.H(=") (+), for + ∈ &∪{$, %}. Recall
that the high-level algorithm consists of H = Θ(log") rounds. Each
round I ∈ {1, . . . , H} is given as input a partition P:−1 of((#∗)−&
into connected parts, i.e., such that the subgraph of #∗ induced
by each 1 ∈ P:−1 is connected. It outputs a coarser partition P: ,
obtained by merging parts in P:−1 that are connected by edges of
#∗ − & .Merge is easy to implement as all of our sketches are linear
w.r.t. ⊕. Lemma 5.6 provides an implementation of GetEdge for a
part 1 , given a sketch of the edge-set)∗cut (1) −)

∗ (& → 1), where
)∗ (& → 1) ⊆)∗cut (1) is the set of)

∗-edges oriented from & to 1 .

We need to maintain the following invariants at the end of round
I ∈ {0, 1, . . . , H}.

(I1) We have an ancestry representation {anc(1) | 1 ∈ P:} for
the partition, so that given any anc(+), + ∈ ((#∗), we can
locate which part 1 contains + .

(I2) For each part 1 ∈ P: , we know sketch∗/ (1)
def
= sketch∗ (1)⊕

sketch()∗ (& → 1)), which is the sketch of the edge set
)∗cut (1) ⊕)

∗ (& → 1) =)∗cut (1) −)
∗ (& → 1).

Initialization. For an a#ected component < ∈ K(;'), let T/ (<)
be the set of connected components of7 (<)−& . The initial partition
is

P0 =

⋃
4 a#ected

T/ (<) .

EachK ∈ T/ (<) can be de!ned by a rooting vertex ?> , that is either
the root ?4 of 7 (<), or a 7 (<)-child of some 8 ∈ & ∩ < , as well as
a set of ending faults &> containing all 8 ∈ & ∩7?) (<) having no
strict ancestors from & in 7?) (<). It may be that &> = ∅. Then,

K = 7?) (<) −
⋃
-∈/)

7- (<) = 7?) (<) ⊕
⊕
-∈/)

7- (<) . (5)

The last equality holds as &> contains mutually unrelated vertices
in 7?) (<). It is easily veri!ed that the anc(·)-labels of all roots of
a#ected components, faults, and children of faults, are stored in
the given input labels. By Lemma 5.1, we can deduce the ancestry
relations between all these vertices. It is then straightforward to !nd,

for each K ∈ P0, its ancestry representation given by anc(K)
def
=〈

anc(?>), {anc(8) | 8 ∈ &> }
〉
. This clearly satis!es (I1) for P0.

We now turn to the computation of sketch∗/ (K) = sketch∗ (K) ⊕
sketch()∗ (& → K)). Lemma 4.6 shows how to compute sketch∗ (K)
for K ∈ P0.

Lemma 6.1. For any K ∈ T/ (<),

sketch∗ (K) = (6)

sketchup (K) ⊕
⊕

4 a!ected

⊕
,∈8 (H&)∩>

sketch()̂ (+,<) ⊕)̂4 (+)).

It follows from & ∩ ;' = ∅ that for each a#ected < ∈ K(;')
and K ∈ T/ (<), sketchup (7@ (<)) for each L ∈ {?> } ∪ &> can be
found in the input vertex labels. This lets us compute sketchup (K)
using Eqn. (5) and linearity. By Eqn. (6), computing sketch∗ (K) now
amounts to !nding sketch()̂ (+,<)⊕)̂4 (+)) for each a#ected< and
+ ∈ : (H4) ∩ K . The label .H(=") (<) stores this sketch for each
+ ∈ : (H4); moreover, we can check if + ∈ K using the ancestry
labels anc(+), anc(K).

By de!nition sketch()∗ (& → K)) =
⊕

(sketch({4}), where the⊕
-sum is over all 4 = {L, +} oriented as L → + , where L ∈ & , + ∈ K

and type(4) is not an a#ected component. (If type(4) is a#ected,
4 ∉)∗.) By Lemma 5.5, each such sketch({4}) can be constructed
from eid(4) stored in .H(=") (L), and we can check whether + ∈ K
using anc(+), anc(K). In this way we can construct sketch∗/ (K) for
each K ∈ P0, satisfying (I2).

Executing round I. For each 1 ∈ P:−1, we use Lemma 5.6 applied
to sketch∗/ ,: (1) (i.e., the Ith subsketch of sketch

∗
/ (1)) to implement

GetEdge: with constant probability it returns the eid(4A) for a
single cut edge 4A = {6, +} ∈)∗cut (1) with 6 ∈ 1, + ∈ (((#∗) −

833

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Merav Parter, Asaf Petruschka, and Seth Pe!ie

(1 ∪ &)), or reports fail otherwise. By (I1), given anc(+) we can
locate which part 1 ′ ∈ P:−1 contains + . Note that since GetEdge
only depends on sketch∗/ ,: (1), its fail-probability is independent
of the outcome of rounds 1, . . . ,I − 1.

The output partition P: of round I is obtained by merging the
connected parts of P:−1 along the discovered edges {4A }. This
ensures the connectivity of each new part in #∗ − & . The ancestry
representation of a new part / ∈ P: is anc(/) = {anc(1) | / ⊇
1 ∈ P:−1}, which establishes (I1) after round I. We then compute⊕

A∈P'−1:A⊆B

sketch∗/ (1)

=

⊕
A∈P'−1:A⊆B

(sketch∗ (1) ⊕ sketch()∗ (& → 1))

= sketch∗ (/) ⊕ sketch()∗ (& → /)) = sketch∗/ (/) . (7)

Eqn. (7) follows from linearity (Observation 5.4), disjointness of
the parts {1 ∈ P:−1 | 1 ⊆ /}, and disjointness of the edge sets
{)∗ (& → 1) | 1 ⊆ /}. This establishes (I2) after round I.

Finalizing. After executing the !nal round H , we use the ancestry
representations for P< and anc($), anc(%) to !nd the parts 11 , 12 ∈
P< with $ ∈ 11 , % ∈ 12 . We output connected i# 11 = 12 .

With high probability, the implementation of GetEdge using
Lemma 5.3 and Lemma 5.6 reports no false positives, i.e., an edge
that is not in the cut-set. Assuming no false positives, the correct-
ness of the algorithm was established in Section 4.3. It is straightfor-
ward to prepare the initial sketches for 1 ∈ P0 in time '̃ (! 4), which
is dominated by enumerating the '̃ (! 3) edges 4 ∈

⋃
A∈P0

)∗ (& →

1) and constructing sketch({4}) in '̃ (!) time. The time to execute
Borůvka’s algorithm is linear in the total length of all P0-sketches,
which is '̃ (! 2). This concludes the proof of Theorem 1.1.

REFERENCES
[1] Ittai Abraham, Shiri Chechik, and Cyril Gavoille. 2012. Fully dynamic approx-

imate distance oracles for planar graphs via forbidden-set distance labels. In
Proceedings 44th ACM Symposium on Theory of Computing (STOC). 1199–1218.
https://doi.org/10.1145/2213977.2214084

[2] Ittai Abraham, Shiri Chechik, Cyril Gavoille, and David Peleg. 2016. Forbidden-
Set Distance Labels for Graphs of Bounded Doubling Dimension. ACM Trans.
Algorithms 12, 2 (2016), 22:1–22:17. https://doi.org/10.1145/2818694

[3] Kook J. Ahn, Supdipto Guha, and Andrew McGregor. 2012. Analyzing graph
structure via linear measurements. In Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 459–467.

[4] Giuseppe Di Battista and Roberto Tamassia. 1996. On-line maintenance of tri-
connected components with SPQR-Trees. Algorithmica 15 (1996), 302–318.

[5] Otakar Borůvka. 1926. O jistém problému minimálním. Práce Moravské
Přírodovědecké Společnosti 3 (1926), 37–58. In Czech..

[6] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. 2012. " -
Sensitivity Distance Oracles and Routing Schemes. Algorithmica 63, 4 (2012),
861–882. https://doi.org/10.1007/s00453-011-9543-0

[7] Julia Chuzhoy and Sanjeev Khanna. 2009. An# ($3 log&)-Approximation Al-
gorithm for Vertex-Connectivity Survivable Network Design. In Proceedings of
the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
437–441.

[8] Bruno Courcelle, Cyril Gavoille, Mamadou Moustapha Kanté, and Andrew Twigg.
2008. Connectivity check in 3-connected planar graphs with obstacles. Electron.
Notes Discret. Math. 31 (2008), 151–155. https://doi.org/10.1016/j.endm.2008.06.
030

[9] Bruno Courcelle and Andrew Twigg. 2007. Compact Forbidden-Set Routing. In
Proceedings 24th Annual Symposium on Theoretical Aspects of Computer Science
(STACS) (Lecture Notes in Computer Science, Vol. 4393). Springer, 37–48. https:
//doi.org/10.1007/978-3-540-70918-3_4

[10] Michal Dory and Merav Parter. 2021. Fault-Tolerant Labeling and Compact
Routing Schemes. In Proceedings of the 40th ACM Symposium on Principles of
Distributed Computing (PODC). 445–455. https://doi.org/10.1145/3465084.3467929

[11] Ran Duan, Yong Gu, and Hanlin Ren. 2021. Approximate Distance Oracles Subject
to Multiple Vertex Failures. In Proceedings of the 32nd ACM-SIAM Symposium on
Discrete Algorithms (SODA). 2497–2516.

[12] Ran Duan and Seth Pettie. 2020. Connectivity Oracles for Graphs Subject to
Vertex Failures. SIAM J. Comput. 49, 6 (2020), 1363–1396. https://doi.org/10.1137/
17M1146610

[13] Martin Fürer and Balaji Raghavachari. 1994. Approximating the Minimum-
Degree Steiner Tree to within One of Optimal. J. Algor. 17, 3 (1994), 409–423.
https://doi.org/10.1006/jagm.1994.1042

[14] Mohsen Gha#ari and Merav Parter. 2016. MST in Log-Star Rounds of Congested
Clique. In Proceedings of the 35th ACM Symposium on Principles of Distributed
Computing (PODC). 19–28. https://doi.org/10.1145/2933057.2933103

[15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and Strengthening Hardness for Dynamic Problems
via the Online Matrix-Vector Multiplication Conjecture. In Proceedings of the 47th
Annual ACM Symposium on Theory of Computing (STOC). 21–30.

[16] Taisuke Izumi, Yuval Emek, Tadashi Wadayama, and Toshimitsu Masuzawa. 2023.
Deterministic Fault-Tolerant Connectivity Labeling Scheme with Adaptive Query
Processing Time. In Proceedings of the 42nd ACM Symposium on Principles of
Distributed Computing (PODC). https://doi.org/10.48550/arXiv.2208.11459

[17] Arkady Kanevsky, Roberto Tamassia, Giuseppe Di Battista, and Jianer Chen.
1991. On-Line Maintenance of the Four-Connected Components of a Graph.
In Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science
(FOCS). 793–801.

[18] Bruce M. Kapron, Valerie King, and Ben Mountjoy. 2013. Dynamic graph con-
nectivity in polylogarithmic worst case time. In Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 1131–1142.

[19] Karthik C. S. and Merav Parter. 2021. Deterministic Replacement Path Covering.
In Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA).
704–723. https://doi.org/10.1137/1.9781611976465.44

[20] Neelesh Khanna and Surender Baswana. 2010. Approximate Shortest Paths
Avoiding a Failed Vertex: Optimal Size Data Structures for Unweighted Graphs.
In Proceedings 27th Int’l Symposium on Theoretical Aspects of Computer Science
(STACS). 513–524.

[21] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2016. Higher Lower Bounds from the
3SUM Conjecture. In Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 1272–1287. https://doi.org/10.1137/1.9781611974331.
ch89

[22] Yaowei Long and Thatchaphol Saranurak. 2022. Near-Optimal Deterministic
Vertex-Failure Connectivity Oracles. In Proceedings 63rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS). 1002–1010. https://doi.org/10.1109/
FOCS54457.2022.00098

[23] Hiroshi Nagamochi and Toshihide Ibaraki. 1992. A Linear-Time Algorithm for
Finding a Sparse $-Connected Spanning Subgraph of a $-Connected Graph.
Algorithmica 7, 5&6 (1992), 583–596.

[24] Joseph Naor and Moni Naor. 1993. Small-Bias Probability Spaces: E"cient Con-
structions and Applications. SIAM J. Comput. 22, 4 (1993), 838–856.

[25] Jaroslav Nesetril, Eva Milková, and Helena Nesetrilová. 2001. Otakar Borůvka on
minimum spanning tree problem—Translation of both the 1926 papers, comments,
history. Discret. Math. 233, 1–3 (2001), 3–36. https://doi.org/10.1016/S0012-
365X(00)00224-7

[26] Merav Parter and Asaf Petruschka. 2022. Õptimal Dual Vertex Failure Connec-
tivity Labels. In Proceedings of the 36th International Symposium on Distributed
Computing (DISC) (LIPIcs, Vol. 246). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 32:1–32:19. https://doi.org/10.4230/LIPIcs.DISC.2022.32

[27] Merav Parter, Asaf Petruschka, and Seth Pettie. 2023. Connectivity Labeling and
Routing with Multiple Vertex Failures. arXiv:2307.06276 [cs.DS]

[28] Seth Pettie and Longhui Yin. 2021. The Structure of Minimum Vertex Cuts. In
Proceedings of the 48th International Colloquium on Automata, Languages, and
Programming (ICALP) (LIPIcs, Vol. 198). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 105:1–105:20. https://doi.org/10.4230/LIPIcs.ICALP.2021.105

[29] Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk,
and Alexandre Vigny. 2022. Algorithms and Data Structures for First-Order Logic
with Connectivity Under Vertex Failures. In Proceedings of the 49th International
Colloquium on Automata, Languages, and Programming (ICALP) (LIPIcs, Vol. 229).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 102:1–102:18. https://doi.
org/10.4230/LIPIcs.ICALP.2022.102

[30] Jan van den Brand and Thatchaphol Saranurak. 2019. Sensitive Distance and
Reachability Oracles for Large Batch Updates. In Proceedings of the 60th Annual
IEEE Symposium on Foundations of Computer Science (FOCS). 424–435. https:
//doi.org/10.1109/FOCS.2019.00034

[31] Oren Weimann and Raphael Yuster. 2013. Replacement paths and distance
sensitivity oracles via fast matrix multiplication. ACM Transactions on Algorithms
(TALG) 9, 2 (2013), 14.

Received 09-NOV-2023; accepted 2024-02-11

834

https://doi.org/10.1145/2213977.2214084
https://doi.org/10.1145/2818694
https://doi.org/10.1007/s00453-011-9543-0
https://doi.org/10.1016/j.endm.2008.06.030
https://doi.org/10.1016/j.endm.2008.06.030
https://doi.org/10.1007/978-3-540-70918-3_4
https://doi.org/10.1007/978-3-540-70918-3_4
https://doi.org/10.1145/3465084.3467929
https://doi.org/10.1137/17M1146610
https://doi.org/10.1137/17M1146610
https://doi.org/10.1006/jagm.1994.1042
https://doi.org/10.1145/2933057.2933103
https://doi.org/10.48550/arXiv.2208.11459
https://doi.org/10.1137/1.9781611976465.44
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1109/FOCS54457.2022.00098
https://doi.org/10.1109/FOCS54457.2022.00098
https://doi.org/10.1016/S0012-365X(00)00224-7
https://doi.org/10.1016/S0012-365X(00)00224-7
https://doi.org/10.4230/LIPIcs.DISC.2022.32
https://arxiv.org/abs/2307.06276
https://doi.org/10.4230/LIPIcs.ICALP.2021.105
https://doi.org/10.4230/LIPIcs.ICALP.2022.102
https://doi.org/10.4230/LIPIcs.ICALP.2022.102
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1109/FOCS.2019.00034

	Abstract
	1 Introduction
	2 Technical Overview
	2.1 Graph Sketches and the Dory-Parter Labels
	2.2 Starting Point: Vertex Faults in Low-Degree Spanning Tree
	2.3 The Duan-Pettie Low-Degree Hierarchy
	2.4 First Attempt: with Duan-Pettie Hierarchy
	2.5 Resolution: New Low-Degree Hierarchies
	2.6 Putting It All Together
	2.7 Improvement: The ``Orientation Trick"
	2.8 Organization

	3 A New Low-Degree Decomposition Theorem
	4 Auxiliary Graph Structures
	4.1 The ``Shortcuts-Graph" for H(S)
	4.2 The Query Graph G*
	4.3 Strategy for Connectivity Queries
	4.4 Classification of Edges
	4.5 Sparsifying and Orienting

	5 Sketching and Labeling
	5.1 Sketching Tools
	5.2 The Labels

	6 Answering Queries
	References

