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A B S T R A C T 
The gamma-ray Fermi -LAT Galactic Centre excess (GCE) has puzzled scientists for o v er 15 yr. Despite ongoing debates about its 
properties, and especially its spatial distribution, its nature remains elusive. We scrutinize how the estimated spatial morphology 
of this excess depends on models for the Galactic diffuse emission, focusing particularly on the extent to which the Galactic 
plane and point sources are masked. Our main aim is to compare a spherically symmetric morphology – potentially arising 
from the annihilation of dark matter (DM) particles – with a boxy morphology – expected if faint unresolved sources in the 
Galactic bulge dominate the excess emission. Recent claims fa v ouring a DM-moti v ated template for the GCE are shown to 
rely on a specific Galactic bulge template, which performs worse than other templates for the Galactic bulge. We find that a 
non-parametric model of the Galactic bulge derived from the VISTA Variables in the Via Lactea surv e y results in a significantly 
better fit for the GCE than DM-moti v ated templates. This result is independent of whether a GALPROP -based model or a more 
non-parametric ring-based model is used to describe the diffuse Galactic emission. This conclusion remains true even when 
additional freedom is added in the background models, allowing for non-parametric modulation of the model components and 
substantially improving the fit quality. When adopted, optimized background models provide robust results in terms of preference 
for a boxy bulge morphology for the GCE, regardless of the mask applied to the Galactic plane. 
Key words: astroparticle physics – pulsars: general – Galaxy: bulge – local interstellar matter – dark matter – gamma-rays: 
diffuse background. 

1  I N T RO D U C T I O N  
The successful deployment of the Fermi Gamma-Ray Space Tele- 
scope 15 yr ago ushered in an era of unprecedented sensitivity to the 
gamma-ray sky, with Fermi ’s Large Area Telescope (LAT) providing 
increased energy resolution and an unprecedented angular resolution 
(Atwood et al. 2009 ). A key science goal of Fermi -LAT was to 
explore gamma-ray emissions from dark matter (DM), specifically 
investigating the pair annihilation products of thermally produced 
weakly interacting massive particles (WIMPs). 

⋆ E-mail: songdeheng@yuka wa.k yoto-u.ac.jp 

Shortly after its launch, an observation was reported of an extended 
source towards the Galactic Centre (GC) consistent with thermal 
WIMP annihilation with a profile consistent with a cuspy DM halo 
(Goodenough & Hooper 2009 ; Vitale & Morselli 2009 ; Hooper & 
Goodenough 2011 ). The presence of excess emission was confirmed 
and refined with many subsequent studies (e.g. Hooper & Linden 
2011 ; Abazajian & Kaplinghat 2012 ; Gordon & Macias 2013 ; 
Hooper & Slatyer 2013 ; Abazajian et al. 2014 ; Calore, Cholis & 
Weniger 2015 ; Zhou et al. 2015 ; Ajello et al. 2016 ; Daylan et al. 
2016 ; Linden et al. 2016 ; Ackermann et al. 2017 ). 

This GC excess (GCE) may also be due to an unresolved 
population of, e.g. millisecond pulsars (MSPs), stellar remnants 
associated with the central stellar population of the Milky Way 
(Abazajian 2011 ; Abazajian & Kaplinghat 2012 ). Ho we ver, there 
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is debate on whether more GC MSPs should have been resolved (e.g. 
Hooper & Mohlabeng 2016 ; Ploeg et al. 2020 ; Dinsmore & Slatyer 
2022 ; Malyshev 2024 ) and whether there are sufficient corresponding 
low-mass X-ray binary (LMXB) systems (e.g. Haggard et al. 2017 ; 
Gautam et al. 2022 ). 

One method of distinguishing between the MSP and DM proposals 
for the GCE is whether the GCE has a spherical morphology (Calore 
et al. 2015 ; Ajello et al. 2016 ; Daylan et al. 2016 ; Di Mauro 2021 ; 
Cholis et al. 2022b ; McDermott, Zhong & Cholis 2023 ) or follows 
the bulge-like morphology of the GC’s stellar populations (Bartels 
et al. 2018 ; Macias et al. 2018 , 2019 ; Abazajian et al. 2020 ; Calore, 
Donato & Manconi 2021 ; Pohl et al. 2022 ). The main obstacle to 
accurately determining the GCE morphology is uncertainties in the 
Galactic diffuse emission. When residuals in the gamma-ray fit were 
significantly reduced either through the construction of advanced gas 
models (Macias et al. 2018 , 2019 ; Pohl et al. 2022 ) or through new, 
more flexible, fitting techniques (Bartels et al. 2018 ; Calore et al. 
2021 ), a strong preference for the excess tracing old stars in the 
Galactic bulge emerged. Recently, Di Mauro ( 2021 ), Cholis et al. 
( 2022b ), and McDermott et al. ( 2023 ) have, ho we ver, made opposite 
claims. 

Another, independent, way of discriminating between the DM 
and MSP explanations of the GCE is to look for non-Poissonian 
statistics in the GCE, which would be indicative of the MSP 
explanation (Bartels, Krishnamurthy & Weniger 2016 ; Lee et al. 
2016 ), in constrast to any other truly diffuse signal such as DM. 
Ho we ver, this is arguably even more susceptible to uncertainties in 
the Galactic diffuse emission (Leane & Slatyer 2019 ; Buschmann 
et al. 2020 ; Chang et al. 2020 ; Leane & Slatyer 2020a , b ). New 
and independent analyses, introducing methodological developments 
which ef fecti vely reduce the impact of Galactic dif fuse emission 
modelling systematics, found a sizable contribution from faint, 
subthreshold point sources to the GCE (List et al. 2020 ; Calore 
et al. 2021 ; List, Rodd & Lewis 2021 ; Mishra-Sharma & Cranmer 
2022 ). 

Accounting for uncertainties in the Galactic diffuse emission 
model is undoubtedly key to making robust inferences on the Fermi 
GCE properties and o v ercoming the so-called reality gap, i.e. the 
discrepancy between models and real data (Caron et al. 2023 ). 
Different solutions were explored in the literature to o v ercome 
systematics related to the Galactic diffuse emission modelling. 
These approaches either rely on the input from a large number 
of realizations of cosmic-ray induced diffuse gamma-ray emission 
as obtained from cosmic-ray propagation codes, like GALPROP 1 
(Strong & Moskalenko 1998 ), (e.g. Calore et al. 2015 ; Cholis et al. 
2022b ), or they allow more flexibility in the diffuse-emission model 
by splitting the Galactic-diffuse-emission templates in multiple rings 
(e.g. Macias et al. 2018 ; Di Mauro 2021 ). Finally, a complementary 
way to optimize gamma-ray emission model components and, more 
specifically, the Galactic diffuse emission is the application of data- 
driven techniques that can reduce the residuals and minimize the 
gap between model space and reality. A tool that has been utilized 
in the context of the GCE is SKYFACT (Storm, Weniger & Calore 
2017 ; Bartels et al. 2018 ; Calore et al. 2021 ). SKYFACT combines 
the capabilities of traditional template-based maximum likelihood 
fits with image reconstruction techniques. Its advantage lies in the 
addition of spatial and spectral re-modulation for all components of 
the compiled gamma-ray emission model. In this sense, SKYFACT 
allows for a more flexible treatment of the employed templates, 
1 http://galprop.stanford.edu 

especially regarding their spatial morphology, which is fixed in 
standard template-based fits. To achieve this flexibility, SKYFACT 
introduces a large number of nuisance parameters and a penalizing 
likelihood function constraining their variation during the fit in 
addition to the Poisson likelihood function typically adopted in 
gamma-ray analyses; for technical details, see Storm et al. ( 2017 ). 

With this work, we aim at systematically scrutinizing how the 
morphology of the GCE is affected by background modelling 
uncertainties when point sources and the disc plane are masked, 
and analysis approaches are varied, and address in detail some 
contradictory findings in the recent literature, most notably those 
in McDermott et al. ( 2023 , M2023 hereafter). As such, our analysis 
is solely focused on the large-scale emission properties of the GCE 
and not on its point-source contribution. 

In Section 2 , we explain the model components and fitting pro- 
cedure, exploring the background model construction. In Section 3 , 
we focus on template fitting. We show that the ring-based fits of 
M2023 have not properly converged. We also provide evidence that 
the y hav e used a bulge template that is inconsistent with the data. 
We show that by switching to a more accurate bulge template, such 
as the one generated from the recent VISTA Variables in the Via 
Lactea (VVV) surv e y (Coleman et al. 2020 ), the b ulge is fa v oured 
o v er DM-based templates even when M2023 ’s background is used. 
In Section 3.5 , we show that the ring-based methods still find a 
preference for the Galactic bulge o v er the DM template even when 
the point sources masks are substantially increased in size. We also 
show that after masking, the inclusion of a Galactic bulge passes a 
Monte Carlo based goodness of fit test. In Section 4 , we employ a 
skyFACT modulation of the diffuse templates (Storm et al. 2017 ; 
Bartels et al. 2018 ; Calore et al. 2021 ). We find that in all cases, the 
Bayesian evidence is impro v ed by the modulation, and the addition of 
the DM template is not fa v oured once the modulation has been done 
and a Galactic bulge template has been included. The conclusions 
are given in Section 5 . 
2  G A M M A - R AY  M O D E L  C O M P O N E N T S  A N D  
FITTING  P RO C E D U R E  
In this section, we first provide a brief overview of the components 
used to model the gamma-ray sky. In general, the inner Galaxy sky 
is interpreted as the sum of the following main contributions: 

(i) Galactic diffuse emission: This contribution, which we will 
discuss in more detail below, is the result of the interactions of cosmic 
rays with the interstellar gas and low-energy interstellar radiation 
fields. The main contributors to the Galactic diffuse emission are 
the decay of neutral pions produced in collisions between cosmic- 
ray protons and interstellar gas, the inverse Compton scattering of 
the interstellar radiation field by electrons, and the bremsstrahlung 
emission from these electrons. 

(ii) Point-like and extended sources: These correspond to gamma- 
ray identified sources which are listed in the Fermi -LAT catalogues 
and can be masked or refitted in the analysis. We will discuss the 
treatment of point-like sources in the following sections. 

(iii) Isotropic diffuse gamma-ray background emission (IGRB): 
This component accounts for the (almost) isotropic emission mea- 
sured at high latitudes and is thought to originate from the super- 
position of different contributions mostly from extragalactic, faint 
sources (Ackermann et al. 2015 ). 

(iv) Galactic Centre excess, GCE: To complete the description of 
the inner Galaxy gamma rays, it has been demonstrated that one 
needs to consider an additional contribution, the so-called GCE. 
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2.1 The Galactic diffuse emission models 
Given the vast number of independent degrees of freedom across 
the sky, constructing an expected Galactic diffuse emission model 
requires numerous assumptions. Works like Cholis et al. ( 2022b , 
hereafter C2022 ) postulate that the inner galaxy is predominantly 
influenced by Galactic diffuse emission stemming from nearly 
steady-state astrophysical processes and modelled through standard 
propagation codes like GALPROP . In the following, we will refer 
to these models as ‘ GALPROP -based’ templates. In contrast, other 
approaches, such as those in Macias et al. ( 2018 , 2019 ), Abazajian 
et al. ( 2020 ), Pohl et al. ( 2022 ), introduce concentric cylindrical, 
galactocentric-based templates, which we will refer to as ‘ring-based 
templates’. 

There are conflicting reports in the literature regarding the best 
method to use for modelling the Galactic diffuse emission. First, 
on the background model construction, Pohl et al. ( 2022 , hereafter 
P2022 2 ) demonstrated that the ring-based method provided a better fit 
to the Fermi -LAT data than the non-ring-based method of Di Mauro 
( 2021 ). This was followed by M2023 , who reported that when the 
point sources and Galactic plane were masked, the GALPROP -based 
templates, generated by C2022 , provided a better fit to the Fermi - 
LAT data. Secondly, there are conflicting reports of whether the GCE 
is spherical DM-like or bulge-like. On one hand, P2022 found that 
bulge models were better explanations of the data, while, on the other 
hand, M2023 claimed a better fit for the spherical DM template as 
opposed to the Galactic bulge. 

In this work, we systematically compare ‘GALPROP -based’ and 
‘ring-based’ templates for the Galactic diffuse emission, with the 
final goal of better understanding some contradictory claims in the 
literature. 

In summary, the templates that compose the Galactic diffuse 
emission in the two approaches are as follows: 

‘ GALPROP -based’ model: C2022 and M2023 made use of GAL- 
PROP to propagate cosmic rays within the interstellar medium and 
e v aluated the dif fuse emission templates. The dif fuse emission 
of pion decay is combined with the subdominant bremsstrahlung 
contribution into one template. Inverse-Compton (ICS) emission 
was also included. The templates from GALPROP were augmented 
by templates for the isotropic background and Fermi bubbles. In 
total, the ‘ GALPROP -based’ model has four templates. 

‘Ring-based’ model: As in P2022 and M2023 , the ring-based 
approach utilizes 16 independent galactocentric cylinders. This 
model comprises four rings for the neutral atomic hydrogen (H I ) 
density and another four for the molecular hydrogen (H2) density. 
Additionally, six rings follow the ICS emission. Also included are 
two dust-derived templates, one negative and one positive valued. 
The positive dust correction template physically represents H I and 
H2 hydrogen that is not traced by the rele v ant emission, kno wn as the 
dark neutral medium, or an o v erestimation of the atomic hydrogen 
spin temperature (Acero et al. 2016 ). The ne gativ e dust correction 
template represents an underestimation of the spin temperature. The 
H I and H2 rings, shaped as annular c ylinders, hav e boundaries 
located at 3.5, 8, 10, and 50 kpc from the GC. The ICS rings share 
these boundaries, except the innermost ring is further subdivided at 
radii of 1.5, 2.5, and 3.5 kpc. Also incorporated are the identical 
isotropic background and Fermi bubbles template as was done by 
M2023 . A total of 18 templates are used for the ‘ring-based’ model. 
2 Note that there is some o v erlap in the authors of the current article and those 
of P2022 . 

2.2 The Galactic Centre excess templates 
As done by the majority of the literature, in this work we will consider 
two main hypotheses for the morphology of the GCE. 

The first one is that the signal is connected with annihilating 
DM in the inner Galaxy. To this end, we consider DM-inspired 
templates constructed as a spherical template that follows the square 
of a generalized Navarro–Frenk–White profile (gNFW 2 ): 
ρ( r ) ∝ 1 

( r /r c ) γ ( 1 + r/r c ) 3 −γ
. (1) 

We adopt the parameters used in C2022 and M2023 , which are γ = 
1.2 and r c = 20 kpc. The DM template is then obtained by integrating 
ρ( r ) 2 along each line of sight. Note, ho we ver, that there is currently 
no clear prediction for the inner (within about 2 kpc) density profile 
of the DM halo of the MW (or its sphericity) with both cusps and 
cores found in sophisticated hydrodynamic simulations (Lazar et al. 
2020 ; Grand & White 2022 ). 

The second hypothesis builds on the fact that the GCE may 
trace the distribution of old stars in the Galactic bulge. Direct 
observations of the GC region have historically been obscured 
due to challenges posed by dust reddening. The advent of near- 
infrared surv e ys, such as the ground-breaking COBE/DIRBE study, 
has enabled significant advancements in our understanding of this 
central region (Bland-Hawthorn & Gerhard 2016 ). These surveys 
have not only confirmed the presence of the Galactic bulge/bar but 
also provided the foundational data upon which subsequent triaxial 
bar models of our galaxy were constructed (Binney et al. 1991 ; 
Weiland et al. 1994 ; Freudenreich 1998 ). Cao et al. ( 2013 ) utilized 
red clump giants from the OGLE-III surv e y to create a detailed 
photometric model of the Galactic bar. This relied on data available 
up to 2013. In an advancement, Coleman et al. ( 2020 ) utilized more 
contemporary data from the VVV surv e y. Their approach, inte grating 
non-parametric methodologies, offers a flexible means of estimating 
the morphology of the Galactic bulge, thus refining our understanding 
of this critical Galactic structure. The flexibility is important because 
we want the data and not an assumed inflexible functional form, as 
in Cao et al. ( 2013 ) for example, to determine the radial profile of 
the template. 

In this work, we consider several different bulge templates. The 
bulge model used in M2023 is publicly available as part of the 
analysis package GCEPY 3 Following M2023 , we will label this the 
boxy-bulge BB ( GCEPY ) template. In addition to one from GCEPY , we 
consider three other bulge models: Freudenreich ( 1998 , hereinafter 
F98), Cao et al. ( 2013 , hereinafter Cao13), and Coleman et al. 
( 2020 , hereinafter Coleman20). We notice that the BB template in 
GCEPY appear be obtained from the Cao13 model ( M2023 , personal 
communication), but upon further inspection, we found that it does 
not match our version of the Cao13 template. We therefore keep 
the BB GCEPY template and the Cao13 as different, independent, 
choices for the bulge. Fig. 1 shows the spatial templates for these 
bulge models in the main region of interest (ROI) of this work, i.e. 
40 ◦ × 40 ◦ around the GC. We have normalized the templates to 
have the same flux in the ROI (in an arbitrary unit). The contours on 
the maps show the 10 per cent, 30 per cent, 50 per cent, 70 per cent, 
and 90 per cent levels with respect to the central value. The contours 
demonstrate the differences in the bulge models, both at large scales 
as well as near the centre. 

On top of the boxy-bulge, we also add a component for the nuclear 
bulge (NB) following the parametric model of Launhardt, Zylka & 
3 https:// github.com/ samueldmcdermott/ gcepy 
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Figure 1. Spatial templates of the Galactic bulge models considered in this work. References from left to right: Freudenreich ( 1998 ), Cao et al. ( 2013 ), and 
Coleman et al. ( 2020 ). Note that these are line-of-sight integrated images of the bulge templates before they are convolved with the PSF. 
Mezger ( 2002 ), which is necessary to include when not masking the 
Galactic plane (see Sections 3.5 and 4 ). 
2.3 Fitting pr ocedur e and statistical framework 
In this paper, we adopt two different fitting techniques. The first one is 
the traditional ‘template fit’, where all model components are defined 
as morphological templates that are not allowed to vary during the fit 
procedure. In template fitting, the free parameters are the independent 
bin-by-bin normalizations of the spectral energy distribution of each 
model component. The second technique is the so-called adaptive 
template fitting, where the spatial distribution of photons among 
different sky components is enabled to be re-modulated during the 
fitting procedure (Storm et al. 2017 ; Bartels et al. 2018 ; Calore 
et al. 2021 ). In what follows, we briefly introduce more technical 
details about the implementation of both data fitting approaches. We 
conclude this section by outlining the statistical inference methods 
that we apply to investigate the morphology of the GCE. 
2.3.1 Traditional template fitting 
In standard template fit analysis, the gamma-ray sky is described 
as the sum of multiple model components, k , identified by a fixed 
spatial distribution, i.e. the spatial template. The model φ is a linear 
combination of k spatial templates T binned in spatial pixels p and 
a spectral normalization % for each energy bin b , which is free to 
re-adjust during the fit: 
φpb = ∑ 

k T ( k) 
p · % ( k) 

b . (2) 
The optimization of the free energy-independent normalization is 
done by maximizing the Poissonian likelihood given the number 
count maps. 

For the optimization, M2023 employs DYNESTY to scan the param- 
eter space and then uses a No-U-Turn sampler (utilizing NUMPYRO ) 
to optimize the best-fitting result. For the sake of cross-checking the 
M2023 results, in Section 3 , we will perform the maximum likelihood 
analysis with an alternative minimizer, i.e. using the Limited memory 
Bro yden–Fletcher–Goldf arb–Shanno algorithm extended to handle 
simple box constraints (L-BFGS-B). For implementation, we use the 
PYTHON package LMFIT . We use stats.poisson.logpmf pro- 
vided by SCIPY to calculate the Poissonian log-likelihood. Following 
M2023 , we also include penalty terms (provided by GCEPY ) on the 
log-likelihood to account for when the IGRB and Fermi bubbles 

normalizations deviate too much from their spectra measured at high 
latitudes. 

Point sources in the 4FGL are masked for this analysis. We will 
provide more details on the mask implementation in Section 3 . 
2.3.2 Adaptive-constrained template fitting 
A complementary analysis technique to investigate the preferred 
morphology of the GCE is adaptive template fitting implemented in 
the software package SKYFACT . As mentioned in the introduction, 
SKYFACT is a mixture of a conventional template-based fit and more 
advanced image reconstruction routines. The main advantage is a de- 
parture from imposing a non-flexible prior on the spatial morphology 
of the compiled background and signal components of the gamma- 
ray emission model. While this flexibility enables capturing and 
remedying a certain degree of component mis-modelling, it requires 
the introduction of a large number of nuisance parameters that have 
to be controlled during the fit to a v oid o v erfitting and unphysical 
results. Therefore, SKYFCAT utilizes a combination of a Poisson and 
a penalizing likelihood function to guide the fit with constrained 
freedom for all nuisance parameters. The fit itself is the minimization 
of the mentioned log-likelihood function. 

In essence, the gamma-ray emission model compiled for SKYFACT 
is identical to the input data required for a traditional template fit. 
That is, the model φ is a (tri-)linear combination of k spatial templates 
T binned in spatial pixels p and a spectral normalization S per energy 
bin b following a certain functional form or tabulated data: 
φpb = ∑ 

k τ ( k) 
p T ( k) 

p · σ
( k) 
b S ( k) 

b · ν( k) . (3) 
Examples of suitable spatial templates are the Galactic bulge mod- 
els in Fig. 1 . The addition of SKYFACT is to introduce a global 
normalization parameter ν per component and spatial and spectral 
nuisance parameters, τ and σ , respectively. In practice, τ and σ
act as a one-to-one copy in shape of the spatial and spectral input 
priors. Both nuisance parameter sets are initialized with value 1 and 
varied – or better, re-modulated – in the priors’ stead during the 
fitting procedure. The nuisance parameters are required to be strictly 
positive. 

We note that the SKYFACT model φ allows for the inclusion of point- 
like sources according to their position and spectra listed in gamma- 
ray catalogues of choice. For them, the position inside the considered 
region of interest is fixed, i.e. there is no associated spatial template 
T . Consequently, all injected point-like sources are spectrally re-fit 
in adaptive template fitting. 
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The numerous nuisance parameters are tamed via the regularizing 
part of SKYFACT ’s likelihood function, which depends on five hyper- 
parameters per component 4 constraining the magnitude of individual 
parameters and the correlation among neighbouring parameters. All 
details about the explicit structure of the likelihood function and 
hyper-parameters is provided in Storm et al. ( 2017 ). Here, it shall 
suf fice to gi ve an illustrati v e e xample of the functionality of two 
of them, the spatial and spectral smoothing scale η and λ. They 
are defined as η = 1/ x 2 ( λ = 1/ E 2 ), where x ( E ) is the allowed 
variation between neighbouring spatial pixels (energy bins). Setting 
the smoothing scales to zero is thus equi v alent to saying that all 
spatial pixels (energy bins) may vary entirely independently of each 
other. 

As the tuning of the hyperparameters is cumbersome due to 
computational speed, we select the configuration of RUN5 in Storm 
et al. ( 2017 ) as the foundation for our settings. The specifications of 
RUN5 assume a certain spatial smoothing for the brightest gamma- 
ray components, namely the inverse Compton component receives 
the largest smoothing, followed by the π0 -component and lastly 
the Fermi bubbles with the shortest smoothing scale. Regarding 
the remaining model elements we do not allow for any spatial re- 
modulation of the input template, this applies to the different GCE 
components, in particular. We hence ensure that the minimization 
problem remains conv e x guaranteeing conv ergence of the L-BFGS- 
B algorithm utilized in SKYFACT . Spectral smoothing is not applied 
at all. 
2.3.3 Statistical fr ame work: par ameter inference and model 
comparison 
In a frequentist setting, it is possible to properly quantify the 
preference for different gamma-ray emission models based on the 
maximum likelihood method and the resulting likelihood values 
at the optimal point. Ho we ver, a well-defined notion of model 
comparison from a statistical point of view is limited to nested 
models. By nested models we mean any gamma-ray emission model 
that is comprised of a default set of components (or base components) 
and to which further components are added without removing any 
contributions from the default set. Then it is possible to compute the 
preference in the data for the enlarged model o v er the base model in 
terms of significance. 

To be more quantitative let us assume that we add a single 
component X to the base model and perform a standard template 
fit so that the extended model has N additional parameters (normal- 
izations per energy bin). Let ln L base denote the log-likelihood value 
e v aluated for the best-fitting parameters determined via the maximum 
lik elihood approach. Lik ewise, ln L base + X is the corresponding log- 
likelihood value found for the extended base model including X . We 
choose the log-likelihood ratio test statistic as a means to quantify 
the significance: TS = 2( ln L base + X − ln L base ). Within this set-up, 
the test statistic is distributed according to a mixture distribution 
following (Macias et al. 2018 ) 
p( TS ) = 2 −N [ 

δ( T S) + N ∑ 
k= 1 

(
N dof 
k 

)
χ2 

k ( TS ) ] 
. (4) 

Here, δ refers to the Dirac distribution, (n 
k ) is the binomial coefficient, 

and χ2 
k denotes a χ2 -distribution with k degrees of freedom. The 

4 Only three in the case of point-like sources. 

significance σ of the added component under the observation of the 
test statistic value ˆ TS amounts to 
σ ( ˆ TS ) = √ 

CDF −1 (χ2 
1 , CDF (p( TS ) , ˆ TS )), (5) 

where CDF( f , x ) refers to the cumulative distribution function of f at 
x and CDF −1 is its inverse. 

Model comparison is challenging to correctly perform in a fre- 
quentist framework as shown abo v e, while it is better defined and 
easier to access in a Bayesian approach. We also adopt the latter to 
run model comparison. Deriving the Bayesian evidence of each indi- 
vidual gamma-ray emission model allows us to perform a Bayesian 
model comparison or hypothesis testing based on the Bayes factor. 
Given the Bayesian evidence ln H X of model X and ln H Y of model 
Y, the mutual Bayes factor is given by B XY = exp ( ln H X − ln H Y ) . 
A positi ve v alue of the Bayes factor implies a certain degree of 
evidence for model X being preferred o v er model Y. In what follows, 
we utilize the empirical classification of the degree of evidence from 
table 1 of Trotta ( 2008 ) based on the logarithmic Bayes factor. 5 

While the Bayesian framework offers a direct way of stating the 
preference for one gamma-ray emission model o v er another one –
irrespective of the exact composition – it depends by construction 
on prior probabilities for all parameters. In this sense, it carries a 
certain intrinsic user bias due to the choice of priors, may it be their 
parametric shape or range. Consequently, we remark as a caveat 
that the derived preference for a model is prior-dependent. As we 
will show later in Section 3.3 , a suitable choice for the prior range 
is essential to co v er the correct best-fitting point in the model’s 
parameter space. 
3  TEMPLATE  FI TTI NG:  REPRODUCI BI L ITY  
O F  P R E V I O U S  WO R K S  A N D  IMPROVEMENTS  
In this section, we weigh in on the findings of M2023 , first reproduc- 
ing and then improving on their analysis. The fitting technique here 
adopted is the traditional template fit (Section 2.3 ). We will perform 
Bayesian model comparison to assess what is the best model for 
describing gamma-ray data among the ones we test. We will also 
discuss how the evidence for the DM-inspired template is affected 
by different choices of point sources and Galactic plane mask, by 
making use of nested models in the frequentist approach. 
3.1 Reproducing M2023 
As a first step, we repeat the analysis performed in M2023 , by 
adopting the same data set and models. We remind the reader that the 
M2023 analysis was performed using both GALPROP - and ring-based 
background models with standard template fitting, and the authors 
claimed that the GCE is better described by a DM-like model than 
a bulge one. A summary of the data selection in C2022 and M2023 
is reported in Table 1 . We adopt this data set as publicly available 
through the GCEPY webpage. Together with the selected data set 
(counts map), the GCEPY package released also (i) Galactic plane and 
point-source mask adopted, and (ii) the model templates convolved 
with the Fermi -LAT point spread function (PSF). The mask adopted 
by M2023 (and in this section unless otherwise specified) masks 
5 We also provide the definition of TS between different models, as T S = 
2( ln L X − ln L Y ). While we refrain from assessing model comparison 
through this TS , we notice ho we ver that this practice is largely present in 
the previous literature. Therefore, for the sake of comparison, in the main 
results’ tables we will also report this value without o v erinterpreting it. 
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Table 1. Data selection according to C2022 and M2023 . 
Parameter Value 
Time range Week 9 to Week 670 (12.5 yr) 
Energy range 14 bins from 0.275 to 51.9 GeV 
ROI 40 ◦ × 40 ◦, bin size = 0.1 ◦
Data class P8R3 CLEAN V3 (evclass = 256), FRONT (evtype = 1) 
Filter (DATA QUAL == 1)&&(LAT CONFIG = = 1) 

&&(ABS(ROCK ANGLE) < 52) 
Max zenith angle 100 deg 
out both the Galactic plane ( | b | < 2 ◦) and the point sources in the 
4FGL-DR2 catalogue. 

In M2023 , two GALPROP -based models are identified as best- 
fitting ones: GALPROP 7 p is, according to M2023 , the best Galactic 
diffuse model when no GCE is added to the fit; GALPROP 8 t instead 
provides the best performance when adding a GCE modelled through 
a gNFW 2 profile. In C2022 ’s Zenodo archive (Cholis et al. 2022a ), 
these two cases can be seen to correspond to the cases XLIII and 
XLIX, respectively, in table VIII of C2022 . 

We run a traditional template fit though maximum likelihood 
optimization, as described in Section 2.3 . The minimization is run 
with both the GCEPY code and our implementation with the L-BFGS- 
B algorithm. 

The results from the runs reproducing M2023 are reported in 
Table 2 . Following M2023 , we use the background model GALPROP 8 t , 
corresponding to the best-fitting model obtained when an additional 
gNFW 2 component has been added. As done by M2023 , we compare 
this to the best-fitting background in the case of no GCE source 
( GALPROP 7 p ). Compared with the scenario without GCE, the BB 
GCEPY template has a ln B = 885, indicating evidence for a GCE. 
We remind the reader that no NB is included in the model, following 
M2023 . 

For GALPROP -based background models, we find very similar like- 
lihood values no matter what is the adopted minimization procedure. 
This contrasts to what happens for ring-based templates (see below). 
3.2 Model systematics I: testing other bulge templates 
We repeat the analysis performed in M2023 , but with additional bulge 
models described in Section 2 . To consistently convolve with the 
Fermi -LAT PSF (which are not included in the original M2023 ), we 
run FERMITOOLS based on the same criteria as in C2022 and M2023 
(see Table 1 for details). Namely, we use GTSELECT and GTMKTIME to 
select and filter the events, then use GTBIN to bin the data. After using 
GTLTCUBE and GTEXPCUBE 2 to obtain the live-time and exposure, we 
use GTSRCMAPS and GTMODEL to generate the convolved templates 
of the three bulge models. In Fig. 2 , we display the three additional 
bulge templates after they are convolved with the PSF at 1.02–1.32 
GeV, compared with the M2023 one. 

Table 2 reports the results using the GALPROP -based background 
model also for the different bulge templates. The mutual Bayes 
factor, ln B XY ≡ . ln H, allows us to appreciate the performance 
of the different models and to assess which one performs better. 
From Table 2 , we can see that our version of the Cao13 template 
has ln B = 180, when compared to the BB GCEPY model, meaning 
that it provides a better model for the gamma-ray data. On the 
other hand, our other two bulge models are even better than the BB 
GCEPY template, with ln B = 507 and 685 for F98 and Coleman20, 
respectively, when compared to the BB gcepy model. 

As for the comparison with the DM-inspired template, we see 
that the gNFW 2 is preferred o v er the BB GCEPY and Cao13 model, 
consistent with the findings of M2023 . Ho we ver, F98 has ln B = 54, 
when compared to gNFW 2 . Finally, the Coleman20 model results 
to be the best GCE template in our tests for the GALPROP -based 
background model, with a ln B = 232, when compared to gNFW 2 . 
We conclude, therefore, that for GALPROP -based models, the choice 
of the bulge template is crucial for interpreting whether the GCE is 
DM like or bulge like. We nonetheless stress that the abo v e statement 
holds for the specific diffuse emission model adopted, which is not 
guaranteed to provide an overall good fit to gamma-ray data. We will 
discuss how ring-based models impro v e the goodness of fit in the 
next section. 
3.3 Model systematics II: testing ring-based models 
We here explore the same set of four bulge models but with the ring- 
based Galactic diffuse models of P2022 . We remind the reader that 
M2023 also presented a run with the P2022 ring-based background 
model, arguing that this al w ays provided a w orse fit to the data than 
the GALPROP -based optimized background model when no excess 
was considered, i.e. GALPROP 7p . 

Also in this case, we run the fit with both minimizers to cross-check 
the validity of the GCEPY code. Differently from the GALPROP -based 
models, when comparing the results of the two minimizers for the 
ring-based background model, we find a major discrepancy between 
our results and M2023 : Contrary to the finding of M2023 , when 
using the L-BFGS-B algorithm we find that the ring-based back- 
ground model provides a better fit compared with the GALPROP 7p 
background model. 

In Table 3 , we compare the likelihood results 6 from the L-BFGS- 
B algorithm and the GCEPY package. We focus on the no-excess 
case and compare the GALPROP -based and ring-based background 
models. Using the L-BFGS-B algorithm, we find that the TS for 
the GALPROP -based background model against the ring-based one is 
−1852. Using the GCEPY package, we find instead that the GALPROP - 
based background model has a positive TS of 3508 against the ring- 
based one. This observation aligns qualitatively with the findings 
in M2023 who report a positive TS of 4539 for the GALPROP - 
based background. Table 3 shows that the −2 ln L values for the 
GALPROP -based background model are almost the same between L- 
BFGS-B and GCEPY . Ho we ver, this is not the case for the ring-based 
background model. Thus, the discrepancy is only seen in the ring- 
based analyses. 

After investigating the fitting results in each energy bin and for 
every template, we find that the major difference between the fits 
using the L-BFGS-B algorithm and GCEPY is in the best-fitting values 
for the ne gativ e and positiv e dust corrections in the ring-based model. 
To use nested sampling to estimate Bayesian posteriors, GCEPY has to 
implement priors for the templates. The adopted priors are uniform 
in logarithmic space and are sufficiently wide for most templates. 
Ho we ver, the priors for the negative and positive dust corrections 
turned out to be too limiting. In the public code of GCEPY , the priors 
for the normalization in logarithmic space are uniform between [ −2, 
4] for the ne gativ e dust correction and [ −2, 6] for the positive dust 
correction. Ho we ver, when we adopted the L -BFGS-B algorithm, we 
6 The L-BFGS-B algorithm simply optimizes the likelihood and therefore 
does not allow for Bayesian evidence calculation. For this comparison, we, 
therefore, use . TS values, but we will show that our conclusions also hold 
when considering the Bayesian evidence. 
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Table 2. Results of the likelihood analysis for the GALPROP -based model using GCEPY , including the Bayesian evidence, and mutual Bayes factor with respect 
to the best-fitting model GALPROP 7p . We remind that the same mask as in M2023 is applied on 4FGL-DR2 sources and the Galactic plane, | b | < 2 ◦. Likelihood 
values from GCEPY are consistent with the ones obtained with the L-BFGS-B algorithm. 
Baseline model Additional source −2 ln L TS ln H ln B ≡ . ln H
GALPROP 7p none 3 752 798 0 −1876678 0 
GALPROP 8t BB ( GCEPY ) 3 750 941 1857 −1875793 885 
GALPROP 8t gNFW 2 3 750 051 2747 −1875340 1338 
GALPROP 8t Cao13 3 750 582 2216 −1875613 1065 
GALPROP 8t F98 3 749 924 2874 −1875286 1392 
GALPROP 8t Coleman20 3 749 563 3235 −1875108 1570 

Figure 2. Bulge templates after they are convolved with the PSF at 1.02–1.32 GeV. References from left to right: Freudenreich ( 1998 ), Cao et al. ( 2013 ), 
Coleman et al. ( 2020 ), and M2023 . 
Table 3. Comparison between the L-BFGS-B algorithm and GCEPY with its original priors for the GALPROP 7p -based background model and the ring-based 
background model without GCE. 
Background model Fitting algorithm −2 ln L 2 (ln L GALPROP 7p − ln L ring −based )
GALPROP 7p L-BFGS-B 3 752 792 −1852 
Ring based 3 750 940 
GALPROP 7p GCEPY 3 752 798 + 3508 
Ring based 3 756 306 
provided bounds to scale the parameters from 0 to large values, far 
exceeding the priors in GCEPY in linear space. Fig. 3 shows the best- 
fitting values for the normalization of the ne gativ e and positive dust 
corrections from L-BFGS-B and GCEPY in each energy bin for the 
ring-based background model. It is clear that the best-fit values for 
the ne gativ e dust correction from L-BFGS-B al w ays exceed the prior 
range of GCEPY . In GCEPY , the best fit found by GCEPY simply stops at 
the upper boundary of the prior for most bins. For a few high-energy 
bins, the best fit found by GCEPY is very small, likely caused by 
finding a local minimum. The same situation is also observed for the 
positive dust correction, although only for a few high-energy bins. 
In Table 4 , we find that the best-fitting likelihood for the ring-based 
model from GCEPY is again consistent with that from the L-BFGS- 
B algorithm once we widen the priors for dust corrections. More 
specifically, we widen the prior upper bound of two dust corrections 
to 10 while maintaining the other priors unchanged. We conclude 
that M2023 failed to find the real best-fitting models when using the 
ring-based background model due to inadequate priors for the dust 
corrections. Our results using the L-BFGS-B algorithm in Table 3 , 
and the GCEPY results with wider priors in Table 4 , provide a more 
accurate interpretation of the ring-based background model. 

In the ‘no-excess’ case, as detailed in Fig. 4 , the best-fitting spectra 
include the four H I and H2 rings and six ICS rings, along with both 
ne gativ e and positiv e dust corrections. Notably, the ne gativ e dust 
correction at GeV energies is about 30 per cent of the total HI and 
H2 fluxes, while the positive correction is relatively small. As the 

ne gativ e dust correction template represents an underestimation of 
the spin temperature, we would expect a constant ratio of ne gativ e 
dust correction to the H I spectrum across all energies. Although, 
this appears to mainly be the case, a deviation occurs at the highest 
energy bin. Ho we v er, this discrepanc y is not crucial for determining 
the GCE’s morphology, as the GCE’s values are minimal at such 
high energies. 

Fig. 5 displays the best-fitting count map (in log 10 scale) for the 
gas-correlated component (H I , H2, and the dust corrections) in the 
ring-based background model at the 1.02–1.32 GeV energy bin. For 
comparison, we also show the gas-correlated component (pion decay 
+ bremsstrahlung) in the best-fitting GALPROP -based background 
model for the same energy bin. Due to the ne gativ e correction, the 
photon counts associated with the gas-correlated component in the 
ring-based model are generally lower than those in the GALPROP - 
based model. Ho we v er, no pix els in the unmasked re gion hav e 
ne gativ e values when H I , H2, and dust corrections are combined. 
We have verified that this holds true for every energy bin. 

In Table 4 , we add the results from using the ring-based back- 
ground model using wider priors in GCEPY . In this case, again, 
likelihood values with the alternative minimizer are comparable. 
Comparing row one of Table 2 with row one of Table 4 shows 
that the ring-based model without GCE is a better description 
of the gamma-ray sky than the GALPROP 7p , with a ln B = 216. 
When adding a GCE component, regardless of the choice of the 
template, the Bayesian evidence for the GCE is o v erall reduced for 
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Figure 3. Best-fitting normalizations for the ne gativ e and positiv e dust corrections from L-BFGS-B and GCE P Y (with narrow priors as in the original 
implementation) using the ring-based background model developed by P2022 . We are plotting the dust template normalization against the 14 energy bins 
range from 0.275 to 51.9 GeV. 
Table 4. Similar to Table 2 except here we consider the ring-based background model developed by P2022 . We have expanded the priors for the dust corrections 
in GCEPY to ensure convergence. Note that in each row, the amplitude of the ring-based background model templates is optimized in addition to the GCE 
additional source (if there is one) to maximize the likelihood L , as explained in Section 2 . 
Baseline model Additional source −2 ln L TS ln H ln B ≡ . ln H
Ring based none 3 750 994 0 −1876462 0 
Ring based BB ( GCEPY ) 3 750 592 402 −1876297 165 
Ring based F98 3 750 570 424 −1876302 160 
Ring based Cao13 3 750 560 434 −1876276 186 
Ring based gNFW 2 3 750 433 561 −1876232 230 
Ring based Coleman20 3 750 333 661 −1876144 318 
the ring-based background model with respect to GALPROP -based 
background models (cf. Tables 2 and 4 ). Yet the evidence of the 
GCE, no matter the template adopted, is strong, i.e. ln B ! 100. 
The ranking of GCE models is similar to Table 2 , except for the 
fact of F98 performing worse than Cao13 ( ln B = 26). The gNFW 2 
template is still preferred o v er Cao13 ( ln B = 44), while Coleman20 
template provides a better fit than the gNFW 2 template ( ln B = 88). 
We, therefore, corroborate the Coleman20 preference found in the 
GALPROP -based runs, even when the ring-based background model is 
used. 

We notice, ho we v er, that the o v erall goodness of fit of models with 
the GCE and using the GALPROP 8t background template are preferred 
with respect to our optimization of the ring-based background runs 
with ln B varying between about 500 and 1000 for the different GCE 
templates. None the less, we will sho w belo w (Section 3.4 ) that 
these very same models lead to unphysical spectra of the IGRB, 
questioning their physical interpretations. 

Fig. 6 shows the GCE spectra for the five templates tested using 
both the GALPROP -based and the ring-based background models. 
Ov erall, the GCE flux es are higher when using the gNFW 2 template 
compared with bulge templates, by a factor of a few. All the GCE 
spectra are relatively soft, and their E 2 d N /d E values peak at around 
1–2 GeV. 

3.4 Model systematics: degeneracy between IGRB and GCE 
In Figs 7 and 8 , we examine the spectra for the IGRB for the different 
background models and GCE templates. As can be seen from the top 
left panel of Fig. 7 , when using the GALPROP -based background 
model, instead, the IGRB is hardly ‘detected’ around GeV energies, 
no matter which GCE template is used (including no excess case). 
This result seems to be unphysical. Comparing the IGRB and GCE 
flux for different GCE templates (remaining panels of Fig. 7 ), the 
IGRB is largely missing around where the GCE is peaked. The issue 
does not seem to exist for the ring-based background model, which 
is shown in Fig. 8 . The fact that the IGRB in Fig. 7 has no flux around 
1–5 GeV is a concerning property of the GALPROP -based background 
models, which is not seen in the ring-based models. One possible 
way to ameliorate this issue may be to put strong priors on the IGRB 
flux so it does not drop to zero. 
3.5 Analysis systematics: the role of mask size and goodness of 
fit with Monte Carlo simulations 
For the sake of studying the systematic uncertainties induced by the 
choice of the masked regions, we use the same data and templates as 
P2022 . The main difference with the ring-based case in Section 3.3 
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Figure 4. Best-fitting spectra for the H I , H2, ICS, ne gativ e and positive dust 
corrections for the ring-based background model ( P2022 ). The results are 
obtained with no GCE template and are from the L-BFGS-B algorithm. 
is that the pixel resolution used is now 0.2 ◦ rather than 0.1 ◦. We 
also use a larger point-source mask, the details of which are shown 
in Table 5 . The new point-source mask was designed to be wide 
enough to mask out 90 per cent of the flux of each point source 
in each energy bin. Our masks can be compared to table 1 of the 
supplementary material of M2023 . As can be seen, our point-source 
masks have larger radii than even their ‘large’ point-source masks. 
We found that if we make our masks smaller, then we could see the 
residual point source signal leaking out from the mask. Note that we 
do not use the first two energy bins listed in Table 5 in our subsequent 
analysis for this subsection, as those bins have too high a fraction of 
the ROI masked out to provide meaningful constraints. In Fig. 9 , we 
compare the fraction of the ROI that is masked in this section to the 
fraction of the ROI that is masked in earlier sections and in M2023 . 
We also remind the reader that in M2023 and in previous sections, 
the Galactic plane was masked. 

In Table 6 , we e v aluate the statistical evidence for the additional 
GCE component, when our new point-source mask, as described 
abo v e, is applied (but the Galactic plane is unmasked). Since we do 
not mask the Galactic plane, we also add a model component for the 
NB (Nishiyama et al. 2013 ). This table can be compared to table 2 
of P2022 . As can be seen, the qualitative results are very similar to 
P2022 , with mild difference in the likelihoods probably due to the 
masking and also to having discarded the first two energy bins so that 
we have 13 bins rather than the 15 that were used by P2022 . As can 
be seen from the table, we find that, with a larger point-source mask, 
there is strong evidence for an additional component on top of the 
ring-based background model. Moreo v er, there is evidence for the 
Coleman20 template at 8.1 σ on top of the ring-based + NB model, 
while the addition of gNFW 2 is not significant (2.8 σ ). Finally, the 
significance for DM is strongly reduced to a negligible level when 
added to the ring-based + NB + Coleman model. 

We then run the case with both new point-source mask and Galactic 
plane mask | b | < 2 ◦. In this case, the results are shown in Table 7 . As 
can be seen, with the Galactic plane and new point-source mask, 
we find neither the gNFW 2 DM template nor the NB template 

to be significant. Conversely, the Coleman20 BB template is still 
significant. 

P2022 tested the goodness of fit using Monte Carlo simulations. 
As can be seen from their Fig. 9 , the Monte Carlo simulations were 
not consistent with the fit for the E < 5 GeV. This was somewhat 
ameliorated to E < 4 GeV by reducing the ROI from 40 ◦ by 40 ◦
to 30 ◦ by 30 ◦. In Fig. 10 , we show the full ROI Monte Carlo 
simulations for the new point-source mask, and for the case with 
both the point sources and Galactic plane masked out respectively. 
As can be seen, in all energy bins, the Monte Carlo simulations are 
consistent with the data. This indicates that, with standard template 
fitting, it is more robust to mask the point sources rather than try 
to model them when the diffuse Galactic emission is being fit. 
An alternative would be to include a model of the point sources 
and simultaneously fit the position of the point sources with the 
parameters of the Galactic diffuse emission model. Ho we ver, this 
would be very computationally intensive and goes beyond the scope 
of tests necessary in the current analysis. 
4  ADAPTI VE-TEMPLATE  FITTING  
In this section, we show that the potential of SKYFACT to reduce 
residuals and optimize model components in a data-driven way 
allows for robust inference on the GCE morphology, as it was 
already shown in the case of the analysis of subthreshold point 
sources (Calore et al. 2021 ). Due to a large number of nuisance 
parameters, it is infeasible to optimize a given gamma-ray emission 
model on small ROIs, in particular, ROIs with a masked Galactic 
plane that encompasses the bulk of the detected gamma rays from 
the GC. Whenever we optimize a model with SKYFACT , we, therefore, 
perform the optimization with respect to the full ROI of 40 ◦ × 40 ◦
centred on the GC. 

In the SKYFACT -based part of this study, we work with the Fermi - 
LAT data selected according to Table 1 except for a change in bin size 
from 0.1 ◦ to 0.25 ◦ to render the analysis computationally tractable. 
We consider three distinct model compositions in parallel, namely 
the GALPROP 8t , ring-based, and the original SKYFACT (Bartels et al. 
2018 ) backgrounds. In all three gamma-ray emission model set-ups, 
we employ the Coleman20, NB and gNFW 2 templates. Note that 
in this section, we only consider masking the Galactic plane. The 
point sources are added to the background model with full spectral 
freedom per point source. In the following section, we outline how 
we apply the SKYFACT re-modulation in the context of a masked ROI. 
4.1 Deriving gamma-ray optimized background models with 
SKYFACT 
SKYFACT enables us to go beyond the model iterations investi- 
gated in Section 3 by re-modulating the spatial morphology of 
the respective model’s components (where possible). As stated 
earlier in Section 2.3.2 , this is achieved via adaptive template 
fitting, invoking a large number of spectral (per energy bin) and 
spatial modulation parameters (per spatial pixel) whose ranges are 
controlled by user-input hyperparameters. The degree of variation in 
these modulation parameters is restricted via a penalizing likelihood 
function adding to a standard Poisson likelihood term to prevent 
o v erfitting. 

Such an approach is only feasible with enough information in 
the considered data set. Thus, applying SKYFACT in the presence 
of an e xtensiv e Galactic plane mask is prohibitive. Therefore, we 
devise the following scheme to incorporate re-modulated gamma- 
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Figure 5. Best-fitting count maps (in log 10 scale) for the gas-correlated component for the ring-based and GALPROP 7p based background model. We show the 
sixth energy bin (1.02–1.32 GeV). 

Figure 6. GCE spectra for the gNFW 2 template as well as the four bulge templates from different references, using the GALPROP 8 t -based background model 
(left) and the ring-based background model (right). 
ray emission models in our analysis. For each of the considered 
background model set-ups stated abo v e, we perform a fit to the 
Fermi -LAT data – data selection described in Table 1 – by enabling 
spatial re-modulation. SKYFACT hyperparameter settings are given 
in Section 2.3.2 . We obtain what we call ‘ optimized ’ versions of 
the original background model set-ups. SKYFACT ’s optimization will 
re-modulate the background templates to minimize the residual 
photons, i.e. parts of the GCE emission will be absorbed by the 
selection of background components. We deem such an approach 
conserv ati ve because we deliberately diminish the total luminosity 
of the GCE. Ho we ver, since the GCE’s spatial morphology and 
spectrum are not fully degenerate with the employed background 
components, it is very unlikely that the entire excess is re-absorbed 

in the optimized background templates (and indeed, we will confirm 
this with our results). In what follows, we investigate the performance 
of these optimized background model iterations on data sets with a 
Galactic plane mask utilizing, in a second step, standard template 
fits. 

To conv e y an idea of how the SKYFACT optimized models compare 
to the original v ersions, we e xplicitly go through the deri v ation of 
the optimized version of P2022 . In Table 8 , we list the astrophysical 
gamma-ray emission model components of the original set-up of 
P2022 , which we employ in this part of the analysis. The selected 
spatial templates and associated spectra guarantee the optimization of 
each component based on physical priors. The GCE components, in 
particular, are initialized following the average spectrum of Galactic 
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Figure 7. Top left: Spectra of IGRB in the GALPROP -based background model, using different GCE templates (including no excess). Remaining : Comparing 
the IGRB and GCE fluxes when different GCE templates are used in the GALPROP -based background model. 
MSPs detected by Fermi -LAT (McCann 2015 ), which suppresses the 
gamma-ray emission abo v e a few tens of GeV. 7 

To reduce the required computation time of SKYFACT and to 
impro v e its conv ergence, we combine the H I and H2 templates per 
ring into a single component, and we create a single inverse Compton 
template from the six initial rings. The results of the optimization run 
– in this case using the example of modelling the GCE with Cole- 
man20, NB, and gNFW 2 to e x emplify what is maximally possible 
regarding the reduction of fit residuals – are shown in the right panel 
of Fig. 11 in terms of significance (( data − model ) / √ 

model ) of the 
residuals in the energy range from 1.72 to 10.8 GeV. We compare 
these residuals to the residuals we obtain with a simple template fit 
(the left panel of the same figure) using the full model as described in 
Table 8 , and which should correspond to results in Section 3.3 . Here, 
a template fit refers to a maximum likelihood fit where the spatial 
morphology of all templates is fixed, i.e. turning off all spatial and 
spectral re-modulation parameters, while all spectra are completely 
unconstrained and free to vary. As intended, SKYFACT is able to 
noticeably reduce the significant residuals of the template fit along 
the Galactic plane to the left and right of the GC. Moreo v er, the 
remaining residuals of the optimized model appear rather featureless 
and well-distributed around zero. We obtain very similar results when 
the GCE is modelled with only the gNFW 2 DM template. This 
optimization procedure is repeated for the remaining background 
models, M2023 ’s GALPROP 8t and the model setup of RUN5 used in 
the original SKYFACT works. 
7 Further exploration of the GCE properties abo v e 10 GeV with SKYFACT is 
presented in Manconi, Calore & Donato ( 2024 ). 

4.2 DM evidence in masked analyses with the original SKYFACT 
set-up. 
To investigate the preferred spatial morphology of the GCE, we turn 
to wards an alternati ve gamma-ray emission model neither probed 
in P2022 nor M2023 . The RUN5 model iteration compiled for the 
original SKYFACT works (Storm et al. 2017 ; Bartels et al. 2018 ) 
provides an ideal candidate to shed light on the impact of a Galactic 
plane mask and its impact on template-based fits. To this end, we fully 
adopt the set-up of run5 in terms of model composition (see the cited 
publications for all details) and SKYFACT ’s hyperparameter settings. 
This gamma-ray emission model iteration contains representatives 
of most of the components listed in Table 8 except for the dust 
correction, Loop I, Sun, and Moon contributions. 

In contrast to the other two background model iterations, this one 
can only be used in its ‘optimized’ version as the original templates of 
the model are not meant to fit the data well. Following our rationale 
outlined in the previous section, we first perform an optimization 
run with respect to the selected Fermi -LAT dataset without masking 
any part of the sky while adding no explicit GCE components to 
the model definition. Afterwards, we extract the optimized model 
components with the aim of conducting several template fits based 
on the optimized background templates with varying Galactic plane 
mask sizes. In these template fits, we restrict the full energy range of 
the selected Fermi -LAT data set to energy bins co v ering 500 MeV 
to 12 GeV, i.e. 10 energy bins in total, in order to save computation 
time while still capturing the bulk of the GCE’s emission. 

To derive a statistically sound assessment of the data’s preference 
for any particular GCE morphology, we need to perform template 
fits of nested models. We perform this type of model comparison in 
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Figure 8. Same as Fig. 7 , but for the ring-based background model. 
Table 5. The energy bins and the radii, θ , of the point source masks used for 
Section 3.5 . The last column shows the fraction of pixels masked relative to 
the total number of pixels in the inner 40 ◦ × 40 ◦ GC region, including both 
the 4FGL-DR2 catalogue masked point sources and the Galactic plane | b | < 
2 ◦ mask. 

E min –E max (GeV) θ ( ◦) Masked fraction (per cent) 
0.667–0.889 1.92 88.5 
0.889–1.19 1.58 80.3 
1.19–1.58 1.28 68.7 
1.58–2.11 1.04 58.9 
2.11–2.81 0.8 49.0 
2.81–3.75 0.72 41.0 
3.75–5.0 0.56 35.3 
5.0–6.67 0.48 28.5 
6.67–8.89 0.36 26.1 
8.89–11.9 0.32 20.7 
11.9–15.8 0.2 17.7 
15.8–21.1 0.2 17.7 
21.1–28.1 0.2 17.7 
28.1–37.5 0.2 17.7 
37.5–158 0.2 17.7 
terms of the significance of the additional component as explained 
in Section 2.3.3 . We define our base model as all astrophysical 
background components plus a GCE represented by Coleman20 and 
NB templates. An extended model adds the gNFW 2 template so 
that we can compare the likelihood values for fits with both model 

Figure 9. A comparison of the fraction of the sky masked for the analysis 
in of the sky masked in Section 3.5 (blue) and the fraction of sky masked for 
the rest of Section 3 and also M2023 (red). Note that in both cases, the plot 
is for the combined point source and Galactic plane mask. 
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Table 6. Statistical significance of the GCE templates for the ring-based 
background model of P2022 when the new point-source mask is applied 
(plane unmasked). Additional sources considered in the analysis are NB, 
Coleman20 BB, and gNFW 2 DM-like template. In addition to the TS, 
the significance of the additional component is also given in terms of the 
equi v alent number of σ . 

Baseline model Additional source TS Significance 
Ring based Coleman20 77.5 7.3 σ
Ring based gNFW 2 80.7 7.5 σ
Ring based NB 299.7 16.2 σ
Ring based + NB gNFW 2 21.0 2.8 σ
Ring based + NB Coleman20 90.9 8.1 σ
Ring based + NB + Coleman20 gNFW 2 3.5 0.3 σ
Table 7. The same as Table 6 except that the Galactic plane ( | b | < 2 ◦) is also 
masked. 

Baseline model Additional source TS Significance 
Ring based gNFW 2 12 1.7 σ
Ring based NB 19 2.6 σ
Ring based Coleman20 56 5.9 σ
Ring based + Coleman20 NB 3 0.2 σ
Ring based + Coleman20 gNFW 2 5 0.5 σ
instances. Adding a gNFW 2 component to the base model essentially 
adds 11 degrees of freedom or parameters, which must be strictly 
positive, namely the normalizations of the DM template per energy 
bin and a global normalization parameter. 

The results of this approach are reported in Table 9 . The first row of 
this table can be compared to the last row of table 2 of P2022 . There 
a slightly lower significance was found but some minor differences 
are to be expected gi ven v ariations on ho w the point sources are 
treated, the number of energy bins used, and the modulation done 
of the background templates. In both cases, the significance of a 
gNFW 2 template is negligible once the Coleman20 BB and NB 
have been added. The results of Table 9 indicate that the evidence 
for the necessity of adding a gNFW 2 template to the gamma-ray 
emission model is at most 1.6 σ in the case of no Galactic plane 
mask. Interpreted differently, there is only marginal evidence that 
the preferred morphology of the GCE follows a gNFW 2 profile. 
This is in agreement with results of Section 3.5 , also when spatial 
modulation of the background model components is allowed. 
4.3 Bayesian model comparison of original and optimized 
gamma-ray emission models 
Given the sometimes opposing findings on the preferred spatial 
morphology of the GCE reported in the broad body of literature, 
it is necessary to ask the question of how much the employed 
astrophysical background model impacts the eventual conclusion. 
Here, we investigate this question from a Bayesian point of view 
by quantifying the degree of belief in certain gamma-ray emission 
models, that is, what model fits the Fermi -LAT data best. The 
expectation is to verify that with increasing Bayesian evidence for 
a gamma-ray emission model, the preference for a particular spatial 
morphology of the GCE is converging to either DM represented by a 
gNFW 2 template or the combination of the Coleman20 BB and NB 
templates. 

4.3.1 Model comparison without GCE components. 
In Table 10 , we consider six background models, three original 
background model template sets and three optimized template sets 
obtained by applying the rationale outlined in Section 4.1 . We first 
compare the performance of these models in a template fit without 
adding additional GCE components, i.e. we assess how well the 
background templates alone fit the GC gamma-ray emission. Note 
that we also include M2023 ’s GALPROP 7p background model (only 
original templates) since it was found in M2023 that it yields the 
best fit when not accounting for GCE components. In all runs, we 
applied a Galactic plane mask of | b | < 2 ◦, which turned out to 
be a crucial ingredient in the comparisons of DM-like and bulge 
templates. 

To derive the stated Bayesian evidence H, we proceed as follows. 
We extract the best-fitting template normalizations for each model 
iteration. We sum all model components multiplied by the retrieved 
best-fitting normalizations. Using MULTINEST (Feroz, Hobson & 
Bridges 2009 ) and specifying 1000 live points and an evidence 
tolerance of 0.2, we re-fit the masked ROI with these models while 
assigning a single normalization parameter to it and employing a 
Poisson log-likelihood function. 

By comparing these models, 8 we notice that the optimized versions 
of each respective background model iteration al w ays yield a better 
fit to the data, also in the case of ring-based background models. 
In contrast to M2023 , we do not find that the original GALPROP 7p 
performs better than the original GALPROP 8t without additional GCE 
components as shown by a Bayes factor of ln B = 277 in fa v our of 
the latter. 

Among all considered model iterations, we find that the run5 model 
of the original SKYFACT works yields the best description of the data 
by far ( ln B > 1000 to the next best iteration, the optimized M2023 ’s 
GALPROP 8t ). Yet, already at this stage, we caution the reader not to 
o v erinterpret the quoted evidence values − ln H. skyFACT is not 
a perfect tool and cannot re-modulate the templates to 100 per cent 
accurac y. F or e xample, when we compare the optimized templates 
associated with the π0 and bremsstrahlung emission (following the 
gas distribution in the Milky Way) among different background 
model iterations, we find that they do not converge to the exact 
same morphology. For instance in the most extreme case, the 
relati ve de viation of this optimized gas-related component is on 
average around 30 per cent with respect to SKYFACT ’s RUN5 and 
M2023 ’s GALPROP 8t . On one side, this is caused by the quite 
diverse gamma-ray emission model composition in P2022 , M2023 
and SKYFACT ’s RUN5 , which yields different priors for the adaptive 
template fitting routine. On the other side, this technique relies on 
user-defined hyperparameters that alter the final results. While we 
impro v e the fit results via SKYFACT , we do not claim to have derived 
the unique optimal diffuse model describing the physics of the 
GC. 

8 We stress that the numbers presented in Table 10 cannot and should not 
be directly compared to the previous results in Section 3 . The main reason 
is the differing resolution of the templates adopted for the two analyses. In 
Section 3 , we use a finer resolution of 0.1 ◦, which directly translates to larger 
likelihood values. At the same time, we have to project the gamma-ray flux 
models of each component to the chosen geometry of the data set. The initial 
resolution of the flux model is most of the times coarser than the chosen 
bin size for the data. Projection effects can distort and washout information 
so that we do not compare the exact same model each time we change the 
resolution. 
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Figure 10. Left: Monte Carlo simulations for the ring-based + NB + Coleman20 model when the point sources are masked as specified in Table 5 . Poissonian 
simulations were generated for the best-fitting parameters of this model. Each simulation was fit using the ring-based + NB + Coleman20 model, and the 
maximum likelihood for the simulation ( L sim ) was compared to the maximum likelihood for the ring-based + NB + Coleman20 model fit to the Fermi -LAT data 
( ln L data ) which is given in Table 6 . The vertical error bars were estimated from the mean and standard deviation of the simulation samples. The horizontal error 
bars indicate the energy bin widths. Right: Same as the left plot except that the Monte Carlo simulations are for the ring-based + Coleman20 model when the 
point sources are masked as specified in Table 5 and the | b | < 2 ◦ Galactic plane was also masked. 

Table 8. Summary of the spatial and spectral model components used as input for SKYFACT to derive an optimized version of the gamma-ray emission model 
of P2022 . 
Component Spatial morphology Spectrum 
π0 + bremsstrahlung H I maps P2022 and H2 maps Macias et al. ( 2018 ) in four rings (in Galactocentric radii: 

0–3.5, 3.5–8, 8–10, 10–50 kpc) Ackermann et al. ( 2012 ) 
Inverse Compton Numerical computation in six Galactocentric rings via GALPROP v56 Spectrum of foreground 

Based on the 3D interstellar radiation field model of (Porter, Johannesson & Moskalenko 
2017 ) Model A (Ackermann et al. 2015 ) 

Dust correction Positive and negative corrections maps of Abdollahi et al. ( 2020 ) Power law ∝ E −2 
Detected sources 4FGL-DR2 sources in our ROI (Ballet et al. 2020 ) Spectra listed in 4FGL-DR2 
Isotropic gamma-ray background Isotropic Fermi Science Tools 
Fermi bubbles Macias et al. ( 2019 ) Ackermann et al. ( 2017 ) for low latitudes 
Sun and Moon Data-dri ven, deri ved with the Fermi Science Tools Fermi science tools 
Loop I Wolleben ( 2007 ) Power law ∝ E −2 
DM C2022 ∝ ( E / 1 GeV ) −1 . 46 exp ( −E / 3 . 6 GeV ) 
Boxy Bulge Coleman et al. ( 2020 ) ∝ ( E / 1 GeV ) −1 . 46 exp ( −E / 3 . 6 GeV ) 
Nuclear stellar cluster Nishiyama et al. ( 2013 ) ∝ ( E / 1 GeV ) −1 . 46 exp ( −E / 3 . 6 GeV ) 

4.3.2 Model comparison with added stellar GCE components 
For each of the all gamma-ray emission models in Table 10 but 
GALPROP 7p original, we then add an additional GCE component, 
modelled as Coleman20 and NB, perform a standard template fit 
and extract Bayesian evidence values as described in the previous 
paragraph. 

As can be seen from Table 11 , in general, we find very strong 
evidence for the combination of the Coleman20 BB and NB on top of 
the background-only model iterations, as clearly implied by the large 
significance values around 20 σ in all tested cases. This means that, 
regardless of the SKYFACT optimization, Fermi -LAT data strongly 
want an additional component, i.e. the GCE. As can be seen from 
Table 11 , among the ‘original’ non- SKYFACT modulated gamma- 
ray emission models, we find that the one proposed by M2023 , 
GALPROP 8t , exhibits strong evidence (ln B ≈ 300) for being a better 
fit to the data with respect to the original P2022 set-up. This claim 

has been made in M2023 , which we are able to reproduce here (and 
in Section 3 ). Ho we ver, this does not mean that their model is, in 
general, the best description of reality since we are only looking at 
latitudes | b | > 2 ◦. The SKYFACT -modulated versions of both gamma- 
ray emission model instances are strongly preferred by the data 
compared to their original counterparts. Globally, the SKYFA CTR UN5 
model is the one performing best among all tested cases, even when 
spatial modulation are allowed on the original M2023 and P2022 
models. There is strong evidence for it being preferred o v er the 
second-best model, M2023 optimized, by ln B ≈ 1400. 
4.3.3 Model comparison and significance of a DM component 
Finally, we added a gNFW 2 component in the subsequent fit, on 
top of the bulge Coleman20 and NB model. This way, we can 
repeat the approach outlined in Section 2.3 to quantify the statistical 
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Figure 11. Shows ( data − model ) / √ 
model of residuals in the integrated energy range from 1.72 to 10.8 GeV. Left: Employing SKYFACT to perform a template 

fit with the ring-based astrophysical model components listed in Table 8 with a GCE represented by the Coleman20 + NB + gNFW 2 . Right: Running the same 
model set-up with the full re-modulation power of SKYFACT to optimize the employed components. 
Table 9. Summary of the significance of an additional gNFW 2 template 
in template fits with the SKYFA CTR UN5 set-up for various Galactic plane 
mask sizes. Here, ‘base’ refers to the SKYFACT optimized RUN5 background 
templates plus the Coleman20 BB and a NB component. The SKYFACT 
optimization of background templates was performed on the RUN5 set-up 
without GCE components as outlined in Section 4.1 . 

Galactic plane mask −2 ln L base + gNFW 2 −2 ln L base TS Significance 
no mask 275 081 275 071 10 1.6 σ
| b | < 1 ◦ 260 989 260 985 4 0.5 σ
| b | < 2 ◦ 247 030 247 029 1 0.1 σ
| b | < 5 ◦ 205 937 205 932 5 0.7 σ
Table 10. Summary of the likelihoods ( L ) and evidence ( H) for different 
background models. A Galactic plane mask of | b | < 2 ◦ is applied, but the 
point sources are included as part of the background model. The optimized 
version of the background model includes a skyFACT modulated version of 
the non-point source components of the ‘original’ model. 

Background model −2 ln ( L ) − ln ( H) 
M2023 ’s GALPROP 7p ‘original’ 347 477 280175 
M2023 ’s GALPROP 8t ‘original’ 347 465 279898 
M2023 ’s GALPROP 8t ‘optimized’ 342 008 274036 
P2022 ’s ring-based ‘original’ 346 859 279723 
P2022 ’s ring-based ‘optimized’ 342 982 276 075 
SKYFACTRUN5 ‘optimized’ 340 266 272900 
significance of an additional gNFW 2 template from the frequentist 
perspective. As can be seen from Table 12 , we are also able to 
reproduce the M2023 result of the strong evidence (more than 11 σ ) 
for the necessity of an additional DM gNFW 2 template on top of 
Coleman20 and NB in the context of the original M2023 model set- 
up. Ho we ver, as can also be seen from Table 12 , the significance of the 
gNFW 2 component is only marginal after SKYFACT modulating the 
spatial morphology of the background model. In contrast, consistent 
with earlier works and the results in Table 7 , we see in Table 12 that 
the setup of P2022 never required an additional gNFW 2 template 

after accounting for the GCE as the Coleman20 BB template and NB 
template. As can also be seen from Table 12 , the SKYFACT model is 
an outlier here because the fit, including a gNFW 2 template, is even 
worse than the one without. This situation can occur in SKYFACT 
since even in a template fit, we modulate the spatial morphology 
of the detected extended 4FGL-DR2 sources. Thus, the penalizing 
likelihood function adds a non-vanishing part to the o v erall value 
of the likelihood function. Yet, the extensions of these sources are 
marginal compared to the rest of the ROI, so we do not expect biased 
results. Consequently, there is also no evidence of the need for a 
gNFW 2 template in this gamma-ray emission model iteration. 

In conclusion, whenever we employ an optimized astrophysical 
background model, there is no strong evidence for spherical sym- 
metry of the GCE or at least a preference for such a morphology 
even when masking the Galactic plane. Previous contrary findings 
seem to be driven by a certain amount of background mismodelling. 
We stress again that quoted values of the Bayesian evidence are 
subject to the caveats raised in Section 2.3.3 . Eventually, the Bayesian 
frame work allo wed us to single out the SKYFA CTR UN5 set-up to be the 
most suitable to describe the Galactic centre physics with adaptive 
template fitting. Its assumed priors for the spatial and spectral profile 
of the used components yield the best-fitting model among the tested 
cases, although it does by no means imply that it is the optimal model 
achie v able. 
5  C O N C L U S I O N S  
We have performed an extensive analysis of models of gamma-ray 
emission towards the GC as an explanation of the GCE, subject to 
different choices of diffuse background models, point source and 
Galactic plane masking, and extended source models. In particular, 
we tested GALPROP -based background models versus more flexible 
non-parametric ring-based models. 

First, we have thoroughly tested contradicting results in the 
literature for masked analyses, especially those pertaining to the 
preference for stellar bulge versus DM, e.g. in M2023 , where 
preference for a gNFW 2 (DM-like) emission of the GCE was found. 
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Table 11. Summary of the TSs, significances for the Coleman20 + NB templates for different background models. The evidence ( H) is 
also given for the combined model of background + Coleman20 + NB. See Table 10 for an explanation of the background models and their 
corresponding likelihoods. 
Background model TS (Coleman20 + NB) Significance − ln ( H) 
M2023 ’s GALPROP 8t ‘original’ 2137 > 20 σ 278 929 
M2023 ’s GALPROP 8t ‘optimized’ 4822 > 20 σ 272 018 
P2022 ’s ring-based ‘original’ 445 19.1 σ 279 231 
P2022 ’s ring-based ‘optimized’ 5435 > 20 σ 272 573 
SKYFA CTR UN5 ‘optimized’ 3957 > 20 σ 270 627 
Table 12. Summary of the TSs and significances for the gNFW 2 template for different background models once the Coleman20 + NB 
templates have been added. See Table 10 for an explanation of the background models and their corresponding likelihoods. 
Base model TS(gNFW 2 ) Significance − ln ( H) 
M2023 ’s GALPROP 8t ‘original’ + Coleman20 + NB 162 11.4 σ 278843 
M2023 ’s GALPROP 8t ‘optimized’ + Coleman20 + NB 22 2.7 σ 272008 
P2022 ’s ring-based ‘original’ + Coleman20 + NB 32 3.9 σ 279202 
P2022 ’s ring-based ‘optimized’ + Coleman20 + NB 14 1.7 σ 272504 
SKYFA CTR UN 5 ‘optimized’ + Coleman20 + NB −3 – 270 673 

In Section 3 , we showed that we can reproduce the analysis in 
M2023 , and we scrutinized their main results in light of model and 
analysis systematic uncertainties. In Section 3.2 , we highlighted the 
rele v ance of the bulge templates: when using the same GALPROP - 
based background models as in M2023 , with the same data selection 
and masks, we demonstrated using Bayesian evidence that the 
Coleman20 and F98 bulge models provide a better description of 
the inner Galaxy gamma-ray sky than a gNFW 2 model. We then 
tested an alternative model for the Galactic diffuse emission, and, in 
particular, the so-called ring-based background model. In Section 3.3 , 
we demonstrated that, in the absence of an additional GCE source, 
the ring-based model better performs with respect to GALPROP -based 
models. When adding a GCE source, the Coleman20 bulge model is 
the preferred model of the GCE, significantly better than the gNFW 2 
template. We notice that the contrary conclusions of M2023 when 
using the ring-based model were due to their not correctly finding 
the minimum of the parameters for the ring-based templates due to 
an o v erly restrictiv e prior. We also found that M2023 used a non- 
standard version of the Galactic bulge template. This is confirmed 
by the fact that even with their GALPROP -based templates, the better- 
moti v ated Coleman20 bulge template still provides a superior fit to 
the Fermi -LAT data. In Section 3.5 , we examined the case of ring- 
based templates with more aggressive masking. We found that, when 
just the point sources are masked out, the Coleman20 BB and NB 
significantly impro v e the fit, and once they are added, the gNFW 2 
template does not significantly impro v e the fit an ymore. When the 
Galactic plane is masked out, only the Coleman20 BB template is 
required. The NB is indeed too small in its spatial extent to have any 
significant effect on the model fit to the data in that case. We also 
showed using Monte Carlo simulations that the fits were consistent 
with simulations. 

We then looked at the case where templates could be spatially 
modulated using SKYFACT . Allowing for more freedom on the spatial 
parts of the model components, we were able to further minimize 
the residuals and impro v e the goodness of fit. We compared the 
different background models from the previous sections and added an 
additional SKYFACT model ( RUN5 ). We demonstrated that switching 
on the spatial modulation of background models al w ays provide a 
better fit to data, because of reduction of the residuals. Among all 
considered background model iterations, we find that the RUN5 model 

of the original SKYFACT works yielded the best description of the data 
by far ( ln B > 1000 to the next best iteration, the optimized M2023 ’s 
GALPROP 8t ). None the less, limitations still exist in the current SKY- 
FACT implementation. While we impro v e the fit results via SKYFACT , 
we do not claim to hav e deriv ed the unique optimal diffuse model 
describing the physics of the GC. No matter what the background 
model is, we al w ays found strong evidence for the Coleman20 + NB 
model. Moreo v er, for all background optimized models there is no 
additional evidence for a DM-like signal. We found similar results, 
i.e. DM evidence on top of the bulge model al w ays below the 4 σ
threshold, for almost all background models. We encountered one 
exception, namely the original M2023 GALPROP-based template. 
Ho we ver, this was found to have a much lower Bayesian evidence in 
comparison to the SKYFA CTR UN5 model. Finally, we found that, for 
the RUN5 model of the original SKYFACT implementation, the evidence 
for an additional DM-like contribution is not significant on top of the 
Coleman20 bulge and NB model regardless of the cut on Galactic 
latitude. 

We stress that throughout this work we have adopted Bayesian 
statistics when performing model comparison, and our conclusions 
have to be interpreted in such a statistical framework. 

In summary, the preference for a bulge-like morphology of the 
GCE in the various analyses we have done puts on even more 
solid grounds the possibility that part of the excess originates from 
unresolved point sources, such as MSPs. Future multiwavelength 
analyses of the GC will help determine the nature of the sources 
emitting across the multi-messenger spectrum from radio (Calore 
et al. 2016 ), X-rays (Berteaud et al. 2021 ), up to very high energy 
gamma rays (Song, Macias & Horiuchi 2019 ; Macias et al. 2021 ). 

Note: While our article was near completion, a new article came 
out (Zhong & Cholis 2024 ) which found that when the GALPROP - 
based background model was used, the Coleman20 bulge had a 
similar likelihood to the gNFW 2 . No Bayesian model comparison 
is performed therein. 
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