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Despite the prevalence of large group-living in the animal kingdom, we know

surprisingly little about how the brain facilitates grouping behavior, particularly in

mammals. In this brief communication, I provide an update on advancements in

the study of the neural mechanisms underlying mammalian grouping behavior. I

discuss the benefits of using non-traditional organisms in the laboratory and

provide examples of how using non-standard, large housing and testing

apparatuses produces more ethologically-relevant behavioral datasets. Further,

with advancements in computer vision-based automated tracking and

increasing availability of wireless neural recording and manipulation tools,

scientists can now generate unprecedented neurobehavioral datasets from

multiple interacting animals. Together, recent advancements in behavioral and

neural approaches hold great promise for expanding our understanding of how

the brain modulates complex, mammalian grouping behaviors.
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Introduction

Our understanding of how animals behave in groups has largely been garnered from

studies conducted in the field. Such field studies have arguably revealed the most about

collective behaviors. Collective behavior is commonly defined as the emergence of cohesive

movements in groups of animals in the apparent absence of centralized control where

individuals in the group act based on limited local information (i.e., physical movements or

pheromonal cues from other group members), which flows through the group producing

collective patterns (Couzin and Krause, 2003; Giardina, 2008). Examples of well-studied

collective behaviors include migration (Shellard and Mayor, 2020; Aikens et al., 2022) and

coordinated motion of flocks of birds and schools of fish (Couzin et al., 2002; Dieck Kattas

et al., 2012; Jolles et al., 2017; Ribeiro et al., 2022). However, grouping behavior can be

broadly defined as any type of behavior that occurs in groups and can focus not only on the

group as a whole unit but also on individuals within the group (Krause and Ruxton, 2002;

Majolo and Huang, 2022). Behaviors that occur in groups may also occur in non-group

environments, such as foraging, which can occur alone or with others, or huddling which

can occur in dyadic or large-group interactions (Gobrogge and Wang, 2015; Ding et al.,
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2020; Zhao et al., 2023). Importantly, though, the social context of

being in a group may be quite distinct from that of the social context

of being with just one other individual. Variation in social context

can in turn influence the consequences of and/or motivations for

particular actions, and thus may be regulated via different

mechanisms in the brain. Indeed, just as a social context can elicit

neural responses distinct from a non-social context (Gonzalez

Abreu et al., 2022; Rodriguez-Santiago et al., 2022), so too can

interactions with or exposure to a singular individual compared to a

group of individuals (Rose et al., 2021).

We know a fair amount about the neural mechanisms

underlying flocking behavior in birds (Goodson et al., 2012;

Stevenson et al., 2020), and a few recent studies have begun to

examine the neural mechanisms underlying grouping behavior in

fish and insects (Tang et al., 2020; Messina et al., 2022; Homberg

and Pfeiffer, 2023). However, we know little about how the brain

modulates mammalian grouping behavior, likely due to issues

concerning the feasibility of keeping large groups of non-human

mammals in a laboratory setting. In this brief communication, I

provide an update on advancements in the study of the neural

mechanisms underlying mammalian grouping behavior ranging

from the use of non-traditional organisms in the lab to the

availability of new technology that is helping to propel this area

of study forward.

Expansion of group-living mammals
used in laboratory studies

Wild Norway rats (Rattus norvegicus) live in large colonies of

roughly 150 individuals, with colonies typically consisting of several

subgroups (Calhoun, 1962b; Calhoun, 1979; De Boer et al., 2016;

Schweinfurth, 2020). Although the behavioral ecology of wild

Norway rats includes large group-living, only a few studies in the

past group-housed rats to explore aspects of grouping behavior

(Calhoun, 1962a; Calhoun, 1962b; Blanchard et al., 1984a;

Blanchard and Blanchard, 1989), and in recent decades

domesticated rat strains used for neuroscience studies (i.e., Listar

Hooded, Lewis, Fischer 344, Wistar, Sprague Dawley, Long Evans)

are conventionally housed in dyads and sometimes alone

(Makowska and Weary, 2016a; Skinner et al., 2019; Ratuski and

Weary, 2022). Depending on the strain of domesticated rat, one sex

may exhibit intense aggression toward same-sex conspecifics

(Blanchard et al., 1984b; Kondrakiewicz et al., 2018), and thus

examination of mixed-sex grouping behavior is often not feasible.

Even in wild Norway rats, subgroups within colonies that are

comprised of mixed-sex individuals typically contain only one

male (Schweinfurth, 2020). This aside, while domesticated or wild

rats could be used for studying same-sex grouping behavior, in the

last ~30 years, rats have rarely been used for such studies possibly

due to size-related constraints on housing.

Wild mice (Mus musculus) live in small family-groups, with

males exhibiting strong territoriality but females being able to live

peacefully with a few other adult females (Crowcroft, 1955;

Anderson, 1961; Butler, 1980; Chambers et al., 2000). With the

commercial availability of a variety of strains of laboratory mice,

wild mice are not commonly used in social neuroscience studies.

Laboratory mice often exhibit far more intense aggression than

laboratory rats, particularly toward novel conspecifics

(Vanoortmerssen, 1971; Baumans, 2004). Additionally, there is

high amount of inter-strain variability in aggressiveness (Guillot

and Chapouthier, 1996; Kondrakiewicz et al., 2018). However, some

research groups successfully house same-sex groups of mice to

examine dominance hierarchies. For example, ICR mice (Harlan

Laboratories, Jerusalem, Israel) have been housed in groups of 16

adult males (Shemesh et al., 2014) and CD1 mice (Charles River,

United States) have been housed in groups of 30 adult males

(Williamson et al., 2016). Such studies in all-male groups of

varying strains of laboratory mice can shed light on how the

brain modulates social network status and dominance (So et al.,

2015; Williamson et al., 2016), however, how behavior in these

contexts may relate to natural behavior of wild mice, which are

highly territorial and do not congregate in groups of 16+ males, is

unclear. Although all-male mouse groups are used for studies of

social networks and dominance hierarchies, some researchers have

formed all-female groups (n = ~8 mice per group) of C57/BL6 mice

to examine the influence of social isolation vs. group housing on

cortical developmental and decision-making; interestingly, the

authors stated in their paper that they were unable to test males

because they cannot be housed together due to intense aggression

(Hinton et al., 2019). Together, the study of grouping behavior in

laboratory mice is likely only feasible in some strains and in only

one sex.

Importantly, many scientists are not restricted to using

laboratory rats and mice for social neuroscience experiments. An

example of a non-traditional rodent that is used for studying the

neural mechanisms of female grouping behavior is the meadow vole

(Microtus pennsylvanicus). Adult meadow voles are solitary during

the reproductive season (spring/summer) but aggregate in groups in

the winter, with females forming multiple attachments to same-sex

conspecifics that are both kin and non-kin (Beery et al., 2009).

By manipulating photoperiod in the lab to mimic winter

day length, studies in female meadow voles have elucidated

neuroendocrinological underpinning of same-sex peer bonds

(Beery, 2019). Use of this species also allows for the study of

neural/behavioral flexibility given the seasonal shifts of meadow

vole grouping.

An animal that is often featured on natural history television

shows for their fantastic grouping behaviors including migration,

foraging, food sharing, complex communication, and impressive

memory for social and nonsocial acoustics, is the bat. A few research

groups around the world use Egyptian fruit bats (Rousettus

aegyptiacus) to examine the neural mechanisms of grouping

behavior. Wild Egyptian fruit bats can be found in colonies

ranging from 50 to thousands of individuals comprised of mixed-

sex and mixed genetic relation (Kolodny et al., 2019; Bachorec et al.,

2020). Studies using Egyptian fruit bats have identified social place

cells in the hippocampus (Omer et al., 2018), and demonstrated that

the hippocampus and cortex represent details of social interactions,

including identity, context, shared spatial locations, and interaction

history in freely interacting bat groups (Rose et al., 2021; Forli and

Yartsev, 2023). While neuroscientists using Egyptian fruit bats are
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arguably producing the most [neuro]scientifically elegant datasets

about grouping behavior, obtaining bats and maintaining

breeding colonies can be difficult depending on regional and

university restrictions.

Naked mole-rats (Heterocephalus glaber) are an excellent model

for studying mechanisms of grouping behavior in the lab. This

unusual, eusocial rodent lives entirely subterranean and has a

proclivity for living in large numbers – numbers so large that

naked mole rats have evolved a unique physiology that is capable of

tolerating extremely high levels of carbon dioxide and ammonia and

low levels of oxygen (Larson and Park, 2009; Lavinka et al., 2009;

Edrey et al., 2011). Naked mole-rats are small (28-57 grams) and

can be housed in groups of ~50 in the lab (Ragland et al., 2022).

Neuroscience studies examining grouping behaviors in naked mole-

rats have examined the neuroendocrine regulation of pubertal

suppression in colonies (Peragine et al., 2017; Faykoo-Martinez

et al., 2021) and shown that the brain differentially responds to

conspecifics dependent on the subcaste of the individual (Hathaway

et al., 2016). A recent study demonstrated that there is cultural

transmission of vocal dialect in naked mole-rats (Barker et al.,

2021), and ongoing studies by this research group are examining

neural circuitry of vocal communication using in vivo calcium

imaging and electrophysiology.

The introduction of wild-derived, communally breeding

rodents to the lab provides an exciting avenue for studying the

neural mechanisms of mammalian grouping behavior in both sexes.

Communal breeders are characterized by the shared care of

offspring, typically by multiple females, but in some species by

multiple females and males (Weidt et al., 2014; Riehl, 2021; Ma

et al., 2022); depending on the species, shared care of offspring

occurs between kin and non-kin individuals (Weidt et al., 2014;

Tuckova et al., 2016). Common degus (Octodon degus) are a

medium-sized rodent (170-300g) endemic to Chile that live in

groups of 1-5 males and 1-8 females in the wild (Ebensperger

et al., 2004; Ebensperger et al., 2011). Field studies suggest that

social groups are unstable with high turnover of group members

(Ebensperger et al., 2009). Degus have been successfully maintained

in laboratories for studies examining stress endocrinology and

circadian rhythms (Hummer et al., 2007; Bauer et al., 2016; Bauer

et al., 2019), as well as for studies examining aspects of social

motivation and social learning in dyads (Lidhar et al., 2017; Lidhar

et al., 2021). Degus have been proposed as a useful model for social

neuroscience research (Colonnello et al., 2011), however, to our

knowledge very few studies have used degus for such purposes, and

it appears that degus in laboratory research are currently primarily

being used as a model for Alzheimer’s disease (Tan et al., 2022).

Given that there is a rich behavioral ecology on this species thanks

to years of field studies, particularly about grouping behaviors

(Ebensperger and Wallem, 2002; Wey et al., 2013), this lab-

amenable rodent holds promise for studying how the brain

facilitates various aspects of group-living.

In my lab, we use spiny mice (Acomys cahirinus), which are a

communally breeding rodent native to Africa, the Middle East, and

southern Asia (Nowak, 1999; Deacon, 2009; Frynta et al., 2011).

Spiny mice (roughly 1/3 the size of a degu) readily breed in the lab

and can be housed in adult groups of ~30 adult spiny mice

(Haughton et al., 2016), allowing for the study of various

grouping behaviors. Initial studies from my lab show that spiny

mice exhibit a preference to affiliate with large over small groups of

conspecifics, are highly affiliative, and exhibit little aggression in

multiple social contexts (Fricker et al., 2021; Gonzalez Abreu et al.,

2022). This high degree of sociality was also demonstrated in a

study that found that established spiny mouse breeding groups will

not only display low levels of aggression to unrelated newcomers,

but also accept them into the group, which is uncommon in rodents

(Cizkova et al., 2011). Adult females indiscriminately care for young

pups, regardless of genetic relation (Tuckova et al., 2016); in our lab,

we have also observed indiscriminate paternal care among

adolescent and adult males (Kelly et al. unpub obs). Spiny mice

are therefore ideally suited for the study of the neural mechanisms

underlying various mammalian grouping behaviors. However, this

species has only recently been used for neuroscience studies. Thus

far, my lab has characterized basic social behaviors (Fricker et al.,

2021), mapped social neural circuitry (Kelly and Seifert, 2021;

Powell et al., 2022), and developed/validated the use of state-of-

the-art technology (i.e., chemogenetic technology, functional

genetic approaches, and fiber photometry) in spiny mice. We

have shown that the hypothalamus may gate social reward in

nonreproductive contexts via influences on reward circuitry

(Gonzalez Abreu et al., 2022), found that the lateral septum

differentially processes kin from non-kin, and identified neural

circuits that facilitate the preference to affiliate with large groups

(Kelly et al. unpub obs).

The ability to study affiliation in a group context in a species

that naturally lives in successful, complex large groups without the

need for pharmacological-induction or lab-induction (i.e., training

or conditioning) can generate insight into how brains naturally

evolved to facilitate large group-living. If we are to truly understand

the evolution of social behavior, we need to consider the fact that

various aspects of social behavior evolved independently many

times. Thus, we cannot assume that relevant mechanisms have

evolved similarly in all species. To build a solid foundation on which

we study grouping behavior and relevant underlying mechanisms, it

is important to examine a diversity of species within and across

taxa. Doing so will ultimately help us determine the fundamental

neural principles associated with the organization of particular

social behaviors and how they evolved in relation to the

behavioral ecology of an organism.

Room to breathe: Moving beyond
small testing apparatuses and housing

Perhaps the most famous laboratory experiments on rodent

grouping behavior were conducted by John B. Calhoun, an

ethologist at the United States National Institutes of Mental

Health in the mid 1900s. Calhoun created a room-sized pen to

examine the growth and stability of a wild Norway rat population,

which grew to 200 individuals but eventually stabilized at 150

individuals after roughly 2 years (Calhoun, 1962b). He later

conducted another large group experiment in domesticated

Norway rats using a converted barn that led to his findings of a
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“behavioral sink” in which rats voluntarily overcrowded in an area,

despite negative outcomes, due to initial involuntary overcrowding

(Calhoun, 1962a). These experiments resulted in high mortality

rates and likely would not be considered ethical to conduct today.

Yet, Calhoun’s use of large spaces was innovative and allowed for

the study of naturalistic grouping behavior. As I write this, eyeing

the neighbor’s barn down the road, I begrudgingly must admit that

it is simply not feasible for most scientists to convert a barn into a

behavioral testing room. Further, when the goal is to examine

neural mechanisms of grouping behavior, there are limits on how

many animals we can track and/or manipulate. However, we can

certainly move beyond conventional “shoebox” rodent housing and

use/create larger housing apparatuses as well as examine social

interactions in large arenas rather than small cages.

Several labs have been very thoughtful and creative in designing

housing and testing apparatuses for rodents. The visible burrow

system, developed by Martha McClintock and Norman Adler to

study sociosexual behavior (Mcclintock and Adler, 1978) and later

popularized by Robert and Caroline Blanchard for studying social

stress (Blanchard and Blanchard, 1989; Blanchard et al., 1995), has

made a resurgence in the literature and has been used to examine

group social stress, dominance, and social hierarchies in mice (Bove

et al., 2018) and rats (Buwalda et al., 2017; Melhorn et al., 2017).

Visible burrow systems vary in design, but are typically single-

floored, large chambers that contain multiple compartments

connected by tubes. With transparent Plexiglas covers/lids, top-

down video recording can allow researchers to track animals and

their locations. Because there are multiple compartments for

animals to occupy, for rats and mice, males and females can be

safely housed together to mimic a natural burrow system. Visible

burrow systems can be made in-house with relative ease but are also

available for purchase through companies such as Conduct Science

(Stokie, Illinois, USA).

Custom vivariums made of metal and Plexiglas that comprise

multiple floors connected by ladder systems have also been used for

housing groups of mice to examine social networks (So et al., 2015).

Such vivariums can be designed to fit on racks that typically hold

rodent cages, and thus can be more easily accommodated in animal

housing facilities and cleaned via industrial cage wash systems (a

requirement for some institutions). Affordable alternatives are

Critter Nation large cages available for purchase from companies

such as MidWest Homes for Pets (Muncie, Indiana, USA). Critter

Nation cages for small animals include wire cages with 2 levels

(90cm L X 60cm W X 99cm H) or 4 levels (90cm L X 60cm W X

160cm H) on frames with wheels. Critter Nation cages have been

successfully used to house rats in laboratories (Makowska and

Weary, 2016a). Although multi-floored housing may mimic more

naturalistic environments for rodents, it does not allow for top-

down video recording and thus is not condusive for experiments

that require continuous behavioral tracking.

The use of large arenas for housing or behavioral testing allows

for top-down behavioral video recording amenable for behavioral

tracking via computer vision. One research group housed groups of

16 male ICR mice in a complex cage, similar to those described

above, during adolescence, and at adulthood moved groups of 4

mice into large arenas (70cm L X 50cmW X 50cmH) for behavioral

testing and continuous video recording for 4 days (Shemesh et al.,

2014). For testing spiny mice in group interaction tests, we use a

large arena (120cm L X 120cm W X 60cm H) that contains

transparent tubes and shelters so that all individuals can be

continuously tracked (Figure 1). Large arenas, accompanied by

enrichment available at pet stores, are an economical option for

testing grouping behaviors and can be easily built to a size

appropriate for various small mammals.

When animals are given space, their behavior typically changes

from what we observe when they are tested or housed in small

apparatuses. Rats and mice housed in visible burrow systems exhibit

changes in circulating cortisol levels, circadian rhythmicity, neural

plasticity, and feeding and drinking (Mckittrick et al., 2000;

Melhorn et al., 2010; Lee et al., 2018). Rats housed in large Critter

Nation cages exhibit differences in anticipatory behavior compared

to rats housed in standard shoebox cages (Makowska and Weary,

2016a). Additionally, housing rats in large cages allows them to

exhibit more naturalistic behaviors such as standing upright

(Makowska and Weary, 2016b) and can have protective and

neurorehabilitative effects (Kentner, 2015). Even with just two

animals, when given a larger arena for interacting with another

conspecific, researchers can more readily detect nuanced behaviors

such as social vigilance (Williams et al., 2020). In spiny mice, we

observe virtually no aggression when up to a dozen novel

conspecifics are placed in a medium-size chamber (60cm L X

30cm W X 40cm H) with a single transparent shelter for an hour.

However, when placed in a large arena (120cm L X 120cm W X

60cm H; see Figure 1), we observe chasing behavior within the first

10 min of group interactions (Kelly et al. unpub obs). While this

seems counterintuitive – after all, with more space, spiny mice could

avoid conspecifics if desired – it is possible that using a more semi-

naturalistic environment with multiple resources to compete over

elicits a behavioral repertoire that simply cannot emerge in

simplistic environments. By using large cages/vivariums/arenas

we can more feasibly house and test groups of animals together

and provide them with space and resources akin to semi-naturalistic

environments that are likely to produce ethologically-relevant

behaviors in the laboratory.

Computer vision and
continuous tracking

An exciting technological advancement in the field of animal

behavior is the enhancement of animal tracking software. Novel

machine learning systems such as TRex (Walter and Couzin, 2021)

and SLEAP [Social LEAP Estimates Animal Poses; (Pereira et al.,

2022)] are capable of tracking large groups of animals to determine

the locations of multiple individuals in space. These systems are

publicly available in relatively user-friendly formats that require

minimal knowledge of coding. Further, more nuanced information

about the types of behavior animals are engaging in (i.e.,

investigation, huddling, following, biting, allogrooming, etc.) can

be acquired with additional computational frameworks. SimBA

(Simple Behavioral Analysis; (Nilsson et al., 2020)) was created to

study complex social behavior in freely moving animals. This open-
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source package allows for supervised machine learning and has

been successfully used to identify complex social behavior during

interactions between one or two rodents in a manner that yields

high resolution and accuracies that out-perform human observers.

To my knowledge, supervised machine learning predictive

classifiers of group rodent social behavior have yet to be

generated, but the tools are available for such analyses.

Regardless, the ability to continuously track multiple animals to

obtain location coordinates and distinct visual fields for specific

individuals [see (Walter and Couzin, 2021)] can allow for rapid

processing of countless hours of data needed to quantify social

networks of groups. Animal tracking has recently been used to

record small groups of mice over long periods of time and showed

that group behavior arises from individuality, pairwise, and higher-

order interactions between group members (Shemesh et al., 2014).

Another group that used a custom computer vision-based

automatic tracking system quantified 36 weeks-worth of

continuous behavioral recordings in groups of 7 rats to examine

shifts in group structure over time (Nagy et al., 2023). Such studies

can generate unprecedented behavioral datasets that represent both

individuals within a large group as well as the collective behavior of

the group as a whole. Using such methods will not only save

countless hours of manual labor scoring behavioral videos of group

interactions but will also produce behavioral datasets that are more

consistent and contain less bias than those collected by human

observers. Notably, although computer vision and continuous

tracking methods are exciting and promising, there are currently

limitations to effectively using this technology. For example,

humans are still needed for model tuning to avoid switching the

identities of individuals in videos (Han et al., 2022; Pereira et al.,

2022; Chen et al., 2023); identity swapping can occur with only two

rodents, and this problem amplifies with a group of rodents. Using a

combination of tools such as computer vision and RFID-based

systems can help to overcome these complications (Fong et al.,

2023) as the technology gradually advances.

Wireless neural recording and
manipulation

Although wired neural recording and manipulation

technologies (i.e., electrophysiology and optogenetics) have been

widely available for well over a decade (particularly for

electrophysiology) (Bullock, 1959; Boyden, 2011), in the field of

animal behavior, a long-standing problem with using such tools has

been the need to have subjects connected to cables for recording or

manipulation. Not only does being tethered to cables alter an

animal’s movements, but trying to observe more than two

rodents freely interacting typically results in the non-focal animal,

and sometimes the subject themselves, playing with or chewing on

the cables. Further, if trying to record from more than one animal at

a time, cables simply get tangled together. Thankfully, in recent

years, wireless versions of these tools have become commercially

available, even in a variation where both wireless electrophysiology

and optogenetics are in the same multimodal platform (Bilodeau

et al., 2021). Studies in Egyptian fruit bats have used wireless

electrophysiology to determine that in a small group setting

(group size = 4) vocal interactions elicit stable correlated neural

activity across the brains of all group members, and that single

neuron activity in the frontal cortex exhibits selectivity for the calls

of specific individuals (Rose et al., 2021). Another study in small

sibling groups of transgenic mice (group size = 4) used wireless

optogenetics to stimulate activation of oxytocin neurons in the

paraventricular nucleus of the hypothalamus and found that

stimulation of oxytocin release dynamically increased both pro-

and anti-social behaviors (Anpilov et al., 2020). Wireless

optogenetic devices are available in head-mounted and back-

mounted devices, expanding the options for use in non-

traditional rodents that vary in size compared to a domesticated

rat or mouse (Yang et al., 2021). In addition to wireless

electrophysiology and optogenetics, photometry approaches are

becoming more widely incorporated into behavioral neuroscience

studies, including in laboratories that use non-traditional rodents

(Murphy et al., 2023). Fiber photometry is a user-friendly and

flexible method that detects changes in fluorescence as a proxy

marker for rapid molecular changes in the brain (Gunaydin et al.,

2014). This technology has recently become available in a wireless

version from the company Amuza Inc. (San Diego, California,

USA). The efficacy of wireless fiber photometry has been

demonstrated in freely behaving individual mice (Cardenas et al.,

2021), and can be scaled to record simultaneously from 8

individuals that each have their own headstage and receiver, and

thus have unique transmission channels. Such advancements in

recording technology enable the real-time examination of neural

FIGURE 1

An example of a group interaction test conducted in a large

Plexiglas arena (120cm L X 120cm W X 60cm H). 14 adult spiny mice

with individual color markings on their backs interact amidst

enrichment including transparent shelters and tubes, a running

wheel, rodent mazes, and ad libitum food and water. A large space

gives individuals the option to group or remain solitary (e.g., see

mouse alone under shelter on the right side of the chamber). This

setup enables top-down video recording amenable to computer

vision-based automated tracking.
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activity in a manner in which animals are unencumbered by cables

as they freely interact in group settings.

Chemogenetic technology and functional genetic approaches

are also amenable for neuromanipulative studies examining

grouping behavior, albeit with less temporal resolution. Such tools

typically involve a one-time viral injection into a brain region(s) of

choice and do not require an implant, thus likely resulting in more

naturalistic behavior from animals. Chemogenetic tools such as

Designer Receptors Exclusively Activated by Designer Drugs

(DREADDs) enable manipulation of neuronal and non-neuronal

signal transduction in freely moving animals (Roth, 2016) and have

been successfully used in non-traditional models including voles (Li

et al., 2021) and spiny mice (Kelly et al. unpub obs). DREADDs can

be used to determine how individual brain regions or neural circuits

contribute to any behavior of interest. Further, gene-editing

approaches such as CRISPR/Cas9 strategies can allow for targeted

knockdown or overexpression of specific cell types in distinct brain

regions. An adeno-associated virus (AAV) based strategy to deliver

CRISPR/Cas9 components to adult brain tissue to reduce oxytocin

receptor protein levels in vivo was recently validated in prairie voles,

golden hamsters, spiny mice, house mice, California mice, and

Norway rats (Boender et al., 2023). Such tools can be used to

determine the contributions of specific genes to behavior. Because

chemogenetic and functional genetic approaches do not require

animals to be tethered to cables to manipulate the brain, these tools

can readily be used to examine neural mechanisms underlying

grouping behaviors.

Conclusions

Due to an expansion of non-traditional species used in

laboratory settings, in recent years more options have become

available for examining how the brain facilitates a variety of

grouping behaviors. By designing larger housing and testing

chambers we can create semi-naturalistic environments in the

laboratory, allowing groups of animals to exhibit more

ethologically-relevant behaviors. Further, with advancements in

computer vision-based automated tracking, scientists can now

generate unprecedented behavioral datasets obtained from long-

term studies of multiple interacting animals. Lastly, the increasing

availability of wireless neural recording and manipulation tools

allows for testing animals in group settings in a manner in which

they can exhibit more naturalistic behaviors due to a lack of cables

connected to head implants. Together, these approaches hold great

promise for expanding our understanding of how the brain

modulates complex, mammalian grouping behaviors.
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