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Since the mid-1980s it has been known that Byzantine Agreement can be solved with probability 1 asyn-
chronously, even against an omniscient, computationally unbounded adversary that can adaptively corrupt
up to f < n/3 parties. Moreover, the problem is insoluble with f ≥ n/3 corruptions. However, Bracha’s [13]
1984 protocol (see also Ben-Or [8]) achieved f < n/3 resilience at the cost of exponential expected latency
2Θ(n), a bound that has never been improved in this model with f = "(n − 1)/3$ corruptions.

In this article, we prove that Byzantine Agreement in the asynchronous, full information model can be
solved with probability 1 against an adaptive adversary that can corrupt f < n/3 parties, while incurring
only polynomial latency with high probability. Our protocol follows an earlier polynomial latency protocol of
King and Saia [33, 34], which had suboptimal resilience, namely f ≈ n/109 [33, 34].

Resilience f = (n−1)/3 is uniquely di!cult, as this is the point at which the in"uence of the Byzantine and
honest players are of roughly equal strength. The core technical problem we solve is to design a collective
coin-"ipping protocol that eventually lets us "ip a coin with an unambiguous outcome. In the beginning,
the in"uence of the Byzantine players is too powerful to overcome, and they can essentially #x the coin’s
behavior at will. We guarantee that after just a polynomial number of executions of the coin-"ipping protocol,
either (a) the Byzantine players fail to #x the behavior of the coin (thereby ending the game) or (b) we can
“blacklist” players such that the blacklisting rate for Byzantine players is at least as large as the blacklisting
rate for good players. The blacklisting criterion is based on a simple statistical test of fraud detection.

CCS Concepts: • Theory of computation→ Distributed algorithms; • Mathematics of computing→
Probabilistic inference problems;
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1 INTRODUCTION
In the Byzantine Agreement problem [35, 38], n players begin with input values in {−1, 1} and
each must decide an output value in {−1, 1} subject to:
Agreement. All uncorrupted players must decide the same value (and only that value).
Validity. If all uncorrupted players decide v , then at least one such player had v as its input.
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Termination. Each uncorrupted player terminates the protocol with probability 1.
The di!culty of this problem depends on the strength of the adversary and assumptions on the

communication medium. We consider a standard asynchronous model of communication against
a strong adversary. Each player can send point-to-point messages to other players, which can be
delayed arbitrarily by the adversary, but not dropped or forged. In addition, the adversary is aware
of the internal state of every player, is computationally unbounded, and may adaptively corrupt up
to f players; these are also known as Byzantine players. Once corrupted, the behavior of a player
is arbitrary, and assumed to be controlled by the adversary. Following Ben-Or [8], Bracha [13]
proved that Byzantine Agreement can be solved in this model when f < n/3. The protocols of
Ben-Or and Bracha are not entirely satisfactory because they have latency exponential in n. (See
Section 2.1 for the de#nition of latency in the asynchronous model.)

The Byzantine Agreement problem has been solved satisfactorily in a stronger communication
model or against a weaker adversary than the one we assume.

Synchronized Communication. Lamport et al. [35] proved that if communication occurs in
synchronized rounds, Byzantine Agreement can be obtained deterministically in f + 1 rounds,
where f < n/3. Fischer and Lynch [22] proved that round complexity f + 1 is optimal. The com-
munication complexity of [35] is exponential, and was later reduced to polynomial by Garay and
Moses [25]. Dwork et al. [19] developed agreement protocols under weakly synchronous models.

Impossibility Results. Fischer et al. [24] proved that the problem cannot be solved determin-
istically, in an asynchronous system in which just one player is subject to a crash failure. This
result is commonly known as FLP Impossibility. Thus, to solve Byzantine Agreement we must
assume some level of synchronization or randomization. Even with randomization, the problem
is insoluble when f ≥ n/3. The proof of this result is straightforward in the asynchronous
model [14, Theorem 3] and more complicated in the synchronized model [23, 38].

Cryptographic Solutions. Cryptography becomes useful against a computationally bounded ad-
versary. Byzantine Agreement can be solved against such an adversary controlling f < n/3 players,
with O(1) latency.1 [15, 16]; see also [1, 7, 11, 21].

Non-Adaptive Adversaries. The ability to adaptively corrupt players is surprisingly powerful.
Goldwasser, Pavlov, and Vaikuntanathan [26], improving [10], considered a synchronized, full in-
formation model in which the adversary corrupts up to f players up front, that is, it is non-adaptive.
They proved that Byzantine Agreement can be solved with resiliency f < n/(3+ ϵ) inO(logn/ϵ2)
rounds. See Chor and Coan [17] for prior results in similar adversarial models [17].

Kapron et al. [31] developed a Byzantine Agreement protocol in the asynchronous, full informa-
tion model, in which the adversary corrupts f < n/(3 + ϵ) players non-adaptively. Their protocol
has di$erent parameterizations, and can achieve agreement in quasipolynomial latency with prob-
ability 1 − 1/poly(n), or polylogarithmic latency with probability 1 − 1/poly(logn). When these
protocols err, they do not satisfy the Agreement and Termination criteria, and may deadlock or
terminate without agreement.

Limits of Fully Symmetric Protocols. Lewko [36] proved that in the asynchronous, full informa-
tion model, a certain class of “fully symmetric” Byzantine Agreement protocols has latency 2Ω(n)

when f = Θ(n). This class was designed to capture Ben-Or [8] and Bracha [13] but is broader. Pro-
tocols in this class make state transitions that depend on the set of validated messages received,
but may not take into account the transaction history of the sender. In retrospect, Lewko’s result

1This assumes that RSA encryption cannot be broken by a polynomially bounded adversary.
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can be seen as justifying two strikingly di$erent approaches for improving [8, 13] in the asyn-
chronous, full information model. The #rst is to break symmetry by having the players take on
di$erent roles: this is necessary to implement Feige’s lightest bin rule and other routines in Kapron
et al.’s [31] protocol. The second is to stay broadly within the Ben-Or–Bracha framework, but pe-
riodically blacklist players after accumulating statistical evidence of fraudulent coin "ips in their
transaction history. This is the approach taken by King and Saia [33, 34] and the present work.

Fraud Detection. King and Saia [33, 34] presented two Byzantine Agreement protocols with poly-
nomial latency based on fraud detection and blacklisting. The #rst uses exponential local com-
putation and is resilient to f < n/400 adaptive corruptions. The second uses polynomial local
computation and is resilient to n/(0.87× 109) adaptive corruptions. The extended abstracts of this
work [28, 29] presented polynomial time and latency protocols resilient to f < n/4 [28] and the
optimal f < n/3 [29] number of Byzantine failures. The statistical tests used by these protocols
focus on positive correlations among Byzantine players [28] and negative correlations between
Byzantine and honest players [29]; see Section 3.2.2

1.1 New Results
One feature of the asynchronous model is that every player must perpetually entertain the possi-
bility that f players have crashed and will never be heard from again. Thus, when n = 3f + 1, the
number of fully participating players at any stage is n − f = 2f + 1 and up to f of these players
may be corrupt! Among the set of participating players, the good players hold the thinnest possible
majority: f + 1 vs. f .

We develop a special coin-"ipping protocol to be used in Bracha’s framework [8, 13] when the
corrupt and non-corrupt players have roughly equal in"uence. Initially, all players have weight 1.
The coin-"ipping protocol has the property that if the corrupt players repeatedly foil its attempts
to "ip a global coin, then we can fractionally blacklist players (reduce their weights) in such a way
that the blacklisting rate for good players is only in#nitesimally larger than the blacklisting rate
for corrupt players. Speci#cally, we guarantee that among any n− f = 2f +1 participating players,
the total weight of the good players minus the total weight of the corrupt players is bounded away
from zero. Eventually, all corrupt players have their weights reduced to zero, meaning they have
no in"uence over the global coin protocol. At this point, the scheduling power of the adversary is
still strong, but insu!cient to #x the behavior of the global coin for much longer. Agreement is
reached in a polynomial number of iterations of Bracha’s algorithm, with high probability.

The #nal result is a randomized f -resilient Byzantine Agreement protocol with latency Õ(n4ϵ−8),
where n = (3+ϵ)f and ϵ ≥ 1/f . In other words, the latency ranges between n4 and n12, depending
on ϵ . This latency bound holds in expectation and with high probability, meaning probability 1−n−c

for any desired constant c . See Table 1.

1.2 Organization of the Article
In Section 2 we review the formal asynchronous distributed model (Section 2.1), Bracha’s Reliable-
Broadcast primitive (Section 2.2), and his Byzantine Agreement protocol [13] (Section 2.3), which
reduces the problem to collective coin-"ipping.

In Section 3, we review related work on collective coin-"ipping, and describe King and Saia’s
coin-"ipping method, which is based on a shared blackboard protocol. In Section 3.1, we give
speci#cations for an improved Iterated-Blackboard protocol. We outline the fraud detection

2The Byzantine agreement protocols of [1, 7] also employ a form of blacklisting (“shunning”) whenever a party detects
that another has not followed a certain cryptographic protocol.
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Table 1. Randomized Byzantine Agreement Protocols in the Asynchronous, Full Information Model
against an Adaptive Adversary

Citation Resilience Latency Local Computation per Message

Ben-Or [8]
f < n/5 2Θ(n) poly(n)
f = O(

√
tn) exp(t2) poly(n)

Bracha [13] f < n/3 2Θ(n) poly(n)

King & Saia [33, 34]
f < n/400 Õ(n5/2) exp(n)
f < n/(0.87 × 109) O(n3) poly(n)

new f < n/(3 + ϵ) Õ(n4/ϵ8) poly(n)
Here ϵ ≥ 1/f = Ω(1/n).

mechanism of [28] (Section 3.2), which has resilience f < n/4, then consider several (failed)
attempts to increase it to the optimum f < n/3 (Section 3.3). The speci#c nature of these failed
attempts highlights di!culties of Byzantine Agreement in asynchronous networks and motivates
certain design choices in our #nal protocol that might seem unjusti#ed at #rst.

Section 4 begins with a high-level description of our new Byzantine-Agreement protocol
(Algorithm 3) and its key invariants. It is based on a new collective coin-"ipping protocol
Coin-Flip (Algorithm 4) presented in Section 4.2, which uses the Iterated-Blackboard protocol. If
the adversary foils its operation, we will see negative correlations between pairs of good and bad
players; these are analyzed in Section 4.3. The blacklisting procedure is presented in Section 4.4.
It is based on a fractional maximal matching algorithm called Rising-Tide applied to a complete
graph weighted according to pairwise correlations. Section 4.5 bounds numerical disagreements
between players based on their di$erent histories, and establishes high probability bounds on
Byzantine-Agreement reaching agreement with polynomial latency.

The analysis of the protocol depends on two theorems, each of which can be understood in
isolation. Theorem 6 speci#es the properties and e!ciency of the Iterated-Blackboard primitive.
The implementation and analysis of Iterated-Blackboard (Algorithm 7) are presented in Section 5.
Theorem 17 claims that Rising-Tide is continuous Lipschitz, that is, small numerical perturbations
of the input cause small numerical changes in the output. It is proved in Section 6.

We conclude with some remarks and open problems in Section 7.

2 PRELIMINARIES
2.1 The Model
We assume a standard asynchronous message passing model. The formalization below follows
Attiya and Welch [6, Chapter 2.1] and is equivalent to that of Lynch [37, Chapter IIB].

There are n players p1, . . . ,pn , and 2n2 message bu!ers, Outi→j and Inj→i , for all i, j ∈ [n]. All
players are initially good (they obey the protocol) and the adversary can dynamically corrupt up to
f players. A Byzantine/corrupted player is under complete control of the adversary and can behave
arbitrarily. The adversary controls the pace at which progress is made by scheduling two types of
events.

— A compute(i) event lets pi process all messages in the bu$ers Inj→i , deposit new messages
in Outi→j , and change state.

— A deliver(i, j) event moves a message from Outi→j to Ini→j .

J. ACM, Vol. 71, No. 2, Article 12. Publication date: April 2024.



Byzantine Agreement with Optimal Resilience via Statistical Fraud Detection 12:5

ALGORITHM 1: Reliable-Broadcast(p, !)
1: if ! > 1 then wait until Reliable-Broadcast(p, ! − 1) acceptsmp,!−1.
2: if I am player p then generatemp,! and send (init,mp,!) to all players.
3: wait until receipt of one (init,mp,!) message from p, or (n + f + 1)/2 (echo,mp,!) messages,

or f + 1 (ready,mp,!) messages.
send (echo,mp,!) to all players.

4: wait until the receipt of (n + f + 1)/2 (echo,mp,!) messages or f + 1 (ready,mp,!) messages.
send (ready,mp,!) to all players.

5: wait until receipt of 2f + 1 (ready,mp,!) messages.
acceptmp,! .

Note that the adversary may choose a malicious order of events but cannot, for example, misde-
liver or forge messages. Every message must eventually be delivered, and every player i allowed
to compute(i) in#nitely often. The adversary is computationally unbounded and is aware, at all
times, of the internal state of all players. Thus, cryptography is not helpful, but randomness is
potentially useful, since the adversary cannot predict the outcome of future coin "ips.

In this model, the communication time or latency of a protocol is de#ned w.r.t. a hypothetical
timed execution in which all local computation occurs instantaneously and all messages are deliv-
ered within some latency in the interval [0,∆]. The latency of the protocol is L if all non-corrupt
players #nish by time L∆.

The parameter ∆ is introduced simply to de"ne latency. There is, in fact, no a priori upper bound
on the delivery time of any message. Indeed, the adversary cannot increase the latency of the algo-
rithm simply by forestalling the delivery of certain messages, as this also increases the empirical
maximum delivery time ∆.

2.2 Reliable Broadcast
The goal of Reliable-Broadcast is to simulate a broadcast channel using the underlying point-to-
point message passing system. In Byzantine Agreement protocols, each player initiates a series of
Reliable-Broadcasts. Call mp,! the !th message broadcast by player p. In Theorem 1, the property
thatmp,! is only accepted after mp,!−1 is accepted is sometimes called FIFO broadcast.

Theorem 1 (FIFO Broadcast; see [13]). If a good player p initiates the Reliable-Broadcast of
mp,! , then all good players q eventually accept mp,! . Now suppose that a corrupt player p does so
and some good q acceptsmp,! . Then all other good q′ will eventually acceptmp,! , and no good q′ will
accept any otherm′p,! !mp,! . Moreover, all good players acceptmp,!−1 beforemp,! , if ! > 1.

The term accept has no semantics outside the guarantees of Theorem 1, that is, a messagemp,!
accepted by q will eventually be accepted by every good player.

Proof. According to Line 1 of Reliable-Broadcast, no messagemp,! can be accepted untilmp,!−1
is accepted, if ! > 1. This establishes the FIFO property. The other correctness properties follow
from several claims.

We claim that if two good playersq,q′ send (ready,mp,!) and (ready,m′p,!) at Line 4, thenmp,! =

m′p,! . Suppose not; in particular, let (q,q′) be the "rst pair to send con"icting ready messages
mp,! !m′p,! . Due to (q,q′) being #rst, it must beq andq′were spurred to send ready messages after
receiving (n+f +1)/2 (echo,mp,!) and (echo,m′p,!)messages. Thus, at least 2((n+f +1)/2)−n ≥ f +1
players sent both q and q′ con"icting (echo, ·) messages, and therefore some good player sent
con"icting (echo, ·) messages in Line 3, which is impossible.

J. ACM, Vol. 71, No. 2, Article 12. Publication date: April 2024.
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We now claim that if a good player q accepts mp,! then every good player eventually accepts
mp,! . It follows that q has already accepted mp,1, . . . ,mp,!−1 in Line 1. By induction, every other
good player eventually acceptsmp,!−1. Before acceptingmp,! ,q received at least 2f +1 (ready,mp,!)
messages in Line 5, and hence at least f +1 from good players. These f +1 messages will eventually
be delivered to all n− f ≥ 2f +1 good players, causing all to send their own (ready,mp,!) messages
in Line 4 and eventually accept the same value.

If the sender p is good, then every good player will clearly eventually acceptmp,! . Moreover, as
a consequence of the above claims, if p is corrupt, then it is impossible for good players to accept
di$erent messagesmp,! !m′p,! . !

2.3 Validation and Bracha’s Protocol
Consider a protocol Π of the following form. In each round r , each player reliably broadcasts its
state to all players, waits until it has accepted and validated at least n − f messages from round
r , then processes all validated messages, changes its state, and advances to round r + 1. A good
player validates a round-r state (message) sq,r accepted from another player q only if (i) it has
validated the state sq,r−1 of q at round r − 1, and (ii) it has validated n − f messages that, if they
were received by a correct q, would cause it to transition from sq,r−1 to sq,r . The key property of
validation (introduced by [13]) is:

Lemma 2. A good player p validates the message of another player q in an admissible execution α
of Π if and only if there is an admissible execution β of Π in which q is a good player and the state of
every other good player (including p) is the same in α and β with respect to their validated messages.

To recap, reliable broadcast prevents the adversary from sending con"icting messages to di$er-
ent parties, that is, it is forced to participate as if the communication medium were a broadcast
channel, albeit one where the time to receive broadcasts is irregular. The validation mechanism
forces its internal state transitions to be consistent with the protocol Π. Note, however, that in gen-
eral Π is probabilistic and validation permits a series of transitions that are logically possible but sta-
tistically unlikely. In summary, after validation, the following powers characterize the adversary.
Full Information and Scheduling. The adversary knows the internal state of all players and

controls the order in which messages are delivered. It may delay messages.
Corruption and Coin Flipping. The adversary may adaptively corrupt up to f players as the

execution of the protocol progresses. Once corrupted, a player continues to follow protocol,
except that the adversary now chooses the outcomes of all of its coin "ips.

Remark 1. One key implication of the Corruption and Coin Flipping simpli#cation is that we
usually do not need to di$erentiate between good and bad players. There are some players with
functioning random number generators and at most f with corrupt random number generators, but
both types of players follow protocol. Consider Lemma 3, which will be presented shortly. It refers
to a supermajority of players holding a single value v∗, not good players, because the validation
mechanism e$ectively prevents a bad player from broadcasting values that are inconsistent with
the protocol. On the other hand, it says that good players will decide v∗. Deciding is a private
action and it makes no sense to talk about the private actions of corrupt players. Validation only
governs the public broadcasts of players.

Bracha’s protocol improves the resilience of Ben-Or’s protocol to the optimum f < n/3. Each
player p initially holds a value vp ∈ {−1, 1}. It repeats the same steps until it decides a value
v ∈ {−1, 1} (Line 8). As we will see, if some good player decides v , all good players will decide v
in this or the following iteration. Thus, good players continue to participate in the protocol until
all other good players have executed Line 8. Here, sgn(x) = 1 if x ≥ 0 and −1 if x < 0.

J. ACM, Vol. 71, No. 2, Article 12. Publication date: April 2024.
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ALGORITHM 2: Bracha-Agreement() from the perspective of player p

Require: vp ∈ {−1, 1}.
1: loop
2: Reliable-Broadcastvp and wait until n− f messages are validated from a set of players Sp .

set vp ← sgn(∑q∈Sp vq). " sgn(x) = 1 if x ≥ 0 and −1 otherwise.
3: Reliable-Broadcast vp and wait until n − f messages are validated.

if more than n/2 messages have some value v∗ then set vp ← v∗, else set vp ← ⊥.
4: Reliable-Broadcast vp and wait until n − f messages are validated.

let xp be the number of v∗ ! ⊥ messages validated by p.
5: if xp ≥ 1 then
6: set vp ← v∗.
7: if xp ≥ f + 1 then
8: decide v∗.
9: if xp = 0 then

10: vp ← Coin-Flip(). " Returns value in {−1, 1}.

The correctness of Bracha-Agreement follows from Lemmas 3 and 4, and its e!ciency from
Lemma 5.

Lemma 3. If a supermajority of (n + f + 1)/2 players hold the same value v∗ at Line 2, then all
good players will have decided v∗ by the end of the loop.

Proof. In Line 2 each player updates their value based on a majority vote of a set of n − f
players, presumably selected by the adversary. However, in any n − f messages, there are at least
(n + f + 1)/2− f = (n − f + 1)/2 votes for v∗. Thus, all players set vp ← v∗ in Line 2, broadcast v∗
in Line 3 and retain it since n− f > n/2. They broadcastv∗ again on Line 4 and then set xp = n− f ,
so every player p decides v∗ in Line 8. !

Lemma 4. If any good player executes Line 8 and decides v∗, then all good players will have
decided v∗ by the end of the next iteration through the loop.

Proof. After each player p executes Line 4 it becomes a member of one of the following three
sets.

Adec = {p : xp ≥ f + 1},
Akeep = {p : xp ∈ [1, f ]},
A"ip = {p : xp = 0}.

Regardless of how messages are delivered, for any p and q, |xp − xq | ≤ f , hence all players are
inAdec∪Akeep orAkeep∪A"ip. IfAdec ! ∅, then all players (good and bad) go into the next iteration
holdingv∗, and by Lemma 3, all good players decidev∗ by the end of that iteration. (Note that the
validation mechanism prohibits a bad player from switching its value from v∗ to −v∗ at the next
iteration, for no one will be able to validate a message “−v∗” broadcast in Line 2.) !

Lemma 5. In any execution of one loop of Bracha-Agreement, the probability that a supermajority
of (n + f + 1)/2 players adopt the same value is at least 2−n .

Proof. By Lemma 4, we can focus on the case where the population is Akeep ∪ A"ip, that is,
those in Akeep know the majority value v∗ and keep it, and every good p ∈ A"ip chooses vp on the

J. ACM, Vol. 71, No. 2, Article 12. Publication date: April 2024.
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basis of a coin "ip. With probability at least 2−n , every good p ∈ A"ip chooses v∗, in which case a
supermajority of n − f ≥ (n + f + 1)/2 players hold v∗. If Akeep = ∅ then v∗ is unde#ned, and any
unanimous coin "ip outcome (−1 or 1) among A"ip is acceptable. !

3 COLLECTIVE COIN-FLIPPING
The probability of achieving a supermajority of (n + f + 1)/2 in Line 10 of Bracha-Agreement
is much higher when f is small, for example, Ω(exp(−t2)) when f = O(

√
tn). However, the eas-

iest way to achieve such a supermajority with probability 1/2 is for all players to somehow "ip
an unbiased common global coin. Rabin [39] and Toueg [42] solved Byzantine Agreement in con-
stant rounds (in expectation) by assuming the existence of such a global coin, or, equivalently, a
mechanism to distribute shared randomness to all players in advance. The protocols of King and
Saia [33, 34] and those in Section 4 work in the framework of Bracha-Agreement, but substitute
for Coin-Flip (Line 10) a collective coin "ipping protocol that aspires to have two properties.
Property (i) all players agree on the same value returned by Coin-Flip(), and
Property (ii) the output of Coin-Flip() is close to unbiased.

The problem of "ipping a bounded-bias coin against adversarial manipulation is well studied.
The problem can be solved against surprisingly large coalitions of corrupt players [2, 3, 9, 12,
20, 27, 30, 40, 41]. This body of work assumes reliable communication (no dropped or delayed
messages) and reliable computation (no crash failures). Aspnes [4] gave a lower bound that models
aspects of an adaptive adversary in an asynchronous network. In his coin-"ipping game, a vector
of values (v1, . . . ,vN ) is generated as follows. Once (v1, . . . ,vi−1) are known, a random value v ′i
is generated3 and the adversary may set vi ← v ′i or suppress it, setting vi ← ⊥. The outcome of
the coin "ip is some function д(v1, . . . ,vN ) ∈ {−1, 1}. If the adversary can suppress t values, then
N = Ω(t2) for д to have constant bias and N = Ω(t2/log2 t) if the probability that д = 1 and −1
are both at least 1/poly(t). Aspnes [4] proved that this result implies Ω̃(n) latency lower bounds
on Byzantine Agreement in the asynchronous model, which was improved to Ω(n) by Attiya and
Censor-Hillel [5]. The moral of [4, 5] and related lower bounds against adaptive adversaries, such
as Haitner and Karidi-Heller’s [27], is that the aggregation function д that implements majority
voting is at least close to optimal. However, Byzantine Agreement protocols against non-adaptive
adversaries, such as [10, 26, 31] can a$ord to implement clever coin-"ipping protocols that are not
based exclusively on majority voting [20, 40].

The coin-"ipping protocols of King and Saia [33], [28], and the one presented in Section 4 do not
attempt to guarantee Properties (i) and (ii) immediately. Rather, after a su!ciently large number
of invocations of Coin-Flip, if the adversary foils Properties (i) and (ii), it will leave behind enough
statistical evidence that proves incriminating, allowing us to blacklist suspicious players, removing
their explicit in"uence over subsequent calls to Coin-Flip. When all corrupt players are blacklisted,
the adversary still has the power of scheduling, but this power is insu!cient to signi#cantly delay
agreement.

The basis of King and Saia’s [33] implementation of Coin-Flip is a shared blackboard primitive,
whose resiliency was improved from f < n/4 to (optimal) f < n/3 by Kimmett [32]. A blackboard
is conceptually an m × n matrix BB, initially all blank (⊥). The goal is to have each player i write
m values successively to column i via Reliable-Broadcasts, and once the blackboard is full, to have
all players agree on its contents. Because up to f players may crash, a full blackboard is one in
which n − f columns have m writes, and the remaining f columns may be partial. Due to the
scheduling power of the adversary, every player p sees a slightly di$erent version BB(p) of the

3The distribution and range of v ′i are arbitrary, and may depend on (v1, . . . , vi−1).
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“true” blackboard BB, which is derived by replacing the last write in some of the f partial columns
with ⊥. Thus, BB(p) and BB(q) di$er in at most f entries.

In [33] the Coin-Flip routine is implemented as follows: every write to BB is a value in {−1, 1}
chosen uniformly at random. When p #nishes participating in the construction of BB it has a view
BB(p) and sets the output of Coin-Flip to be sgn(Σ(p)), where Σ(p) =

∑
j,q BB(p)(j,q) is the sum

of all entries, treating ⊥ as zero. Note that whenever Σ(p) " [−f , f ], p can be sure that Coin-Flip
generates the same output for all players, even corrupt ones.4

In the context of [33], a happy outcome is when all players agree on the same coin "ip value,
and if Akeep ! ∅ is holding v∗, that value is v∗. The new Coin-Flip protocol developed in Section 4
is similar in spirit. It uses two blackboards, the #rst being used to generate a bias, which depends
on Akeep and v∗, and the second is populated with random {−1, 1} variables, as in [33]. In contrast
to King and Saia [33] and our #rst extended abstract [28], any outcome where all players agree on
the output of Coin-Flip is a happy outcome.

3.1 The Iterated Blackboard
We can of course execute the blackboard primitive iteratively [33], but two players may disagree
on the contents of each blackboard in up to f cells. The Iterated-Blackboard protocol speci#ed in
Theorem 6 guarantees a stronger form of agreement. An iterated blackboard is an endless sequence
(BB1,BB2, . . .) of blackboards, where BBt is anm(t)×n matrix. Afterp observes a su!cient number
of writes to BBt , p #xes a view BB(p,t ) = (BB(p,t )

1 , . . . ,BB(p,t )
t ) of the #rst t blackboards. It is

guaranteed that BB(p,t )
t and BB(q,t )

t di$er in at most f cells in partial columns; it is also guaranteed
that BB(p,t ) and BB(q,t ) di$er in at most f cells in total, over all t blackboards. In order to make
this type of guarantee, during the construction of BBt+1, p may record retroactive updates to an
earlier BBt ′ , t ′ ≤ t , so that BB(p,t+1)

t ′ records some writes to cells that were still ⊥ in BB(p,t )
t ′ . (The

blackboard protocols of [32, 33] did not allow for retroactive updates. This feature was introduced
in [28].)

We use the iterated blackboard for two di$erent tasks. First, the outcome of a shared coin-"ip
is determined by the sum of entries in some BBt , and for this reason it is important that any
players p and q agree on this sum, up to ±f . After a long series of calls to Coin-Flip that fail to
bring Bracha-Agreement to an end, we blacklist some players based on the history (BB1, . . . ,BBt ),
and here it is important that when players p and q locally calculate their blacklist, they come to
numerically similar conclusions. This is more critical to our protocol than [33] since resiliency
f < n/3 demands dramatically higher levels of historical agreement between good players.

Theorem 6. An iterated blackboard (BB1,BB2, . . . ,BBτ ) is a sequence of matrices, BBt being
an m(t) × n matrix with all cells initially ⊥. It is constructed by calling Iterated-Blackboard(1), . . .,
Iterated-Blackboard(τ ). In the execution of Iterated-Blackboard(t), every good player p "xes a view
BB(p,t ) = (BB(p,t )

1 , . . . ,BB(p,t )
t ) of the true blackboards (BB1, . . . ,BBt ). Iterated-Blackboard(t) is

resilient to f < n/3 Byzantine faults, and has the following properties.

(1) Player i writes values successively to cells in column BBt (·, i) and only player i may write values
to this column. Thus, at all times, BBt (·, i) consists of a pre"x of non-⊥ values and a su#x of⊥s.

(2) When player p "xes its historical view BB(p,t ), it contains all writes recorded in BB(p,t−1), if
t > 1. Moreover, BB(p,t )

t contains at least n − f full columns, with m(t) writes, and at most f

4In particular, in Line 2 of Bracha-Agreement, if a message vq broadcast from q is purportedly the output of the last
iteration’s call to Coin-Flip(), player p will not validate it if it is impossible that sgn(Σ(q)) = vq .
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partial columns. It is guaranteed that for every t ′ ∈ [t], i ∈ [n], r ∈ [m(t ′)],

BB(p,t )
t ′ (r , i) ∈ {BBt ′(r , i),⊥}.

Moreover, there are at most f tuples (t ′, r , i) such that for some p, BB(p,t )
t ′ (r , i) = ⊥ ! BBt ′(r , i).

All such tuples have distinct 3rd coordinates.
(3) If a player q writes any non-⊥ value to BBt , then by the time any player p "xes BB(p,t ), p can

locally reconstruct q’s view BB(q,t−1) of the history up to blackboard t − 1.
(4) The latency of constructing BB(p,τ ) is linear in the total number of rows, namelyO(∑t ≤τ m(t)).
Remark 2. We use Theorem 6(3) to make the following simulation argument. If player q

sets a certain variable α based on its view BB(q,t−1) and subsequently writes anything to BBt ′ ,
t ′ ≥ t , then once p #xes BB(p,t ′), it learns BB(q,t−1) and can therefore simulate q’s computation
of α .

3.2 Coin Flipping and Fraud Detection
The King-Saia [33, 34] protocol and the one presented in our #rst extended abstract [28] rely on the
fact that the f corrupt players, being a small minority, must collectively generate coin "ips whose
sum is conspicuously large, as they must often counteract the coin "ips of n−2f good players.5 At
the end of the t th iteration of Bracha-Agreement, the [28, 33] protocols call a Coin-Flip procedure,
which populates the blackboard BBt with random {−1, 1} coin "ips. De#ne Xi (t) to be the sum of
the coin "ips in BBt (·, i) generated by player i .6

At the very least, the adversary wants at least one player in A"ip to believe that the outcome of
the global coin is σ (t) = −v∗ (i.e., the opposite value held by those in the Akeep population), which
is called the adversarial direction. Let ΣG (t) and ΣB (t) be the sum of the good and bad (corrupt) coin
"ips written to BBt . If sgn(ΣG (t)) = σ (t) then the adversary is happy, and if sgn(ΣG (t)) = −σ (t)
then the adversary needs to counteract the good coin "ips and get the total sum ΣG (t) + ΣB (t) in
the interval [−f , f ] in order for at least one player to believe the coin "ip outcome (sign of the
sum) is σ (t). Thus,

|ΣB (t)| ≥ max{0,−σ (t)ΣG (t) − f }.
ΣG (t) is the sum of at least m(n − 2f ) = Ω(mn) coin "ips; suppose for simplicity that ΣG (t) is the
sum of exactly this many "ips. Whenm 1 n > 3f , f is much smaller than the standard deviation of
ΣG (t), so let us also ignore the “−f ” term for simplicity. By symmetry, ΣG (t) is positive and negative
with equal probability, so up to these simpli#cations, E[ΣB (t)2] ≥ 1

2 E[ΣG (t)2] = 1
2m(n − 2f ).7 On

the other hand, if these f bad players were "ipping fair coins, then E[ΣB (t)2] ≤ mf .
The statistics tracked in [28] are pairwise correlations and individual deviations over a series of

calls to Coin-Flip.

corr(i, j) =
〈
Xi ,X j

〉
=

∑
t
Xi (t)X j (t),

dev(i) = 〈Xi ,Xi 〉 =
∑

t
(Xi (t))2.

5Recall that the adversary can fail to deliver messages of up to f players in a timely fashion, so there can be as few as
f + (n − 2f ) players fully participating in any given blackboard/coin-"ip.
6Recall that the players appear in Akeep ∪A"ip, where those in Akeep will keep the majority value v∗ ∈ {−1, 1}, regardless
of the outcome of Coin-Flip. Nonetheless, every player in Akeep ∪ A"ip participates in the Coin-Flip protocol.
7It is a small abuse of notation to measure the expectation of ΣB (t )2 since it has no well-de#ned distribution. The expecta-
tion is naturally w.r.t. any #xed adversarial strategy that convinces at least one player that the outcome of the global coin
is σ (t ).
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Note that (ΣB (t))2 can be decomposed into terms that contribute to corr(i, j) scores (Xi (t)X j (t),
i ! j) and dev(i) scores (Xi (t)2). When f < n/4 there is a gap between 1

2m(n − 2f ) andmf , which
implies that after a su!cient number of iterations, either some bad player i has an unusually large
dev(i) score, or two bad players i, j have an unusually large corr(i, j) score. Unusually large here
means one beyond what any good players "ipping fair coins could generate, with high probability.
If corr(i, j) is unusually large, it follows that at least one of i, j must be bad. The protocol introduced
in [28] blacklists pairs of players with high correlation scores and individual players with high
deviation scores.

3.3 Misfires and Dead Ends
Resilience f < n/4 is good, but we want to push it to the absolute maximum f < n/3. In this
section, we illustrate why certain natural approaches to achieving optimal resiliency fail in subtle
ways. This leads us to a simple approach that works, which is outlined in Section 3.4 and fully
developed in Section 4.

As f tends toward n/3, many natural statistics worth tracking lose traction, and “n/3” is the
point at which coin-"ipping games become perfectly balanced between the in"uence of n − 2f
good and f bad players. For example, when f = n/4, mf = 1

2m(n − 2f ), and bad players may
not be detected by looking for large dev(i) or corr(i, j) scores alone. When n = 3f + 1, we can
assume that n − f = 2f + 1 players fully participate in the coin-"ipping protocol, at least f + 1
of which are good and at most f of which are bad. To illustrate why this is a uniquely di!cult
setting to perform fraud detection, consider a simple Mirror-Mimic strategy deployed by the
adversary.

Mirror-Mimic Strategy. When sgn(ΣG (t)) = −σ (t), the adversary chooses its coin-"ips so that
ΣB (t) = −ΣG (t) (mirror). When sgn(ΣG (t)) = σ (t), it sets ΣB (t) = ΣG (t) (mimic). There is some
"exibility in the mirror case as it only needs ΣB (t) + ΣG (t) to hit the interval [−f , f ]. In any case,
we do not expect to see large good-good corr(i, j) scores outside of random noise, nor large bad-
bad correlations since they are mirroring/mimicking the distribution of good players. Because the
mirror/mimic cases occur about equally often, the aggregate positive correlations between good
and bad players in the mimic case and negative correlations between good and bad players in the
mirror case cancel out. Thus, against the mirror-mimic adversary, tracking pairwise correlations
alone seems insu!cient to e!ciently detect fraud.

σ -Correlation. When we attempt to "ip a global coin, the good players are generally unaware
of the adversarial direction σ (t)8 but we can ensure that σ (t) eventually becomes known, and can
estimate σ -correlation over the long term. In the context of Bracha-Agreement, σ (t) should be
de#ned as:

σ (t) =
{
−v∗ if Akeep ! ∅ keeps the majority value v∗ ∈ {−1, 1},
0 if Akeep = ∅.

De#ne the σ -correlation score as:
σ -corr(i) = 〈σ ,Xi 〉 =

∑
t
σ (t)Xi (t).

Note that good players "ip fair coins, so values of σ -corr(i) that are inconsistent with random noise
should indicate that i is corrupt. However, it is rather easy for the adversary to keepσ -corr(i) scores
close to zero for corrupt players as well. Regardless of sgn(ΣG (t)), it should set ΣB (t) = −ΣG (t),
or at least put ΣB (t) + ΣG (t) in the interval [−f , f ]. One may easily verify that this strategy is

8(if they all knew what it was, there would be no need to "ip a coin).
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consistent with mirror-mimic when sgn(ΣG (t)) = −σ (t), but that it prescribes exactly the opposite
behavior when sgn(ΣG (t)) = σ (t)! In fact, there is no general strategy for setting ΣB (t) as a function
of ΣG (t) and σ (t) that keeps all corr(i, j) and σ -corr(i) scores close to zero.9

Tracking corr(i, j) and σ -corr(i) scores seems to be a winning combination, that will eventually
let us blacklist individual players for having large σ -corr(i) scores, or pairs of players for having
large − corr(i, j) scores. In the latter case, we are blacklisting good and bad players at the same
rate, which is #ne so long as good players retain their slim majority (f + 1 vs. f initially) among
any set of n − f = 2f + 1 participating players.

A Scheduling Attack. There is a serious "aw in the reasoning above! Recall that σ (t) ∈ {−1, 0, 1},
where σ (t) = 0 means that in Bracha-Agreement, the population Akeep = ∅ committed to keeping
the true majority value v∗ is empty. The value v∗ is determined by the scheduling of messages in
Line 2. Whether v∗ becomes known to any particular player in Line 3 is generally at the discretion
of the adversarial scheduler. Thus, in general, the adversary can control whether Akeep = ∅, and
hence whether σ (t) = −v∗ or 0. Moreover, because the protocol is asynchronous, it can even do so
after BBt is populated with coin "ips.10

These observations give rise to the following attack. The adversary targets two good players
i0, i1. When Coin-Flip is initiated, the adversary has two choices for σ (t) ∈ {−v∗, 0} and can decide
which way to set σ (t) late in the game. If sgn(Xi0 (t)) = sgn(Xi1(t)) = −v∗, it sets σ (t) = −v∗;
otherwise, it sets σ (t) = 0. In general, it makes sure ΣB (t)+ΣG (t) ∈ [−f , f ] so it can force roughly
equal numbers of players to have Coin-Flip return −1 and 1. Players i0, i1 will show unusually
large σ -correlation and be blacklisted, and any other blacklisting (from negative correlations) will
apply equally to good and bad players. At this point, the corrupt players have now attained a slim
majority, and are entirely content to let further blacklisting hurt good and bad players equally.

The problem here is that σ (t) and Xi0 (t) are not independent. In reality, σ (t) can be chosen
maliciously after Xi0 (t) is known.

A Finger on the Scale. The issue with the previous scheme is that the notions of σ (t), the popula-
tion Akeep, and even v∗ are too indeterminate. On the other hand, if any good player p #nds itself
with knowledge of v∗ and has set xp ∈ [1, f ], there is nothing indeterminate from p’s perspective
about the fact that {p} ⊆ Akeep ! ∅ or that σ (t) = −v∗. This leads to a natural question: why should
p participate in the Coin-Flip protocol as if it were ignorant of the desired outcomev∗? Why not “put
a #nger on the scale” and just write v∗ to every entry in column BBt (·,p)? (We would naturally
refrain from judging such special columns according to statistical tests, for example, deviations
and correlations.)

The problem with this simple-minded scheme is that if |Akeep | is small, the adversary has the
discretion to suppress or allow p ∈ Akeep to write its column, or any pre#x thereof. This allows for
a mirror-mimic type attack, in which the sum of BBt always lies in [−f , f ], and yet there are no
negative correlations in aggregate between good players "ipping fair coins and bad players.

3.4 A Key Observation
To simplify the description of the coin-"ipping problem, in Section 3.2, we originally stated
the adversary chooses σ (t) = −v∗, and wins the coin-"ipping game if it convinces one player

9When sgn(ΣG (t )) = −σ (t ), the adversary is forced to set σ (t )ΣB (t ) ≥ −σ (t )ΣG (t ), increasing the aggregate σ -
correlation of bad players and increasing the aggregate negative good-bad correlation. When sgn(ΣG (t )) = σ (t ), the
adversary can choose to reverse either of these trends and exacerbate the other, that is, reduce good-bad negative correla-
tions but increase bad σ -correlations, or reduce bad σ -correlations but increase good-bad negative correlations.
10One player p will be held back at Line 3 of Bracha-Agreement, which can be made to set vp = v∗ or vp = 0, which will
be preserved in Line 4. In this way, the adversarial scheduler may decide if Akeep = {p } or ∅ after observing BBt .
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to believe the output of Coin-Flip is σ (t). It turns out that this simpli#cation gives the ad-
versary too much "exibility, and does not fully capture how coin-"ipping is used in Bracha’s
algorithm.

Consider the sizes of the sets Akeep and A"ip. There are two relevant cases to consider:
Case |Akeep | ∈ [0, f ]. WhenAkeep ! ∅, σ (t) = −v∗ is de#ned, and it would be bad for the adversary

if everyone agreed the output of Coin-Flip were v∗, that is, sgn(Σ(p)) = v∗ for all p ∈ [n].
In fact, it would be equally bad for the adversary if sgn(Σ(p)) = −v∗ for all p. If so, then
a supermajority of |A"ip | ≥ n − f ≥ (n + f + 1)/2 go into the next iteration of Bracha-
Agreement holding −v∗, and by Lemma 3, all good players will decide −v∗. To summarize,
when |Akeep | ≤ f , it is critical for the adversary to create disagreement on the outcome of
the global coin "ip.11

Case |Akeep | ≥ f + 1. If this is the case, then some kind of “#nger on the scale” strategy should
force the outcome of the coin "ip to bev∗. Any player that validates the state of n− f players
must necessarily validate the state of some p ∈ Akeep, and hence learn the value of v∗. If any
player that knows v∗ writes only v∗ to its entries in the blackboard, this will surely be the
outcome of the global coin "ip.

In light of this dichotomy on the size of Akeep, we design a coin-"ipping protocol in Section 4.2
that (i) forces all players to see the same outcome v∗ whenever |Akeep | ≥ f + 1 — thereby letting
Bracha-Agreement terminate — or (ii) reverts to a more standard collective coin-"ipping game in
which the adversary is obligated to land the sum in the interval [−f , f ]. Because of the certainty
of the outcome in case (i) and the speci#c strategy forced upon the adversary in case (ii), fraud can
now be detected by tracking just one statistic: the correlation scores corr(i, j) between all pairs
of players. Our Coin-Flip procedure makes the notion of the adversarial direction σ (t) irrelevant.
This is in sharp contrast to the protocols of [33] and [28], whose suboptimal resiliency could be
partially attributed to working around the idea of the adversarial direction.

4 AN AGREEMENT PROTOCOL WITH OPTIMAL RESILIENCE
4.1 Overview
Our Byzantine-Agreement algorithm (Algorithm 3) consists of Kmax = O(f ) epochs, each of which
executes T 1 n2 iterations of Bracha-Agreement, with Line 10 implemented by a new collective
coin-"ipping protocol Coin-Flip (Algorithm 4, Section 4.2). The t th call to Coin-Flip in epoch k
constructs two blackboards BBo+2t−1 and BBo+2t , where o = 2(k−1)T is the number of blackboards
used in epochs 1, . . . ,k − 1. The odd- and even-numbered blackboards have Õ(√m) and m rows,
respectively, for an m 1 n to be determined. In each epoch k there is a weight vector (wi,k )i ∈[n]
that in"uences all calls to Coin-Flip in that epoch. Player i’s coin "ips are weighted bywi,k ∈ [0, 1].
At the end of each epoch, the procedure Weight-Update generates a new reduced weight vector
(wi,k+1)i ∈[n] based on (wi,k ) and the history of epoch k . Weights are stable during an epoch and
non-increasing with time. The process of reducing players’ weights can be thought of as fractional
blacklisting.12

We write the number of players as n = (3 + ϵ)f , where we assume without loss of generality
that ϵ ∈ [1/f , 1/2]. The parametersT ,m depend on n, f , ϵ . All the important notation used by the
algorithms and their analyses is summarized in Table 2.

11Recall from Remark 1 that w.l.o.g., all players follow protocol, but up to f have corrupted random number generators.
The analysis of the case |Akeep | ∈ [0, f ] does not depend on how the players with corrupted random number generators
are distributed among Akeep ∪ A"ip.
12Fractional blacklisting was introduced in our #rst extended abstract [28].
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Table 2. Summary of Notation

Notation Definition and Commentary

n, f , ϵ
The number of players is n, indexed by [n]. The number of
Byzantine players is f = n/(3 + ϵ).

v∗ The true majority value (if any) at Line 3 of Bracha-Agreement.

Adec,Akeep,A"ip
The populations with xp ≥ f + 1 (Adec), xp ∈ [1, f ] (Akeep), and
xp = 0 (A"ip) at the end of an iteration of Bracha-Agreement.

c
A parameter. All with high probability bounds hold with
probability 1 − n−Ω(c).

Kmax The number of epochs is Kmax = 3f + 1.
T The number of iterations per epoch is T = Θ(n2 ln3 n/ϵ4).

m
The number of rows in the even blackboards BBo+2t is
m = Θ(n lnn/ϵ4).

m0
The number of rows in the odd blackboards BBo+2t−1 is
m0 =

√
m · c lnn.

BB(p,t ′) BB(p,t ′) = (BB(p,t ′)
1 , . . . ,BB(p,t ′)

t ′ ) is p’s historical view of the true
iterated blackboard (BB1, . . . ,BBt ′).

bias(t), Σ(t)
In epoch k , the sum of non-⊥ entries in BBo+2t−1 and BBo+2t are
bias(t) and Σ(t), respectively, where o = 2(k − 1)T is the number
of blackboards used in epochs 1, . . . ,k − 1.

Xi (t),Xmax
In epoch k , Xi (t) is the sum of all non-⊥ entries in BBo+2t (·, i); it is
enforced that |Xi (t)| ≤ Xmax =m0 =

√
m · c lnn.

X (p)
i (t), bias(p)(t), Σ(p)(t) p’s view of these values. In epoch k , these are computed from

BB(p,o+2t ).

G,B
G and B are the sets of good and bad (Byzantine) players, with
respect to some moment in time.

ΣG (t), ΣB (t) In epoch k , the sum of values in BBo+2t written by good players
(unbiased coin "ips) and bad players, respectively.

(wi,k )i ∈[n], (wi )i ∈[n] wi,k is the weight of player i during epoch k ; wi is short for the
current weight of player i .

(w (p)
i,k+1)i ∈[n]

The weight vector computed by p at the end of epoch k from
information in BB(p,2kT ). The consensus weight vector
(wi,k+1)i ∈[n] is computed by setting wi,k+1 = w

(i)
i,k+1 if

w (i)
i,k+1 > wmin

def
=
√
n/T and 0 otherwise.

corr(i, j), corr(p)(i, j)
The weighted correlation scores accumulated in one epoch. Here
corr(i, j) =

〈
wiXi ,w jX j

〉
= wiw j

∑
t Xi (t)X j (t) and corr(p)(i, j) is

p’s view of corr(i, j), using X (p)
i ,X

(p)
j .
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ALGORITHM 3: Byzantine-Agreement()
1: loop
2: Initialize the weight vector (wi,1)i ∈[n] = (1, 1, . . . , 1).
3: Initialize an empty iterated blackboard BB.
4: for k from 1 to Kmax = 3f + 1 do " Epoch index
5: for t from 1 to T do " Iteration index
6: Execute one iteration of Bracha-Agreement (Algorithm 2), using Coin-Flip

(Algorithm 4)
7: in Line 10. Coin-Flip builds blackboards BBo+2t−1 and BBo+2t , where o = 2(k − 1)T .
8: Generate a reduced weight vector (wk+1,i )i ∈[n] using Weight-Update (Algorithm 6).
9: If Bracha-Agreement has failed to reach agreement after Kmax + 1 epochs, restart loop

with the initial weight vector and empty iterated blackboard.

We guarantee that Invariant 1 is maintained, with high probability. LetG and B be the good and
bad (Byzantine) players at some moment, and let wi refer to the current weight of player i , that is,
wi = wi,k during epoch k .

Invariant 1. At all times, ∑
i ∈G

(1 −wi ) ≤
∑
i ∈B

(1 −wi ) + ϵ4 f .

In other words, the total weight reduction of good players is upper bounded by the total
weight reduction of bad players, up to a small ϵ4 f error. We prove that with high probability,
Byzantine-Agreement reaches agreement after at most Kmax epochs. There is a tiny probability
that Byzantine-Agreement fails to reach agreement after Kmax epochs. If so, the algorithm restarts
at epoch 1 with the initial weight vector (wi,1) = (1, 1, . . . , 1). This guarantees that the algorithm
reaches agreement with probability 1 after a #nite number of steps. (King and Saia [33, 34] also
used this restarting mechanism.)

Theorem 7. Suppose n = (3 + ϵ)f where ϵ > 0. Byzantine-Agreement (Algorithm 3) achieves
agreement with probability 1. With high probability the latency is O(f mT ) = Õ(n4/ϵ8), where m =
Θ(n lnn/ϵ4), T = Θ(n2 ln3 n/ϵ4). The local computation of each player is polynomial in n.

Proof. It will be proved in Lemma 19 that if the players have failed to reach agreement after
Kmax − 1 = 3f epochs, all bad players’ weights are zero with high probability. However, by Invari-
ant 1 the good players still have weight at least

(n − f ) − f − ϵ4 f = (1 + ϵ)f − ϵ4 f > f + 1 − o(1).
Under these circumstances, Lemma 20 states that the good players reach agreement in the next
epoch with high probability. If, by chance, the players have not reached agreement after epoch
Kmax, they restart the algorithm at Line 9 of Byzantine-Agreement, returning the epoch counter
to 1 and the weight vector to (1, 1, . . . , 1). Thus, the algorithm terminates with probability 1.

By Theorem 6, the latency to construct BBt ′ is O(m(t ′)) = O(m), so if the algorithm is not
restarted in Line 9, the total latency is O(KmaxmT ) = O(f mT ) = Õ(n4/ϵ8). Even considering the
possibility of restarts, this latency bound still holds with high probability and in expectation. !

Organization of Section 4. In Section 4.2, we explain how Coin-Flip is implemented using the
Iterated-Blackboard protocol speci#ed in Theorem 6. In Section 4.3, we prove that if the adversary
persistently manipulates the outcome of the Coin-Flip protocol, then there will be a detectable
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ALGORITHM 4: Coin-Flip() from the perspective of player p

Require: vp ∈ {v∗,⊥}, v∗ ∈ {−1, 1}. This is the t th call to Coin-Flip in epoch k of
Byzantine-Agreement. Let o = 2(k − 1)T be the number of blackboards used in epochs
1, . . . ,k − 1.

1: Stage 1:
2: Reliable-Broadcastvp and wait for n− f messages to be validated from some set Sp of players.

3: valp ←
{
v∗ if vq = v∗ for some q ∈ Sp ,
0 if vq = ⊥ for all q ∈ Sp .

4: Construct BBo+2t−1, writing valp to every cell in column p.
5: Stage 2:
6: Construct BBo+2t , writing independent coin "ips in {−1, 1} to cells in column p.
7: bias(p) ← ∑

j,q BB(p,o+2t )
o+2t−1 (j,q) " Substitute ⊥ = 0

8: Σ(p) ← ∑
j,q wq · BB(p,o+2t )

o+2t (j,q) " Substitute ⊥ = 0
9: return (sgn(bias(p) +Σ(p)))

negative correlation between some bad player and some good player. In Section 4.4, we give the
procedure for reducing weights between epochs, and prove that it maintains Invariant 1 with high
probability. The weight reduction algorithm is based on computing a fractional maximal matching
in a certain graph representing pairwise correlations. In Section 4.5, we prove that agreement is
reached after O(f ) epochs, with high probability. The analysis of this section is self-contained,
except for the proofs of Theorems 6 and 17, which appear in Sections 5 and 6, respectively.

4.2 Implementation of Coin-Flip
Consider epoch k , iteration t of Byzantine-Agreement. It executes one iteration of Bracha-
Agreement, which in turn executes Coin-Flip (Algorithm 4) in Line 10 of Bracha-Agreement. When
each player p begins executing Coin-Flip, it has a value vp ∈ {−1, 1,⊥}, where vp ∈ {−1, 1} indi-
cates that vp = v∗ is the majority value at Line 3 of Bracha-Agreement, and vp = ⊥ indicates that
p did not learn the majority value and will adopt the output of Coin-Flip as its value going into
the next iteration of Bracha-Agreement.

Recall that xp is the number of v∗ ∈ {−1, 1} messages validated by p in Line 4 of Bracha-
Agreement and Akeep is the set of all p such that xp ∈ [1, f ] before executing Coin-Flip. The #rst
stage of Coin-Flip is to populate the next blackboard BBo+2t−1 that will help end the game quickly
if |Akeep | ≥ f + 1 and cause no harm if |Akeep | ∈ [0, f ]. Here, the o$set o = 2(k − 1)T is the number
of blackboards used in epochs 1, . . . ,k − 1. The contents of BBo+2t−1 are used to generate a bias.
The second stage of Coin-Flip populates a blackboard BBo+2t with random values in {−1, 1}. Let

Σ =
∑
j,q

wq · BBo+2t (j,q),

be the weighted sum of the contents of BBo+2t , mapping ⊥ to 0. The output of Coin-Flip is
sgn(bias+Σ). Due to the scheduling power of the adversary, each player has a slightly di$erent
view of these two blackboards. Naturally p outputs sgn(bias(p) +Σ(p)), where a superscript of (p)
in any variable indicates p’s opinion of its value.

The even and odd blackboards BBo+2t and BBo+2t−1 have the following number of rows
m(o + 2t) =m,

m(o + 2t − 1) =m0 =
√
m · c lnn.
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Here, c is the parameter that controls the error probability. Henceforth, with high probability means
an event holds with probability 1 − n−Ω(c).

Lemma 8. If |Akeep | ≥ f +1 thenv∗ ·bias > (n− f )m0 >
2
3n
√
m · c lnn. If |Akeep | = 0 then bias = 0.

If |Akeep | ∈ [1, f ] then v∗ · bias ∈ [0,nm0], and can be selected by the adversary.

Proof. If |Akeep | ≥ f + 1 then for every player p, there exists a q ∈ Sp with q ∈ Akeep and
vq = v∗, hence valp = v∗. By Theorem 6, the number of values written to BBo+2t−1 is at least
(n − f )m0 and hence v∗ · bias ≥ (n − f )m0 >

2
3n
√
m · c lnn.

If |Akeep | = 0 then every player will set valp = 0 hence bias = 0. !

In the second stage of Coin-Flip, the players will populate BBo+2t with coin "ips in {−1, 1}.
De#ne Xi (t) as the sum of all non-⊥ entries in column BBo+2t (·, i). By Cherno$ bounds, if i is
uncorrupted then |Xi (t)| ≤ Xmax with high probability, where

Xmax =m0 =
√
m · c lnn.

We will force |Xi (t)| ≤ Xmax to hold with probability 1 by rounding Xi (t) to ±Xmax if it lies outside
[−Xmax,Xmax].

Lemma 9. If |Akeep | ≥ f +1, the output of Coin-Flip will bev∗ for all players, with high probability.

Proof. By Lemma 8, | bias | ≥ (n − f )m0 >
2
3n
√
m · c lnn. The number of good coin "ips in

BBo+2t is between m(n − 2f ) and mn, which we model as a martingale with an optional stopping
time controlled by the adversary. By Azuma’s inequality,13 the sum of all Θ(mn) good coin "ips is√
mn · c lnn in absolute value, with high probability. Due to the Xmax ceiling, the contribution of

corrupt players to the sum is at most f Xmax <
1
3n
√
m · c lnn in absolute value. Since 1

3n
√
m · c lnn+

Õ(√mn) + f < 2
3n
√
m · c lnn, the contribution of corrupt and non-corrupt players will be much

smaller than bias, with high probability, and sgn(bias(p) +Σ(p)) = v∗ for all p. !

Lemma 10. If |Akeep | ≤ f , and for some player p, bias(p) +Σ(p) " [−f , f ], all good players will
decide the value sgn(bias(p) +Σ(p)) by the next iteration of Bracha-Agreement.

Proof. By Theorem 6, two players p and q disagree in at most f locations in BBo+2t−1 and
BBo+2t . Since the absolute value of any cell in either matrix is at most 1, if bias(p) +Σ(p) " [−f , f ]
then for anyp,q, sgn(bias(p) +Σ(p)) = sgn(bias(q) +Σ(q)). Thus, at the end of this iteration of Bracha-
Agreement, a supermajority of at least |A"ip | ≥ n − f ≥ (n + f + 1)/2 players will hold the same
value and, by Lemma 3, will reach agreement in the next iteration of Bracha-Agreement. Observe
that this lemma does not care how the players with corrupted random number generators are
distributed among the population Akeep ∪A"ip. See Remark 1. !

To summarize, Lemmas 9 and 10 imply that if the adversary has an interest in prolonging the
moment of agreement, it must

— Force |Akeep | to be at most f in every iteration of Bracha-Agreement.
— Force bias(p) +Σ(p) to lie within the interval [−f , f ] in every invocation of Coin-Flip.

When reasoning about the protocol, we will therefore assume that the adversary picks some
strategy that satis#es these two requirements, whenever possible.

13Azuma’s inequality [18] states that if Y0, Y1, Y2, . . . , Yn is a (super)martingale and each |Yk −Yk−1 | ≤ ck , then Pr(Yn −
Y0 ≥ ρ) ≤ exp(−ρ2/(2 ∑n

k=1 c2
k )). If Y0, Y1, . . . , Yn is a (sub)martingale with each |Yk − Yk−1 | ≤ ck , then Pr(Yn − Y0 ≤

−ρ) ≤ exp(−ρ2/(2 ∑n
k=1 c2

k )).
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4.3 Negative Correlations
Recall that k is the current epoch, t ∈ [T ] is the iteration index in epoch k , and (wi ) = (wi,k ) is
the current weight vector used in epoch k . In each epoch, we track weighted pairwise correlations,
de#ned as:

corr(i, j) =
〈
wiXi ,w jX j

〉
= wiw j

∑
t ∈[T ]

Xi (t)X j (t).

Let G and B be the sets of good and bad players.

Lemma 11. Suppose the weight vector (wi )i ∈[n] used in an epoch satis"es Invariant 1, but Bracha-
Agreement fails to reach agreement within the epoch. Let m = Ω(n lnn/ϵ4) and T = Ω(n2 ln3 n/ϵ4).
Then, with high probability,

(1) Every pair of distinct i, j ∈ G has − corr(i, j) ≤ wiw jβ , where β =m
√
T (c lnn)3.

(2) If the adversary does not corrupt any new players during the epoch, then∑
(i, j)∈G×B

max{0,− corr(i, j) −wiw jβ} ≥
1
8ϵ

2 f mT .

Proof of Part 1. Fix an iteration t ∈ [T ]. If i ∈ G, let δ i
t,r ∈ {−1, 0, 1} be value player i writes

to BBo+2t (r , i), or 0 if it never makes such a write. For any r , s ≥ 1 and i, j ∈ G, E[δ i
t,rδ

j
t,s ] = 0 since

each of δ i
t,r ,δ

j
t,s is either 0 or a fair coin "ip independent of the other. By linearity of expectation

this implies E[Xi (t)X j (t)] = 0 as well.
Consider the martingale (St )t ∈[0,T ], where

S0 = 0
and St = St−1 + Xi (t)X j (t).

For any t , |St − St−1 | ≤ X 2
max. By Azuma’s inequality, |ST | ≤ X 2

max
√
T · c lnn = m

√
T (c lnn)3 with

high probability. Therefore, by a union bound, for every pair of distinct i, j ∈ G, − corr(i, j) ≤
wiw jm

√
T (c lnn)3 = wiw jβ with high probability. !

Part 2 of Lemma 11 will be proved following Lemmas 12–16. It only applies to epochs in which
the adversary corrupts no one, so we shall assume that G,B are stable throughout the epoch.

In the Coin-Flip algorithm, the construction of BBo+2t−1 logically precedes the construction of
BBo+2t , but because of asynchrony some of the contents of BBo+2t−1 may actually depend on the
coin "ips written to BBo+2t .14 We eliminate these mild dependencies as follows. Suppose that p̂ is
the "rst player in G to #x its historical view BB(p̂,o+2t−1). At this moment, de#ne bias(t) as

bias(t) =
∑
j,q

BB(p̂,o+2t−1)
o+2t−1 (j,q) (Treating ⊥ as 0)

Write Σ(t) = ΣG (t) + ΣB (t), where ΣG (t) and ΣB (t) are the sum of weighted coin "ips in BBo+2t
originating from good and bad players, respectively.

Lemma 12. In any iteration t ,

(1) For any player q,
'''bias(t) − bias(q)(t)

''' ≤ f .

(2) E
[
bias(t)ΣG (t)

]
= 0.

14The construction of BBo+2t can proceed as soon as n − f players are #nished with BBo+2t−1. Thus, a group of f slow
and corrupt players can choose whether to perform their last write in BBo+2t−1 based on the contents of BBo+2t .
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(3) If Bracha-Agreement does not terminate by iteration t + 1, then

−ΣG (t)ΣB (t) ≥ ΣG (t)2 + bias(t)ΣG (t) − 2f |ΣG (t)|.

Proof. Part 1. By Theorem 6, BB(p̂,o+2t−1)
o+2t−1 and BB(q,t ′)

o+2t−1 disagree in at most f cells, for any
q ∈ [n] and t ′ ≥ o + 2t − 1, hence |bias(t) − bias(q)(t)| ≤ f .

Part 2. By de#nition, bias(t) is #xed before any good players have written anything to BBo+2t . Thus
E[bias(t)ΣG (t)] = bias(t) · E[ΣG (t)] = 0.
Part 3. By Lemmas 9 and 10, if the adversary avoids termination by iteration t + 1, then
sgn(bias(p)(t)+Σ(p)(t)) ! sgn(bias(q)(t)+Σ(q)(t)) for two players p,q. Since |bias(t)−bias(p)(t)| ≤ f
and |Σ(t) − Σ(p)(t)| ≤ f , it follows from Σ(t) = ΣG (t) + ΣB (t) that

−2f ≤ bias(t) + ΣG (t) + ΣB (t) ≤ 2f .
Rearranging terms, we have both

−ΣB (t) ≥ −2f + bias(t) + ΣG (t)
and

ΣB (t) ≥ −2f − bias(t) − ΣG (t).
Depending on sgn(ΣG (t)), we multiply the #rst inequality by ΣG (t) ≥ 0 or the second by −ΣG (t) ≥
0, which implies the following.

−ΣG (t)ΣB (t) ≥ ΣG (t)2 + bias(t)ΣG (t) − 2f |ΣG (t)|. (1)
!

Lemmas 13–16 analyze the terms of (1). Note that since Var(|ΣG (t)|) = E[ΣG (t)2]−E[|ΣG (t)|]2 ≥
0, it follows that E[|ΣG (t)|] ≤

√
E[ΣG (t)2]. Thus, a bound on the #rst term of (1) will imply a bound

on the third.

Lemma 13. If (wi ) satisfy Invariant 1, then for any Ĝ ⊆ G with |Ĝ | = n−2f = (1+ϵ)f ,
∑

i ∈Ĝ w2
i ≥

1
2ϵ

2 f .

Proof. We compute:∑
i ∈Ĝ

wi = |Ĝ | −
∑
i ∈Ĝ

(1 −wi ) ≥ |Ĝ | −
∑
i ∈B

(1 −wi ) − ϵ4 f ≥ |Ĝ | −
(
1 + ϵ4) f = (

ϵ − ϵ4) f ≥ 7ϵ
8 f .

The #rst inequality follows from Invariant 1 and the fact that the total weight deduction of Ĝ is at
most that of G. The second inequality follows from wi ∈ [0, 1], so the total weight deduction of B
is at most f . The equality follows from |Ĝ | = n − 2f = (1+ ϵ)f . Finally, the last inequality follows
from the assumption that ϵ ≤ 1/2. Consequently:

∑
i ∈Ĝ

w2
i = |Ĝ |

∑
i ∈Ĝ

w2
i

1
|Ĝ |
≥ |Ĝ | ,-

.
∑
i ∈Ĝ

wi
1
|Ĝ |

/0
1

2

≥ |Ĝ |
(

7ϵ
8(1 + ϵ)

)2
≥ 1

2ϵ
2 f ,

where the #rst inequality is Jensen’s inequality, the middle inequality is from above, and the last
inequality follows from |Ĝ | = (1 + ϵ)f and the assumption ϵ ≤ 1

2 . !

Lemma 14. No matter how the coin $ips of G are scheduled in iteration t , E[ΣG (t)2] ≥ 1
2ϵ

2mf .
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Proof. The good players write betweenm(n−2f ) andmn coin "ips to BBo+2t , at the adversary’s
discretion. For r ∈ [0, 2mf ], let Sr be the sum of the #rst m(n − 2f ) + r coin "ips generated by
the good players. Then E[ΣG (t)2] = E[S2

2f m], which we claim is at least E[S0]. In general Sr =

Sr−1 + wiδr , where δr ∈ {−1, 1} if the adversary lets player i "ip the next coin and δr = 0 if the
adversary chooses to stop allowing coin "ips. If δr = 0 then Sr = Sr−1 and if δr ∈ {−1, 1} then

S2
r =

{
(Sr−1 +wi )2 = S2

r−1 + 2wiSr−1 +w2
i with probability 1

2 ,

(Sr−1 −wi )2 = S2
r−1 − 2wiSr−1 +w2

i with probability 1
2 .

Thus, E[S2
r | δr ! 0] = S2

r−1 + w
2
i > S2

r−1, and in general, E[S2
r ] ≥ E[S2

r−1] ≥ · · · ≥ E[S2
0]. Thus,

the adversarial strategy minimizing ΣG (t)2 is to allow as few coin "ips as possible, and from those
n − 2f players Ĝ with the smallest weights. By Lemma 13 we have

E[S2
0] ≥ m

∑
i ∈Ĝ

w2
i ≥

1
2ϵ

2mf . !

Lemma 15. With high probability, in any epoch k ,
∑

t ∈[T ] ΣG (t)2 ≥ 1
2ϵ

2mfT −mn
√
T (c lnn)3.

Proof. Consider the sequence (At )t ∈[T ], where
A0 = 0,

At = At−1 + ΣG (t)2 −
1
2ϵ

2mf .

By Lemma 14, E[ΣG (t)2] ≥ 1
2ϵ

2mf , so (At )t is a submartingale. Since ΣG (t) is a sum of at most
mn coin "ips, by a Cherno$ bound, |At − At−1 | ≤ ΣG (t)2 ≤ mn · c lnn with high probability. By
Azuma’s inequality, with high probability, AT ≥ −(mn · c lnn)

√
T · c lnn and∑

t ∈[T ]
ΣG (t)2 =

1
2ϵ

2mfT +AT ≥
1
2ϵ

2mfT −mn
√
T (c lnn)3. !

Lemma 16. With high probability, we have both
∑

t ∈[T ] bias(t)ΣG (t) ≤ mn
√
nT (c lnn)3 and∑

t ∈[T ] |ΣG (t)| ≤ T
√
mnc lnn.

Proof. By Lemma 12, E[bias(t)ΣG (t)] = 0 and hence the sequence (At )t ∈[T ] is a martingale,
where

A0 = 0,
At = At−1 + bias(t)ΣG (t).

With high probability |ΣG (t)| ≤
√
mn(c lnn) and bias(t) ≤ nm0 = n

√
m(c lnn), hence by Azuma’s

inequality, ∑t ∈[T ] bias(t)ΣG (t) ≤ mn
√
nT (c lnn)3 with high probability. !

We are now equipped to prove the second part of Lemma 11.

Proof of Part 2 of Lemma 11. Recall G,B are the sets of good and bad players, which, by as-
sumption, do not change during the epoch.

−
∑

(i, j)∈G×B

corr(i, j) =
∑

t ∈[T ]
−ΣG (t)ΣB (t)

≥
∑

t ∈[T ]

(
ΣG (t)2 − 2f |ΣG (t)| + bias(t)ΣG (t)

)
(Lemma 12)
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ALGORITHM 5: Rising-Tide(H = (V ,E, cV , cE ))
1: E ′ ← {{i, j} ∈ E | cE (i, j) > 0}.
2: µ(i, j)← 0 for all i, j ∈ V .
3: while E ′ ! ∅ do

4: Let µE′(i, j) =
{

1 if {i, j} ∈ E ′
0 otherwise.

.

5: Choose maximum ϵ > 0 such that µ ′ = µ + ϵµE′ is a feasible fractional matching.
6: Set µ ← µ ′.
7: E ′ ← E ′ − {{i, j} | i or j or {i, j} is saturated} " µ(i, j) cannot increase
8: return µ.

≥ 1
2ϵ

2mfT −O(mn
√
T (c lnn)3) − 2f O(T

√
mnc lnn) −O(mn

√
nT (c lnn)3)

(W.h.p., by Lemmas 15 and 16)

=

(
1
2ϵ

2 −O
(√

nc lnn
m

))
mfT −O(mn

√
nT (c lnn)3)

≥
(

1
2ϵ

2 − o(ϵ2)
)
mfT −O(mn

√
nT (c lnn)3) (wheneverm = Ω(n lnn/ϵ4))

≥ 1
4ϵ

2 f mT . (whenever T = Ω(n ln3 n/ϵ4))

Finally, since max{0,− corr(i, j)−wiw jβ} ≥ − corr(i, j)−wiw jβ , Lemma 11(2) follows from the
above inequality and the fact that∑

(i, j)∈G×B

wiw jβ ≤ |G | · |B | · β ≤ nf ·m
√
T (c lnn)3 ≤ 1

8ϵ
2 f mT

holds whenever T = Ω(n2 ln3 n/ϵ4). !

4.4 Blacklisting via Fractional Matching
After theT iterations of epoch k are complete, we reduce the weight vector (wi ) in preparation for
epoch k + 1. According to Lemma 11, if a correlation score − corr(i, j) is too large, B ∩ {i, j} ! ∅
w.h.p., so reducing both of i’s and j’s weights by the same amount preserves Invariant 1. With this
end in mind, Weight-Update (Algorithm 6) constructs a complete, vertex- and edge-capacitated
graph H on [n], #nds a fractional maximal matching µ in H , then docks the weights of i and j by
µ(i, j), for each pair {i, j}.

De"nition 1 (Fractional Maximal Matching). Let H = (V ,E, cV , cE ) be a graph where cV : V →
R≥0 are vertex capacities and cE : E → R≥0 are edge capacities. A function µ : E → R≥0 is
a feasible fractional matching if µ(i, j) ≤ cE (i, j) and ∑

j µ(i, j) ≤ cV (i). It is maximal if it is not
strictly dominated by any feasible µ ′.

The Rising-Tide algorithm initializes µ = 0 and simply simulates the continuous process of
increasing all µ(i, j)-values in lockstep, so long as i , j, and {i, j} are not saturated. At the moment
one becomes saturated, µ(i, j) is frozen at its current value. See Algorithm 5.

Rounding Weights Down. At the end of epoch k , player p generates a local weight vector
(w (p)

i,k+1)i ∈[n], which is a function of (wi,k )i ∈[n] and its historical view BB(p,2kT ) of the #rst k epochs.
(There are 2T blackboards in each epoch.) The consensus weight vector (wi,k+1)i ∈[n] is obtained
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ALGORITHM 6: Weight-Update from the perspective of player p.
Output: Weights (wi,k )i ∈[n],k≥0 where wi,k refers to the weight wi after processing epoch k − 1,

and is used throughout epoch k .
1: Set wi,1 ← 1 for all i . " All weights are 1 in epoch 1.
2: for epoch k = 1, 2, . . . ,Kmax − 1 do " Kmax − 1 = last epoch followed by Weight-Update.
3: Execute T iterations of Bracha-Agreement, using weights (wi,k ) in Coin-Flip. Let corr(p)

be the resulting correlation scores known to p. Construct the excess correlation graph H (p)
k

with capacities:
cV (i) = wi,k ,

c(p)E (i, j) = 8
ϵ2 f mT

· max
{
0,− corr(p)(i, j) −wi,kw j,kβ

}
.

4: µ(p)k ← Rising-Tide(H (p)
k ) " A maximal fractional matching

5: For each i , set
w (p)

i,k+1 ← wi,k −
∑

j
µ(p)k (i, j).

6: Once player i’s vector (w (i)
j,k+1)j ∈[n] is known, set the value

wi,k+1 =

{
w (i)

i,k+1 if w (i)
i,k+1 > wmin

def
=
√

n
T ,

0 otherwise.

by everyone adopting the weight of i according to player i’s local view, and rounding down if it is
too close to zero.

wi,k+1 =

{
w (i)

i,k+1 if w (i)
i,k+1 > wmin

def
=
√

n
T ,

0 otherwise.
Recall from Theorem 6(3) that if i writes anything to any blackboard in epoch k + 1, that every
player can deduce what its view BB(i,2kT ) looked like at the end of epoch k , and hence whatw (i)

i,k+1
andwi,k+1 are. By ensuring that all participating players use exactly the same weight function, we
eliminate one source of potential numerical disagreement.

We will see that the maximum pointwise disagreement in the local weight vectors |w (p)
i,k+1 −

w (q)
i,k+1 | is less than wmin. As a consequence, if any p thinks that w (p)

i,k+1 = 0 then all players will
agree that wi,k+1 = 0.

Excess Graph. The excess correlation graph H = (V ,E, cV , cE ) used in Algorithm 6 is a complete
undirected graph on V = [n], capacitated as follows:

cV (i) = wi,k

cE (i, j) =
8

ϵ2 f mT
· max{0,− corr(i, j) −wi,kw j,kβ},

where β is the quantity from Lemma 11. By Part 1 of Lemma 11, cE (i, j) = 0 whenever both i and
j are good.

The Weight-Update algorithm from the perspective of player p is presented in Algorithm 6. We
want to ensure that the fractional matchings computed by good players are numerically very close
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to each other, and for this reason we cannot use just any maximal matching algorithm, for exam-
ple, the standard “greedy” algorithm will not work. The Rising-Tide maximal matching algorithm
(Algorithm 5) has a continuous Lipschitz property, meaning bounded perturbations to its input
yield bounded perturbations to its output.

4.4.1 Properties of Rising-Tide. Recall that cV (i) is initialized to be the old weight wi,k and
the new weight in p’s local view is set to w (p)

i,k+1 = cV (i)−
∑

j µ
(p)
k (i, j). We are mainly interested in

di$erences in the new weight vector computed by players that begin with slightly di$erent graphs
H (p),H (q). Theorem 17 bounds the distance between outputs in terms of the distance between
inputs.

Theorem 17. Let H (p) = (V ,E, c(p)V , c
(p)
E ) and H (q) = (V ,E, c(q)V , c

(q)
E ) be two capacitated graphs,

which di!er by ηE =
∑

i, j |c
(p)
E (i, j) − c(q)E (i, j)| in their edge capacities and ηV =

∑
i |c

(p)
V (i) − c(q)V (i)|

in their vertex capacities. Let µ(p) and µ(q) be the fractional matchings computed by Rising-Tide
(Agorithm 5). Then:

∑
i

'''''
(
c(p)V (i) −

∑
j
µ(p)(i, j)

)
−

(
c(q)V (i) −

∑
j
µ(q)(i, j)

)''''' ≤ ηV + 2ηE .

Observe that cV (i)−
∑

j µ(i, j) is the new capacity of vertex i after deducting the maximal match-
ing edges adjacent to i . Thus, the expression in Theorem 17 measures the total di$erence in all
new vertex capacities after deducting the matchings computed from the perspectives of p and q.

4.5 Error Accumulation and Reaching Agreement
We perform fractional blacklisting after the #rstKmax−1 = 3f epochs. Letk ∈ [1,Kmax−1] be the in-
dex of the current epoch, and let (wi,k ) be the weights that were used in the execution of Coin-Flip
during epoch k . Upon completing epoch k , each player p applies Weight-Update(Algorithm 6) to
update the consensus weight vector (wi,k )i ∈[n] to produce a local weight vector (w (p)

i,k+1)i ∈[n], and
then the consensus weight vector (wi,k+1)i ∈[n] used throughout epoch k + 1.

Lemma 18 (Maintaining Invariant 1). Suppose for some ϵ > 0 that n = (3 + ϵ)f , m =

Ω(n lnn/ϵ4), and T = Ω(n2 ln3 n/ϵ4). At any point in epoch k ∈ [1,Kmax], with high probability,∑
i ∈G

(1 −wi,k ) ≤
∑
i ∈B

(1 −wi,k ) +
ϵ4√
n ln6 n

· (k − 1).

Proof. By induction on k . For the base case k = 1 all the weights are 1 so the claim clearly
holds. Now suppose the claim holds for k and consider k + 1. Fix any player p. A consequence of
Lemma 11 (Part 1) is that with high probability, player p’s view of the weight vector, (w (p)

i,k+1), is
derived from (wi,k ) by deducting at least as much weight from bad players as from good players.
By the inductive hypothesis,∑

i ∈G
(1 −w (p)

i,k+1) ≤
∑
i ∈B

(1 −w (p)
i,k+1) +

ϵ4√
n ln6 n

· (k − 1).

Subsequently, player p derives the consensus weight vector (wi,k+1) from (w (q)
i,k+1)q∈[n],i ∈[n] by

setting wq,k+1 = w
(q)
q,k+1, rounding the value down to 0 if it is at most wmin. Therefore,

∑
i ∈G

(1 −wi,k+1) ≤
∑
i ∈B

(1 −wi,k+1) +
ϵ4√
n ln6 n

· (k − 1) +
∑

q∈[n]

'''w (p)
q,k+1 −w

(q)
q,k+1

''' +wminn0, (2)
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where n0 is the number of players whose weight is rounded down to 0 after epoch k .
Hence, it su!ces to show that ∑

q∈[n] |w
(p)
q,k+1 −w

(q)
q,k+1 | +wminn0 ≤ ϵ4/

√
n ln6 n. By Theorem 17,

the computed weight di$erence between player p and any player q can be bounded by twice the
sum of all edge capacity di$erences (ηE ), since they completely agree on the vertex capacities
(ηV = 0).15 According to Algorithm 6, the edge capacities di$er due to underlying disagreement
on the corr(i, j) values. Thus,'''w (p)

q,k+1 −w
(q)
q,k+1

''' ≤ 2ηE ≤ 2 · 8
ϵ2 f mT

∑
i!j

'''corr(p)(i, j) − corr(q)(i, j)
''' . (3)

By Theorem 6, two players p,q may only disagree in up to f cells of the blackboards
(BB2(k−1)T+2,BB2(k−1)T+4, . . . ,BB2kT ),

that is, those used to compute corr-values in epoch k . Since the sum of each column in each black-
board is bounded by Xmax, |X (p)

i (t)X (p)
j (t) − X (q)

i (t)X (q)
j (t)| ≤ 2Xmax. Each of the f cells that p and

q disagree on a$ects n − 1 corr-values. Therefore, the right hand side of (3) is upper bounded by:

≤ 2 · 8
ϵ2 f mT

· nf · 2Xmax

≤ 32nXmax
ϵ2mT

≤
√
n

T
(m = Ω(n lnn/ϵ4) and Xmax = Θ(

√
m lnn))

= wmin .

Now the inductive step for k + 1 holds by noticing that in (2).∑
q∈[n]

'''w (p)
q,k+1 −w

(q)
q,k+1

''' +wminn0 ≤ 2wminn = 2n3/2/T

≤ ϵ4√
n ln6 n

. (T = Ω(n2 ln3 n/ϵ4))

Since k ≤ Kmax − 1 = 3f , we conclude that Invariant 1 holds in every epoch, with high probability.
That is, if (wi ),G,B are the weight vector, good players, and bad players at any point in time, then

∑
i ∈G

(1 −wi ) ≤
∑
i ∈B

(1 −wi ) +
ϵ4√
n ln6 n

· (Kmax − 1)

≤
∑
i ∈B

(1 −wi ) + ϵ4 f . (
√
n ln6 n ≥ 3)

!

The next observation and Lemma 19 shows that the weight of every bad player becomes 0 after
running Kmax − 1 epochs of Weight-Updates without reaching agreement.

Observation 1. For any q and k , if there exists a player p such that w (p)
q,k = 0, then wq,k = 0.

15It is somewhat paradoxical that they can agree on the vertex capacities when agreement is the whole problem. Consider
the moment at the end of epoch k when p is computing its weight vector (w (p)

q,k+1)q∈[n]. If cV (q) (the weight wq,k

computed after epoch k −1) is unknown to p , then, by Theorem 6(3), q must not have successfully written anything to any
blackboard in epoch k , in which case all edges incident to q have capacity zero. This situation is indistinguishable from
one in which all players agree that cV (q) = 0.
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Proof. In the proof of Lemma 18 it was shown that |w (p)
q,k − w

(q)
q,k | ≤

√
n/T = wmin , hence if

w (p)
q,k = 0, w (q)

q,k ≤ wmin and wq,k is rounded down to 0. See Algorithm 6. !

Lemma 19. If agreement has not been reached after Kmax − 1 = 3f epochs, then with high proba-
bility, there are f corrupt players with weight 0.

Proof. There are at most f epochs in which the adversary corrupts at least one player. We argue
below that for all other epochs, in the call to Weight-Update, the sum of the capacities of edges with
at least one endpoint in B is at least 1. This implies that in each iteration of Weight-Update, either
some i ∈ B with cV (i) = wi > wmin becomes saturated (and thereafter wi = 0 by Observation 1),
or the total weight of all players in B drops by at least 1. Each of these cases also occurs at most f
times, hence Kmax − 1 = 3f epochs su!ce to push the weight of f bad players to zero, with high
probability.

We now prove that the sum of the capacities of edges with at least one endpoint in B is at
least 1. ∑

(i, j)∈[n]×B

cE (i, j) =
8

ϵ2 f mT

∑
(i, j)∈[n]×B

max{0, corr(i, j) −wi,kw j,kβ}

≥ 8
ϵ2 f mT

∑
(i, j)∈G×B

max{0, corr(i, j) −wi,kw j,kβ}

≥ 8
ϵ2 f mT

(
1
8ϵ

2 f mT

)
(by Lemma 11(2))

= 1. !

Lemma 20. Suppose Invariant 1 holds in an epoch in which corrupt players have zero weight. With
high probability, Bracha-Agreement terminates with agreement in this epoch.

Proof. The proof of Lemma 11(2) states that, with high probability, −∑
(i, j)∈G×B corr(i, j) ≥

1
4ϵ

2 f mT > 0 in any epoch in which Bracha-Agreement fails to reach agreement. On the other
hand, by assumption −∑

(i, j)∈G×B corr(i, j) = 0. Thus, with high probability, Bracha-Agreement
reaches agreement in this epoch. !

Remark 3. Assuming the preconditions of Lemma 20, only good players participate and "ip
fair coins. Nonetheless, the output of Coin-Flip can still be strongly biased by the adversary’s
scheduling power alone. Consider the following adversarial strategy. Suppose n = 3f + 1 and the
population is partitioned into B ∪Glow ∪Ghigh, where B is the corrupt set, |B | = f , |Glow | = f + 1,
and |Ghigh | = f . Players in B have weight 0; players in Glow have weight 1/(f + 1) (consistent
with Invariant 1), and players inGhigh still have weight 1. The adversary permits B ∪Glow to write
m(2f +1)−1 coin "ips to a blackboard, that is, one coin-"ip shy of completing it. At this point, the
weighted sum of these coin "ips is some Σ0, where |Σ0 | = O(

√
m(f + 1) logn/(f + 1)) = Õ(ϵ−2) =

Õ(n2) with high probability. The adversary then allows the weight-1 players in Ghigh to write
coin-"ips to the blackboard one-by-one in a round-robin fashion. If the weighted sum ever gets
near the origin, for example, within [−f /3, f /3], the adversary can create arbitrary disagreements
by having everyone in Ghigh "ip one more coin, then having f /3 with the same sign write their
coin "ip to the blackboard, which can be revealed to any subset of the players. At this point, the
adversary allows the #nal coin "ip from B ∪ Glow to be written, completing the blackboard. The
probability of not hitting [−f /3, f /3] in a weighted random walk with length f m = Õ(n6), starting
from Σ0 = Õ(n2), is Õ(1/n).
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ALGORITHM 7: Iterated-Blackboard(t) from the perspective of player p

1: Set complete(t) ← false and set ζ ← maxlast(p,t−1) if t > 1 or any dummy value if t = 1.
Broadcast the write BBt (0,p)← ζ .

2: upon validating ≥ n − f ack(BBt (m(t),q))’s for ≥ n − f di$erent q for the #rst time:
set complete(t)← true and last(p,t ) ← last(p), then broadcast the vector last(p,t ).

3: upon validating ack(BBt (r ,p))’s from ≥ n − f di$erent players for the #rst time:
if ¬ complete(t) ∧ (r < m(t))
then generate a value ζ and broadcast the write BBt (r + 1,p)← ζ .

4: upon validating BBt (r ,q) from player q for the #rst time:

set BB(p)
t (r ,q)← BBt (r ,q) and last(p)(q)← (t , r );

if ¬ complete(t) then broadcast ack(BBt (r ,q)).
5: upon validating last(q,t ) vectors from ≥ n − f di$erent players q for the #rst time:

set maxlast(p,t )(i)← maxq{last(q,t )(i)} (point-wise maximum, lexicographically).

At this point BB(p,t ) =
(
BB(p,t )

1 , . . . ,BB(p,t )
t

)
is #xed as follows:

BB(p,t )
t ′ (r , i) =

{
BB(p)

t ′ (r , i) if (t ′, r ) ≤ maxlast(p,t )(i) (lexicographically) and r ∈ [1,m(t)],
⊥ otherwise.

This concludes the analysis of Byzantine-Agreement (Algorithm 3). The outstanding claims are
now Theorem 6, which is proved in Section 5, and Theorem 17, which is proved in Section 6.

5 THE ITERATED BLACKBOARD
In this section, we prove Theorem 6, restated below, by designing and analyzing an Iterated-
Blackboard protocol (Algorithm 7). Our protocol builds on Kimmett’s [32] improvement to King
and Saia’s [33] Blackboard protocol. Throughout this section “t” simply refers to the blackboard
index, not the index within an epoch of Byzantine-Agreement.

Theorem 6. An iterated blackboard (BB1,BB2, . . . ,BBτ ) is a sequence of matrices, BBt being
an m(t) × n matrix with all cells initially ⊥. It is constructed by calling Iterated-Blackboard(1), . . .,
Iterated-Blackboard(τ ). In the execution of Iterated-Blackboard(t), every good player p "xes a view
BB(p,t ) = (BB(p,t )

1 , . . . ,BB(p,t )
t ) of the true blackboards (BB1, . . . ,BBt ). Iterated-Blackboard(t) is

resilient to f < n/3 Byzantine faults, and has the following properties.
(1) Player i writes values successively to cells in column BBt (·, i) and only player i may write values

to this column. Thus, at all times, BBt (·, i) consists of a pre"x of non-⊥ values and a su#x of⊥s.
(2) When player p "xes its historical view BB(p,t ), it contains all writes recorded in BB(p,t−1), if

t > 1. Moreover, BB(p,t )
t contains at least n − f full columns, with m(t) writes, and at most f

partial columns. It is guaranteed that for every t ′ ∈ [t], i ∈ [n], r ∈ [m(t ′)],

BB(p,t )
t ′ (r , i) ∈ {BBt ′(r , i),⊥}.

Moreover, there are at most f tuples (t ′, r , i) such that for some p, BB(p,t )
t ′ (r , i) = ⊥ ! BBt ′(r , i).

All such tuples have distinct 3rd coordinates.
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(3) If a player q writes any non-⊥ value to BBt , then by the time any player p "xes BB(p,t ), p can
locally reconstruct q’s view BB(q,t−1) of the history up to blackboard t − 1.

(4) The latency of constructing BB(p,τ ) is linear in the total number of rows, namelyO(∑t ≤τ m(t)).

Iterated-Blackboard uses Reliable-Broadcast (Theorem 1) to construct a series of blackboards
BB = (BB1,BB2, . . .), the columns of which are indexed by player IDs in [n] and the rows BBt are
indexed by [0,m(t)]. The blackboard proper consists of rows 1, . . . ,m(t); the purpose of row zero
is to reduce disagreements between the views of good players. Every player p maintains BB(p) =

(BB(p)
1 ,BB(p)

2 , . . .), where BB(p)
t (r , i) records the value written by player i to BBt (r , i) and validated

by player p, or⊥ if no such value has yet been validated by p. Each player maintains a vector last(p)
indicating the position of the last validated write from each player, that is, last(p)(i) = (t , r ) if p
validated i’s write to BBt (r , i), but has yet to validate any subsequent writes from i to BBt , nor to
BBt+1,BBt+2, . . .. Let us emphasize the BB(p) and last(p) are dynamic global variables of p; they are
not tied to any speci#c invocation of Iterated-Blackboard(t).

Algorithm 7 gives the algorithm Iterated-Blackboard(t) for generating BBt from the perspec-
tive of player p. Player p may only begin executing it if t = 1 or if it has #xed BB(p,t−1) in
Iterated-Blackboard(t − 1). At some point in Iterated-Blackboard(t), p #xes a view BB(p,t ) =

(BB(p,t )
1 , . . . ,BB(p,t )

t ) of the #rst t blackboards. In particular, when t > 1, p begins Iterated-
Blackboard(t) having already #xed BB(p,t−1) and the vector maxlast(p,t−1), which indicates the
position of the last write in BB(p,t−1) of each player.

The Iterated-Blackboard protocol (Algorithm 7) is de#ned by #ve reactive rules, which obscures
the "ow and structure of the protocol. It consists of three phases: Initialization (Line 1), Populating
the Blackboard, (Lines 3 and 4), and Synchronization (Lines 2 and 5). We describe these three phases
from the perspective of p.
Initialization. Once p has #xed BB(p,t−1) and maxlast(p,t−1) in Iterated-Blackboard(t − 1), p may

execute the #rst step of Iterated-Blackboard(t) (Line 1), which is to write maxlast(p,t−1) to
the zeroth row (BBt (0,p)), and to initialize the boolean complete(t) to be false. (Player p will
set complete(t) to be true when p sees n − f full columns in BB(p)

t .)
Populating the Blackboard. The blackboard is populated via writes and acknowledgements, both

of which are sent by Reliable-Broadcast. In general, when a player has validated n − f ac-
knowledgements ack(BBt (r ,p)) to its own write to the r th row, r < m(t), it generates a value
ζ and writes it to BBt (r +1,p) (Line 3).16 When p validates one of q’s writes, say to BBt (r ,q),
it broadcasts an acknowledgement ack(BBt (r ,q)), but only if complete(t) = false (Line 4).

Synchronization. Once a player has recorded n − f full columns (with acknowledgements), it
sets the boolean complete(t)← true, broadcasts the current state of its last vector last(p,t ) ←
last(p) (Line 2), and ceases broadcasting acknowledgements (Line 4). Because of asynchrony,
the writes recorded by p and q at the moment they set complete(t) ← true can di$er dra-
matically. The purpose of Line 5 is to reach near-agreement on the contents of BBt . Player p
waits until it validates last(q,t ) vectors fromn− f playersq, and de#nes maxlast(p,t ) to be their
point-wise maximum. By de#nition, BB(p,t ) records all of q’s writes up to maxlast(p,t )(q). As
we shall see, maxlast(p,t ) and maxlast(q,t ) can only disagree in f entries, and by at most 1.

Every message M from q accepted by p in Reliable-Broadcast must be validated before Iterated-
Blackboard can react to it. In general, p validates M when it has validated messages that, were they

16In the context of our Byzantine Agreement protocol, ζ is either v∗ (the majority value) or 0 when t is odd, and a uniformly
random value in {−1, 1} when t is even. See Coin-Flip (Algorithm 4).
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to be processed by q, would have resulted in q broadcasting M . Speci#cally, validation entails the
following behavior in each step:
Line 1. Player p will only validate a write BBt (0,q)← ζ if t = 1, or if t > 1 and ζ = maxlast(q,t−1)

is the point-wise maximum of n − f last(q′,t−1) vectors validated by p.
Lines 2, 4. Player p will only validate an ack(BBt (r ,q)) if it has validated q’s write to BBt (r ,q).
Line 3. Player p will only validate q’s write BBt (r ,q) ← ζ , r > 0, if ζ is a legal value and it has

validated n − f acknowledgements to q’s write to BBt (r − 1,q).17 The rules for validating a
write to BBt (0,q) were covered above.

Line 5. Player p will validate last(q,t ) if BB(p)
t ′ (r , i) ! ⊥ whenever (t ′, r ) ≤ last(q,t )(i). In other

words, p will validate last(q,t ) once it has recorded all the writes that q purports to have
recorded, at the moment it set complete(t)← true.

An important point is that the conditions of the “upon” statements of Iterated-Blackboard are
checked whenever a message is validated. In particular, player p may record a write to BB(p)

t (r ,q)
(Line 3) after it has #xed BB(p,t ) and moved on to execute Iterated-Blackboard(t + 1). These can
be thought of as retroactive corrections to BBt , that will be re"ected in BB(p,t ′) for some t ′ > t .

In the next lemma, we show that the validation mechanism does not cause deadlocks.

Lemma 21. Suppose t = 1 or n − f good players "x maxlast(p,t−1) and BB(p,t−1). Then every good
player that executes Iterated-Blackboard(t) eventually "xes maxlast(p,t ) and BB(p,t ).

Proof. First, we claim that, if any good player considers BBt complete (sets complete(t) = true),
then every good player that executes Iterated-Blackboard(t) eventually considers BBt complete.
Indeed, if a good player considers BBt complete, then it must have validated ack(BBt (m(t),q))s
from at leastn−f players, for at leastn−f values ofq (Line 2). By the properties of reliable broadcast
(Theorem 1), every other good player eventually accepts and validates the same messages. Thus,
every good player that executes Iterated-Blackboard(t) eventually considers BBt complete.

Next, we claim that, if at least n− f good players consider BBt complete (setting their respective
variables complete(t) = true), then every good player p that executes Iterated-Blackboard(t) will
eventually set maxlast(p,t ). Indeed, by Line 2, every good player q that considers BBt complete will
broadcast a last(q,t ) vector. By the properties of reliable broadcast, any blackboard values validated
by q will eventually be validated by every good player and, hence, every good player will eventu-
ally participate in q’s broadcast of last(q,t ). Thus, every good player p eventually validates last(q,t )
vectors from at least n − f di$erent players q and sets maxlast(p,t ) (Line 5).

Finally, since at least n − f good players execute the procedure Iterated-Blackboard(t), by our
preceding discussion, it su!ces to show that at least one such player considers BBt complete.
Suppose, for a contradiction, that this is not the case. Consider any good player p that executes
Iterated-Blackboard(t) with the minimum number of writes to its column of BBt .

Suppose p writes to row m(t). Then, by minimality, every good player q that executes the pro-
cedure Iterated-Blackboard(t) writes to row m(t) in their respective columns, that is, broadcasts
a write to BBt (m(t),q). By the properties of reliable broadcast, the n − f ack(BBt (m(t) − 1,q))’s
that allow each such player q to broadcast BBt (m(t),q) will eventually be validated by every good
player. Thus, every good player will eventually validate BBt (m,q) and, as they do not consider BBt
complete by assumption, they will broadcast ack(BBt (m(t),q)). Therefore, every good player will

17In the context of our Byzantine Agreement protocol, ζ is legal if ζ ∈ {−1, 1} when t is even, and ζ ∈ {v∗, 0} when t is
odd. Moreover, in the odd case, each player must only write v∗ or 0 consistently; see Coin-Flip (Algorithm 4). The value
v∗ is possible only if some player broadcast the majority value v∗ in Line 4 of Bracha-Agreement, whereas 0 is possible
only if n − f players broadcast ⊥ in Line 4 of Bracha-Agreement.
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accept (and validate) at least n− f ack(BBt (m(t),q)) for at least n− f di$erent q and, consequently,
consider BBt complete (Line 2), which is a contradiction.

Now suppose p last writes to row r < m(t). If r > 0, then the n − f ack(BBt (r − 1,p))’s that
allowp to broadcast BBt (r ,p) will eventually be validated by every good player. Hence, every good
player will eventually participate in p’s broadcast of BBt (r ,p) and validate BBt (r ,p). Similarly, if
r = 0. Since p does not write to row r + 1 ≤ m(t), it never validates n − f ack(BBt (r ,p))’s. Since
at least n − f good players validate BBt (r ,p), it follows that at least one such player does not
broadcast an ack(BBt (r ,p)). By Line 4, this player must have considered BBt to be complete by
the time it validates BBt (r ,p), which is a contradiction.

Therefore, in both cases, we reach the desired contradiction. !

Recall that after executing Iterated-Blackboard(t), p’s view of the history is BB(p,t ), de#ned to
be:

BB(p,t )
t ′ (r , i) =

{
BB(p)

t ′ (r , i) if r ∈ [1,m(t)] and (t ′, r ) ≤ maxlast(p,t )(i) (lexicographically)
⊥ otherwise

In other words, we obtain BB(p,t )
t ′ by stripping o$ the zeroth row of every BB(p)

t ′ matrix and replac-
ing any values in column i after maxlast(p,t )(i) with ⊥. We emphasize that, in contrast to p’s local
blackboard variable BB(p)

t , once BB(p,t ) is set, it never changes.

Lemma 22. Suppose some good player q validates the ack(BBt (r , i)) messages broadcast from at
least n − f di!erent players. Then every good player p that "nishes iteration t has

BB(p)
t (r , i) = BB(p,t )

t (r , i) = BBt (r , i).
Proof. Let S0 be the set of players broadcasting ack(BBt (r , i)) messages that q validates. It

follows that last(q′,t )(i) ≥ (t , r ) for all q′ ∈ S0. When p #nishes iteration t , it validates last(q′,t )
vectors for n − f players q′ ∈ S1. Since S0 ∩ S1 ! ∅, maxlast(p,t )(i) = maxq′ ∈S1 {last(q′,t )(i)} ≥ (t , r ),
meaning that p will not #nish Line 5 until it accepts and validates player i’s write to BBt (r , i),
recording it in BB(p)

t and hence BB(p,t )
t . !

Lemma 23. Suppose that each good player executes Iterated-Blackboard(1), . . .,
Iterated-Blackboard(t), beginning iteration t ′ + 1 only after it has executed Line 5 of iteration
t ′. Then, for any two good players p,q that "nish iteration t , BB(p,t ) and BB(q,t ) disagree in at most
f positions in total. If they disagree on the contents of any position, one is ⊥.

Proof. The properties of reliable broadcast ensures that BB(p)
t and BB(q)

t cannot contain distinct
non-⊥ values in any position. Therefore, we must argue that they di$er in at most f positions. Fix
a player i and let BBti (ri , i) be the last of i’s blackboard writes for which it validated at least n − f

ack(BBti (ri , i))s. By Lemma 22, BB(p,t )
ti

(ri , i) = BB(q,t )
ti

(ri , i). Moreover, p,q have both validated all
of i’s blackboard writes prior to BBti (ri , i). Subsequent blackboard writes of i that could appear in
the local matrices ofp andq are limited to BBti (ri+1, i) (if ri < m(ti )) and BBti+1(0, i), . . . ,BBt (0, i)
(if ti < t ). This follows by assumption on (ti , ri ): at the #rst time when bothp andq #nish iteration t ,
i has not validated su!ciently many acknowledgements to attempt any writes beyond these. Since
we strip o$ the zeroth rows of each local view to form BB(p,t ),BB(q,t ), they may only disagree in
column i at BBti (ri + 1, i). Now, for at least n − f players i we have (ti , ri ) = (t ,m(t)). Thus,
BB(p,t ),BB(q,t ) may only disagree in f cells in total. !

Lemma 24. If BBt (1,q) ! ⊥, then by the timep "xes BB(p,t ), it can reconstruct q’s history BB(q,t−1)

through blackboard t − 1, assuming t > 1.
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Proof. Before q wrote anything to BBt (1,q) it must have written BBt (0,q) ← maxlast(q,t−1)

and caused n − f acknowledgements ack(BBt (0,q)) to be broadcast. By Lemma 22 every player
will accept and validate q’s write to BBt (0,q) before #xing BB(p,t ), and hence be able to reconstruct
BB(q,t−1) from maxlast(q,t−1). !

This concludes the proof of Theorem 6.

6 RISING-TIDE IS LIPSCHITZ CONTINUOUS
The goal of this section is to prove Theorem 17, which is restated below.

Theorem 17. Let H (p) = (V ,E, c(p)V , c
(p)
E ) and H (q) = (V ,E, c(q)V , c

(q)
E ) be two capacitated graphs,

which di!er by ηE =
∑

i, j |c
(p)
E (i, j) − c(q)E (i, j)| in their edge capacities and ηV =

∑
i |c

(p)
V (i) − c(q)V (i)|

in their vertex capacities. Let µ(p) and µ(q) be the fractional matchings computed by Rising-Tide
(Agorithm 5). Then:

∑
i

'''''
(
c(p)V (i) −

∑
j
µ(p)(i, j)

)
−

(
c(q)V (i) −

∑
j
µ(q)(i, j)

)''''' ≤ ηV + 2ηE .

6.1 Dependency Graphs
We #rst introduce the idea of a dependency graph that captures the moments when vertices be-
come saturated in Rising-Tide (Algorithm 5). We will then use structural properties of dependency
graphs to #nally prove Theorem 17. Throughout this section, the two capacitated graphs under
consideration are G = (V ,E, cG

V , c
G
E ) and H = (V ,E, cH

V , c
H
E ).

De"nition 2 (Dependency Graph). Let DG be a directed graph on the same vertex set:V (DG ) = V .
Consider the execution of Algorithm 5 on G. For each edge e = {i, j} ∈ E, if at the moment e is
removed from the working set E ′ (Line 7), i (resp. j) is saturated, then we include in DG a directed
edge j → i (resp. i → j). Notice that if both i and j are saturated simultaneously, then DG includes
both edges i → j and j → i .

We #rst state a useful continuity property of Rising-Tide, that if we continuously deform the
input capacities, the output fractional matching also changes continuously.

Lemma 25 (The Continuity Lemma). Let G and H be two fractional matching instances where
every vertex- and edge-capacity di!ers by at most ξ . Then, for every edge e , |µG (e) − µH (e)| ≤ F (n)ξ
for some function F which depends only on the size of the graph.

Proof. Without loss of generality, we can assume that each edge capacity cG
E (i, j) ≤

min{cG
V (i), cG

V (j)} is always bounded by the capacities of its endpoints.
Imagine running Rising-Tide simultaneously on both G and H , stopping at the #rst saturation

event that occurs in, say,G but notH . (A “saturation event” is the saturation of a vertex or edge with
non-zero capacity.) Let µ ′G , µ ′H be the fractional matchings at this time and G ′,H ′ be the residual
graphs, that is, obtain new capacities by subtracting each µ ′G (i, j) from cG

V (i), cG
V (j), and cG

E (i, j).
The maximum di$erence in vertex- or edge-capacities between G ′,H ′ is nξ . The argument can be
applied inductively toG ′,H ′, and since there areO(n2) saturation events, the maximum di$erence
between any capacity (and hence an µ-value) is always bounded by F (n)ξ , where F (n) = nO (n2). !

The magnitude of F is immaterial to our argument, so long as it depends only on n. Lemma 25
allows us to make several simplifying assumptions, which are ultimately justi#ed in the #nal proof
of Theorem 17.
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A1. Although we are comparing two graphs G,H with possibly many capacity di$erences, we
can assume without loss of generality that they di$er in precisely one vertex- or edge-
capacity.

A2. We can assume that the dependency graphs for G and H are identical.
A3. We can assume, via in#nitesimal perturbations, that no two vertices are saturated simulta-

neously. In particular, this implies that DG is acyclic. (See Lemma 26.)
Lemma 26 (Basic Properties of µ and DG ). Assume graphG satis"es assumption (A3). Let µ be

the output of G from Algorithm 5. Then:
(1) For any two edges e1 ∈ E and e2 ∈ E, if e1 gets removed from E ′ before e2, then µ(e1) < µ(e2).
(2) For each u ∈ V , all edges directed towards u in DG have the same µ-value.
(3) For any edge u → v in DG and any edge {v,w} ∈ E, µ(u,v) ≥ µ(v,w).
(4) (Monotonic Path Property) The µ-values along any directed walk u0 → u1 → u2 → · · · on DG

are non-increasing. That is, µ(u0,u1) ≥ µ(u1,u2) ≥ · · · .
(5) (Directed Acyclic Graph Property) DG is a DAG.

Proof. To show (1), it su!ces to observe that in Algorithm 5 the fractional matching µ grows
strictly increasing at each iteration.

To show (2), it su!ces to show that for each vertex u ∈ V with any two incoming edges v → u
and w → u on DG , µ(v,u) = µ(w,u). Suppose conversely and without loss of generality µ(v,u) >
µ(w,u). By the time {w,u} gets removed from the working set E ′,u is already saturated. However, it
is now impossible to increase µ(v,u) anymore, contradicting the assumption that µ(v,u) > µ(w,u).

To show (3), we notice that at the time {u,v} is removed from E ′,v is saturated. At this moment,
any edge {v,w} ∈ E incident to v cannot increase its µ value anymore. Hence, {v,w} will be
removed from E ′ at the same time with {u,v} or prior to the time when {u,v)} is removed from
E ′. Thus, by (1) we have µ(u,v) ≥ µ(v,w). (4) follows from (3).

To show (5), assume that there exists a cycle u0 → u1 → · · · → u0 in DG . By the monotonic
path property (4), all edges µ(ui ,ui+1) have the same fractional value when they were removed
from the working set E ′ in the Rising-Tide algorithm. Moreover, by de#nition of DG , all vertices
are simultaneously saturated, which contradicts (A3). !

Henceforth, (A3) is assumed to hold in all graphs.

6.2 The Proof
To prove Theorem 17, it su!ces to show (via Lemma 25 and an interpolation argument) that the
statement holds in the special case that (cG

V , c
G
E ) and (cH

V , c
H
E ) di$er in exactly one vertex capacity

or exactly one edge capacity, and that DG = DH .
We start with some observations when there is only one change on the capacities between G

and H .

Lemma 27. LetG and H be two input graphs with cG
E = c

H
E and D

def
= DG = DH . If {i, j} is an edge

for which neither i → j nor j → i appear in D, then µG (i, j) = µH (i, j).
Proof. If both i and j are not saturated by the time {i, j} gets removed from E ′, then {i, j} itself

must be saturated, hence µG (i, j) = cG
E (i, j) = cH

E (i, j) = µH (i, j). !

Suppose graphsG and H have the same capacities except at some vertex s ∈ V . Then Lemma 27
implies that if we run the Rising-Tide algorithm on both instancesG and H , the #rst moment they
di$er must be when one graph saturates s but the other does not. In this case, we can think of s
being the source of all disagreements. Intuitively, if we look at an edge e where µG (e) ! µH (e), we
should be able to trace this disagreement back to s .
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Lemma 28. Assume thatG andH di!er only in the capacity of one vertex s and thatD def
= DG = DH .

Consider any edge {i, j} such that µG (i, j) ! µH (i, j). Then, there exists a path in the dependency graph
D containing {i, j} and s . Moreover, every edge e on this path satis"es µG (e) ! µH (e).

Proof. Without loss of generality, when we consider an edge {i, j} with µG (i, j) < µH (i, j), we
may always assume j → i appears in D. (This edge must exist by Lemma 27.) That is, when {i, j}
is removed from the Rising-Tide algorithm, it is because i is saturated. Now we prove this lemma
by induction on all edges from the smallest µG value to the largest µG value.
Base Case. Suppose {i, j} is one of the edges with the minimum µG -value such that µG (i, j) <
µH (i, j). Since this is the #rst moment when the algorithm behaves di$erently, and we assume that
j → i onG, it follows that at time µG (i, j), the vertex i is saturated inG but not in H . Moreover, all
other edges incident to i have the same µG -value at this time. Therefore cG

V (i) < cH
V (i), and hence

i = s . There is a trivial path in D including {j, i} and s .
Inductive Case. Now let us prove the inductive case. Suppose µG (i, j) ! µH (i, j) and when {i, j} is
removed from E ′, the vertex i is saturated. If i = s then we are done. Otherwise, we have cG

V (i, j) =
cH

V (i, j). By Lemma 26(2,3) and summing up all fractional matching values around the vertex i , we
know that there exists an edge {i, j ′} with µG (i, j ′) ! µG (i, j) and also µG (i, j ′) ! µH (i, j ′). By
Lemma 26(1) we know that µG (i, j ′) < µG (i, j). By the induction hypothesis and Lemma 27, we
know that i → j ′ in D and there must be a path from {i, j ′} to s in D. Therefore, there exists a path
including {j, i} and s in D as well. !

Now, we prove the simplest version of Theorem 17, whereG,H di$er in one vertex capacity and
have the same dependency graph.

Lemma 29. Assume G and H only di!er in the capacity of one vertex s , and that D def
= DG = DH .

Then, the total di!erences among the remaining vertex capacities can be bounded by

∑
i

'''''
(
cG

V (i) −
∑

j
µG (i, j)

)
−

(
cH

V (i) −
∑

j
µH (i, j)

)''''' ≤
''cG

V (s) − cH
V (s)

'' .
Proof. By Lemma 28, all edges that have di$erent fractional matching values form a subgraph

Ddi$ of D with s being the only minimal element. If s is not saturated then there are no incoming
edges to s . By Lemma 28, we know that Ddi$ = ∅ =⇒ µG = µH and in this case the equality holds
for the statement.

Observe that whenever there is an incoming edge to a vertex i inD, the vertex i must be saturated.
Since we are measuring di$erences in the remaining vertex capacities, the only place where such
disagreement could happen is on all maximal vertices of Ddi$ . LetT be the set of maximal vertices,
that is, those without incoming edges.

We prove a certain inequality by induction over all sets S such that S ⊆ V −T and S is downward
closed, meaning there is no outgoing edge from S toV −S . As a consequence s ∈ S . Let ∂S be the set
of incoming edges fromV −S to S . We will prove that for any coe!cients {νi→j ∈ [−1, 1]}(i→j)∈∂S
we have ''''''

∑
(i→j)∈∂S

νi→j (µG (i, j) − µH (i, j))

'''''' ≤
''cG

V (s) − cH
V (s)

'' .
Base Case. The minimal downward closed set is S = {s}. By Lemma 26(2) all incoming edges

have the same µG (i, s) − µH (i, s) values. That is, all terms in {µG (i, s) − µH (i, s)} are of the same
sign and hence the claim is true for the base case.
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Inductive Case. Consider any downward-closed set S ⊆ V − T with |S | ≥ 2, and let {νi→j ∈
[−1, 1]} be any set of coe!cients on the fringe ∂S . Let u ! s be any maximal element in S .

Let Xin and Xout be the set of incoming and outgoing edges incident to u. Since S is downward-
closed, we have

∂S = ∂(S − {u}) ∪ Xin − Xout.

Now, by Lemma 26 we know that all incoming edges (i → u) in Xin have the same fractional
matching value in µG , and the same value in µH . We denote the di$erence between these values
by ∆

def
= µG (i,u) − µH (i,u).

Let νu =
1

|Xin |
(∑

(i→u)∈Xin νi→u
)
∈ [−1, 1] be the average coe!cient among all incoming edges.

Since u is saturated, we have∑
(u→j)∈Xout

νu (µG (u, j) − µH (u, j)) +
∑

(i→u)∈Xin

νi→u (µG (i,u) − µH (i,u))

=
∑

(u→j)∈Xout

νu (µG (u, j) − µH (u, j)) + νu |Xin | · ∆ (by de#nition of νu )

= νu

( ∑
(u→j)∈Xout

(µG (u, j) − µH (u, j)) +
∑

(i→u)∈Xin

(µG (i,u) − µH (i,u))
)

= νu (cG
V (u) − cH

V (u))
= 0.

By removing u from S we obtain a smaller subset on which we can apply the inductive hypoth-
esis. De#ne coe!cients {ν ′i→j } with ν ′u→j = −νu for all (u → j) ∈ Xout and ν ′i→u = νi→j for all
unrelated edges not incident to u. Then, we have''''''

∑
(i→j)∈∂S

νi→j (µG (i, j) − µH (i, j))

''''''
≤

''''''
,-
.

∑
(i→j)∈∂(S−{u })

ν ′i→j (µG (i, j) − µH (i, j))/0
1
+ νu · 0

'''''' (vertex u is saturated)

≤
''cG

V (i) − cH
V (i)

'' . (by induction hypothesis)

By choosing S = V \T and coe!cients νi→j = sgn(µG (i, j)−µH (i, j)) for every edge (i → j) ∈ ∂S ,
we conclude that

∑
i

'''''
(
cG

V (i) −
∑

j
µG (i, j)

)
−

(
cH

V (i) −
∑

j
µH (i, j)

)'''''
=

∑
i!s

'''''
∑

j
µG (i, j) −

∑
j
µH (i, j)

''''' (for all i ! s , cG
V (i) = cH

V (i), and s is saturated)

=
∑
i ∈T

'''''
∑

j
µG (i, j) −

∑
j
µH (i, j)

'''''
=

∑
(i→j)∈∂S

νi→j (µG (i, j) − µH (i, j)) (use νi→j to remove the absolute value operation)
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Fig. 1. Le!: supposeG,H di"er only in the capacity of edge {s, t}. Right: applying the transformation,G ′,H ′

now only di"er in the capacity of vertex x .

=

''''''
∑

(i→j)∈∂S

νi→j (µG (i, j) − µH (i, j))

'''''' (this sum is positive)

≤
''cG

V (s) − cH
V (s)

'' .
!

Lemma 29 handled the case whenG,H di$er in one vertex capacity. Lemma 30 reduces the case
where they di$er in one edge capacity to Lemma 29.

Lemma 30. Assume that G and H di!er only in the capacity of one edge {s, t} ∈ E. Assume that
D

def
= DG = DH . Then,

∑
i

'''''
(
cG

V (i) −
∑

j
µG (i, j)

)
−

(
cH

V (i) −
∑

j
µH (i, j)

)''''' ≤ 2
''cG

E (s, t) − cH
E (s, t)

'' .

Proof. By reduction to Lemma 29. Create G ′ by subdividing {s, t} into {s,x}, {x , t} with
cG′

E (s,x) = cG′
E (x , t) = ∞ and cG′

V (x) = 2cG
E (s, t). CreateH ′ fromH in the same way. Since DG = DH ,

the same vertices must be saturated in both, and in particular, among s, t , and {s, t}, both execu-
tions saturate the same element #rst. If they both saturate s or t #rst, then the capacity of {s, t} has
no in"uence on the execution and µG = µH . If they both saturate {s, t} #rst, then the executions
on G,H proceed identically to the corresponding executions on G ′,H ′. Note that G ′,H ′ di$er in
one vertex capacity, with

''cG′
V (x) − cH ′

V (x)
'' = 2

''cG
E (s, t) − cH

E (s, t)
''. The lemma then follows from

Lemma 29 applied to G ′,H ′. !

We can now prove Theorem 17.

Proof of Theorem 17. Imagine continuously transforming the capacities (cG
V , c

G
E ) into (cH

V , c
H
E )

by modifying one vertex capacity or one edge capacity at a time. In this continuous process,
there are two types of breakpoints to pay attention to. The #rst is when we switch from trans-
forming one capacity to another, and the second is when the dependency graph changes. Let
G = G0,G1, . . . ,Gk = H be the sequence of graphs at these breakpoints. Up to a tie-breaking
perturbation, we can assume each pair (Gi ,Gi+1) di$er in one edge or vertex capacity, and have
the same dependency graph. By Lemma 25 the objective function is continuous in the input, and
does not have any discontinuities at breakpoints. Let ηV (i),ηE (i) be, respectively, the di$erence in
vertex and edge capacities between Gi and Gi+1. By Lemmas 29 and 30 the objective function is
bounded by ∑k−1

i=0 (ηV (i) + 2ηE (i)) = ηV + 2ηE . !

7 CONCLUSION
Our main result is the #rst polynomial-latency agreement protocol in the full-information model
resilient to f = n/(3 + ϵ) adaptive Byzantine failures. When ϵ is bounded away from zero it has
expected latency Õ(n4) and in the extreme case when ϵ = 1/f (n = 3f + 1) it has latency Õ(n12).
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This is the #rst improvement to Bracha’s [13] 1984 protocol when n = 3f + 1, and improves on
the resilience of King and Saia’s [33, 34] protocols; see Table 1.

We see some interesting directions for future work.
— Let nд(ϵ ) be the optimum latency of a Byzantine Agreement protocol with resiliency f =
n/(3 + ϵ) against an adaptive adversary. What does the function д look like and what is
limϵ→∞ д(ϵ)? From [33] we know that limϵ→∞ д(ϵ) ≤ 2.5, at least for protocols with expo-
nential local computation, and from [4, 5] we know limϵ→∞ д(ϵ) ≥ 1. What is the correct
limit of д(ϵ)? Are there qualitatively di$erent protocols achieving latency nд(ϵ ) for various
ranges of ϵ? One can also look at the optimal latency-resiliency tradeo$ when f = nγ ,
γ ∈ (0, 1), is expressed as a polynomial of n.

— Each step in the protocols we use (Reliable-Broadcast and Bracha-Agreement [13], Iterated-
Blackboard, and Coin-Flip) typically consists of sending a message to all players and waiting
for n − f messages before making some state transition. If we were to wait for n − f +
1 messages, we may wait forever if f players crashed and never sent any messages. On
the other hand, once we introduce blacklisting it is not clear that waiting for just n − f
messages is necessary anymore. For example, suppose that ∑

i wi = n − 2ρ f and that we
have reduced the weight of good and bad players each by ρ f , with high probability. Rather
than wait for n − f messages, we could wait for messages from players whose total weight
is at least n − (ρ + 1)f .18 This would help speed up later epochs since we could then access
the weight advantage of good players. However, since there is some non-zero probability
of blacklisting pairs of good players, there is some non-zero probability that a protocol will
deadlock if it waits for n− (ρ + 1)f weight before proceeding. This raises the possibility that
there is a complexity separation in Byzantine agreement between Las Vegas protocols (which
terminate in agreement with probability 1) and Monte Carlo protocols (which terminate in
agreement with probability 1−o(1), and may deadlock or terminate without agreement with
o(1) probability). Cf. [31].
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