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Since the mid-1980s it has been known that Byzantine Agreement can be solved with probability 1 asyn-
chronously, even against an omniscient, computationally unbounded adversary that can adaptively corrupt
up to f < n/3 parties. Moreover, the problem is insoluble with f > n/3 corruptions. However, Bracha’s [13]
1984 protocol (see also Ben-Or [8]) achieved f < n/3 resilience at the cost of exponential expected latency
29" 3 bound that has never been improved in this model with f = [(n — 1)/3] corruptions.

In this article, we prove that Byzantine Agreement in the asynchronous, full information model can be
solved with probability 1 against an adaptive adversary that can corrupt f < n/3 parties, while incurring
only polynomial latency with high probability. Our protocol follows an earlier polynomial latency protocol of
King and Saia [33, 34], which had suboptimal resilience, namely f ~ n/10° [33, 34].

Resilience f = (n—1)/3 is uniquely difficult, as this is the point at which the influence of the Byzantine and
honest players are of roughly equal strength. The core technical problem we solve is to design a collective
coin-flipping protocol that eventually lets us flip a coin with an unambiguous outcome. In the beginning,
the influence of the Byzantine players is too powerful to overcome, and they can essentially fix the coin’s
behavior at will. We guarantee that after just a polynomial number of executions of the coin-flipping protocol,
either (a) the Byzantine players fail to fix the behavior of the coin (thereby ending the game) or (b) we can
“blacklist” players such that the blacklisting rate for Byzantine players is at least as large as the blacklisting
rate for good players. The blacklisting criterion is based on a simple statistical test of fraud detection.
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1 INTRODUCTION
In the Byzantine Agreement problem [35, 38], n players begin with input values in {-1,1} and
each must decide an output value in {—1, 1} subject to:

Agreement. All uncorrupted players must decide the same value (and only that value).
Validity. If all uncorrupted players decide v, then at least one such player had v as its input.
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Termination. Each uncorrupted player terminates the protocol with probability 1.

The difficulty of this problem depends on the strength of the adversary and assumptions on the
communication medium. We consider a standard asynchronous model of communication against
a strong adversary. Each player can send point-to-point messages to other players, which can be
delayed arbitrarily by the adversary, but not dropped or forged. In addition, the adversary is aware
of the internal state of every player, is computationally unbounded, and may adaptively corrupt up
to f players; these are also known as Byzantine players. Once corrupted, the behavior of a player
is arbitrary, and assumed to be controlled by the adversary. Following Ben-Or [8], Bracha [13]
proved that Byzantine Agreement can be solved in this model when f < n/3. The protocols of
Ben-Or and Bracha are not entirely satisfactory because they have latency exponential in n. (See
Section 2.1 for the definition of latency in the asynchronous model.)

The Byzantine Agreement problem has been solved satisfactorily in a stronger communication
model or against a weaker adversary than the one we assume.

Synchronized Communication. Lamport et al. [35] proved that if communication occurs in
synchronized rounds, Byzantine Agreement can be obtained deterministically in f + 1 rounds,
where f < n/3. Fischer and Lynch [22] proved that round complexity f + 1 is optimal. The com-
munication complexity of [35] is exponential, and was later reduced to polynomial by Garay and
Moses [25]. Dwork et al. [19] developed agreement protocols under weakly synchronous models.

Impossibility Results. Fischer et al. [24] proved that the problem cannot be solved determin-
istically, in an asynchronous system in which just one player is subject to a crash failure. This
result is commonly known as FLP Impossibility. Thus, to solve Byzantine Agreement we must
assume some level of synchronization or randomization. Even with randomization, the problem
is insoluble when f > n/3. The proof of this result is straightforward in the asynchronous
model [14, Theorem 3] and more complicated in the synchronized model [23, 38].

Cryptographic Solutions. Cryptography becomes useful against a computationally bounded ad-
versary. Byzantine Agreement can be solved against such an adversary controlling f < n/3 players,
with O(1) latency.! [15, 16]; see also [1, 7, 11, 21].

Non-Adaptive Adversaries. The ability to adaptively corrupt players is surprisingly powerful.
Goldwasser, Pavlov, and Vaikuntanathan [26], improving [10], considered a synchronized, full in-
formation model in which the adversary corrupts up to f players up front, that is, it is non-adaptive.
They proved that Byzantine Agreement can be solved with resiliency f < n/(3 + €) in O(log n/€?)
rounds. See Chor and Coan [17] for prior results in similar adversarial models [17].

Kapron et al. [31] developed a Byzantine Agreement protocol in the asynchronous, full informa-
tion model, in which the adversary corrupts f < n/(3 + ¢) players non-adaptively. Their protocol
has different parameterizations, and can achieve agreement in quasipolynomial latency with prob-
ability 1 — 1/poly(n), or polylogarithmic latency with probability 1 — 1/poly(log n). When these
protocols err, they do not satisfy the Agreement and Termination criteria, and may deadlock or
terminate without agreement.

Limits of Fully Symmetric Protocols. Lewko [36] proved that in the asynchronous, full informa-
tion model, a certain class of “fully symmetric” Byzantine Agreement protocols has latency 22"
when f = ©(n). This class was designed to capture Ben-Or [8] and Bracha [13] but is broader. Pro-
tocols in this class make state transitions that depend on the set of validated messages received,
but may not take into account the transaction history of the sender. In retrospect, Lewko’s result

I This assumes that RSA encryption cannot be broken by a polynomially bounded adversary.
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can be seen as justifying two strikingly different approaches for improving [8, 13] in the asyn-
chronous, full information model. The first is to break symmetry by having the players take on
different roles: this is necessary to implement Feige’s lightest bin rule and other routines in Kapron
et al’s [31] protocol. The second is to stay broadly within the Ben-Or-Bracha framework, but pe-
riodically blacklist players after accumulating statistical evidence of fraudulent coin flips in their
transaction history. This is the approach taken by King and Saia [33, 34] and the present work.

Fraud Detection. King and Saia [33, 34] presented two Byzantine Agreement protocols with poly-
nomial latency based on fraud detection and blacklisting. The first uses exponential local com-
putation and is resilient to f < n/400 adaptive corruptions. The second uses polynomial local
computation and is resilient to n/(0.87 X 10?) adaptive corruptions. The extended abstracts of this
work [28, 29] presented polynomial time and latency protocols resilient to f < n/4 [28] and the
optimal f < n/3 [29] number of Byzantine failures. The statistical tests used by these protocols
focus on positive correlations among Byzantine players [28] and negative correlations between
Byzantine and honest players [29]; see Section 3.2.2

1.1 New Results

One feature of the asynchronous model is that every player must perpetually entertain the possi-
bility that f players have crashed and will never be heard from again. Thus, when n = 3f + 1, the
number of fully participating players at any stage isn — f = 2f + 1 and up to f of these players
may be corrupt! Among the set of participating players, the good players hold the thinnest possible
majority: f +1vs. f.

We develop a special coin-flipping protocol to be used in Bracha’s framework [8, 13] when the
corrupt and non-corrupt players have roughly equal influence. Initially, all players have weight 1.
The coin-flipping protocol has the property that if the corrupt players repeatedly foil its attempts
to flip a global coin, then we can fractionally blacklist players (reduce their weights) in such a way
that the blacklisting rate for good players is only infinitesimally larger than the blacklisting rate
for corrupt players. Specifically, we guarantee that among any n— f = 2f + 1 participating players,
the total weight of the good players minus the total weight of the corrupt players is bounded away
from zero. Eventually, all corrupt players have their weights reduced to zero, meaning they have
no influence over the global coin protocol. At this point, the scheduling power of the adversary is
still strong, but insufficient to fix the behavior of the global coin for much longer. Agreement is
reached in a polynomial number of iterations of Bracha’s algorithm, with high probability.

The final result is a randomized f-resilient Byzantine Agreement protocol with latency O(ne™®),
where n = (3+¢€)f and € > 1/f. In other words, the latency ranges between n* and n'?, depending
on €. This latency bound holds in expectation and with high probability, meaning probability 1-n~¢
for any desired constant c. See Table 1.

1.2 Organization of the Article

In Section 2 we review the formal asynchronous distributed model (Section 2.1), Bracha’s Reliable-
Broadcast primitive (Section 2.2), and his Byzantine Agreement protocol [13] (Section 2.3), which
reduces the problem to collective coin-flipping.

In Section 3, we review related work on collective coin-flipping, and describe King and Saia’s
coin-flipping method, which is based on a shared blackboard protocol. In Section 3.1, we give
specifications for an improved lterated-Blackboard protocol. We outline the fraud detection

The Byzantine agreement protocols of [1, 7] also employ a form of blacklisting (“shunning”) whenever a party detects
that another has not followed a certain cryptographic protocol.
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Table 1. Randomized Byzantine Agreement Protocols in the Asynchronous, Full Information Model
against an Adaptive Adversary

Citation Resilience Latency Local Computation per Message
<n/5 20(n) oly(n)

Ben-Or [8] f 5 POy
f=0Wtn) exp(t%) poly(n)
Bracha [13] f<n/3 20(n) poly(n)
< 1n/400 O(n®/? exp(n
King & Saia [33, 34] f / =) p(n)
f <n/(0.87 x10%) | O(n®) poly(n)
new f<n/3+e) O(n*/e®) poly(n)

Here e > 1/f = Q(1/n).

mechanism of [28] (Section 3.2), which has resilience f < n/4, then consider several (failed)
attempts to increase it to the optimum f < n/3 (Section 3.3). The specific nature of these failed
attempts highlights difficulties of Byzantine Agreement in asynchronous networks and motivates
certain design choices in our final protocol that might seem unjustified at first.

Section 4 begins with a high-level description of our new Byzantine-Agreement protocol
(Algorithm 3) and its key invariants. It is based on a new collective coin-flipping protocol
Coin-Flip (Algorithm 4) presented in Section 4.2, which uses the Iterated-Blackboard protocol. If
the adversary foils its operation, we will see negative correlations between pairs of good and bad
players; these are analyzed in Section 4.3. The blacklisting procedure is presented in Section 4.4.
It is based on a fractional maximal matching algorithm called Rising-Tide applied to a complete
graph weighted according to pairwise correlations. Section 4.5 bounds numerical disagreements
between players based on their different histories, and establishes high probability bounds on
Byzantine-Agreement reaching agreement with polynomial latency.

The analysis of the protocol depends on two theorems, each of which can be understood in
isolation. Theorem 6 specifies the properties and efficiency of the Iterated-Blackboard primitive.
The implementation and analysis of Iterated-Blackboard (Algorithm 7) are presented in Section 5.
Theorem 17 claims that Rising-Tide is continuous Lipschitz, that is, small numerical perturbations
of the input cause small numerical changes in the output. It is proved in Section 6.

We conclude with some remarks and open problems in Section 7.

2 PRELIMINARIES
2.1 The Model

We assume a standard asynchronous message passing model. The formalization below follows
Attiya and Welch [6, Chapter 2.1] and is equivalent to that of Lynch [37, Chapter IIB].

There are n players py, ..., pn, and 2n® message buffers, Out;_,; and In;_,;, for all i,j € [n]. All
players are initially good (they obey the protocol) and the adversary can dynamically corrupt up to
f players. A Byzantine/ corrupted player is under complete control of the adversary and can behave
arbitrarily. The adversary controls the pace at which progress is made by scheduling two types of
events.

— A compute(i) event lets p; process all messages in the buffers In;_,;, deposit new messages
in Out;_,;, and change state.
— A deliver(i, j) event moves a message from Out;_,; to In;_,;.

J. ACM, Vol. 71, No. 2, Article 12. Publication date: April 2024.
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ALGORITHM 1: Reliable-Broadcast(p, )

1: if £ > 1 then wait until Reliable-Broadcast(p, £ — 1) accepts my,¢—1.

2: if I am player p then generate m,, ¢ and send (init, m,, ¢) to all players.

3: wait until receipt of one (init, m, ¢) message from p, or (n + f + 1)/2 (echo, m,, ;) messages,

or f + 1 (ready, m,, ¢) messages.

send (echo, m,, ¢) to all players.

4: wait until the receipt of (n + f +1)/2 (echo, m,, ;) messages or f + 1 (ready, m,, ¢) messages.
send (ready, m,, ¢) to all players.

5: wait until receipt of 2f + 1 (ready, m,, /) messages.
accept my ¢.

Note that the adversary may choose a malicious order of events but cannot, for example, misde-
liver or forge messages. Every message must eventually be delivered, and every player i allowed
to compute(i) infinitely often. The adversary is computationally unbounded and is aware, at all
times, of the internal state of all players. Thus, cryptography is not helpful, but randomness is
potentially useful, since the adversary cannot predict the outcome of future coin flips.

In this model, the communication time or latency of a protocol is defined w.r.t. a hypothetical
timed execution in which all local computation occurs instantaneously and all messages are deliv-
ered within some latency in the interval [0, A]. The latency of the protocol is L if all non-corrupt
players finish by time LA.

The parameter A is introduced simply to define latency. There is, in fact, no a priori upper bound
on the delivery time of any message. Indeed, the adversary cannot increase the latency of the algo-
rithm simply by forestalling the delivery of certain messages, as this also increases the empirical
maximum delivery time A.

2.2 Reliable Broadcast

The goal of Reliable-Broadcast is to simulate a broadcast channel using the underlying point-to-
point message passing system. In Byzantine Agreement protocols, each player initiates a series of
Reliable-Broadcasts. Call m,, ¢ the £th message broadcast by player p. In Theorem 1, the property
that m,, ¢ is only accepted after m,, »_; is accepted is sometimes called FIFO broadcast.

THEOREM 1 (FIFO BroADCAST; SEE [13]). If a good player p initiates the Reliable-Broadcast of
my, ¢, then all good players q eventually accept m, . Now suppose that a corrupt player p does so
and some good q accepts my, ¢. Then all other good q" will eventually accept m, ¢, and no good q" will
accept any other m;’f # my, ¢. Moreover, all good players accept my, ¢_1 before my, ¢, if € > 1.

The term accept has no semantics outside the guarantees of Theorem 1, that is, a message m,, ¢
accepted by g will eventually be accepted by every good player.

Proor. According to Line 1 of Reliable-Broadcast, no message m,, ¢ can be accepted until m, ¢,
is accepted, if £ > 1. This establishes the FIFO property. The other correctness properties follow
from several claims.

We claim that if two good players g, " send (ready, m,, ¢) and (ready, m;)’ ¢)atLine 4, thenmy, =
ml')’ ¢~ Suppose not; in particular, let (g, q’) be the first pair to send conflicting ready messages
My, ¢ # m;’ - Dueto (g, q') being first, it must be g and g were spurred to send ready messages after
receiving (n+f+1)/2 (echo, m,, ¢) and (echo, mi')’{,) messages. Thus, atleast 2((n+f+1)/2)—-n > f+1
players sent both g and g’ conflicting (echo, -) messages, and therefore some good player sent
conflicting (echo, -) messages in Line 3, which is impossible.

J. ACM, Vol. 71, No. 2, Article 12. Publication date: April 2024.
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We now claim that if a good player g accepts m, , then every good player eventually accepts
my,¢. It follows that g has already accepted m, 1, ..., my ¢—q in Line 1. By induction, every other
good player eventually accepts m,, ;. Before accepting m,, ¢, q received at least 2f +1 (ready, m,, ¢)
messages in Line 5, and hence at least f +1 from good players. These f+1 messages will eventually
be delivered to alln— f > 2f +1 good players, causing all to send their own (ready, m,, /) messages
in Line 4 and eventually accept the same value.

If the sender p is good, then every good player will clearly eventually accept m,, .. Moreover, as
a consequence of the above claims, if p is corrupt, then it is impossible for good players to accept
different messages my, ¢ # m;)’ e |

2.3 Validation and Bracha’s Protocol

Consider a protocol II of the following form. In each round r, each player reliably broadcasts its
state to all players, waits until it has accepted and validated at least n — f messages from round
r, then processes all validated messages, changes its state, and advances to round r + 1. A good
player validates a round-r state (message) sy, accepted from another player g only if (i) it has
validated the state s, ,—; of g at round r — 1, and (ii) it has validated n — f messages that, if they
were received by a correct g, would cause it to transition from sg,,; to sq, . The key property of
validation (introduced by [13]) is:

LEMMA 2. A good player p validates the message of another player q in an admissible execution «
of I1 if and only if there is an admissible execution  of I1 in which q is a good player and the state of
every other good player (including p) is the same in a and B with respect to their validated messages.

To recap, reliable broadcast prevents the adversary from sending conflicting messages to differ-
ent parties, that is, it is forced to participate as if the communication medium were a broadcast
channel, albeit one where the time to receive broadcasts is irregular. The validation mechanism
forces its internal state transitions to be consistent with the protocol IT. Note, however, that in gen-
eral ITis probabilistic and validation permits a series of transitions that are logically possible but sta-
tistically unlikely. In summary, after validation, the following powers characterize the adversary.

Full Information and Scheduling. The adversary knows the internal state of all players and
controls the order in which messages are delivered. It may delay messages.

Corruption and Coin Flipping. The adversary may adaptively corrupt up to f players as the
execution of the protocol progresses. Once corrupted, a player continues to follow protocol,

except that the adversary now chooses the outcomes of all of its coin flips.

Remark 1. One key implication of the Corruption and Coin Flipping simplification is that we
usually do not need to differentiate between good and bad players. There are some players with
functioning random number generators and at most f with corrupt random number generators, but
both types of players follow protocol. Consider Lemma 3, which will be presented shortly. It refers
to a supermajority of players holding a single value v*, not good players, because the validation
mechanism effectively prevents a bad player from broadcasting values that are inconsistent with
the protocol. On the other hand, it says that good players will decide v*. Deciding is a private
action and it makes no sense to talk about the private actions of corrupt players. Validation only
governs the public broadcasts of players.

Bracha’s protocol improves the resilience of Ben-Or’s protocol to the optimum f < n/3. Each
player p initially holds a value v, € {-1,1}. It repeats the same steps until it decides a value
v € {—1,1} (Line 8). As we will see, if some good player decides v, all good players will decide v
in this or the following iteration. Thus, good players continue to participate in the protocol until
all other good players have executed Line 8. Here, sgn(x) = 1if x > 0 and -1 if x < 0.

J. ACM, Vol. 71, No. 2, Article 12. Publication date: April 2024.
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ALGORITHM 2: Bracha-Agreement() from the perspective of player p

Require: v, € {-1,1}.

1: loop

2 Reliable-Broadcast v, and wait until n — f messages are validated from a set of players S,,.
set v, sgn(zqesp Vg). >sgn(x) = 1if x > 0 and —1 otherwise.

3 Reliable-Broadcast v, and wait until n — f messages are validated.
if more than n/2 messages have some value v* then set v, < v, else set v, «— L.

4 Reliable-Broadcast v, and wait until n — f messages are validated.
let x,, be the number of v* # L messages validated by p.

5 if x, > 1 then

6: set v, « v,

7: if x, > f + 1 then

8: decide v".

9: if x;, = 0 then

10: v, « Coin-Flip(). > Returns value in {-1,1}.

The correctness of Bracha-Agreement follows from Lemmas 3 and 4, and its efficiency from
Lemma 5.

LEmMA 3. If a supermajority of (n + f + 1)/2 players hold the same value v* at Line 2, then all
good players will have decided v* by the end of the loop.

Proor. In Line 2 each player updates their value based on a majority vote of a set of n — f
players, presumably selected by the adversary. However, in any n — f messages, there are at least
(n+ f+1)/2— f = (n— f +1)/2 votes for v*. Thus, all players set v, «<— v" in Line 2, broadcast v*
in Line 3 and retain it since n— f > n/2. They broadcast v* again on Line 4 and then set x, = n— f,
so every player p decides v* in Line 8. O

LEMMA 4. If any good player executes Line 8 and decides v, then all good players will have
decided v* by the end of the next iteration through the loop.

Proor. After each player p executes Line 4 it becomes a member of one of the following three
sets.
Adec ={p = xp > f+1},
Akeep = {P F Xp € [l’f]}»
Aﬂip = {p P Xp = 0}.
Regardless of how messages are delivered, for any p and ¢, |x, — x4| < f, hence all players are
in Agec U Axeep OF Akeep U Aglip. If Agec # 0, then all players (good and bad) go into the next iteration
holding v*, and by Lemma 3, all good players decide v* by the end of that iteration. (Note that the

validation mechanism prohibits a bad player from switching its value from v* to —v™ at the next
iteration, for no one will be able to validate a message “—v*” broadcast in Line 2.) O

LEMMA 5. In any execution of one loop of Bracha-Agreement, the probability that a supermajority
of (n+ f +1)/2 players adopt the same value is at least 27".

ProoF. By Lemma 4, we can focus on the case where the population is Ayeep U Agip, that is,
those in Ageep know the majority value v* and keep it, and every good p € Ag;, chooses v, on the

J. ACM, Vol. 71, No. 2, Article 12. Publication date: April 2024.
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basis of a coin flip. With probability at least 27", every good p € Agjp chooses v*, in which case a
supermajority of n — f > (n+ f + 1)/2 players hold v*. If Ayeep = 0 then v* is undefined, and any
unanimous coin flip outcome (~1 or 1) among Agj, is acceptable. ]

3 COLLECTIVE COIN-FLIPPING

The probability of achieving a supermajority of (n + f + 1)/2 in Line 10 of Bracha-Agreement
is much higher when f is small, for example, Q(exp(~t?)) when f = O(Vtn). However, the eas-
iest way to achieve such a supermajority with probability 1/2 is for all players to somehow flip
an unbiased common global coin. Rabin [39] and Toueg [42] solved Byzantine Agreement in con-
stant rounds (in expectation) by assuming the existence of such a global coin, or, equivalently, a
mechanism to distribute shared randomness to all players in advance. The protocols of King and
Saia [33, 34] and those in Section 4 work in the framework of Bracha-Agreement, but substitute
for Coin-Flip (Line 10) a collective coin flipping protocol that aspires to have two properties.

Property (i) all players agree on the same value returned by Coin-Flip(), and
Property (ii) the output of Coin-Flip() is close to unbiased.

The problem of flipping a bounded-bias coin against adversarial manipulation is well studied.
The problem can be solved against surprisingly large coalitions of corrupt players [2, 3, 9, 12,
20, 27, 30, 40, 41]. This body of work assumes reliable communication (no dropped or delayed
messages) and reliable computation (no crash failures). Aspnes [4] gave a lower bound that models
aspects of an adaptive adversary in an asynchronous network. In his coin-flipping game, a vector
of values (v1,...,vn) is generated as follows. Once (v1, . .., v;_1) are known, a random value v;
is generated® and the adversary may set v; « v} or suppress it, setting v; < L. The outcome of
the coin flip is some function g(vy, . .., vn) € {—1, 1}. If the adversary can suppress ¢t values, then
N = Q(t?) for g to have constant bias and N = Q(t?/log® t) if the probability that g = 1 and —1
are both at least 1/poly(¢). Aspnes [4] proved that this result implies Q(n) latency lower bounds
on Byzantine Agreement in the asynchronous model, which was improved to Q(n) by Attiya and
Censor-Hillel [5]. The moral of [4, 5] and related lower bounds against adaptive adversaries, such
as Haitner and Karidi-Heller’s [27], is that the aggregation function g that implements majority
voting is at least close to optimal. However, Byzantine Agreement protocols against non-adaptive
adversaries, such as [10, 26, 31] can afford to implement clever coin-flipping protocols that are not
based exclusively on majority voting [20, 40].

The coin-flipping protocols of King and Saia [33], [28], and the one presented in Section 4 do not
attempt to guarantee Properties (i) and (ii) immediately. Rather, after a sufficiently large number
of invocations of Coin-Flip, if the adversary foils Properties (i) and (ii), it will leave behind enough
statistical evidence that proves incriminating, allowing us to blacklist suspicious players, removing
their explicit influence over subsequent calls to Coin-Flip. When all corrupt players are blacklisted,
the adversary still has the power of scheduling, but this power is insufficient to significantly delay
agreement.

The basis of King and Saia’s [33] implementation of Coin-Flip is a shared blackboard primitive,
whose resiliency was improved from f < n/4 to (optimal) f < n/3 by Kimmett [32]. A blackboard
is conceptually an m X n matrix BB, initially all blank (L). The goal is to have each player i write
m values successively to column i via Reliable-Broadcasts, and once the blackboard is full, to have
all players agree on its contents. Because up to f players may crash, a full blackboard is one in
which n — f columns have m writes, and the remaining f columns may be partial. Due to the
scheduling power of the adversary, every player p sees a slightly different version BB®) of the

3The distribution and range of v} are arbitrary, and may depend on (vy, . . ., V;-1).
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“true” blackboard BB, which is derived by replacing the last write in some of the f partial columns
with L. Thus, BB®”) and BB? differ in at most f entries.

In [33] the Coin-Flip routine is implemented as follows: every write to BB is a value in {—1, 1}
chosen uniformly at random. When p finishes participating in the construction of BB it has a view
BB®) and sets the output of Coin-Flip to be sgn(2?)), where 3*) = Yiq BB®)(j,q) is the sum
of all entries, treating L as zero. Note that whenever %) ¢ [—f, f], p can be sure that Coin-Flip
generates the same output for all players, even corrupt ones.*

In the context of [33], a happy outcome is when all players agree on the same coin flip value,
and if Ayeep # 0 is holding v*, that value is v*. The new Coin-Flip protocol developed in Section 4
is similar in spirit. It uses two blackboards, the first being used to generate a bias, which depends
on Ageep and v*, and the second is populated with random {~1, 1} variables, as in [33]. In contrast
to King and Saia [33] and our first extended abstract [28], any outcome where all players agree on
the output of Coin-Flip is a happy outcome.

3.1 The lterated Blackboard

We can of course execute the blackboard primitive iteratively [33], but two players may disagree
on the contents of each blackboard in up to f cells. The Iterated-Blackboard protocol specified in
Theorem 6 guarantees a stronger form of agreement. An iterated blackboard is an endless sequence
(BB1, BBy, . . .) of blackboards, where BB; is an m(t)xn matrix. After p observes a sufficient number

of writes to BB, p fixes a view BB®*) = (BB?”I), ceey BBEPJ)) of the first ¢ blackboards. It is

guaranteed that Bng’t) and BB(tq’ » differ in at most f cells in partial columns; it is also guaranteed

that BB®?) and BB(¢? differ in at most f cells in total, over all t blackboards. In order to make
this type of guarantee, during the construction of BB;.;, p may record retroactive updates to an
earlier BB/, t’ < t, so that BB(;,”HU records some writes to cells that were still L in BB(tl,” t). (The
blackboard protocols of [32, 33] did not allow for retroactive updates. This feature was introduced
in [28].)

We use the iterated blackboard for two different tasks. First, the outcome of a shared coin-flip
is determined by the sum of entries in some BB,, and for this reason it is important that any
players p and g agree on this sum, up to +f. After a long series of calls to Coin-Flip that fail to
bring Bracha-Agreement to an end, we blacklist some players based on the history (BBy, ..., BB;),
and here it is important that when players p and g locally calculate their blacklist, they come to
numerically similar conclusions. This is more critical to our protocol than [33] since resiliency
f < n/3 demands dramatically higher levels of historical agreement between good players.

THEOREM 6. An iterated blackboard (BB1,BB,,...,BB;) is a sequence of matrices, BB; being
an m(t) X n matrix with all cells initially 1. It is constructed by calling Iterated-Blackboard(1), . . .,
Iterated-Blackboard(t). In the execution of Iterated-Blackboard(t), every good player p fixes a view
BB®? 1) = (BB(lp’t), e BB(tp’t)) of the true blackboards (BB, ...,BB;). Iterated-Blackboard(t) is
resilient to f < n/3 Byzantine faults, and has the following properties.

(1) Player i writes values successively to cells in column BB, (-, i) and only player i may write values
to this column. Thus, at all times, BB, (-, i) consists of a prefix of non-L values and a suffix of Ls.
(2) When player p fixes its historical view BB®?), it contains all writes recorded in BB®*~V if

t > 1. Moreover, BB, ") contains at least n — f full columns, with m(t) writes, and at most f

“In particular, in Line 2 of Bracha-Agreement, if a message vg broadcast from q is purportedly the output of the last

iteration’s call to Coin-Flip(), player p will not validate it if it is impossible that sgn(3(9)) = vg-
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partial columns. It is guaranteed that for every t’ € [t],i € [n], r € [m(t')],
BB (r,i) € {BBy(r,i), L}.

Moreover, there are at most f tuples (', r, i) such that for some p, BBE’,” t)(r, i)= 1 # BBy(r,i).
All such tuples have distinct 3rd coordinates.

(3) If a player q writes any non-1 value to BB, then by the time any player p fixes BB®) p can
locally reconstruct q’s view BB(®tY of the history up to blackboard t — 1.

(4) The latency of constructing BB is linear in the total number of rows, namely O i<, m(t)).

Remark 2. We use Theorem 6(3) to make the following simulation argument. If player g
sets a certain variable  based on its view BB(%!~) and subsequently writes anything to BB,
t’ > t, then once p fixes BB®- t’), it learns BB(%!~1 and can therefore simulate q’s computation
of a.

3.2 Coin Flipping and Fraud Detection

The King-Saia [33, 34] protocol and the one presented in our first extended abstract [28] rely on the
fact that the f corrupt players, being a small minority, must collectively generate coin flips whose
sum is conspicuously large, as they must often counteract the coin flips of n—2f good players.® At
the end of the tth iteration of Bracha-Agreement, the [28, 33] protocols call a Coin-Flip procedure,
which populates the blackboard BB; with random {—1, 1} coin flips. Define X;(¢) to be the sum of
the coin flips in BB, (-, i) generated by player i.°

At the very least, the adversary wants at least one player in Ag;, to believe that the outcome of
the global coin is o(t) = —v” (i.e., the opposite value held by those in the Ay, population), which
is called the adversarial direction. Let 3(t) and 2 () be the sum of the good and bad (corrupt) coin
flips written to BB;. If sgn(Zs(t)) = o(t) then the adversary is happy, and if sgn(3(t)) = —o(t)
then the adversary needs to counteract the good coin flips and get the total sum X5(t) + 2p(t) in
the interval [—f, f] in order for at least one player to believe the coin flip outcome (sign of the
sum) is o(t). Thus,

|Zp(t)| = max{0, —o(t)Z5(t) — f}.

>(t) is the sum of at least m(n — 2f) = Q(mn) coin flips; suppose for simplicity that X;(t) is the
sum of exactly this many flips. When m > n > 3 f, f is much smaller than the standard deviation of
36(t), solet us also ignore the “— f” term for simplicity. By symmetry, X5 (t) is positive and negative
with equal probability, so up to these simplifications, E[Zp(t)?] > %E[Zc(t)z] = %m(n -2£).7 On
the other hand, if these f bad players were flipping fair coins, then E[Z5(t)?] < mf.

The statistics tracked in [28] are pairwise correlations and individual deviations over a series of
calls to Coin-Flip.

corr(i, j) = (X1, X;) = in(t)Xj(t),
dev(i) = (X0 Xi) = Y (Xi(t)".
7

SRecall that the adversary can fail to deliver messages of up to f players in a timely fashion, so there can be as few as
f + (n = 2f) players fully participating in any given blackboard/coin-flip.

®Recall that the players appear in Ageep U Afip, where those in Ay, will keep the majority value 0* € {~1, 1}, regardless
of the outcome of Coin-Flip. Nonetheless, every player in Ayeep U Agp participates in the Coin-Flip protocol.

"It is a small abuse of notation to measure the expectation of X 5(¢)? since it has no well-defined distribution. The expecta-
tion is naturally w.r.t. any fixed adversarial strategy that convinces at least one player that the outcome of the global coin
is o (t).
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Note that (Zp5(t))* can be decomposed into terms that contribute to corr(i, j) scores (X;()X; (1),
i # j) and dev(i) scores (X;(t)?). When f < n/4 there is a gap between %m(n —2f)and mf, which
implies that after a sufficient number of iterations, either some bad player i has an unusually large
dev(i) score, or two bad players i, j have an unusually large corr(i, j) score. Unusually large here
means one beyond what any good players flipping fair coins could generate, with high probability.
If corr(i, j) is unusually large, it follows that at least one of i, j must be bad. The protocol introduced
in [28] blacklists pairs of players with high correlation scores and individual players with high
deviation scores.

3.3 Misfires and Dead Ends

Resilience f < n/4 is good, but we want to push it to the absolute maximum f < n/3. In this
section, we illustrate why certain natural approaches to achieving optimal resiliency fail in subtle
ways. This leads us to a simple approach that works, which is outlined in Section 3.4 and fully
developed in Section 4.

As f tends toward n/3, many natural statistics worth tracking lose traction, and “n/3” is the
point at which coin-flipping games become perfectly balanced between the influence of n — 2f
good and f bad players. For example, when f = n/4, mf = %m(n — 2f), and bad players may
not be detected by looking for large dev(i) or corr(i, j) scores alone. When n = 3f + 1, we can
assume that n — f = 2f + 1 players fully participate in the coin-flipping protocol, at least f + 1
of which are good and at most f of which are bad. To illustrate why this is a uniquely difficult
setting to perform fraud detection, consider a simple Mirror-Mimic strategy deployed by the
adversary.

Mirror-Mimic Strategy. When sgn(Eg(t)) = —o(t), the adversary chooses its coin-flips so that
2p(t) = —=2g(t) (mirror). When sgn(Zs(t)) = o(t), it sets 2p(t) = Z5(t) (mimic). There is some
flexibility in the mirror case as it only needs Xp(t) + () to hit the interval [-f, f]. In any case,
we do not expect to see large good-good corr(i, j) scores outside of random noise, nor large bad-
bad correlations since they are mirroring/mimicking the distribution of good players. Because the
mirror/mimic cases occur about equally often, the aggregate positive correlations between good
and bad players in the mimic case and negative correlations between good and bad players in the
mirror case cancel out. Thus, against the mirror-mimic adversary, tracking pairwise correlations
alone seems insufficient to efficiently detect fraud.

o-Correlation. When we attempt to flip a global coin, the good players are generally unaware
of the adversarial direction o(t)® but we can ensure that o(t) eventually becomes known, and can
estimate o-correlation over the long term. In the context of Bracha-Agreement, o(¢) should be
defined as:

o(t) = —v"  if Aeep # O keeps the majority value v* € {~1,1},
1o if Ageep = 0.
Define the o-correlation score as:
o-corr(i) = (0, X;) = Z a(t)X;(t).
t

Note that good players flip fair coins, so values of o-corr(i) that are inconsistent with random noise
should indicate that i is corrupt. However, it is rather easy for the adversary to keep o-corr(i) scores
close to zero for corrupt players as well. Regardless of sgn(Zs(t)), it should set Xp(t) = —Z5(t),
or at least put Xp(t) + X5(t) in the interval [—f, f]. One may easily verify that this strategy is

8(if they all knew what it was, there would be no need to flip a coin).
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consistent with mirror-mimic when sgn(Zs(t)) = —o(t), but that it prescribes exactly the opposite
behavior when sgn(2¢(t)) = o(t)! In fact, there is no general strategy for setting > 5() as a function
of %(t) and o(t) that keeps all corr(i, j) and o-corr(i) scores close to zero.’

Tracking corr(i, j) and o-corr(i) scores seems to be a winning combination, that will eventually
let us blacklist individual players for having large o-corr(i) scores, or pairs of players for having
large — corr(i, j) scores. In the latter case, we are blacklisting good and bad players at the same
rate, which is fine so long as good players retain their slim majority (f + 1 vs. f initially) among
any set of n — f = 2f + 1 participating players.

A Scheduling Attack. There is a serious flaw in the reasoning above! Recall that o(t) € {-1,0, 1},
where o(t) = 0 means that in Bracha-Agreement, the population Ayee, = 0 committed to keeping
the true majority value v* is empty. The value v* is determined by the scheduling of messages in
Line 2. Whether v* becomes known to any particular player in Line 3 is generally at the discretion
of the adversarial scheduler. Thus, in general, the adversary can control whether Ay, = 0, and
hence whether o(t) = —v* or 0. Moreover, because the protocol is asynchronous, it can even do so
after BB, is populated with coin flips.!

These observations give rise to the following attack. The adversary targets two good players
io, i1. When Coin-Flip is initiated, the adversary has two choices for o(t) € {—v*, 0} and can decide
which way to set () late in the game. If sgn(X;,(t)) = sgn(X;, (t)) = —v", it sets o(t) = —v;
otherwise, it sets o(¢) = 0. In general, it makes sure X5(t) + X5(t) € [—f, f] so it can force roughly
equal numbers of players to have Coin-Flip return —1 and 1. Players iy, iy will show unusually
large o-correlation and be blacklisted, and any other blacklisting (from negative correlations) will
apply equally to good and bad players. At this point, the corrupt players have now attained a slim
majority, and are entirely content to let further blacklisting hurt good and bad players equally.

The problem here is that o(¢) and X; (t) are not independent. In reality, o(t) can be chosen
maliciously after X;,(t) is known.

A Finger on the Scale. The issue with the previous scheme is that the notions of ¢(¢), the popula-
tion Ayeep, and even v* are too indeterminate. On the other hand, if any good player p finds itself
with knowledge of v* and has set x,, € [1, f], there is nothing indeterminate from p’s perspective
about the fact that {p} C Ayeep # 0 or that o(t) = —v*. This leads to a natural question: why should
p participate in the Coin-Flip protocol as if it were ignorant of the desired outcome v*? Why not “put
a finger on the scale” and just write v* to every entry in column BB,(-, p)? (We would naturally
refrain from judging such special columns according to statistical tests, for example, deviations
and correlations.)

The problem with this simple-minded scheme is that if |Ageep| is small, the adversary has the
discretion to suppress or allow p € Agep to write its column, or any prefix thereof. This allows for
a mirror-mimic type attack, in which the sum of BB, always lies in [—f, f1], and yet there are no
negative correlations in aggregate between good players flipping fair coins and bad players.

3.4 A Key Observation

To simplify the description of the coin-flipping problem, in Section 3.2, we originally stated
the adversary chooses o(t) = —v*, and wins the coin-flipping game if it convinces one player

When sgn(2g(t)) = —o(t), the adversary is forced to set o(£)Sp(t) > —o(t)SG(t), increasing the aggregate o-
correlation of bad players and increasing the aggregate negative good-bad correlation. When sgn(2G(¢)) = o(t), the
adversary can choose to reverse either of these trends and exacerbate the other, that is, reduce good-bad negative correla-
tions but increase bad o -correlations, or reduce bad o-correlations but increase good-bad negative correlations.

10ne player p will be held back at Line 3 of Bracha-Agreement, which can be made to set vp = " or vp = 0, which will
be preserved in Line 4. In this way, the adversarial scheduler may decide if Ayeep = {p} or 0 after observing BB;.
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to believe the output of Coin-Flip is o(t). It turns out that this simplification gives the ad-
versary too much flexibility, and does not fully capture how coin-flipping is used in Bracha’s
algorithm.

Consider the sizes of the sets Aeep and Ags,. There are two relevant cases to consider:

Case [Axeep| € [0, f]. When Ayeep # 0, 0(t) = —v" is defined, and it would be bad for the adversary
if everyone agreed the output of Coin-Flip were v*, that is, sgn(2?)) = v* for all p € [n].
In fact, it would be equally bad for the adversary if sgn(2%)) = —ov* for all p. If so, then
a supermajority of [Agi,| > n— f > (n+ f + 1)/2 go into the next iteration of Bracha-
Agreement holding —v*, and by Lemma 3, all good players will decide —v*. To summarize,
when |Ayeep| < f it is critical for the adversary to create disagreement on the outcome of
the global coin flip.!!

Case |Ayeep| > f + 1. If this is the case, then some kind of “finger on the scale” strategy should
force the outcome of the coin flip to be v*. Any player that validates the state of n— f players
must necessarily validate the state of some p € Ageep, and hence learn the value of v*. If any
player that knows v* writes only v* to its entries in the blackboard, this will surely be the
outcome of the global coin flip.

In light of this dichotomy on the size of Ayecp, We design a coin-flipping protocol in Section 4.2
that (i) forces all players to see the same outcome v* whenever |Ageep| 2 f + 1 — thereby letting
Bracha-Agreement terminate — or (ii) reverts to a more standard collective coin-flipping game in
which the adversary is obligated to land the sum in the interval [—f, f]. Because of the certainty
of the outcome in case (i) and the specific strategy forced upon the adversary in case (ii), fraud can
now be detected by tracking just one statistic: the correlation scores corr(i, j) between all pairs
of players. Our Coin-Flip procedure makes the notion of the adversarial direction o(t) irrelevant.
This is in sharp contrast to the protocols of [33] and [28], whose suboptimal resiliency could be
partially attributed to working around the idea of the adversarial direction.

4 AN AGREEMENT PROTOCOL WITH OPTIMAL RESILIENCE
4.1 Overview

Our Byzantine-Agreement algorithm (Algorithm 3) consists of K.y = O(f) epochs, each of which
executes T > n? iterations of Bracha-Agreement, with Line 10 implemented by a new collective
coin-flipping protocol Coin-Flip (Algorithm 4, Section 4.2). The tth call to Coin-Flip in epoch k
constructs two blackboards BB,2;—1 and BB, where o = 2(k—1)T is the number of blackboards
used in epochs 1, ...,k — 1. The odd- and even-numbered blackboards have é(\/ﬁ) and m rows,
respectively, for an m > n to be determined. In each epoch k there is a weight vector (w; k)ie[n]
that influences all calls to Coin-Flip in that epoch. Player i’s coin flips are weighted by w; ;. € [0, 1].
At the end of each epoch, the procedure Weight-Update generates a new reduced weight vector
(Wi, k+1)ien] based on (w; i) and the history of epoch k. Weights are stable during an epoch and
non-increasing with time. The process of reducing players’ weights can be thought of as fractional
blacklisting.'?

We write the number of players as n = (3 + €)f, where we assume without loss of generality
that € € [1/f, 1/2]. The parameters T, m depend on n, f, €. All the important notation used by the
algorithms and their analyses is summarized in Table 2.

HRecall from Remark 1 that w.l.o.g., all players follow protocol, but up to f have corrupted random number generators.
The analysis of the case |Ayeep| € [0, f] does not depend on how the players with corrupted random number generators
are distributed among Ayeep U Afiip-

12 Fractional blacklisting was introduced in our first extended abstract [28].
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Table 2. Summary of Notation

NOTATION DEFINITION AND COMMENTARY

The number of players is n, indexed by [n]. The number of

nf.e Byzantine players is f = n/(3 + €).

*

v The true majority value (if any) at Line 3 of Bracha-Agreement.

The populations with x, > f + 1 (Agec), Xp € [1, f] (Akeep), and

A 5 A 5 Agj . .
dec» keep» £lip xp = 0 (Apip) at the end of an iteration of Bracha-Agreement.

A parameter. All with high probability bounds hold with

‘ probability 1 — n=%(©),
Kinax The number of epochs is Kiax = 3f + 1.
T The number of iterations per epoch is T = ©(n? In® n/e*).
m The number of rows in the even blackboards BB,.; is
m = 0O(nlnn/e?).
me The number of rows in the odd blackboards BB,44;_; is
my = Vm-clnn.
BR®-1) BB®-1) = (BBEP’ t/), el BB(t’,J’t’)) is p’s historical view of the true

iterated blackboard (BB, ...,BB,).

In epoch k, the sum of non-L entries in BBy12;—1 and BB, are
bias(t), %(t) bias(t) and (t), respectively, where o = 2(k — 1)T is the number
of blackboards used in epochs 1, ...,k — 1.

In epoch k, X;(t) is the sum of all non- L entries in BB,z (-, i); it is

Xi(t), X 4/
i(8), Xinax enforced that |X;(t)| < Xmax = mo = Vm - clnn.

Xf”)(t), biast?) (1), 5®)(r) | P s(v1ev&27 §)f these values. In epoch k, these are computed from
BB(-o+20),

G and B are the sets of good and bad (Byzantine) players, with

G,B -
’ respect to some moment in time.

In epoch k, the sum of values in BB,,; written by good players

Z6(t). Zp(t) (unbiased coin flips) and bad players, respectively.

w;, k is the weight of player i during epoch k; w; is short for the

(Wi kJictnl> (Wiieln current weight of player i.

The weight vector computed by p at the end of epoch k from

(W(P) iein] information in BB-?kT), The consensus weight vector
i, k+1/1€ln . . i .
b (Wi,k+1)ie[n] is computed by setting w; x+1 = wﬁ."])ﬁl if

i def .
wgl;ﬁl > Wmin = Vn/T and 0 otherwise.

The weighted correlation scores accumulated in one epoch. Here
corr(i, j), corr®)(i, j) corr(i, ) = (wiXi, wiX;) = wiw; 3, Xi(£)X;(t) and corr(i, j) is
p’s view of corr(i, j), using XEP),X](.p).
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ALGORITHM 3: Byzantine-Agreement()

1: loop

2 Initialize the weight vector (w; 1)ie[n) = (1,1,...,1).

3 Initialize an empty iterated blackboard BB.

4: for k from 1 to Koy = 3f + 1 do > Epoch index

5 for t from 1 to T do > Iteration index

6: Execute one iteration of Bracha-Agreement (Algorithm 2), using Coin-Flip
(Algorithm 4)

7: in Line 10. Coin-Flip builds blackboards BB.2;-1 and BBz, where o = 2(k — 1)T.

8: Generate a reduced weight vector (wi.1,;)ie[n] using Weight-Update (Algorithm 6).

9: If Bracha-Agreement has failed to reach agreement after K, + 1 epochs, restart loop

with the initial weight vector and empty iterated blackboard.

We guarantee that Invariant 1 is maintained, with high probability. Let G and B be the good and
bad (Byzantine) players at some moment, and let w; refer to the current weight of player i, that is,
w; = w;  during epoch k.

INVARIANT 1. At all times,

Dl—w) < > (1 -w)+elf.

ieG i€eB

In other words, the total weight reduction of good players is upper bounded by the total
weight reduction of bad players, up to a small e*f error. We prove that with high probability,
Byzantine-Agreement reaches agreement after at most Ky, epochs. There is a tiny probability
that Byzantine-Agreement fails to reach agreement after K.« epochs. If so, the algorithm restarts
at epoch 1 with the initial weight vector (w; 1) = (1, 1,...,1). This guarantees that the algorithm
reaches agreement with probability 1 after a finite number of steps. (King and Saia [33, 34] also
used this restarting mechanism.)

THEOREM 7. Suppose n = (3 + €)f where € > 0. Byzantine-Agreement (Algorithm 3) achieves
agreement with probability 1. With high probability the latency is O(fmT) = O(n*/e®), where m =
O(nlnn/e*), T = ©(n®In® n/e*). The local computation of each player is polynomial in n.

Proor. It will be proved in Lemma 19 that if the players have failed to reach agreement after
Kmax — 1 = 3f epochs, all bad players’ weights are zero with high probability. However, by Invari-
ant 1 the good players still have weight at least

n-f—f-€ef=0+ef —€'f>f+1-01).

Under these circumstances, Lemma 20 states that the good players reach agreement in the next
epoch with high probability. If, by chance, the players have not reached agreement after epoch
Kinax, they restart the algorithm at Line 9 of Byzantine-Agreement, returning the epoch counter
to 1 and the weight vector to (1, 1,. .., 1). Thus, the algorithm terminates with probability 1.

By Theorem 6, the latency to construct BB, is O(m(t’)) = O(m), so if the algorithm is not
restarted in Line 9, the total latency is O(KpaxmT) = O(fmT) = O(n*/e®). Even considering the
possibility of restarts, this latency bound still holds with high probability and in expectation. O

Organization of Section 4. In Section 4.2, we explain how Coin-Flip is implemented using the
Iterated-Blackboard protocol specified in Theorem 6. In Section 4.3, we prove that if the adversary
persistently manipulates the outcome of the Coin-Flip protocol, then there will be a detectable
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ALGORITHM 4: Coin-Flip() from the perspective of player p
Require: v, € {v*,1}, v* € {-1,1}. This is the tth call to Coin-Flip in epoch k of
Byzantine-Agreement. Let o = 2(k — 1)T be the number of blackboards used in epochs
1,...,k—-1
1: Stage 1:
2: Reliable-Broadcast v, and wait for n — f messages to be validated from some set S, of players.

v*  ifvg = v* for some q € S,
3: val, «
0 ifvy=Lforallge€S,.
4: Construct BB,2,1, writing val,, to every cell in column p.

5. Stage 2:

6: Construct BB, writing independent coin flips in {—1, 1} to cells in column p.

7. bias®?) > BBE)’:;:ZI”(] Q) > Substitute L = 0
8 2P — XiqWq- Bff:;:m(] Q) > Substitute L =0

9: return (sgn(bias® +x»)))

negative correlation between some bad player and some good player. In Section 4.4, we give the
procedure for reducing weights between epochs, and prove that it maintains Invariant 1 with high
probability. The weight reduction algorithm is based on computing a fractional maximal matching
in a certain graph representing pairwise correlations. In Section 4.5, we prove that agreement is
reached after O(f) epochs, with high probability. The analysis of this section is self-contained,
except for the proofs of Theorems 6 and 17, which appear in Sections 5 and 6, respectively.

4.2 Implementation of Coin-Flip

Consider epoch k, iteration t of Byzantine-Agreement. It executes one iteration of Bracha-
Agreement, which in turn executes Coin-Flip (Algorithm 4) in Line 10 of Bracha-Agreement. When
each player p begins executing Coin-Flip, it has a value v, € {~1,1, L}, where v, € {~1,1} indi-
cates that v, = v* is the majority value at Line 3 of Bracha-Agreement, and v, = L indicates that
p did not learn the majority value and will adopt the output of Coin-Flip as its value going into
the next iteration of Bracha-Agreement.

Recall that x, is the number of v* € {-1,1} messages validated by p in Line 4 of Bracha-
Agreement and Ay is the set of all p such that x, € [1, f] before executing Coin-Flip. The first
stage of Coin-Flip is to populate the next blackboard BB,.2;—1 that will help end the game quickly
if |Ageep| = f + 1 and cause no harm if |Ayeep| € [0, f]. Here, the offset o = 2(k — 1)T is the number
of blackboards used in epochs 1, ...,k — 1. The contents of BB,y43;-; are used to generate a bias.
The second stage of Coin-Flip populates a blackboard BB,.2; with random values in {—1, 1}. Let

5= g BBosa(i,q),
Jq

be the weighted sum of the contents of BB, 2;, mapping L to 0. The output of Coin-Flip is
sgn(bias +%). Due to the scheduling power of the adversary, each player has a slightly different
view of these two blackboards. Naturally p outputs sgn(bias(p) +3(), where a superscript of (p)
in any variable indicates p’s opinion of its value.

The even and odd blackboards BB,.;; and BB,,;—1 have the following number of rows

m(o + 2t) =

mo+2t—1)=mg=Vm-clnn.
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Here, ¢ is the parameter that controls the error probability. Henceforth, with high probability means
an event holds with probability 1 — n=%(¢),

LEMMA 8. If|Ageep| = f+1 thenv™-bias > (n—f)mg > %n\/m - cInn. If|Axeep| = 0 thenbias = 0.
If |Axeepl € [1, f1] then v™ - bias € [0,nmy], and can be selected by the adversary.

PROOF. If |Akeep| = f + 1 then for every player p, there exists a ¢ € S, with ¢ € Ayeep and
vy = v", hence val, = v*. By Theorem 6, the number of values written to BB,,2,1 is at least
(n— f)mg and hence v* - bias > (n — f)mg > %n\/m -clnn.

If |Akeep| = 0 then every player will set val, = 0 hence bias = 0. O

In the second stage of Coin-Flip, the players will populate BB,,,; with coin flips in {-1, 1}.
Define X;(t) as the sum of all non-L entries in column BB, (-, i). By Chernoff bounds, if i is
uncorrupted then |X;(¢)| < Xmax with high probability, where

Xmax = Mo = Vm - clnn.

We will force | X;(#)| < Xmax to hold with probability 1 by rounding X;(#) to +Xp,y if it lies outside
[_Xmax’ Xmax]‘

LEMMA 9. If|Ageep| 2 f +1, the output of Coin-Flip will be v* for all players, with high probability.

Proor. By Lemma 8, |bias| > (n — f)my > %n\/m - ¢Inn. The number of good coin flips in
BBo+2: is between m(n — 2f) and mn, which we model as a martingale with an optional stopping
time controlled by the adversary. By Azuma’s inequality,'® the sum of all ®(mn) good coin flips is
Vmn - clnn in absolute value, with high probability. Due to the Xy« ceiling, the contribution of
corrupt players to the sumis at most fXpax < %n\/m - ¢In n in absolute value. Since %n m-clnn+
O(mn) + f < %n\/m - ¢In n, the contribution of corrupt and non-corrupt players will be much

smaller than bias, with high probability, and sgn(bias(p) +3®)) = v* for all p. O

LEMMA 10. If |Ageep| < f, and for some player p, bias® +x®) ¢ [—f, f1, all good players will
decide the value sgn(bias(”) +3)) by the next iteration of Bracha-Agreement.

Proor. By Theorem 6, two players p and q disagree in at most f locations in BB,i5;—; and
BBo+2:. Since the absolute value of any cell in either matrix is at most 1, if bias?) +3¢) ¢ [-f. f]
then for any p, g, sgn(bias” +3)) = sgn(bias'? +3(@). Thus, at the end of this iteration of Bracha-
Agreement, a supermajority of at least |Agip| > n— f > (n + f + 1)/2 players will hold the same
value and, by Lemma 3, will reach agreement in the next iteration of Bracha-Agreement. Observe
that this lemma does not care how the players with corrupted random number generators are
distributed among the population Ayeep U Agrjp. See Remark 1. O

To summarize, Lemmas 9 and 10 imply that if the adversary has an interest in prolonging the
moment of agreement, it must
— Force |Ayeep| to be at most f in every iteration of Bracha-Agreement.
— Force bias® +%®) to lie within the interval [~ f, f]in every invocation of Coin-Flip.

When reasoning about the protocol, we will therefore assume that the adversary picks some
strategy that satisfies these two requirements, whenever possible.

13 Azuma’s inequality [18] states that if Yy, Y1, Yo, . . ., Yy, is a (super)martingale and each |Yi — Yi_;| < ck, then Pr(Y,, —
q Yy P g

Yo = p) < exp(-p?/(2 Zzzl ci)). If Yy, Y, ..., Yy is a (sub)martingale with each |Yi — Yr_1| < ¢k, then Pr(Y, — ¥y <

-p) S exp(=p?/2 X} c2)).
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4.3 Negative Correlations

Recall that k is the current epoch, ¢t € [T] is the iteration index in epoch k, and (w;) = (w; ) is
the current weight vector used in epoch k. In each epoch, we track weighted pairwise correlations,
defined as:
COI'I'(i,j) = <WiXi,Wij> = wiw; Z Xi(t)Xj(t).
te[T]
Let G and B be the sets of good and bad players.

LEMMA 11. Suppose the weight vector (w;);c[n| used in an epoch satisfies Invariant 1, but Bracha-
Agreement fails to reach agreement within the epoch. Let m = Q(nlnn/e*) and T = Q(n®In® n/e*).
Then, with high probability,

(1) Every pair of distinct i, j € G has — corr(i, j) < w;w;f, where f = m+/T(cInn)3.
(2) If the adversary does not corrupt any new players during the epoch, then

1
Z max{0, — corr(i, j) — w;w; B} > gezfmT.
(i,j)eGxB
PRrROOF OF PART 1. Fix an iteration ¢t € [T]. If i € G, let 5;, € {-1,0, 1} be value player i writes
to BBy (r, i), or 0 if it never makes such a write. For any r,s > 1and i, j € G, E[6; .6, (] = 0 since

each of 8! ., &/ _ is either 0 or a fair coin flip independent of the other. By linearity of expectation

this implies E[X;(£)X;(1)] = 0 as well.
Consider the martingale (S;);e[o, 7], Where
SO =0
and St = St—l +Xl(t)Xj(t)

For any t, |S; — S;-1| < X2, By Azuma’s inequality, |S7| < X2, VT - clnn = m+/T(cInn)? with
high probability. Therefore, by a union bound, for every pair of distinct i,j € G, —corr(i,j) <

wiwjm+/T(cInn)® = w;w;f with high probability. o

Part 2 of Lemma 11 will be proved following Lemmas 12-16. It only applies to epochs in which
the adversary corrupts no one, so we shall assume that G, B are stable throughout the epoch.

In the Coin-Flip algorithm, the construction of BB,,;-; logically precedes the construction of
BB,-2:, but because of asynchrony some of the contents of BB,,;;-; may actually depend on the
coin flips written to BB,42,.* We eliminate these mild dependencies as follows. Suppose that f is

the first player in G to fix its historical view BB®9*2:=1) At this moment, define bias(t) as
bias(t) = Z BB(Oli’;:fo*l)(j, q) (Treating L as 0)
Jq

Write 3(t) = Sg(t) + 2p(t), where X(t) and Sp(¢) are the sum of weighted coin flips in BB, 2,
originating from good and bad players, respectively.

LEmMA 12. In any iteration t,

(1) For any player q, |bias(t) — bias'?(t)| < f.

2 E [%(t)z(;(t)] - 0.

14The construction of BB o2, can proceed as soon as n — f players are finished with BB42,—1. Thus, a group of f slow
and corrupt players can choose whether to perform their last write in BB,+2,-1 based on the contents of BBy+2;.

J. ACM, Vol. 71, No. 2, Article 12. Publication date: April 2024.



Byzantine Agreement with Optimal Resilience via Statistical Fraud Detection 12:19

(3) If Bracha-Agreement does not terminate by iteration t + 1, then
~2a(t)2p(1) 2 a(t)’ + bias()Za(t) - 2f|Z6(1)]-

Proor. Part 1. By Theorem 6, BBEJ{’;;:_ZIFD and BB(O‘?;Zt;)_l disagree in at most f cells, for any

q € [n]and t’ > 0+ 2t — 1, hence |bias(t) — bias'?(¢)| < f.
Part 2. By deﬁnitio@(t) is fixed before any good players have written anything to BB,2;. Thus
E[bias(t)2s(t)] = bias(¢) - E[Zs(t)] = 0.

Part 3. By Lemmas 9 and 10, if the adversary avoids termination by iteration t + 1, then
sgn(bias® (1) +3P)(1)) # sgn(bias?(t)+3(@(t)) for two players p, g. Since |bias(t) —bias?)(t)| < f
and |3(t) - 2P)(1)| < f, it follows from 3(t) = 2 (t) + 2p(t) that

—2f < bias(t) + Z¢(t) + Za(t) < 2f.
Rearranging terms, we have both
—35(t) = —2f + bias(t) + Z¢(t)
and
S5(t) > —2f — bias(t) — Z¢(t).

Depending on sgn(Zs(t)), we multiply the first inequality by 25(¢) > 0 or the second by —-Z5(t) >
0, which implies the following.

~326(1)Zp(t) = Z6(t)? + bias()Z6(t) - 2fZc(t)]. (1)

O

Lemmas 13-16 analyze the terms of (1). Note that since Var(|2g(t)|) = E[Z5(t)?] -E[|Zc(})|]? >

0, it follows that E[|Zg(t)|] < VE[Z5(t)?]. Thus, a bound on the first term of (1) will imply a bound
on the third.

LEMMA 13. If (w;) satisfy Invariant 1, then for any G C G with |G| = n—2f = (1+¢)f, YicaWr >
1.2
56 f

Proor. We compute:

N A A 7
Dwi=161- Y (1=w) 2 |6l = D (1-w) = €' f 2 |G| (1+€') f = (e—€') f 2 gf.
ieG ieG ieB
The first inequality follows from Invariant 1 and the fact that the total weight deduction of G is at
most that of G. The second inequality follows from w; € [0, 1], so the total weight deduction of B
is at most f. The equality follows from |G| = n—2f = (1 +¢€)f. Finally, the last inequality follows
from the assumption that € < 1/2. Consequently:
2 2
A 1 A 1 A 7€ 1
2 2 2
wi = |G| w; — > |G| Wi — ZIGI( ) > —e“f,
Z Z G| Z 1G] 8(1+¢) 2 f

ieG ieG ieG

where the first inequality is Jensen’s inequality, the middle inequality is from above, and the last
inequality follows from |G| = (1 + €)f and the assumption € < 1. O

LEMMA 14. No matter how the coin flips of G are scheduled in iteration t, E[Z(t)*] = %esz.
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Proor. The good players write between m(n—2f) and mn coin flips to BB,2, at the adversary’s
discretion. For r € [0,2mf], let S, be the sum of the first m(n — 2f) + r coin flips generated by
the good players. Then E[2g(1)?] = E[ngm], which we claim is at least E[Sy]. In general S, =

Sy-1 + w;0,, where 8, € {—1, 1} if the adversary lets player i flip the next coin and §, = 0 if the
adversary chooses to stop allowing coin flips. If §, = 0 then S, = S,_; and if §, € {-1,1} then

SE=

r

(Sr—1 +w;)? = Sf_l +2w;S, 1 + w? with probability %,
(Sr—1 —wi)? = S2_ — 2w;S,_1 + w?  with probability }.

1

Thus, E[S? | 6, # 0] = S? | + w? > S2 , and in general, E[S?] > E[S? ,] > --- > E[S?]. Thus,

the adversarial strategy minimizing 3¢ (¢)? is to allow as few coin flips as possible, and from those
n — 2f players G with the smallest weights. By Lemma 13 we have

1
E[Sg] > me,z > Eesz. O
ieG

LEMMA 15. With high probability, in any epoch k, 3,c(11 2c(t)* > 3€*mfT — mn+/T(cInn)3.
Proor. Consider the sequence (A;);¢[r], where
Apg =0,

1
At = At—l + ZG(t)Z - Eesz.

mn coin flips, by a Chernoff bound, |A; — A;—1| < Zg(t)* < mn - cInn with high probability. By
Azuma’s inequality, with high probability, Ar > —(mn - clnn)VT - cInn and

1 1
Z Yo(t)? = EeszT +Ar > EeszT — mn\T(clnn)3. O

te[T]

By Lemma 14, E[S¢(t)*] > j€’mf, so (A,); is a submartingale. Since ¢(t) is a sum of at most

LemMMA 16. With high probability, we have both Ztem bias(t)2g(t) < mn+/nT(clnn)® and
2ier) IZ6®)] < TVmnclnn.

Proor. By Lemma 12, E[bias(t)S5(¢)] = 0 and hence the sequence (A;);¢[7] is a martingale,
where
Ao =0,
A; = A1 + bias(£)Sg(1).
With high probability |Z(t)| < y/mn(cInn) and ﬁ(t) < nmg = n4/m(cInn), hence by Azuma’s
inequality, 3, ¢ bias(t)Zg(t) < mny/nT(cInn)® with high probability. ]
We are now equipped to prove the second part of Lemma 11.

ProoF oF PART 2 oF LEMMA 11. Recall G, B are the sets of good and bad players, which, by as-
sumption, do not change during the epoch.

— Z corr(i, j) = Z -2g(H)Zp(t)

(i,j)eGxB te[T]

>3 (zG(t)2 —2f |26 ()] +ﬁ(t)zc(t)) (Lemma 12)
te[T]
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ALGORITHM 5: Rising-Tide(H = (V, E, ¢y, cg))

1: ' — {{i,j} € E| cg(i,j) > 0}.
2: p(i,j) « Oforalli,jeV.
3. while E’ # () do

1 if{i,j} € E

0 otherwise.

5 Choose maximum € > 0 such that y” = y + epp is a feasible fractional matching.

6: Set p «— '

7 E' — E' —{{i,j} | i orjor{i,j} is saturated} > u(i, j) cannot increase

4: Let pp(i,j) =

8: return y.

> %eszT — O(mnyT(clnn)?) — 2fO(TVmnecInn) — O(mn\/nT(c1lnn)?)
(Wh.p., by Lemmas 15 and 16)

= (éez ARy nc:n)) mfT — O(mnynT(clnn)3)
> (%ez - o(ez)) mfT — O(mnynT(clnn)3) (whenever m = Q(nlnn/e))
> iezfmT. (whenever T = Q(nln® n/e?))

Finally, since max{0, — corr(i, j) — w;w;} > — corr(i, j) — w;w; 8, Lemma 11(2) follows from the
above inequality and the fact that

Z wiw;f < |G| - |B| - p < nf -myT(clnn)® < %ezfmT

(i,j)€GXB

holds whenever T = Q(n®In® n/e*). ]

4.4 Blacklisting via Fractional Matching

After the T iterations of epoch k are complete, we reduce the weight vector (w;) in preparation for
epoch k + 1. According to Lemma 11, if a correlation score — corr(i, j) is too large, BN {i,j} # 0
w.h.p., so reducing both of i’s and j’s weights by the same amount preserves Invariant 1. With this
end in mind, Weight-Update (Algorithm 6) constructs a complete, vertex- and edge-capacitated
graph H on [n], finds a fractional maximal matching y in H, then docks the weights of i and j by
u(i, j), for each pair {i, j}.

Definition 1 (Fractional Maximal Matching). Let H = (V,E, cy,cg) be a graph where ¢y : V —
R are vertex capacities and cg : E — Ry¢ are edge capacities. A function y : E — Ry is
a feasible fractional matching if p(i,j) < cg(i,j) and %; (i, j) < cy(i). It is maximal if it is not
strictly dominated by any feasible n’.

The Rising-Tide algorithm initializes ¢ = 0 and simply simulates the continuous process of
increasing all p(i, j)-values in lockstep, so long as i, j, and {i, j} are not saturated. At the moment
one becomes saturated, p(i, j) is frozen at its current value. See Algorithm 5.

Rounding Weights Down. At the end of epoch k, player p generates a local weight vector
(Wg,plzﬂ)ie["]’ which is a function of (w; r);e[n) and its historical view BB®2kT) of the first k epochs.
(There are 2T blackboards in each epoch.) The consensus weight vector (w; i11)ie[n] is obtained
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ALGORITHM 6: Weight-Update from the perspective of player p.

Output: Weights (w; i)ie[n], k>0 Where w; i refers to the weight w; after processing epoch k — 1,
and is used throughout epoch k.

1: Set w; 1 «<— 1foralli. > All weights are 1 in epoch 1.
2: forepochk =1,2,...,Knaxy — 1 do > Kmax — 1 = last epoch followed by Weight-Update.
3 Execute T iterations of Bracha-Agreement, using weights (w; x) in Coin-Flip. Let corr®

be the resulting correlation scores known to p. Construct the excess correlation graph H](cp)
with capacities:

cv(i) = wik,
cg’)(i,j) = oy - max {0, — corr?(i, j) — w,-’kw]-’kﬂ} .

4 ,ugcp ) Rising-Tide(H]((p) ) > A maximal fractional matching
5: For each i, set

() @ -

wil) e wie = > i),
J

6: Once player i’s vector (w](.iiﬂ) je[n] is known, set the value

(i) oo () _def v
Wi k41 = Wi,k+1 1fwi,k+1 > Wmin =
0 otherwise.

by everyone adopting the weight of i according to player i’s local view, and rounding down if it is
too close to zero.

def \n
= 7,

Wi k41 = { WE,ll)<+1 if WE,ll)<+1 > Wmin

| 0 otherwise.
Recall from Theorem 6(3) that if i writes anything to any blackboard in epoch k + 1, that every
player can deduce what its view BB(>?T) Jooked like at the end of epoch k, and hence what wgli "
and w; k41 are. By ensuring that all participating players use exactly the same weight function, we

eliminate one source of potential numerical disagreement.

We will see that the maximum pointwise disagreement in the local weight vectors |w5p]2 g
wg?k) .| is less than wyin. As a consequence, if any p thinks that WE:D k) 4+ = 0 then all players will

agree that w; g1 = 0.

Excess Graph. The excess correlation graph H = (V, E, cy, cg) used in Algorithm 6 is a complete
undirected graph on V = [n], capacitated as follows:

cy(i) = wik

ce(i,j) = - max{0, — corr(i, j) — w; rwj i f},

8
e2fmT
where f is the quantity from Lemma 11. By Part 1 of Lemma 11, cg(i, j) = 0 whenever both i and
Jj are good.

The Weight-Update algorithm from the perspective of player p is presented in Algorithm 6. We
want to ensure that the fractional matchings computed by good players are numerically very close
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to each other, and for this reason we cannot use just any maximal matching algorithm, for exam-
ple, the standard “greedy” algorithm will not work. The Rising-Tide maximal matching algorithm
(Algorithm 5) has a continuous Lipschitz property, meaning bounded perturbations to its input
yield bounded perturbations to its output.

4.4.1 Properties of Rising-Tide. Recall that cy (i) is initialized to be the old weight w; x and

iplzﬂ =cy(i) = X 1y )(1 J)- We are mainly interested in

differences in the new weight vector computed by players that begin with slightly different graphs
H® H@ Theorem 17 bounds the distance between outputs in terms of the distance between
inputs.

the new weight in p’s local view is set to w

THEOREM 17. Let HP) = (VE, c(p) <p)) and H9 = (V,E, c(q) (q)) be two capacitated graphs,
which differ by ng = %, j |cg )(1 J) - C(q)(l,])l in their edge capacities and ny = ; |c(‘f)(l) - cif)(l)l

in their vertex capacities. Let i'?) and ;9 be the fractional matchings computed by Rising-Tide
(Agorithm 5). Then:

2

i

< nv + 2ng.

(c(‘f)(i) - Y PG| - (cif’)(i) -2 “(q)(i’f))
; 7

Observe that cy (i) — X ; u(i, j) is the new capacity of vertex i after deducting the maximal match-
ing edges adjacent to i. Thus, the expression in Theorem 17 measures the total difference in all
new vertex capacities after deducting the matchings computed from the perspectives of p and q.

4.5 Error Accumulation and Reaching Agreement

We perform fractional blacklisting after the first Kiy.x—1 = 3f epochs. Let k € [1, Kjpax—1] be the in-
dex of the current epoch, and let (w; i) be the weights that were used in the execution of Coin-Flip
during epoch k. Upon completing epoch k, each player p applies Weight-Update(Algorithm 6) to
update the consensus weight vector (w; x);e[n] to produce a local weight vector (wfpk) .1)ie[n), and
then the consensus weight vector (w; x+1)ie[n] used throughout epoch k + 1.

LEMMA 18 (MAINTAINING INVARIANT 1). Suppose for some € > 0 thatn = 3+ e)f, m =
Q(nlnn/e*), and T = Q(n?In® n/e*). At any point in epoch k € [1, Knax|, with high probability,

Z(l—w,k><2<1—wlk>+mﬂc—l}

ieG ieB

Proor. By induction on k. For the base case k = 1 all the weights are 1 so the claim clearly

holds. Now suppose the claim holds for k and consider k + 1. Fix any player p. A consequence of
Lemma 11 (Part 1) is that with high probability, player p’s view of the weight vector, (wfp k) L) 18
derived from (w; ) by deducting at least as much weight from bad players as from good players.

By the inductive hypothesis,

4

z‘ » 2‘ w? €
1-—w; < 1- “(k—=1).
( Wt,k+1) ( 1k+1 I n ( )

ieG ieB

Subsequently, player p derives the consensus weight vector (w; x+1) from (wqu) +1)qelnl.ieln] bY

setting wg k41 = W rounding the value down to 0 if it is at most wy,,. Therefore,

(q)
q.k+1°

D= wik) < (1= Wik + J_ YENEY ]wq bt~ W+ Wi, (2)

ieG i€eB nln®n q€[n]
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where ny is the number of players whose weight is rounded down to 0 after epoch k.

Hence, it suffices to show that X, ejp |Wff])c+1 - w;?;c+1| + Wiin o < €*/VnIn® n. By Theorem 17,
the computed weight difference between player p and any player g can be bounded by twice the
sum of all edge capacity differences (yg), since they completely agree on the vertex capacities
(nv = 0)."> According to Algorithm 6, the edge capacities differ due to underlying disagreement

on the corr(i, j) values. Thus,

) (@ 8
Wok+1 ~ Yokt <2np <2 e2fmT Z

corr'?(i, j) — corr'V(i, j)| . (3)

i#j

By Theorem 6, two players p, ¢ may only disagree in up to f cells of the blackboards
(BBy(k—1)T+25 BBa(k—1)7+45 - - - » BBakr),

that is, those used to compute corr-values in epoch k. Since the sum of each column in each black-

board is bounded by Xiax, |X§P)(t)XJ(.p)(t) - X;q)(t)X](.q)(t)I < 2Xmax- Each of the f cells that p and
q disagree on affects n — 1 corr-values. Therefore, the right hand side of (3) is upper bounded by:

8
<2- ZfmT ‘nf - 2Xmax
32nXmax
e2mT
< ? (m = Q(nlnn/e*) and Xyax = ©(VmInn))
= Wnin -

Now the inductive step for k + 1 holds by noticing that in (2).

Z w?) (9)

3/2
a1~ Yo ke1| T Wminfo < 2Wmin 1 = 21 T
q¢€[n]

64

< —-.
Vnln® n

Since k < Kpax — 1 = 3f, we conclude that Invariant 1 holds in every epoch, with high probability.
That is, if (w;), G, B are the weight vector, good players, and bad players at any point in time, then

4
(1=w) < Y (1= wp) + ———— - (Kax — 1)
;; ; ann6n

< Y (1 -w)+e'f. (Vnln®n > 3)

i€eB

(T = Q(n*In® n/e*))

O

The next observation and Lemma 19 shows that the weight of every bad player becomes 0 after
running K.« — 1 epochs of Weight-Updates without reaching agreement.

® _

OBSERVATION 1. For any q and k, if there exists a player p such that Wok =

0, then wg . = 0.

151t is somewhat paradoxical that they can agree on the vertex capacities when agreement is the whole problem. Consider
the moment at the end of epoch k when p is computing its weight vector (W((Iij;<+1)q€[n]~ If cy(q) (the weight wg &
computed after epoch k — 1) is unknown to p, then, by Theorem 6(3), ¢ must not have successfully written anything to any
blackboard in epoch k, in which case all edges incident to g have capacity zero. This situation is indistinguishable from
one in which all players agree that cy(q) = 0.
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Proor. In the proof of Lemma 18 it was shown that |w£1p ;C - wflql)cl < Vn/T = Wmin, hence if
w;{’;c =0, wai < Wnin and wg x is rounded down to 0. See Algorithm 6. |

LEMMA 19. If agreement has not been reached after Kyax — 1 = 3f epochs, then with high proba-
bility, there are f corrupt players with weight 0.

Proor. There are at most f epochs in which the adversary corrupts at least one player. We argue
below that for all other epochs, in the call to Weight-Update, the sum of the capacities of edges with
at least one endpoint in B is at least 1. This implies that in each iteration of Weight-Update, either
some i € B with cy(i) = w; > Wiy becomes saturated (and thereafter w; = 0 by Observation 1),
or the total weight of all players in B drops by at least 1. Each of these cases also occurs at most f
times, hence Kyax — 1 = 3f epochs suffice to push the weight of f bad players to zero, with high
probability.

We now prove that the sum of the capacities of edges with at least one endpoint in B is at
least 1.

8
ce(i.j) = > max{o, corr(i, j) - wi kwj )
. efmT
(i.j)€ln]xB (i.j)€[n]xB
8
> 2 fmT Z max{0, corr(i, j) — w; xwj rf}
(i,j)eGxB
> 5 _(lepr (by Lemma 11(2))
= —€ fm emma
€*fmT \8 Y
=1. o

LEMMA 20. Suppose Invariant 1 holds in an epoch in which corrupt players have zero weight. With
high probability, Bracha-Agreement terminates with agreement in this epoch.

Proor. The proof of Lemma 11(2) states that, with high probability, — >(; jegxp corr(i, j) >
%ezfmT > 0 in any epoch in which Bracha-Agreement fails to reach agreement. On the other
hand, by assumption — ¥ ; ;e corr(i,j) = 0. Thus, with high probability, Bracha-Agreement
reaches agreement in this epoch. O

Remark 3. Assuming the preconditions of Lemma 20, only good players participate and flip
fair coins. Nonetheless, the output of Coin-Flip can still be strongly biased by the adversary’s
scheduling power alone. Consider the following adversarial strategy. Suppose n = 3f + 1 and the
population is partitioned into B U Giow U Ghigh, Where B is the corrupt set, |B| = f, [Glow| = f + 1,
and |Gpign| = f. Players in B have weight 0; players in Gjo, have weight 1/(f + 1) (consistent
with Invariant 1), and players in Gygp still have weight 1. The adversary permits B U Gyqy, to write
m(2f +1)—1 coin flips to a blackboard, that is, one coin-flip shy of completing it. At this point, the
weighted sum of these coin flips is some 3, where [So| = O(y/m(f + 1)logn/(f + 1)) = O(e"?) =
O(n?) with high probability. The adversary then allows the weight-1 players in Ghigh to write
coin-flips to the blackboard one-by-one in a round-robin fashion. If the weighted sum ever gets
near the origin, for example, within [—f/3, f/3], the adversary can create arbitrary disagreements
by having everyone in Gy, flip one more coin, then having f/3 with the same sign write their
coin flip to the blackboard, which can be revealed to any subset of the players. At this point, the
adversary allows the final coin flip from B U Gjoy to be written, completing the blackboard. The
probability of not hitting [~ /3, f/3] in a weighted random walk with length fm = O(n®), starting
from 3y = O(n?), is O(1/n).
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ALGORITHM 7: Iterated-Blackboard(t) from the perspective of player p

1: Set complete(t) « false and set { « maxlast®!~V if t > 1 or any dummy value if ¢ = 1.
Broadcast the write BB,(0,p) « (.

2. upon validating > n — f ack(BB;(m(t), q))’s for > n — f different g for the first time:
set complete(t) « true and last??) « last'?), then broadcast the vector last®?).
3. upon validating ack(BB,(r,p))’s from > n — f different players for the first time:
if — complete(t) A (r < m(t))
then generate a value { and broadcast the write BB,(r + 1,p) « (.
4. upon validating BB, (r, q) from player q for the first time:
set BBEP)(r, q) < BB,(r,q) and last?)(q) « (¢, 7);
if — complete(t) then broadcast ack(BB,(r, q)).
5: upon validating last®?) vectors from > n — f different players q for the first time:

set maxlast??) (i) — maxq{last(q’ D(i)} (point-wise maximum, lexicographically).
At this point BB®1) = (BB?” t), . BBEP’”) is fixed as follows:

BB(p’t)(r i) = BB%’)(r, i) if (t',r) < maxlast??)(j) (lexicographically) and r € [1, m(t)],
v 1 otherwise.

This concludes the analysis of Byzantine-Agreement (Algorithm 3). The outstanding claims are
now Theorem 6, which is proved in Section 5, and Theorem 17, which is proved in Section 6.

5 THEITERATED BLACKBOARD

In this section, we prove Theorem 6, restated below, by designing and analyzing an lterated-
Blackboard protocol (Algorithm 7). Our protocol builds on Kimmett’s [32] improvement to King
and Saia’s [33] Blackboard protocol. Throughout this section “t” simply refers to the blackboard
index, not the index within an epoch of Byzantine-Agreement.

THEOREM 6. An iterated blackboard (BB1,BBg,...,BB;) is a sequence of matrices, BB; being
an m(t) X n matrix with all cells initially 1. It is constructed by calling Iterated-Blackboard(1), . . .,
Iterated-Blackboard(t). In the execution of Iterated-Blackboard(t), every good player p fixes a view
BB#1) = (BB(lp’t), cee BB(tP’t)) of the true blackboards (BB1,...,BB;). lterated-Blackboard(t) is
resilient to f < n/3 Byzantine faults, and has the following properties.

(1) Playeri writes values successively to cells in column BB, (-, i) and only player i may write values

to this column. Thus, at all times, BB,(-, i) consists of a prefix of non-L values and a suffix of Ls.

(2) When player p fixes its historical view BB®?), it contains all writes recorded in BB~ if

t > 1. Moreover, BB(tp’ Y contains at least n — f full columns, with m(t) writes, and at most f
partial columns. It is guaranteed that for every t’ € [t], i € [n], r € [m(t')],

BBY(r, i) € {BBy(r,i), L}.

Moreover, there are at most f tuples (t’, r, i) such that for some p, BB(f,” t)(r, i) =L # BBy(r,i).
All such tuples have distinct 3rd coordinates.
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(3) If a player q writes any non-1 value to BB, then by the time any player p fixes BB, p can
locally reconstruct q’s view BB(%*~1 of the history up to blackboard t — 1.
(4) The latency of constructing BB®¥7) is linear in the total number of rows, namely O(X 1<, m(t)).

Iterated-Blackboard uses Reliable-Broadcast (Theorem 1) to construct a series of blackboards
BB = (BB, BBy, . ..), the columns of which are indexed by player IDs in [n] and the rows BB; are
indexed by [0, m(t)]. The blackboard proper consists of rows 1,. .., m(t); the purpose of row zero
is to reduce disagreements between the views of good players. Every player p maintains BB®) =
(B B(lp), BBép), ...), where BB&p)(r, i) records the value written by player i to BB,(r, i) and validated
by player p, or L if no such value has yet been validated by p. Each player maintains a vector last®
indicating the position of the last validated write from each player, that is, last?)(i) = (¢,r) if p
validated i’s write to BB,(r, i), but has yet to validate any subsequent writes from i to BB;, nor to
BB;+1,BB;y2, . ... Let us emphasize the BB and last'?) are dynamic global variables of p; they are
not tied to any specific invocation of Iterated-Blackboard(t).

Algorithm 7 gives the algorithm Iterated-Blackboard(t) for generating BB, from the perspec-
tive of player p. Player p may only begin executing it if + = 1 or if it has fixed BB® 1 in
Iterated-Blackboard(t — 1). At some point in Iterated-Blackboard(t), p fixes a view BB®1) =
(BB(lp’t), o BB(tp’t)) of the first t blackboards. In particular, when ¢t > 1, p begins Iterated-
Blackboard(t) having already fixed BB®*~1 and the vector maxlast?”~Y, which indicates the
position of the last write in BB#*~V of each player.

The Iterated-Blackboard protocol (Algorithm 7) is defined by five reactive rules, which obscures
the flow and structure of the protocol. It consists of three phases: Initialization (Line 1), Populating
the Blackboard, (Lines 3 and 4), and Synchronization (Lines 2 and 5). We describe these three phases
from the perspective of p.

Initialization. Once p has fixed BB~V and maxlast®’~" in Iterated-Blackboard(t — 1), p may
execute the first step of Iterated-Blackboard(t) (Line 1), which is to write maxlast?®?~ to
the zeroth row (BB, (0, p)), and to initialize the boolean complete(t) to be false. (Player p will
set complete(t) to be true when p sees n — f full columns in BB(tp).)

Populating the Blackboard. The blackboard is populated via writes and acknowledgements, both
of which are sent by Reliable-Broadcast. In general, when a player has validated n — f ac-
knowledgements ack(BB,(r, p)) to its own write to the rth row, r < m(t), it generates a value
{ and writes it to BB, (r + 1, p) (Line 3).!° When p validates one of ¢’s writes, say to BB,(r, q),
it broadcasts an acknowledgement ack(BB,(r, q)), but only if complete(t) = false (Line 4).

Synchronization. Once a player has recorded n — f full columns (with acknowledgements), it
sets the boolean complete(t) «— true, broadcasts the current state of its last vector last®?)
last® (Line 2), and ceases broadcasting acknowledgements (Line 4). Because of asynchrony,
the writes recorded by p and g at the moment they set complete(t) « true can differ dra-
matically. The purpose of Line 5 is to reach near-agreement on the contents of BB,. Player p
waits until it validates last‘®?) vectors from n— f players g, and defines maxlast®? to be their
point-wise maximum. By definition, BB®*) records all of ¢’s writes up to maxlast'? ’t)(q). As
we shall see, maxlast®”?) and maxlast'%?) can only disagree in f entries, and by at most 1.

Every message M from g accepted by p in Reliable-Broadcast must be validated before Iterated-
Blackboard can react to it. In general, p validates M when it has validated messages that, were they

16In the context of our Byzantine Agreement protocol, { is either v* (the majority value) or 0 when ¢ is odd, and a uniformly
random value in {-1, 1} when ¢ is even. See Coin-Flip (Algorithm 4).
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to be processed by g, would have resulted in g broadcasting M. Specifically, validation entails the
following behavior in each step:

Line 1. Player p will only validate a write BB,(0,q) « ( if t = 1, orif t > 1 and { = maxlast®*~
is the point-wise maximum of n — f last'?**~ vectors validated by p.

Lines 2, 4. Player p will only validate an ack(BB,(r, q)) if it has validated ¢’s write to BB,(r, q).

Line 3. Player p will only validate ¢’s write BB,(r,q) < {, r > 0, if { is a legal value and it has
validated n — f acknowledgements to q’s write to BB,(r — 1, q).!” The rules for validating a
write to BB, (0, g) were covered above.

Line 5. Player p will validate last@?) if BB?,J )(r, i) # L whenever (t,r) < last'®?)(i). In other
words, p will validate last'®?) once it has recorded all the writes that q purports to have
recorded, at the moment it set complete(t) « true.

An important point is that the conditions of the “upon” statements of Iterated-Blackboard are
checked whenever a message is validated. In particular, player p may record a write to BB(tP )(r, q)
(Line 3) after it has fixed BB®**) and moved on to execute Iterated-Blackboard(t + 1). These can
be thought of as retroactive corrections to BB;, that will be reflected in BB® ) for some t’ > t.

In the next lemma, we show that the validation mechanism does not cause deadlocks.

LEMMA 21. Supposet =1 orn — f good players fix maxlast?’~" and BB~V Then every good
player that executes Iterated-Blackboard(t) eventually fixes maxlast® t and BB®-1),

Proor. First, we claim that, if any good player considers BB, complete (sets complete(t) = true),
then every good player that executes Iterated-Blackboard(t) eventually considers BB, complete.
Indeed, if a good player considers BB, complete, then it must have validated ack(BB,(m(t), g))s
from atleast n— f players, for at least n— f values of g (Line 2). By the properties of reliable broadcast
(Theorem 1), every other good player eventually accepts and validates the same messages. Thus,
every good player that executes Iterated-Blackboard(t) eventually considers BB; complete.

Next, we claim that, if at least n— f good players consider BB; complete (setting their respective
variables complete(t) = true), then every good player p that executes Iterated-Blackboard(t) will
eventually set maxlast??). Indeed, by Line 2, every good player q that considers BB; complete will
broadcast a last'®*) vector. By the properties of reliable broadcast, any blackboard values validated
by q will eventually be validated by every good player and, hence, every good player will eventu-
ally participate in ¢’s broadcast of last(%* ). Thus, every good player p eventually validates last(®?)
vectors from at least n — f different players g and sets maxlast'? 9 (Line 5).

Finally, since at least n — f good players execute the procedure lterated-Blackboard(t), by our
preceding discussion, it suffices to show that at least one such player considers BB; complete.
Suppose, for a contradiction, that this is not the case. Consider any good player p that executes
Iterated-Blackboard(t) with the minimum number of writes to its column of BB;.

Suppose p writes to row m(t). Then, by minimality, every good player g that executes the pro-
cedure Iterated-Blackboard(t) writes to row m(t) in their respective columns, that is, broadcasts
a write to BB;(m(t), q). By the properties of reliable broadcast, the n — f ack(BB;(m(t) — 1,q))’s
that allow each such player g to broadcast BB, (m(t), q) will eventually be validated by every good
player. Thus, every good player will eventually validate BB,(m, q) and, as they do not consider BB,
complete by assumption, they will broadcast ack(BB;(m(t), q)). Therefore, every good player will

7Tn the context of our Byzantine Agreement protocol, ¢ is legal if { € {~1, 1} when ¢ is even, and { € {v*, 0} when ¢ is
odd. Moreover, in the odd case, each player must only write ©* or 0 consistently; see Coin-Flip (Algorithm 4). The value
©* is possible only if some player broadcast the majority value v* in Line 4 of Bracha-Agreement, whereas 0 is possible
only if n — f players broadcast L in Line 4 of Bracha-Agreement.
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accept (and validate) at least n— f ack(BB;(m(t), q)) for at least n— f different q and, consequently,
consider BB, complete (Line 2), which is a contradiction.

Now suppose p last writes to row r < m(t). If r > 0, then the n — f ack(BB,(r — 1,p))’s that
allow p to broadcast BB, (r, p) will eventually be validated by every good player. Hence, every good
player will eventually participate in p’s broadcast of BB,(r, p) and validate BB,(r, p). Similarly, if
r = 0. Since p does not write to row r + 1 < m(t), it never validates n — f ack(BB,(r, p))’s. Since
at least n — f good players validate BB,(r, p), it follows that at least one such player does not
broadcast an ack(BB,(r, p)). By Line 4, this player must have considered BB, to be complete by
the time it validates BB, (r, p), which is a contradiction.

Therefore, in both cases, we reach the desired contradiction. O

Recall that after executing Iterated-Blackboard(t), p’s view of the history is BB®*), defined to
be:

BB t)(r i) = BBEIf)(r, i) ifre[1,m(t)] and (', r) < maxlast??(i) (lexicographically)
v 1 otherwise

In other words, we obtain BB%’” by stripping off the zeroth row of every BB(f,’ ) matrix and replac-
ing any values in column i after maxlast®?)(i) with L. We emphasize that, in contrast to p’s local
blackboard variable BB(tp), once BB is set, it never changes.

LEMMA 22. Suppose some good player q validates the ack(BB,(r,i)) messages broadcast from at
least n — f different players. Then every good player p that finishes iteration t has

BBY)(r,i) = BB (r, i) = BB,(r, i).

Proor. Let Sy be the set of players broadcasting ack(BB;(r,i)) messages that g validates. It
follows that last'‘">(i) > (¢,r) for all q" € So. When p finishes iteration ¢, it validates last'd"?)
vectors for n — f players ¢’ € S;. Since Sy N Sy # 0, maxlast®?(i) = maxqfesl{last(q,’ D)} = (t,r),
meaning that p will not finish Line 5 until it accepts and validates player i’s write to BB, (r, i),
recording it in Bng) and hence BBip’t). O

LEMMA  23. Suppose that each good player executes lterated-Blackboard(1), ...,
Iterated-Blackboard(t), beginning iteration t’ + 1 only after it has executed Line 5 of iteration
t’. Then, for any two good players p, q that finish iteration t, BB and BB'®") disagree in at most
f positions in total. If they disagree on the contents of any position, one is L.

Proor. The properties of reliable broadcast ensures that BBEP) and BB(,q) cannot contain distinct
non- 1 values in any position. Therefore, we must argue that they differ in at most f positions. Fix
a player i and let BB, (r;, i) be the last of i’s blackboard writes for which it validated at least n — f
ack(BBy,(r;,1))s. By Lemma 22, BB(f:’ t)(rl-, i) = BB(;'_I’ t)(rl-, i). Moreover, p, g have both validated all
of i’s blackboard writes prior to BB;,(r;, i). Subsequent blackboard writes of i that could appear in
the local matrices of p and g are limited to BB,,(r; +1, i) (if r; < m(t;)) and BBy,+1(0, 1), ..., BB.(0, 1)
(ift; < t). This follows by assumption on (¢;, r;): at the first time when both p and ¢ finish iteration ¢,
i has not validated sufficiently many acknowledgements to attempt any writes beyond these. Since
we strip off the zeroth rows of each local view to form BB®*), BB(%:*), they may only disagree in
column i at BB, (r; + 1,i). Now, for at least n — f players i we have (t;,r;) = (¢, m(t)). Thus,
BB®*) BB(%!) may only disagree in f cells in total. O

LEMMA 24. IfBB(1,q) # L, then by the timep fixes BB®1), it can reconstruct s history BB(%-1~1
through blackboard t — 1, assuming t > 1.
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Proor. Before g wrote anything to BB,(1, ¢) it must have written BB;(0,q) « maxlast(@ !~V
and caused n — f acknowledgements ack(BB,(0, g)) to be broadcast. By Lemma 22 every player
will accept and validate ¢’s write to BB, (0, ) before fixing BB®*), and hence be able to reconstruct
BB ‘D from maxlast(®~V. i

This concludes the proof of Theorem 6.

6 RISING-TIDE IS LIPSCHITZ CONTINUOUS

The goal of this section is to prove Theorem 17, which is restated below.

TUEOREM 17. Let H?P) = (V,E, cgf), cg’)) and H® = (V,E, ci?),céq)) be two capacitated graphs,
which differ by ng = %, ; |c§3p)(i,j) - cgsq>(i,j)| in their edge capacities and ny = 3; |c(‘f)(i) - cgf)(i)|
in their vertex capacities. Let i'*) and ;9 be the fractional matchings computed by Rising-Tide
(Agorithm 5). Then:

2

1

< nv + 2ng.

0- S [0-Swo)
7 J

6.1 Dependency Graphs

We first introduce the idea of a dependency graph that captures the moments when vertices be-
come saturated in Rising-Tide (Algorithm 5). We will then use structural properties of dependency
graphs to finally prove Theorem 17. Throughout this section, the two capacitated graphs under
consideration are G = (V, E, c‘c,;, cg) and H = (V,E, c{}’, c?)

Definition 2 (Dependency Graph). Let Dg be a directed graph on the same vertex set: V(Dg) = V.
Consider the execution of Algorithm 5 on G. For each edge e = {i,j} € E, if at the moment e is
removed from the working set E’ (Line 7), i (resp. j) is saturated, then we include in D a directed
edge j — i (resp. i — j). Notice that if both i and j are saturated simultaneously, then D¢ includes
both edges i — jand j — i.

We first state a useful continuity property of Rising-Tide, that if we continuously deform the
input capacities, the output fractional matching also changes continuously.

LeEmMA 25 (THE CoNTINUITY LEMMA). Let G and H be two fractional matching instances where
every vertex- and edge-capacity differs by at most . Then, for every edge e, |uc(e) — pg(e)| < F(n)é
for some function F which depends only on the size of the graph.

Proor. Without loss of generality, we can assume that each edge capacity cg(i, j) <
min{cg(i), cg(])} is always bounded by the capacities of its endpoints.

Imagine running Rising-Tide simultaneously on both G and H, stopping at the first saturation
event that occurs in, say, G but not H. (A “saturation event” is the saturation of a vertex or edge with
non-zero capacity.) Let g, iy, be the fractional matchings at this time and G’, H” be the residual
graphs, that is, obtain new capacities by subtracting each p(i, j) from cg(i), c‘(,;(i), and cg(i, 7).
The maximum difference in vertex- or edge-capacities between G’, H' is né. The argument can be
applied inductively to G’, H’, and since there are O(n?) saturation events, the maximum difference
between any capacity (and hence an p-value) is always bounded by F(n)¢, where F(n) = no)

The magnitude of F is immaterial to our argument, so long as it depends only on n. Lemma 25
allows us to make several simplifying assumptions, which are ultimately justified in the final proof
of Theorem 17.
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A1l. Although we are comparing two graphs G, H with possibly many capacity differences, we
can assume without loss of generality that they differ in precisely one vertex- or edge-
capacity.

A2. We can assume that the dependency graphs for G and H are identical.

A3. We can assume, via infinitesimal perturbations, that no two vertices are saturated simulta-
neously. In particular, this implies that Dg is acyclic. (See Lemma 26.)

LEMMA 26 (BAsiC PROPERTIES OF y1 AND D). Assume graph G satisfies assumption (A3). Let j1 be
the output of G from Algorithm 5. Then:

(1) For any two edges e; € E and e, € E, if e; gets removed from E’ before e,, then pi(ey) < p(e).

(2) For eachu € V, all edges directed towards u in Dg have the same pi-value.

(3) For any edgeu — v in D and any edge {v, w} € E, u(u,v) > u(v, w).

(4) (Monotonic Path Property) The u-values along any directed walk ug — u; — u; — -+ on Dg

are non-increasing. That is, p(ug, u1) = p(ug, up) = - -.
(5) (Directed Acyclic Graph Property) D¢ is a DAG.

Proor. To show (1), it suffices to observe that in Algorithm 5 the fractional matching y grows
strictly increasing at each iteration.

To show (2), it suffices to show that for each vertex u € V with any two incoming edges v — u
and w — u on Dg, pu(v,u) = p(w,u). Suppose conversely and without loss of generality u(v, u) >
p(w, u). By the time {w, u} gets removed from the working set E’, u is already saturated. However, it
is now impossible to increase u(v, u) anymore, contradicting the assumption that p(v, u) > p(w, u).

To show (3), we notice that at the time {u, v} is removed from E’, v is saturated. At this moment,
any edge {v,w} € E incident to v cannot increase its y value anymore. Hence, {v, w} will be
removed from E’ at the same time with {u, v} or prior to the time when {u, v)} is removed from
E’. Thus, by (1) we have p(u,v) > p(v, w). (4) follows from (3).

To show (5), assume that there exists a cycle up — u; — -+ — ug in Dg. By the monotonic
path property (4), all edges u(u;, u;+1) have the same fractional value when they were removed
from the working set E’ in the Rising-Tide algorithm. Moreover, by definition of Dg, all vertices
are simultaneously saturated, which contradicts (A3). O

Henceforth, (A3) is assumed to hold in all graphs.

6.2 The Proof

To prove Theorem 17, it suffices to show (via Lemma 25 and an interpolation argument) that the
statement holds in the special case that (c‘c,;, cg) and (C‘I;I , cg ) differ in exactly one vertex capacity
or exactly one edge capacity, and that Dg = Dp.

We start with some observations when there is only one change on the capacities between G
and H.

LEMMA 27. Let G and H be two input graphs with ¢{ = cil and D &f D¢ = Dy. If {i, j} is an edge
for which neither i — j nor j — i appear in D, then ug(i, j) = pu(i, j).

Proor. If both i and j are not saturated by the time {i, j} gets removed from E’, then {i, j} itself
must be saturated, hence pg(i, j) = cg(i,j) = Cg(i,j) = pup(i, j). o

Suppose graphs G and H have the same capacities except at some vertex s € V. Then Lemma 27
implies that if we run the Rising-Tide algorithm on both instances G and H, the first moment they
differ must be when one graph saturates s but the other does not. In this case, we can think of s
being the source of all disagreements. Intuitively, if we look at an edge e where pg(e) # pn(e), we
should be able to trace this disagreement back to s.
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LEMMA 28. Assume that G and H differ only in the capacity of one vertex s and that D def D¢ = Dpg.
Consider any edge {i, j} such that (i, j) # pu(i, j). Then, there exists a path in the dependency graph
D containing {i, j} and s. Moreover, every edge e on this path satisfies ug(e) # pg(e).

Proor. Without loss of generality, when we consider an edge {i, j} with pg(i,j) < pu(i,j), we
may always assume j — i appears in D. (This edge must exist by Lemma 27.) That is, when {1, j}
is removed from the Rising-Tide algorithm, it is because i is saturated. Now we prove this lemma
by induction on all edges from the smallest y value to the largest ug value.

Base Case. Suppose {i,j} is one of the edges with the minimum pg-value such that pc(i,j) <
up(i, j). Since this is the first moment when the algorithm behaves differently, and we assume that
Jj — ion G, it follows that at time pg(i, j), the vertex i is saturated in G but not in H. Moreover, all
other edges incident to i have the same pg-value at this time. Therefore cg(i) < c{f (i), and hence
i = s. There is a trivial path in D including {j, i} and s.

Inductive Case. Now let us prove the inductive case. Suppose pg(i, j) # pr(i, j) and when {i, j} is
removed from E’, the vertex i is saturated. If i = s then we are done. Otherwise, we have cg(i, )=
c‘ﬁl (i,j). By Lemma 26(2,3) and summing up all fractional matching values around the vertex i, we
know that there exists an edge {i,j’} with pc(i,j’) # pc(i,j) and also pc(i,j’) # pn(i,j’). By
Lemma 26(1) we know that pg(i,j’) < pc(i,j). By the induction hypothesis and Lemma 27, we
know that i — j” in D and there must be a path from {i, j’} to s in D. Therefore, there exists a path
including {j, i} and s in D as well. O

Now, we prove the simplest version of Theorem 17, where G, H differ in one vertex capacity and
have the same dependency graph.

def
LEMMA 29. Assume G and H only differ in the capacity of one vertex s, and that D = Dg = Dy.
Then, the total differences among the remaining vertex capacities can be bounded by

>, (c‘;(o - ﬂG(iJ)) - (d;f OEDY pHo;j))
J J

1

Proor. By Lemma 28, all edges that have different fractional matching values form a subgraph
Dy of D with s being the only minimal element. If s is not saturated then there are no incoming
edges to s. By Lemma 28, we know that Dgif = 0 = pg = py and in this case the equality holds
for the statement.

Observe that whenever there is an incoming edge to a vertex i in D, the vertex i must be saturated.
Since we are measuring differences in the remaining vertex capacities, the only place where such
disagreement could happen is on all maximal vertices of Dy Let T be the set of maximal vertices,
that is, those without incoming edges.

We prove a certain inequality by induction over all sets S such that S € V' —T and S is downward
closed, meaning there is no outgoing edge from S to V —S. As a consequence s € S. Let 0S5 be the set
of incoming edges from V — S to S. We will prove that for any coeflicients {v;—; € [-1, 1]} j)eas
we have

< icg(s) - cg(s)| .

D vini6li ) = (i )| < |e§(5) = efl(s)].
(i—j)eds

Base Case. The minimal downward closed set is S = {s}. By Lemma 26(2) all incoming edges
have the same pg(i,s) — ug(i, s) values. That is, all terms in {ug(i,s) — un(i,s)} are of the same
sign and hence the claim is true for the base case.
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Inductive Case. Consider any downward-closed set S € V — T with |S| > 2, and let {v;,; €
[-1,1]} be any set of coefficients on the fringe dS. Let u # s be any maximal element in S.

Let Xj, and Xy be the set of incoming and outgoing edges incident to u. Since S is downward-
closed, we have

dS = 9(S - {u}) U Xin — Xout-
Now, by Lemma 26 we know that all incoming edges (i — u) in Xj, have the same fractional
matching value in g, and the same value in prr. We denote the difference between these values

def . .
by A = pg(iu) — pp(i,u).
Let v, = ﬁ (X(imu)ex;, Viou) € [-1.1] be the average coefficient among all incoming edges.
Since u is saturated, we have

D valpe ) = pr@ )+ Y viu(pe(u) - pai,w)

(u—j)eXout (i—u)eXiy
= D valpe@)) = () + vl Xl - A (by definition of v,,)
(u_’J) E)(oul

= D, (o) =)+ Y (ueliu) = piw)
(u—j)eXout (i—u)eXin
= (e (w) - cfl @)

=0.

By removing u from S we obtain a smaller subset on which we can apply the inductive hypoth-
esis. Define coefficients {v/_, .} with v/ . = —v, for all (u — j) € Xyt and v/_,, = v;_,; for all

i—j u—j
unrelated edges not incident to u. Then, we have

D Ve (i) = pr(ii )

(i—j)edS

< Vi (6 (i, j) = pa (i ) | + v - 0 (vertex u is saturated)
(i—j)ed(S—{u})

< |cg(i) - cl‘f (i)| . (by induction hypothesis)

By choosing S = V\ T and coeflicients v;_,; = sgn(uc(i, j) — pr(i, j)) for every edge (i — j) € 0S,
we conclude that

D (cg(,-) -2, uGa,j)) - (ce OEDY uH(i,ﬂ)
J J
= > D mel ) = ) i)
J J

(forall i # s, cg(i) = cg(i), and s is saturated)

i#s

=D el = > patig)
ieT | J

= Z Viesj(pa (i, j) = pr (i, ) (use v;—,; to remove the absolute value operation)
(i—j)edsS
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Fig. 1. Left: suppose G, H differ only in the capacity of edge {s, t}. Right: applying the transformation, G’, H’
now only differ in the capacity of vertex x.

Z Viesj(pa (i, j) = pu(i, J)) (this sum is positive)
(i—j)eds

< |cg(s) - cg(s)| .

A

O

Lemma 29 handled the case when G, H differ in one vertex capacity. Lemma 30 reduces the case
where they differ in one edge capacity to Lemma 29.

LEmMA 30. Assume that G and H differ only in the capacity of one edge {s,t} € E. Assume that

D Dg = Dy Then,

> (c€<i> -, ﬂc(i,j)) - (cé’ (i) - ZuH(i,j))
J J

1

ProoF. By reduction to Lemma 29. Create G’ by subdividing {s,t} into {s,x}, {x,t} with
cg'(s,x) = cg,(x, t) = oo and c‘C,;' (x) = ch’(s, t). Create H' from H in the same way. Since Dg = Dy,
the same vertices must be saturated in both, and in particular, among s, t, and {s, t}, both execu-
tions saturate the same element first. If they both saturate s or ¢ first, then the capacity of {s, ¢} has
no influence on the execution and ug = pg. If they both saturate {s, ¢} first, then the executions
on G, H proceed identically to the corresponding executions on G’, H’. Note that G’, H’ differ in
one vertex capacity, with |cg/ (x) - cf,ll (x)| =2 |cg(s, t) — c? (s, t)| The lemma then follows from
Lemma 29 applied to G’, H'. ]

<2 icg(s, t)— cg(s, t)i .

We can now prove Theorem 17.

Proor oF THEOREM 17. Imagine continuously transforming the capacities (cg, cg) into (c{f , cg )
by modifying one vertex capacity or one edge capacity at a time. In this continuous process,
there are two types of breakpoints to pay attention to. The first is when we switch from trans-
forming one capacity to another, and the second is when the dependency graph changes. Let
G = Gy,Gy,...,Gx = H be the sequence of graphs at these breakpoints. Up to a tie-breaking
perturbation, we can assume each pair (G;, G;4;) differ in one edge or vertex capacity, and have
the same dependency graph. By Lemma 25 the objective function is continuous in the input, and
does not have any discontinuities at breakpoints. Let nv (i), ng(i) be, respectively, the difference in
vertex and edge capacities between G; and G;;;. By Lemmas 29 and 30 the objective function is

bounded by Y.X7!(nv (i) + 27£(0) = nv + 2n. O
7 CONCLUSION

Our main result is the first polynomial-latency agreement protocol in the full-information model
resilient to f = n/(3 + €) adaptive Byzantine failures. When ¢ is bounded away from zero it has
expected latency O(n*) and in the extreme case when € = 1/f (n = 3f + 1) it has latency O(n'?).
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This is the first improvement to Bracha’s [13] 1984 protocol when n = 3f + 1, and improves on
the resilience of King and Saia’s [33, 34] protocols; see Table 1.
We see some interesting directions for future work.

— Let n9'©) be the optimum latency of a Byzantine Agreement protocol with resiliency f =
n/(3 + €) against an adaptive adversary. What does the function g look like and what is
lim¢_,o g(€)? From [33] we know that lim._, g(€) < 2.5, at least for protocols with expo-
nential local computation, and from [4, 5] we know lim._,. g(€) > 1. What is the correct
limit of g(€)? Are there qualitatively different protocols achieving latency n9'€) for various
ranges of €? One can also look at the optimal latency-resiliency tradeoff when f = n',
y € (0,1), is expressed as a polynomial of n.

— Each step in the protocols we use (Reliable-Broadcast and Bracha-Agreement [13], Iterated-
Blackboard, and Coin-Flip) typically consists of sending a message to all players and waiting
for n — f messages before making some state transition. If we were to wait for n — f +
1 messages, we may wait forever if f players crashed and never sent any messages. On
the other hand, once we introduce blacklisting it is not clear that waiting for just n — f
messages is necessary anymore. For example, suppose that }}; w; = n — 2pf and that we
have reduced the weight of good and bad players each by p f, with high probability. Rather
than wait for n — f messages, we could wait for messages from players whose total weight
is at least n — (p + 1){.!8 This would help speed up later epochs since we could then access
the weight advantage of good players. However, since there is some non-zero probability
of blacklisting pairs of good players, there is some non-zero probability that a protocol will
deadlock if it waits for n— (p + 1) f weight before proceeding. This raises the possibility that
there is a complexity separation in Byzantine agreement between Las Vegas protocols (which
terminate in agreement with probability 1) and Monte Carlo protocols (which terminate in
agreement with probability 1—o0(1), and may deadlock or terminate without agreement with
o(1) probability). Cf. [31].
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