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ABSTRACT

The gamma-ray Fermi-LAT Galactic Centre excess (GCE) has puzzled scientists for over 15 yr. Despite ongoing debates about its
properties, and especially its spatial distribution, its nature remains elusive. We scrutinize how the estimated spatial morphology
of this excess depends on models for the Galactic diffuse emission, focusing particularly on the extent to which the Galactic
plane and point sources are masked. Our main aim is to compare a spherically symmetric morphology — potentially arising
from the annihilation of dark matter (DM) particles — with a boxy morphology — expected if faint unresolved sources in the
Galactic bulge dominate the excess emission. Recent claims favouring a DM-motivated template for the GCE are shown to
rely on a specific Galactic bulge template, which performs worse than other templates for the Galactic bulge. We find that a
non-parametric model of the Galactic bulge derived from the VISTA Variables in the Via Lactea survey results in a significantly
better fit for the GCE than DM-motivated templates. This result is independent of whether a GALPROP-based model or a more
non-parametric ring-based model is used to describe the diffuse Galactic emission. This conclusion remains true even when
additional freedom is added in the background models, allowing for non-parametric modulation of the model components and
substantially improving the fit quality. When adopted, optimized background models provide robust results in terms of preference
for a boxy bulge morphology for the GCE, regardless of the mask applied to the Galactic plane.

Key words: astroparticle physics—pulsars: general —Galaxy: bulge—local interstellar matter —dark matter — gamma-rays:
diffuse background.

1 INTRODUCTION

The successful deployment of the Fermi Gamma-Ray Space Tele-
scope 15 yr ago ushered in an era of unprecedented sensitivity to the
gamma-ray sky, with Fermi’s Large Area Telescope (LAT) providing
increased energy resolution and an unprecedented angular resolution
(Atwood et al. 2009). A key science goal of Fermi-LAT was to
explore gamma-ray emissions from dark matter (DM), specifically
investigating the pair annihilation products of thermally produced
weakly interacting massive particles (WIMPs).

* E-mail: songdeheng @yukawa.kyoto-u.ac.jp
© 2024 The Author(s).

Shortly after its launch, an observation was reported of an extended
source towards the Galactic Centre (GC) consistent with thermal
WIMP annihilation with a profile consistent with a cuspy DM halo
(Goodenough & Hooper 2009; Vitale & Morselli 2009; Hooper &
Goodenough 2011). The presence of excess emission was confirmed
and refined with many subsequent studies (e.g. Hooper & Linden
2011; Abazajian & Kaplinghat 2012; Gordon & Macias 2013;
Hooper & Slatyer 2013; Abazajian et al. 2014; Calore, Cholis &
Weniger 2015; Zhou et al. 2015; Ajello et al. 2016; Daylan et al.
2016; Linden et al. 2016; Ackermann et al. 2017).

This GC excess (GCE) may also be due to an unresolved
population of, e.g. millisecond pulsars (MSPs), stellar remnants
associated with the central stellar population of the Milky Way
(Abazajian 2011; Abazajian & Kaplinghat 2012). However, there
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is debate on whether more GC MSPs should have been resolved (e.g.
Hooper & Mohlabeng 2016; Ploeg et al. 2020; Dinsmore & Slatyer
2022; Malyshev 2024) and whether there are sufficient corresponding
low-mass X-ray binary (LMXB) systems (e.g. Haggard et al. 2017;
Gautam et al. 2022).

One method of distinguishing between the MSP and DM proposals
for the GCE is whether the GCE has a spherical morphology (Calore
et al. 2015; Ajello et al. 2016; Daylan et al. 2016; Di Mauro 2021;
Cholis et al. 2022b; McDermott, Zhong & Cholis 2023) or follows
the bulge-like morphology of the GC’s stellar populations (Bartels
et al. 2018; Macias et al. 2018, 2019; Abazajian et al. 2020; Calore,
Donato & Manconi 2021; Pohl et al. 2022). The main obstacle to
accurately determining the GCE morphology is uncertainties in the
Galactic diffuse emission. When residuals in the gamma-ray fit were
significantly reduced either through the construction of advanced gas
models (Macias et al. 2018, 2019; Pohl et al. 2022) or through new,
more flexible, fitting techniques (Bartels et al. 2018; Calore et al.
2021), a strong preference for the excess tracing old stars in the
Galactic bulge emerged. Recently, Di Mauro (2021), Cholis et al.
(2022b), and McDermott et al. (2023) have, however, made opposite
claims.

Another, independent, way of discriminating between the DM
and MSP explanations of the GCE is to look for non-Poissonian
statistics in the GCE, which would be indicative of the MSP
explanation (Bartels, Krishnamurthy & Weniger 2016; Lee et al.
2016), in constrast to any other truly diffuse signal such as DM.
However, this is arguably even more susceptible to uncertainties in
the Galactic diffuse emission (Leane & Slatyer 2019; Buschmann
et al. 2020; Chang et al. 2020; Leane & Slatyer 2020a,b). New
and independent analyses, introducing methodological developments
which effectively reduce the impact of Galactic diffuse emission
modelling systematics, found a sizable contribution from faint,
subthreshold point sources to the GCE (List et al. 2020; Calore
et al. 2021; List, Rodd & Lewis 2021; Mishra-Sharma & Cranmer
2022).

Accounting for uncertainties in the Galactic diffuse emission
model is undoubtedly key to making robust inferences on the Fermi
GCE properties and overcoming the so-called reality gap, i.e. the
discrepancy between models and real data (Caron et al. 2023).
Different solutions were explored in the literature to overcome
systematics related to the Galactic diffuse emission modelling.
These approaches either rely on the input from a large number
of realizations of cosmic-ray induced diffuse gamma-ray emission
as obtained from cosmic-ray propagation codes, like GALPROP!
(Strong & Moskalenko 1998), (e.g. Calore et al. 2015; Cholis et al.
2022b), or they allow more flexibility in the diffuse-emission model
by splitting the Galactic-diffuse-emission templates in multiple rings
(e.g. Macias et al. 2018; Di Mauro 2021). Finally, a complementary
way to optimize gamma-ray emission model components and, more
specifically, the Galactic diffuse emission is the application of data-
driven techniques that can reduce the residuals and minimize the
gap between model space and reality. A tool that has been utilized
in the context of the GCE is SKYFACT (Storm, Weniger & Calore
2017; Bartels et al. 2018; Calore et al. 2021). SKYFACT combines
the capabilities of traditional template-based maximum likelihood
fits with image reconstruction techniques. Its advantage lies in the
addition of spatial and spectral re-modulation for all components of
the compiled gamma-ray emission model. In this sense, SKYFACT
allows for a more flexible treatment of the employed templates,

Uhttp://galprop.stanford.edu
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especially regarding their spatial morphology, which is fixed in
standard template-based fits. To achieve this flexibility, SKYFACT
introduces a large number of nuisance parameters and a penalizing
likelihood function constraining their variation during the fit in
addition to the Poisson likelihood function typically adopted in
gamma-ray analyses; for technical details, see Storm et al. (2017).

With this work, we aim at systematically scrutinizing how the
morphology of the GCE is affected by background modelling
uncertainties when point sources and the disc plane are masked,
and analysis approaches are varied, and address in detail some
contradictory findings in the recent literature, most notably those
in McDermott et al. (2023, M2023 hereafter). As such, our analysis
is solely focused on the large-scale emission properties of the GCE
and not on its point-source contribution.

In Section 2, we explain the model components and fitting pro-
cedure, exploring the background model construction. In Section 3,
we focus on template fitting. We show that the ring-based fits of
M?2023 have not properly converged. We also provide evidence that
they have used a bulge template that is inconsistent with the data.
We show that by switching to a more accurate bulge template, such
as the one generated from the recent VISTA Variables in the Via
Lactea (VVV) survey (Coleman et al. 2020), the bulge is favoured
over DM-based templates even when M2023’s background is used.
In Section 3.5, we show that the ring-based methods still find a
preference for the Galactic bulge over the DM template even when
the point sources masks are substantially increased in size. We also
show that after masking, the inclusion of a Galactic bulge passes a
Monte Carlo based goodness of fit test. In Section 4, we employ a
skyFACT modulation of the diffuse templates (Storm et al. 2017;
Bartels et al. 2018; Calore et al. 2021). We find that in all cases, the
Bayesian evidence is improved by the modulation, and the addition of
the DM template is not favoured once the modulation has been done
and a Galactic bulge template has been included. The conclusions
are given in Section 5.

2 GAMMA-RAY MODEL COMPONENTS AND
FITTING PROCEDURE

In this section, we first provide a brief overview of the components
used to model the gamma-ray sky. In general, the inner Galaxy sky
is interpreted as the sum of the following main contributions:

(i) Galactic diffuse emission: This contribution, which we will
discuss in more detail below, is the result of the interactions of cosmic
rays with the interstellar gas and low-energy interstellar radiation
fields. The main contributors to the Galactic diffuse emission are
the decay of neutral pions produced in collisions between cosmic-
ray protons and interstellar gas, the inverse Compton scattering of
the interstellar radiation field by electrons, and the bremsstrahlung
emission from these electrons.

(i1) Point-like and extended sources: These correspond to gamma-
ray identified sources which are listed in the Fermi-LAT catalogues
and can be masked or refitted in the analysis. We will discuss the
treatment of point-like sources in the following sections.

(iii) Isotropic diffuse gamma-ray background emission (IGRB):
This component accounts for the (almost) isotropic emission mea-
sured at high latitudes and is thought to originate from the super-
position of different contributions mostly from extragalactic, faint
sources (Ackermann et al. 2015).

(iv) Galactic Centre excess, GCE: To complete the description of
the inner Galaxy gamma rays, it has been demonstrated that one
needs to consider an additional contribution, the so-called GCE.
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2.1 The Galactic diffuse emission models

Given the vast number of independent degrees of freedom across
the sky, constructing an expected Galactic diffuse emission model
requires numerous assumptions. Works like Cholis et al. (2022b,
hereafter C2022) postulate that the inner galaxy is predominantly
influenced by Galactic diffuse emission stemming from nearly
steady-state astrophysical processes and modelled through standard
propagation codes like GALPROP. In the following, we will refer
to these models as ‘GALPROP-based’ templates. In contrast, other
approaches, such as those in Macias et al. (2018, 2019), Abazajian
et al. (2020), Pohl et al. (2022), introduce concentric cylindrical,
galactocentric-based templates, which we will refer to as ‘ring-based
templates’.

There are conflicting reports in the literature regarding the best
method to use for modelling the Galactic diffuse emission. First,
on the background model construction, Pohl et al. (2022, hereafter
P2022?) demonstrated that the ring-based method provided a better fit
to the Fermi-LAT data than the non-ring-based method of Di Mauro
(2021). This was followed by M2023, who reported that when the
point sources and Galactic plane were masked, the GALPROP-based
templates, generated by C2022, provided a better fit to the Fermi-
LAT data. Secondly, there are conflicting reports of whether the GCE
is spherical DM-like or bulge-like. On one hand, P2022 found that
bulge models were better explanations of the data, while, on the other
hand, M2023 claimed a better fit for the spherical DM template as
opposed to the Galactic bulge.

In this work, we systematically compare ‘GALPROP-based’ and
‘ring-based’ templates for the Galactic diffuse emission, with the
final goal of better understanding some contradictory claims in the
literature.

In summary, the templates that compose the Galactic diffuse
emission in the two approaches are as follows:

‘GALPROP-based’ model: C2022 and M2023 made use of GAL-
PROP to propagate cosmic rays within the interstellar medium and
evaluated the diffuse emission templates. The diffuse emission
of pion decay is combined with the subdominant bremsstrahlung
contribution into one template. Inverse-Compton (ICS) emission
was also included. The templates from GALPROP were augmented
by templates for the isotropic background and Fermi bubbles. In
total, the ‘GALPROP-based’ model has four templates.

‘Ring-based” model: As in P2022 and M2023, the ring-based
approach utilizes 16 independent galactocentric cylinders. This
model comprises four rings for the neutral atomic hydrogen (H 1)
density and another four for the molecular hydrogen (H2) density.
Additionally, six rings follow the ICS emission. Also included are
two dust-derived templates, one negative and one positive valued.
The positive dust correction template physically represents H 1 and
H2 hydrogen that is not traced by the relevant emission, known as the
dark neutral medium, or an overestimation of the atomic hydrogen
spin temperature (Acero et al. 2016). The negative dust correction
template represents an underestimation of the spin temperature. The
H 1 and H2 rings, shaped as annular cylinders, have boundaries
located at 3.5, 8, 10, and 50 kpc from the GC. The ICS rings share
these boundaries, except the innermost ring is further subdivided at
radii of 1.5, 2.5, and 3.5 kpc. Also incorporated are the identical
isotropic background and Fermi bubbles template as was done by
M2023. A total of 18 templates are used for the ‘ring-based’ model.

2Note that there is some overlap in the authors of the current article and those
of P2022.
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2.2 The Galactic Centre excess templates

As done by the majority of the literature, in this work we will consider
two main hypotheses for the morphology of the GCE.

The first one is that the signal is connected with annihilating
DM in the inner Galaxy. To this end, we consider DM-inspired
templates constructed as a spherical template that follows the square
of a generalized Navarro-Frenk—White profile (gNFW?):

X 1 .
r/re) (L+r/r)>™

We adopt the parameters used in C2022 and M2023, which are y =
1.2 and r. = 20 kpc. The DM template is then obtained by integrating
o(r)? along each line of sight. Note, however, that there is currently
no clear prediction for the inner (within about 2 kpc) density profile
of the DM halo of the MW (or its sphericity) with both cusps and
cores found in sophisticated hydrodynamic simulations (Lazar et al.
2020; Grand & White 2022).

The second hypothesis builds on the fact that the GCE may
trace the distribution of old stars in the Galactic bulge. Direct
observations of the GC region have historically been obscured
due to challenges posed by dust reddening. The advent of near-
infrared surveys, such as the ground-breaking COBE/DIRBE study,
has enabled significant advancements in our understanding of this
central region (Bland-Hawthorn & Gerhard 2016). These surveys
have not only confirmed the presence of the Galactic bulge/bar but
also provided the foundational data upon which subsequent triaxial
bar models of our galaxy were constructed (Binney et al. 1991;
Weiland et al. 1994; Freudenreich 1998). Cao et al. (2013) utilized
red clump giants from the OGLE-III survey to create a detailed
photometric model of the Galactic bar. This relied on data available
up to 2013. In an advancement, Coleman et al. (2020) utilized more
contemporary data from the VV'V survey. Their approach, integrating
non-parametric methodologies, offers a flexible means of estimating
the morphology of the Galactic bulge, thus refining our understanding
of this critical Galactic structure. The flexibility is important because
we want the data and not an assumed inflexible functional form, as
in Cao et al. (2013) for example, to determine the radial profile of
the template.

In this work, we consider several different bulge templates. The
bulge model used in M2023 is publicly available as part of the
analysis package GCEPY> Following M2023, we will label this the
boxy-bulge BB (GCEPY) template. In addition to one from GCEPY, we
consider three other bulge models: Freudenreich (1998, hereinafter
F98), Cao et al. (2013, hereinafter Caol3), and Coleman et al.
(2020, hereinafter Coleman20). We notice that the BB template in
GCEPY appear be obtained from the Caol3 model (M2023, personal
communication), but upon further inspection, we found that it does
not match our version of the Caol3 template. We therefore keep
the BB GCEPY template and the Caol3 as different, independent,
choices for the bulge. Fig. 1 shows the spatial templates for these
bulge models in the main region of interest (ROI) of this work, i.e.
40° x 40° around the GC. We have normalized the templates to
have the same flux in the ROI (in an arbitrary unit). The contours on
the maps show the 10 per cent, 30 per cent, 50 per cent, 70 per cent,
and 90 per cent levels with respect to the central value. The contours
demonstrate the differences in the bulge models, both at large scales
as well as near the centre.

On top of the boxy-bulge, we also add a component for the nuclear
bulge (NB) following the parametric model of Launhardt, Zylka &

o(r) 1)

3https://github.com/samueldmcdermott/gcepy
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Figure 1. Spatial templates of the Galactic bulge models considered in this work. References from left to right: Freudenreich (1998), Cao et al. (2013), and
Coleman et al. (2020). Note that these are line-of-sight integrated images of the bulge templates before they are convolved with the PSE.

Mezger (2002), which is necessary to include when not masking the
Galactic plane (see Sections 3.5 and 4).

2.3 Fitting procedure and statistical framework

In this paper, we adopt two different fitting techniques. The first one is
the traditional ‘template fit’, where all model components are defined
as morphological templates that are not allowed to vary during the fit
procedure. In template fitting, the free parameters are the independent
bin-by-bin normalizations of the spectral energy distribution of each
model component. The second technique is the so-called adaptive
template fitting, where the spatial distribution of photons among
different sky components is enabled to be re-modulated during the
fitting procedure (Storm et al. 2017; Bartels et al. 2018; Calore
et al. 2021). In what follows, we briefly introduce more technical
details about the implementation of both data fitting approaches. We
conclude this section by outlining the statistical inference methods
that we apply to investigate the morphology of the GCE.

2.3.1 Traditional template fitting

In standard template fit analysis, the gamma-ray sky is described
as the sum of multiple model components, k, identified by a fixed
spatial distribution, i.e. the spatial template. The model ¢ is a linear
combination of k spatial templates 7 binned in spatial pixels p and
a spectral normalization ¥ for each energy bin b, which is free to
re-adjust during the fit:

Gpp = Z Tp(k) ) Eék)-
X

The optimization of the free energy-independent normalization is
done by maximizing the Poissonian likelihood given the number
count maps.

For the optimization, M2023 employs DYNESTY to scan the param-
eter space and then uses a No-U-Turn sampler (utilizing NUMPYRO)
to optimize the best-fitting result. For the sake of cross-checking the
M2023 results, in Section 3, we will perform the maximum likelihood
analysis with an alternative minimizer, i.e. using the Limited memory
Broyden—Fletcher-Goldfarb—Shanno algorithm extended to handle
simple box constraints (L-BFGS-B). For implementation, we use the
PYTHON package LMFIT. We use stats.poisson.logpmf pro-
vided by SCIPY to calculate the Poissonian log-likelihood. Following
M2023, we also include penalty terms (provided by GCEPY) on the
log-likelihood to account for when the IGRB and Fermi bubbles

@
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normalizations deviate too much from their spectra measured at high
latitudes.

Point sources in the 4FGL are masked for this analysis. We will
provide more details on the mask implementation in Section 3.

2.3.2 Adaptive-constrained template fitting

A complementary analysis technique to investigate the preferred
morphology of the GCE is adaptive template fitting implemented in
the software package SKYFACT. As mentioned in the introduction,
SKYFACT is a mixture of a conventional template-based fit and more
advanced image reconstruction routines. The main advantage is a de-
parture from imposing a non-flexible prior on the spatial morphology
of the compiled background and signal components of the gamma-
ray emission model. While this flexibility enables capturing and
remedying a certain degree of component mis-modelling, it requires
the introduction of a large number of nuisance parameters that have
to be controlled during the fit to avoid overfitting and unphysical
results. Therefore, SKYFCAT utilizes a combination of a Poisson and
a penalizing likelihood function to guide the fit with constrained
freedom for all nuisance parameters. The fit itself is the minimization
of the mentioned log-likelihood function.

In essence, the gamma-ray emission model compiled for SKYFACT
is identical to the input data required for a traditional template fit.
That s, the model ¢ is a (tri-)linear combination of k spatial templates
T binned in spatial pixels p and a spectral normalization S per energy
bin b following a certain functional form or tabulated data:

k k k) ok k
b = 3 TOTH 05 O, 3)
k

Examples of suitable spatial templates are the Galactic bulge mod-
els in Fig. 1. The addition of SKYFACT is to introduce a global
normalization parameter v per component and spatial and spectral
nuisance parameters, T and o, respectively. In practice, T and o
act as a one-to-one copy in shape of the spatial and spectral input
priors. Both nuisance parameter sets are initialized with value 1 and
varied — or better, re-modulated — in the priors’ stead during the
fitting procedure. The nuisance parameters are required to be strictly
positive.

We note that the SKYFACT model ¢ allows for the inclusion of point-
like sources according to their position and spectra listed in gamma-
ray catalogues of choice. For them, the position inside the considered
region of interest is fixed, i.e. there is no associated spatial template
T. Consequently, all injected point-like sources are spectrally re-fit
in adaptive template fitting.
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The numerous nuisance parameters are tamed via the regularizing
part of SKYFACT’s likelihood function, which depends on five hyper-
parameters per component* constraining the magnitude of individual
parameters and the correlation among neighbouring parameters. All
details about the explicit structure of the likelihood function and
hyper-parameters is provided in Storm et al. (2017). Here, it shall
suffice to give an illustrative example of the functionality of two
of them, the spatial and spectral smoothing scale n and A. They
are defined as n = 1/x> (A = 1/E?), where x (E) is the allowed
variation between neighbouring spatial pixels (energy bins). Setting
the smoothing scales to zero is thus equivalent to saying that all
spatial pixels (energy bins) may vary entirely independently of each
other.

As the tuning of the hyperparameters is cumbersome due to
computational speed, we select the configuration of RUNS in Storm
et al. (2017) as the foundation for our settings. The specifications of
RUNS assume a certain spatial smoothing for the brightest gamma-
ray components, namely the inverse Compton component receives
the largest smoothing, followed by the mw°-component and lastly
the Fermi bubbles with the shortest smoothing scale. Regarding
the remaining model elements we do not allow for any spatial re-
modulation of the input template, this applies to the different GCE
components, in particular. We hence ensure that the minimization
problem remains convex guaranteeing convergence of the L-BFGS-
B algorithm utilized in SKYFACT. Spectral smoothing is not applied
at all.

2.3.3 Statistical framework: parameter inference and model
comparison

In a frequentist setting, it is possible to properly quantify the
preference for different gamma-ray emission models based on the
maximum likelihood method and the resulting likelihood values
at the optimal point. However, a well-defined notion of model
comparison from a statistical point of view is limited to nested
models. By nested models we mean any gamma-ray emission model
that is comprised of a default set of components (or base components)
and to which further components are added without removing any
contributions from the default set. Then it is possible to compute the
preference in the data for the enlarged model over the base model in
terms of significance.

To be more quantitative let us assume that we add a single
component X to the base model and perform a standard template
fit so that the extended model has N additional parameters (normal-
izations per energy bin). Let In Ly,s. denote the log-likelihood value
evaluated for the best-fitting parameters determined via the maximum
likelihood approach. Likewise, In Ly, x is the corresponding log-
likelihood value found for the extended base model including X. We
choose the log-likelihood ratio test statistic as a means to quantify
the significance: TS = 2(In Lyyerx — In Lyyse). Within this set-up,
the test statistic is distributed according to a mixture distribution
following (Macias et al. 2018)

N
p(TS) =27V [6(TS) +>° <Nz"f) xf(TS)} ) )

k=1

Here, § refers to the Dirac distribution, (Z) is the binomial coefficient,
and x? denotes a x>-distribution with k degrees of freedom. The

“4Only three in the case of point-like sources.
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significance o of the added component under the observation of the
test statistic value TS amounts to

o(TS) = /CDF (x2. CDF(p(TS). T5)). )

where CDF(f, x) refers to the cumulative distribution function of f at
x and CDF~! is its inverse.

Model comparison is challenging to correctly perform in a fre-
quentist framework as shown above, while it is better defined and
easier to access in a Bayesian approach. We also adopt the latter to
run model comparison. Deriving the Bayesian evidence of each indi-
vidual gamma-ray emission model allows us to perform a Bayesian
model comparison or hypothesis testing based on the Bayes factor.
Given the Bayesian evidence In Hy of model X and In Hy of model
Y, the mutual Bayes factor is given by Bxy = exp(InHx — InHy).
A positive value of the Bayes factor implies a certain degree of
evidence for model X being preferred over model Y. In what follows,
we utilize the empirical classification of the degree of evidence from
table 1 of Trotta (2008) based on the logarithmic Bayes factor.’

While the Bayesian framework offers a direct way of stating the
preference for one gamma-ray emission model over another one —
irrespective of the exact composition — it depends by construction
on prior probabilities for all parameters. In this sense, it carries a
certain intrinsic user bias due to the choice of priors, may it be their
parametric shape or range. Consequently, we remark as a caveat
that the derived preference for a model is prior-dependent. As we
will show later in Section 3.3, a suitable choice for the prior range
is essential to cover the correct best-fitting point in the model’s
parameter space.

3 TEMPLATE FITTING: REPRODUCIBILITY
OF PREVIOUS WORKS AND IMPROVEMENTS

In this section, we weigh in on the findings of M2023, first reproduc-
ing and then improving on their analysis. The fitting technique here
adopted is the traditional template fit (Section 2.3). We will perform
Bayesian model comparison to assess what is the best model for
describing gamma-ray data among the ones we test. We will also
discuss how the evidence for the DM-inspired template is affected
by different choices of point sources and Galactic plane mask, by
making use of nested models in the frequentist approach.

3.1 Reproducing M2023

As a first step, we repeat the analysis performed in M2023, by
adopting the same data set and models. We remind the reader that the
M?2023 analysis was performed using both GALPROP- and ring-based
background models with standard template fitting, and the authors
claimed that the GCE is better described by a DM-like model than
a bulge one. A summary of the data selection in C2022 and M2023
is reported in Table 1. We adopt this data set as publicly available
through the GCEPY webpage. Together with the selected data set
(counts map), the GCEPY package released also (i) Galactic plane and
point-source mask adopted, and (ii) the model templates convolved
with the Fermi-LAT point spread function (PSF). The mask adopted
by M2023 (and in this section unless otherwise specified) masks

SWe also provide the definition of TS between different models, as TS =
2(InLx —InLy). While we refrain from assessing model comparison
through this 7S, we notice however that this practice is largely present in
the previous literature. Therefore, for the sake of comparison, in the main
results’ tables we will also report this value without overinterpreting it.
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Table 1. Data selection according to C2022 and M2023.

Parameter Value
Time range Week 9 to Week 670 (12.5 yr)
Energy range 14 bins from 0.275 to 51.9 GeV
ROI 40° x 40°, bin size = 0.1°
Data class P8R3_CLEAN._V3 (evclass = 256), FRONT (evtype = 1)
Filter (DATA_QUAL==1) && (LAT_CONFIG= = 1)
&& (ABS (ROCK_ANGLE) <52)

Max zenith angle 100 deg

out both the Galactic plane (|b| < 2°) and the point sources in the
4FGL-DR2 catalogue.

In M2023, two GALPROP-based models are identified as best-
fitting ones: GALPROPy,, is, according to M2023, the best Galactic
diffuse model when no GCE is added to the fit; GALPROPg, instead
provides the best performance when adding a GCE modelled through
a gNFW? profile. In C2022’s Zenodo archive (Cholis et al. 2022a),
these two cases can be seen to correspond to the cases XLIII and
XLIX, respectively, in table VIII of C2022.

We run a traditional template fit though maximum likelihood
optimization, as described in Section 2.3. The minimization is run
with both the GCEPY code and our implementation with the L-BFGS-
B algorithm.

The results from the runs reproducing M2023 are reported in
Table 2. Following M2023, we use the background model GALPROPg;,
corresponding to the best-fitting model obtained when an additional
gNFW? component has been added. As done by M2023, we compare
this to the best-fitting background in the case of no GCE source
(GALPROP7,). Compared with the scenario without GCE, the BB
GCEPY template has a In 3 = 885, indicating evidence for a GCE.
We remind the reader that no NB is included in the model, following
M2023.

For GALPROP-based background models, we find very similar like-
lihood values no matter what is the adopted minimization procedure.
This contrasts to what happens for ring-based templates (see below).

3.2 Model systematics I: testing other bulge templates

‘We repeat the analysis performed in M2023, but with additional bulge
models described in Section 2. To consistently convolve with the
Fermi-LAT PSF (which are not included in the original M2023), we
run FERMITOOLS based on the same criteria as in C2022 and M2023
(see Table 1 for details). Namely, we use GTSELECT and GTMKTIME to
select and filter the events, then use GTBIN to bin the data. After using
GTLTCUBE and GTEXPCUBE?2 to obtain the live-time and exposure, we
use GTSRCMAPS and GTMODEL to generate the convolved templates
of the three bulge models. In Fig. 2, we display the three additional
bulge templates after they are convolved with the PSF at 1.02-1.32
GeV, compared with the M2023 one.

Table 2 reports the results using the GALPROP-based background
model also for the different bulge templates. The mutual Bayes
factor, In Byy = AlnH, allows us to appreciate the performance
of the different models and to assess which one performs better.
From Table 2, we can see that our version of the Caol3 template
has In B = 180, when compared to the BB GCEPY model, meaning
that it provides a better model for the gamma-ray data. On the
other hand, our other two bulge models are even better than the BB
GCEPY template, with In B = 507 and 685 for F98 and Coleman20,
respectively, when compared to the BB gcepy model.
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As for the comparison with the DM-inspired template, we see
that the gNFW? is preferred over the BB GCEPY and Caol3 model,
consistent with the findings of M2023. However, F98 has In B = 54,
when compared to gNFW?. Finally, the Coleman20 model results
to be the best GCE template in our tests for the GALPROP-based
background model, with a In B = 232, when compared to gNFW?2,
‘We conclude, therefore, that for GALPROP-based models, the choice
of the bulge template is crucial for interpreting whether the GCE is
DM like or bulge like. We nonetheless stress that the above statement
holds for the specific diffuse emission model adopted, which is not
guaranteed to provide an overall good fit to gamma-ray data. We will
discuss how ring-based models improve the goodness of fit in the
next section.

3.3 Model systematics II: testing ring-based models

We here explore the same set of four bulge models but with the ring-
based Galactic diffuse models of P2022. We remind the reader that
M?2023 also presented a run with the P2022 ring-based background
model, arguing that this always provided a worse fit to the data than
the GALPROP-based optimized background model when no excess
was considered, i.e. GALPROP,,.

Alsoin this case, we run the fit with both minimizers to cross-check
the validity of the GCEPY code. Differently from the GALPROP-based
models, when comparing the results of the two minimizers for the
ring-based background model, we find a major discrepancy between
our results and M2023: Contrary to the finding of M2023, when
using the L-BFGS-B algorithm we find that the ring-based back-
ground model provides a better fit compared with the GALPROP,
background model.

In Table 3, we compare the likelihood results® from the L-BFGS-
B algorithm and the GCEPY package. We focus on the no-excess
case and compare the GALPROP-based and ring-based background
models. Using the L-BFGS-B algorithm, we find that the TS for
the GALPROP-based background model against the ring-based one is
—1852. Using the GCEPY package, we find instead that the GALPROP-
based background model has a positive TS of 3508 against the ring-
based one. This observation aligns qualitatively with the findings
in M2023 who report a positive TS of 4539 for the GALPROP-
based background. Table 3 shows that the —21In L values for the
GALPROP-based background model are almost the same between L-
BFGS-B and GCEPY. However, this is not the case for the ring-based
background model. Thus, the discrepancy is only seen in the ring-
based analyses.

After investigating the fitting results in each energy bin and for
every template, we find that the major difference between the fits
using the L-BFGS-B algorithm and GCEPY is in the best-fitting values
for the negative and positive dust corrections in the ring-based model.
To use nested sampling to estimate Bayesian posteriors, GCEPY has to
implement priors for the templates. The adopted priors are uniform
in logarithmic space and are sufficiently wide for most templates.
However, the priors for the negative and positive dust corrections
turned out to be too limiting. In the public code of GCEPY, the priors
for the normalization in logarithmic space are uniform between [—2,
4] for the negative dust correction and [—2, 6] for the positive dust
correction. However, when we adopted the L-BFGS-B algorithm, we

5The L-BFGS-B algorithm simply optimizes the likelihood and therefore
does not allow for Bayesian evidence calculation. For this comparison, we,
therefore, use ATS values, but we will show that our conclusions also hold
when considering the Bayesian evidence.
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Table 2. Results of the likelihood analysis for the GALPROP-based model using GCEPY, including the Bayesian evidence, and mutual Bayes factor with respect
to the best-fitting model GALPROP7;,. We remind that the same mask as in M2023 is applied on 4FGL-DR2 sources and the Galactic plane, |b| < 2°. Likelihood
values from GCEPY are consistent with the ones obtained with the L-BFGS-B algorithm.

Baseline model Additional source —2InL TS InH InB=AInH
GALPROP7, none 3752798 0 —1876678 0
GALPROPg; BB (GCEPY) 3750941 1857 —1875793 885
GALPROPg; gNFVV2 3750051 2747 —1875340 1338
GALPROPg; Caol3 3750582 2216 —1875613 1065
GALPROPg; F98 3749924 2874 —1875286 1392
GALPROPg; Coleman20 3749563 3235 —1875108 1570
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Figure 2. Bulge templates after they are convolved with the PSF at 1.02-1.32 GeV. References from left to right: Freudenreich (1998), Cao et al. (2013),

Coleman et al. (2020), and M2023.

Table 3. Comparison between the L-BFGS-B algorithm and GCEPY with its original priors for the GALPROP7,-based background model and the ring-based

background model without GCE.

Background model Fitting algorithm —2InL 2 (ln Lenrprop; > — In ﬁring—based)
GALPROP7;, L-BFGS-B 3752792 —1852

Ring based 3750940

GALPROP7;, GCEPY 3752798 +3508

Ring based 3756306

provided bounds to scale the parameters from O to large values, far
exceeding the priors in GCEPY in linear space. Fig. 3 shows the best-
fitting values for the normalization of the negative and positive dust
corrections from L-BFGS-B and GCEPY in each energy bin for the
ring-based background model. It is clear that the best-fit values for
the negative dust correction from L-BFGS-B always exceed the prior
range of GCEPY. In GCEPY, the best fit found by GCEPY simply stops at
the upper boundary of the prior for most bins. For a few high-energy
bins, the best fit found by GCEPY is very small, likely caused by
finding a local minimum. The same situation is also observed for the
positive dust correction, although only for a few high-energy bins.
In Table 4, we find that the best-fitting likelihood for the ring-based
model from GCEPY is again consistent with that from the L-BFGS-
B algorithm once we widen the priors for dust corrections. More
specifically, we widen the prior upper bound of two dust corrections
to 10 while maintaining the other priors unchanged. We conclude
that M2023 failed to find the real best-fitting models when using the
ring-based background model due to inadequate priors for the dust
corrections. Our results using the L-BFGS-B algorithm in Table 3,
and the GCEPY results with wider priors in Table 4, provide a more
accurate interpretation of the ring-based background model.

In the ‘no-excess’ case, as detailed in Fig. 4, the best-fitting spectra
include the four H 1 and H2 rings and six ICS rings, along with both
negative and positive dust corrections. Notably, the negative dust
correction at GeV energies is about 30 per cent of the total HI and
H2 fluxes, while the positive correction is relatively small. As the

negative dust correction template represents an underestimation of
the spin temperature, we would expect a constant ratio of negative
dust correction to the H I spectrum across all energies. Although,
this appears to mainly be the case, a deviation occurs at the highest
energy bin. However, this discrepancy is not crucial for determining
the GCE’s morphology, as the GCE’s values are minimal at such
high energies.

Fig. 5 displays the best-fitting count map (in log;o scale) for the
gas-correlated component (H 1, H2, and the dust corrections) in the
ring-based background model at the 1.02—1.32 GeV energy bin. For
comparison, we also show the gas-correlated component (pion decay
+ bremsstrahlung) in the best-fitting GALPROP-based background
model for the same energy bin. Due to the negative correction, the
photon counts associated with the gas-correlated component in the
ring-based model are generally lower than those in the GALPROP-
based model. However, no pixels in the unmasked region have
negative values when H I, H2, and dust corrections are combined.
We have verified that this holds true for every energy bin.

In Table 4, we add the results from using the ring-based back-
ground model using wider priors in GCEPY. In this case, again,
likelihood values with the alternative minimizer are comparable.
Comparing row one of Table 2 with row one of Table 4 shows
that the ring-based model without GCE is a better description
of the gamma-ray sky than the GALPROP7,, with a InB3 = 216.
When adding a GCE component, regardless of the choice of the
template, the Bayesian evidence for the GCE is overall reduced for
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Figure 3. Best-fitting normalizations for the negative and positive dust corrections from L-BFGS-B and ccePy (with narrow priors as in the original
implementation) using the ring-based background model developed by P2022. We are plotting the dust template normalization against the 14 energy bins

range from 0.275 to 51.9 GeV.

Table 4. Similar to Table 2 except here we consider the ring-based background model developed by P2022. We have expanded the priors for the dust corrections
in GCEPY to ensure convergence. Note that in each row, the amplitude of the ring-based background model templates is optimized in addition to the GCE
additional source (if there is one) to maximize the likelihood £, as explained in Section 2.

Baseline model Additional source —2InL TS InH InB=AInH
Ring based none 3750994 0 —1876462 0

Ring based BB (GCEPY) 3750592 402 —1876297 165
Ring based F98 3750570 424 —1876302 160
Ring based Caol3 3750560 434 —1876276 186
Ring based gNFW? 3750433 561 —1876232 230
Ring based Coleman20 3750333 661 —1876144 318

the ring-based background model with respect to GALPROP-based
background models (cf. Tables 2 and 4). Yet the evidence of the
GCE, no matter the template adopted, is strong, i.e. In B = 100.
The ranking of GCE models is similar to Table 2, except for the
fact of F98 performing worse than Cao13 (In B = 26). The gNFW?
template is still preferred over Caol3 (In 5 = 44), while Coleman20
template provides a better fit than the gNFW? template (In B = 88).
We, therefore, corroborate the Coleman20 preference found in the
GALPROP-based runs, even when the ring-based background model is
used.

We notice, however, that the overall goodness of fit of models with
the GCE and using the GALPROPg, background template are preferred
with respect to our optimization of the ring-based background runs
with In B varying between about 500 and 1000 for the different GCE
templates. None the less, we will show below (Section 3.4) that
these very same models lead to unphysical spectra of the IGRB,
questioning their physical interpretations.

Fig. 6 shows the GCE spectra for the five templates tested using
both the GALPROP-based and the ring-based background models.
Overall, the GCE fluxes are higher when using the gNFW? template
compared with bulge templates, by a factor of a few. All the GCE
spectra are relatively soft, and their E2dN/dE values peak at around
1-2 GeV.

MNRAS 530, 4395-4411 (2024)

3.4 Model systematics: degeneracy between IGRB and GCE

In Figs 7 and 8, we examine the spectra for the IGRB for the different
background models and GCE templates. As can be seen from the top
left panel of Fig. 7, when using the GALPROP-based background
model, instead, the IGRB is hardly ‘detected’ around GeV energies,
no matter which GCE template is used (including no excess case).
This result seems to be unphysical. Comparing the IGRB and GCE
flux for different GCE templates (remaining panels of Fig. 7), the
IGRB is largely missing around where the GCE is peaked. The issue
does not seem to exist for the ring-based background model, which
is shown in Fig. 8. The fact that the IGRB in Fig. 7 has no flux around
1-5 GeV is a concerning property of the GALPROP-based background
models, which is not seen in the ring-based models. One possible
way to ameliorate this issue may be to put strong priors on the IGRB
flux so it does not drop to zero.

3.5 Analysis systematics: the role of mask size and goodness of
fit with Monte Carlo simulations

For the sake of studying the systematic uncertainties induced by the
choice of the masked regions, we use the same data and templates as
P2022. The main difference with the ring-based case in Section 3.3
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Figure 4. Best-fitting spectra for the H 1, H2, ICS, negative and positive dust
corrections for the ring-based background model (P2022). The results are
obtained with no GCE template and are from the L-BFGS-B algorithm.

is that the pixel resolution used is now 0.2° rather than 0.1°. We
also use a larger point-source mask, the details of which are shown
in Table 5. The new point-source mask was designed to be wide
enough to mask out 90 percent of the flux of each point source
in each energy bin. Our masks can be compared to table 1 of the
supplementary material of M2023. As can be seen, our point-source
masks have larger radii than even their ‘large’ point-source masks.
We found that if we make our masks smaller, then we could see the
residual point source signal leaking out from the mask. Note that we
do not use the first two energy bins listed in Table 5 in our subsequent
analysis for this subsection, as those bins have too high a fraction of
the ROI masked out to provide meaningful constraints. In Fig. 9, we
compare the fraction of the ROI that is masked in this section to the
fraction of the ROI that is masked in earlier sections and in M2023.
We also remind the reader that in M2023 and in previous sections,
the Galactic plane was masked.

In Table 6, we evaluate the statistical evidence for the additional
GCE component, when our new point-source mask, as described
above, is applied (but the Galactic plane is unmasked). Since we do
not mask the Galactic plane, we also add a model component for the
NB (Nishiyama et al. 2013). This table can be compared to table 2
of P2022. As can be seen, the qualitative results are very similar to
P2022, with mild difference in the likelihoods probably due to the
masking and also to having discarded the first two energy bins so that
we have 13 bins rather than the 15 that were used by P2022. As can
be seen from the table, we find that, with a larger point-source mask,
there is strong evidence for an additional component on top of the
ring-based background model. Moreover, there is evidence for the
Coleman2( template at 8.1c0 on top of the ring-based + NB model,
while the addition of gNFW? is not significant (2.80). Finally, the
significance for DM is strongly reduced to a negligible level when
added to the ring-based+NB + Coleman model.

We then run the case with both new point-source mask and Galactic
plane mask |b| < 2°. In this case, the results are shown in Table 7. As
can be seen, with the Galactic plane and new point-source mask,
we find neither the gNFW? DM template nor the NB template

Morphology of the GCE 4403

to be significant. Conversely, the Coleman20 BB template is still
significant.

P2022 tested the goodness of fit using Monte Carlo simulations.
As can be seen from their Fig. 9, the Monte Carlo simulations were
not consistent with the fit for the E < 5 GeV. This was somewhat
ameliorated to E < 4 GeV by reducing the ROI from 40° by 40°
to 30° by 30°. In Fig. 10, we show the full ROI Monte Carlo
simulations for the new point-source mask, and for the case with
both the point sources and Galactic plane masked out respectively.
As can be seen, in all energy bins, the Monte Carlo simulations are
consistent with the data. This indicates that, with standard template
fitting, it is more robust to mask the point sources rather than try
to model them when the diffuse Galactic emission is being fit.
An alternative would be to include a model of the point sources
and simultaneously fit the position of the point sources with the
parameters of the Galactic diffuse emission model. However, this
would be very computationally intensive and goes beyond the scope
of tests necessary in the current analysis.

4 ADAPTIVE-TEMPLATE FITTING

In this section, we show that the potential of SKYFACT to reduce
residuals and optimize model components in a data-driven way
allows for robust inference on the GCE morphology, as it was
already shown in the case of the analysis of subthreshold point
sources (Calore et al. 2021). Due to a large number of nuisance
parameters, it is infeasible to optimize a given gamma-ray emission
model on small ROIs, in particular, ROIs with a masked Galactic
plane that encompasses the bulk of the detected gamma rays from
the GC. Whenever we optimize a model with SKYFACT, we, therefore,
perform the optimization with respect to the full ROI of 40° x 40°
centred on the GC.

In the SKYFACT-based part of this study, we work with the Fermi-
LAT data selected according to Table 1 except for a change in bin size
from 0.1° to 0.25° to render the analysis computationally tractable.
We consider three distinct model compositions in parallel, namely
the GALPROPg;, ring-based, and the original SKYFACT (Bartels et al.
2018) backgrounds. In all three gamma-ray emission model set-ups,
we employ the Coleman20, NB and gNFW? templates. Note that
in this section, we only consider masking the Galactic plane. The
point sources are added to the background model with full spectral
freedom per point source. In the following section, we outline how
we apply the SKYFACT re-modulation in the context of a masked ROI.

4.1 Deriving gamma-ray optimized background models with
SKYFACT

SKYFACT enables us to go beyond the model iterations investi-
gated in Section 3 by re-modulating the spatial morphology of
the respective model’s components (where possible). As stated
earlier in Section 2.3.2, this is achieved via adaptive template
fitting, invoking a large number of spectral (per energy bin) and
spatial modulation parameters (per spatial pixel) whose ranges are
controlled by user-input hyperparameters. The degree of variation in
these modulation parameters is restricted via a penalizing likelihood
function adding to a standard Poisson likelihood term to prevent
overfitting.

Such an approach is only feasible with enough information in
the considered data set. Thus, applying SKYFACT in the presence
of an extensive Galactic plane mask is prohibitive. Therefore, we
devise the following scheme to incorporate re-modulated gamma-
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Figure 5. Best-fitting count maps (in logio scale) for the gas-correlated component for the ring-based and GALPROP7;, based background model. We show the

sixth energy bin (1.02-1.32 GeV).
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Figure 6. GCE spectra for the gNFW? template as well as the four bulge templates from different references, using the GALPROPg;-based background model

(left) and the ring-based background model (right).

ray emission models in our analysis. For each of the considered
background model set-ups stated above, we perform a fit to the
Fermi-LAT data — data selection described in Table 1 — by enabling
spatial re-modulation. SKYFACT hyperparameter settings are given
in Section 2.3.2. We obtain what we call ‘optimized’ versions of
the original background model set-ups. SKYFACT’s optimization will
re-modulate the background templates to minimize the residual
photons, i.e. parts of the GCE emission will be absorbed by the
selection of background components. We deem such an approach
conservative because we deliberately diminish the total luminosity
of the GCE. However, since the GCE’s spatial morphology and
spectrum are not fully degenerate with the employed background
components, it is very unlikely that the entire excess is re-absorbed
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in the optimized background templates (and indeed, we will confirm
this with our results). In what follows, we investigate the performance
of these optimized background model iterations on data sets with a
Galactic plane mask utilizing, in a second step, standard template
fits.

To convey an idea of how the SKYFACT optimized models compare
to the original versions, we explicitly go through the derivation of
the optimized version of P2022. In Table 8, we list the astrophysical
gamma-ray emission model components of the original set-up of
P2022, which we employ in this part of the analysis. The selected
spatial templates and associated spectra guarantee the optimization of
each component based on physical priors. The GCE components, in
particular, are initialized following the average spectrum of Galactic
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Figure 7. Top left: Spectra of IGRB in the GALPROP-based background model, using different GCE templates (including no excess). Remaining: Comparing
the IGRB and GCE fluxes when different GCE templates are used in the GALPROP-based background model.

MSPs detected by Fermi-LAT (McCann 2015), which suppresses the
gamma-ray emission above a few tens of GeV.’

To reduce the required computation time of SKYFACT and to
improve its convergence, we combine the H I and H2 templates per
ring into a single component, and we create a single inverse Compton
template from the six initial rings. The results of the optimization run
— in this case using the example of modelling the GCE with Cole-
man20, NB, and gNFW? to exemplify what is maximally possible
regarding the reduction of fit residuals — are shown in the right panel
of Fig. 11 in terms of significance ((data — model)/+/model) of the
residuals in the energy range from 1.72 to 10.8 GeV. We compare
these residuals to the residuals we obtain with a simple template fit
(the left panel of the same figure) using the full model as described in
Table 8, and which should correspond to results in Section 3.3. Here,
a template fit refers to a maximum likelihood fit where the spatial
morphology of all templates is fixed, i.e. turning off all spatial and
spectral re-modulation parameters, while all spectra are completely
unconstrained and free to vary. As intended, SKYFACT is able to
noticeably reduce the significant residuals of the template fit along
the Galactic plane to the left and right of the GC. Moreover, the
remaining residuals of the optimized model appear rather featureless
and well-distributed around zero. We obtain very similar results when
the GCE is modelled with only the gNFW? DM template. This
optimization procedure is repeated for the remaining background
models, M2023’s GALPROPg, and the model setup of RUNS used in
the original SKYFACT works.

"Further exploration of the GCE properties above 10 GeV with SKYFACT is
presented in Manconi, Calore & Donato (2024).

4.2 DM evidence in masked analyses with the original SKYFACT
set-up.

To investigate the preferred spatial morphology of the GCE, we turn
towards an alternative gamma-ray emission model neither probed
in P2022 nor M2023. The RUN5 model iteration compiled for the
original SKYFACT works (Storm et al. 2017; Bartels et al. 2018)
provides an ideal candidate to shed light on the impact of a Galactic
plane mask and its impact on template-based fits. To this end, we fully
adopt the set-up of runs in terms of model composition (see the cited
publications for all details) and SKYFACT’s hyperparameter settings.
This gamma-ray emission model iteration contains representatives
of most of the components listed in Table 8 except for the dust
correction, Loop I, Sun, and Moon contributions.

In contrast to the other two background model iterations, this one
can only be used in its ‘optimized’ version as the original templates of
the model are not meant to fit the data well. Following our rationale
outlined in the previous section, we first perform an optimization
run with respect to the selected Fermi-LAT dataset without masking
any part of the sky while adding no explicit GCE components to
the model definition. Afterwards, we extract the optimized model
components with the aim of conducting several template fits based
on the optimized background templates with varying Galactic plane
mask sizes. In these template fits, we restrict the full energy range of
the selected Fermi-LAT data set to energy bins covering 500 MeV
to 12 GeV, i.e. 10 energy bins in total, in order to save computation
time while still capturing the bulk of the GCE’s emission.

To derive a statistically sound assessment of the data’s preference
for any particular GCE morphology, we need to perform template
fits of nested models. We perform this type of model comparison in
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Figure 8. Same as Fig. 7, but for the ring-based background model.

Table 5. The energy bins and the radii, 6, of the point source masks used for
Section 3.5. The last column shows the fraction of pixels masked relative to
the total number of pixels in the inner 40° x 40° GC region, including both
the 4FGL-DR2 catalogue masked point sources and the Galactic plane |b| <

2° mask.

Enin—FEmax (GeV) 6(°) Masked fraction (per cent)
0.667-0.889 1.92 88.5
0.889-1.19 1.58 80.3
1.19-1.58 1.28 68.7
1.58-2.11 1.04 58.9
2.11-2.81 0.8 49.0
2.81-3.75 0.72 41.0
3.75-5.0 0.56 35.3
5.0-6.67 0.48 28.5
6.67-8.89 0.36 26.1
8.89-11.9 0.32 20.7
11.9-15.8 0.2 17.7
15.8-21.1 0.2 17.7
21.1-28.1 0.2 17.7
28.1-37.5 0.2 17.7
37.5-158 0.2 17.7

terms of the significance of the additional component as explained
in Section 2.3.3. We define our base model as all astrophysical
background components plus a GCE represented by Coleman20 and
NB templates. An extended model adds the gNFW? template so
that we can compare the likelihood values for fits with both model
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Figure 9. A comparison of the fraction of the sky masked for the analysis
in of the sky masked in Section 3.5 (blue) and the fraction of sky masked for
the rest of Section 3 and also M2023 (red). Note that in both cases, the plot
is for the combined point source and Galactic plane mask.
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Table 6. Statistical significance of the GCE templates for the ring-based
background model of P2022 when the new point-source mask is applied
(plane unmasked). Additional sources considered in the analysis are NB,
Coleman20 BB, and gNFWz DM-like template. In addition to the TS,
the significance of the additional component is also given in terms of the
equivalent number of o.

Baseline model Additional source TS Significance
Ring based Coleman20 71.5 730
Ring based gNFW?2 80.7 750
Ring based NB 299.7 1620
Ring based + NB gNFW?2 21.0 280
Ring based + NB Coleman20 90.9 8.1o
Ring based+NB + Coleman20 eNFW? 3.5 030

Table 7. The same as Table 6 except that the Galactic plane (|b| < 2°) is also
masked.

Baseline model Additional source TS Significance
Ring based gNFW? 12 1.70
Ring based NB 19 260
Ring based Coleman20 56 590
Ring based + Coleman20 NB 3 020
Ring based + Coleman20 gNFW?2 5 050

instances. Adding a gNFW? component to the base model essentially
adds 11 degrees of freedom or parameters, which must be strictly
positive, namely the normalizations of the DM template per energy
bin and a global normalization parameter.

The results of this approach are reported in Table 9. The first row of
this table can be compared to the last row of table 2 of P2022. There
a slightly lower significance was found but some minor differences
are to be expected given variations on how the point sources are
treated, the number of energy bins used, and the modulation done
of the background templates. In both cases, the significance of a
gNFW? template is negligible once the Coleman20 BB and NB
have been added. The results of Table 9 indicate that the evidence
for the necessity of adding a gNFW? template to the gamma-ray
emission model is at most 1.6¢ in the case of no Galactic plane
mask. Interpreted differently, there is only marginal evidence that
the preferred morphology of the GCE follows a gNFW? profile.
This is in agreement with results of Section 3.5, also when spatial
modulation of the background model components is allowed.

4.3 Bayesian model comparison of original and optimized
gamma-ray emission models

Given the sometimes opposing findings on the preferred spatial
morphology of the GCE reported in the broad body of literature,
it is necessary to ask the question of how much the employed
astrophysical background model impacts the eventual conclusion.
Here, we investigate this question from a Bayesian point of view
by quantifying the degree of belief in certain gamma-ray emission
models, that is, what model fits the Fermi-LAT data best. The
expectation is to verify that with increasing Bayesian evidence for
a gamma-ray emission model, the preference for a particular spatial
morphology of the GCE is converging to either DM represented by a
gNFW? template or the combination of the Coleman20 BB and NB
templates.

Morphology of the GCE 4407

4.3.1 Model comparison without GCE components.

In Table 10, we consider six background models, three original
background model template sets and three optimized template sets
obtained by applying the rationale outlined in Section 4.1. We first
compare the performance of these models in a template fit without
adding additional GCE components, i.e. we assess how well the
background templates alone fit the GC gamma-ray emission. Note
that we also include M2023’s GALPROP7, background model (only
original templates) since it was found in M2023 that it yields the
best fit when not accounting for GCE components. In all runs, we
applied a Galactic plane mask of |b| < 2°, which turned out to
be a crucial ingredient in the comparisons of DM-like and bulge
templates.

To derive the stated Bayesian evidence H, we proceed as follows.
We extract the best-fitting template normalizations for each model
iteration. We sum all model components multiplied by the retrieved
best-fitting normalizations. Using MULTINEST (Feroz, Hobson &
Bridges 2009) and specifying 1000 live points and an evidence
tolerance of 0.2, we re-fit the masked ROI with these models while
assigning a single normalization parameter to it and employing a
Poisson log-likelihood function.

By comparing these models,? we notice that the optimized versions
of each respective background model iteration always yield a better
fit to the data, also in the case of ring-based background models.
In contrast to M2023, we do not find that the original GALPROP7,
performs better than the original GALPROPg, without additional GCE
components as shown by a Bayes factor of In 3 = 277 in favour of
the latter.

Among all considered model iterations, we find that the run5 model
of the original SKYFACT works yields the best description of the data
by far (In B > 1000 to the next best iteration, the optimized M2023’s
GALPROPg,). Yet, already at this stage, we caution the reader not to
overinterpret the quoted evidence values — In#H. skyFACT is not
a perfect tool and cannot re-modulate the templates to 100 per cent
accuracy. For example, when we compare the optimized templates
associated with the 7° and bremsstrahlung emission (following the
gas distribution in the Milky Way) among different background
model iterations, we find that they do not converge to the exact
same morphology. For instance in the most extreme case, the
relative deviation of this optimized gas-related component is on
average around 30 percent with respect to SKYFACT’s RUNS and
M2023’s GALPROPg.. On one side, this is caused by the quite
diverse gamma-ray emission model composition in P2022, M2023
and SKYFACT’s RUNS, which yields different priors for the adaptive
template fitting routine. On the other side, this technique relies on
user-defined hyperparameters that alter the final results. While we
improve the fit results via SKYFACT, we do not claim to have derived
the unique optimal diffuse model describing the physics of the
GC.

8We stress that the numbers presented in Table 10 cannot and should not
be directly compared to the previous results in Section 3. The main reason
is the differing resolution of the templates adopted for the two analyses. In
Section 3, we use a finer resolution of 0.1°, which directly translates to larger
likelihood values. At the same time, we have to project the gamma-ray flux
models of each component to the chosen geometry of the data set. The initial
resolution of the flux model is most of the times coarser than the chosen
bin size for the data. Projection effects can distort and washout information
so that we do not compare the exact same model each time we change the
resolution.
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Figure 10. Left: Monte Carlo simulations for the ring-based+NB + Coleman20 model when the point sources are masked as specified in Table 5. Poissonian
simulations were generated for the best-fitting parameters of this model. Each simulation was fit using the ring-based+NB 4 Coleman20 model, and the
maximum likelihood for the simulation (L, ) was compared to the maximum likelihood for the ring-based+NB + Coleman20 model fit to the Fermi-LAT data
(In Lga1a) which is given in Table 6. The vertical error bars were estimated from the mean and standard deviation of the simulation samples. The horizontal error
bars indicate the energy bin widths. Right: Same as the left plot except that the Monte Carlo simulations are for the ring-based + Coleman20 model when the
point sources are masked as specified in Table 5 and the |b| < 2° Galactic plane was also masked.

Table 8. Summary of the spatial and spectral model components used as input for SKYFACT to derive an optimized version of the gamma-ray emission model

of P2022.

Component Spatial morphology

Spectrum

70 + bremsstrahlung
0-3.5, 3.5-8, 8-10, 10-50 kpc)
Inverse Compton

Based on the 3D interstellar radiation field model of (Porter, Johannesson & Moskalenko

2017)
Dust correction
Detected sources
Isotropic gamma-ray background
Fermi bubbles
Sun and Moon

Isotropic
Macias et al. (2019)

Loop I ‘Wolleben (2007)
DM C2022
Boxy Bulge Coleman et al. (2020)

Nuclear stellar cluster Nishiyama et al. (2013)

H 1 maps P2022 and H2 maps Macias et al. (2018) in four rings (in Galactocentric radii:

Numerical computation in six Galactocentric rings via GALPROP v56

Positive and negative corrections maps of Abdollahi et al. (2020)
4FGL-DR2 sources in our ROI (Ballet et al. 2020)

Data-driven, derived with the Fermi Science Tools

Ackermann et al. (2012)

Spectrum of foreground
Model A (Ackermann et al. 2015)

Power law o< E~2

Spectra listed in 4FGL-DR2

Fermi Science Tools

Ackermann et al. (2017) for low latitudes
Fermi science tools

Power law o< E~2

o (E/1GeV)™'40 exp (—E /3.6 GeV)

o (E/1GeV)™ "4 exp (—E /3.6 GeV)

o (E/1GeV)™'“ exp (—E/3.6GGeV)

4.3.2 Model comparison with added stellar GCE components

For each of the all gamma-ray emission models in Table 10 but
GALPROP7, original, we then add an additional GCE component,
modelled as Coleman20 and NB, perform a standard template fit
and extract Bayesian evidence values as described in the previous
paragraph.

As can be seen from Table 11, in general, we find very strong
evidence for the combination of the Coleman20 BB and NB on top of
the background-only model iterations, as clearly implied by the large
significance values around 20o in all tested cases. This means that,
regardless of the SKYFACT optimization, Fermi-LAT data strongly
want an additional component, i.e. the GCE. As can be seen from
Table 11, among the ‘original’ non-SKYFACT modulated gamma-
ray emission models, we find that the one proposed by M2023,
GALPROPg;, exhibits strong evidence (In B & 300) for being a better
fit to the data with respect to the original P2022 set-up. This claim

MNRAS 530, 4395-4411 (2024)

has been made in M2023, which we are able to reproduce here (and
in Section 3). However, this does not mean that their model is, in
general, the best description of reality since we are only looking at
latitudes |b| > 2°. The SKYFACT-modulated versions of both gamma-
ray emission model instances are strongly preferred by the data
compared to their original counterparts. Globally, the SKYFACTRUNS
model is the one performing best among all tested cases, even when
spatial modulation are allowed on the original M2023 and P2022
models. There is strong evidence for it being preferred over the
second-best model, M2023 optimized, by In B &~ 1400.

4.3.3 Model comparison and significance of a DM component

Finally, we added a gNFW? component in the subsequent fit, on
top of the bulge Coleman20 and NB model. This way, we can
repeat the approach outlined in Section 2.3 to quantify the statistical
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Figure 11. Shows (data — model)/+/model of residuals in the integrated energy range from 1.72 to 10.8 GeV. Left: Employing SKYFACT to perform a template
fit with the ring-based astrophysical model components listed in Table 8 with a GCE represented by the Coleman20 + NB 4+ gNFW?2. Right: Running the same
model set-up with the full re-modulation power of SKYFACT to optimize the employed components.

Table 9. Summary of the significance of an additional gNFW? template
in template fits with the SKYFACTRUNS set-up for various Galactic plane
mask sizes. Here, ‘base’ refers to the SKYFACT optimized RUN5 background
templates plus the Coleman20 BB and a NB component. The SKYFACT
optimization of background templates was performed on the RUN5 set-up
without GCE components as outlined in Section 4.1.

Galactic plane mask ~ —21In Ly onpw2 —2InLoae TS - Significance
no mask 275081 275071 10 1.60
|b] < 1° 260989 260985 4 0.50
|b] <2° 247030 247029 1 0.10
|b] < 5° 205937 205932 5 0.70

Table 10. Summary of the likelihoods (£) and evidence (#) for different
background models. A Galactic plane mask of |b| < 2° is applied, but the
point sources are included as part of the background model. The optimized
version of the background model includes a skyFACT modulated version of
the non-point source components of the ‘original’ model.

Background model —21In(L) —In(H)
M2023’s GALPROP7,, ‘original’ 347477 280175
M2023’s GALPROPg; ‘original’ 347465 279898
M2023’s GALPROPg; ‘optimized’ 342008 274036
P2022’s ring-based ‘original’ 346859 279723
P2022’s ring-based ‘optimized’ 342982 276075
SKYFACTRUNS ‘optimized’ 340266 272900

significance of an additional gNFW? template from the frequentist
perspective. As can be seen from Table 12, we are also able to
reproduce the M2023 result of the strong evidence (more than 110)
for the necessity of an additional DM gNFW? template on top of
Coleman20 and NB in the context of the original M2023 model set-
up. However, as can also be seen from Table 12, the significance of the
gNFW? component is only marginal after SKYFACT modulating the
spatial morphology of the background model. In contrast, consistent
with earlier works and the results in Table 7, we see in Table 12 that
the setup of P2022 never required an additional gNFW? template

after accounting for the GCE as the Coleman20 BB template and NB
template. As can also be seen from Table 12, the SKYFACT model is
an outlier here because the fit, including a gNFW? template, is even
worse than the one without. This situation can occur in SKYFACT
since even in a template fit, we modulate the spatial morphology
of the detected extended 4FGL-DR?2 sources. Thus, the penalizing
likelihood function adds a non-vanishing part to the overall value
of the likelihood function. Yet, the extensions of these sources are
marginal compared to the rest of the ROI, so we do not expect biased
results. Consequently, there is also no evidence of the need for a
gNFW? template in this gamma-ray emission model iteration.

In conclusion, whenever we employ an optimized astrophysical
background model, there is no strong evidence for spherical sym-
metry of the GCE or at least a preference for such a morphology
even when masking the Galactic plane. Previous contrary findings
seem to be driven by a certain amount of background mismodelling.
We stress again that quoted values of the Bayesian evidence are
subject to the caveats raised in Section 2.3.3. Eventually, the Bayesian
framework allowed us to single out the SKYFACTRUNS set-up to be the
most suitable to describe the Galactic centre physics with adaptive
template fitting. Its assumed priors for the spatial and spectral profile
of the used components yield the best-fitting model among the tested
cases, although it does by no means imply that it is the optimal model
achievable.

5 CONCLUSIONS

We have performed an extensive analysis of models of gamma-ray
emission towards the GC as an explanation of the GCE, subject to
different choices of diffuse background models, point source and
Galactic plane masking, and extended source models. In particular,
we tested GALPROP-based background models versus more flexible
non-parametric ring-based models.

First, we have thoroughly tested contradicting results in the
literature for masked analyses, especially those pertaining to the
preference for stellar bulge versus DM, e.g. in M2023, where
preference for a gNFW? (DM-like) emission of the GCE was found.
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Table 11. Summary of the TSs, significances for the Coleman20 + NB templates for different background models. The evidence (#) is
also given for the combined model of background + Coleman20 + NB. See Table 10 for an explanation of the background models and their

corresponding likelihoods.

Background model TS (Coleman20 + NB) Significance —In(H)
M?2023’s GALPROPg; ‘original’ 2137 > 200 278929
M2023’s GALPROPg; ‘optimized’ 4822 > 200 272018
P2022’s ring-based ‘original’ 445 19.10 279231
P2022’s ring-based ‘optimized’ 5435 > 200 272573
SKYFACTRUNS ‘optimized’ 3957 > 200 270627

Table 12. Summary of the TSs and significances for the gNFW? template for different background models once the Coleman20 + NB
templates have been added. See Table 10 for an explanation of the background models and their corresponding likelihoods.

Base model TS(gNFW?) Significance —In(H)
M2023’s GALPROPg; ‘original’ 4+ Coleman20 4+ NB 162 11.40 278843
M2023’s GALPROPg; ‘optimized’ + Coleman20 + NB 22 270 272008
P2022’s ring-based ‘original’ + Coleman20 4+ NB 32 390 279202
P2022’s ring-based ‘optimized’ + Coleman20 + NB 14 1.70 272504
SKYFACTRUNS ‘optimized’ + Coleman20 + NB -3 - 270673

In Section 3, we showed that we can reproduce the analysis in
M2023, and we scrutinized their main results in light of model and
analysis systematic uncertainties. In Section 3.2, we highlighted the
relevance of the bulge templates: when using the same GALPROP-
based background models as in M2023, with the same data selection
and masks, we demonstrated using Bayesian evidence that the
Coleman20 and F98 bulge models provide a better description of
the inner Galaxy gamma-ray sky than a gNFW? model. We then
tested an alternative model for the Galactic diffuse emission, and, in
particular, the so-called ring-based background model. In Section 3.3,
we demonstrated that, in the absence of an additional GCE source,
the ring-based model better performs with respect to GALPROP-based
models. When adding a GCE source, the Coleman20 bulge model is
the preferred model of the GCE, significantly better than the gNFW?
template. We notice that the contrary conclusions of M2023 when
using the ring-based model were due to their not correctly finding
the minimum of the parameters for the ring-based templates due to
an overly restrictive prior. We also found that M2023 used a non-
standard version of the Galactic bulge template. This is confirmed
by the fact that even with their GALPROP-based templates, the better-
motivated Coleman20 bulge template still provides a superior fit to
the Fermi-LAT data. In Section 3.5, we examined the case of ring-
based templates with more aggressive masking. We found that, when
just the point sources are masked out, the Coleman20 BB and NB
significantly improve the fit, and once they are added, the gNFW?
template does not significantly improve the fit anymore. When the
Galactic plane is masked out, only the Coleman20 BB template is
required. The NB is indeed too small in its spatial extent to have any
significant effect on the model fit to the data in that case. We also
showed using Monte Carlo simulations that the fits were consistent
with simulations.

We then looked at the case where templates could be spatially
modulated using SKYFACT. Allowing for more freedom on the spatial
parts of the model components, we were able to further minimize
the residuals and improve the goodness of fit. We compared the
different background models from the previous sections and added an
additional SKYFACT model (RUN5). We demonstrated that switching
on the spatial modulation of background models always provide a
better fit to data, because of reduction of the residuals. Among all
considered background model iterations, we find that the RUN5 model
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of the original SKYFACT works yielded the best description of the data
by far (In B > 1000 to the next best iteration, the optimized M2023’s
GALPROPg,). None the less, limitations still exist in the current SKY-
FACT implementation. While we improve the fit results via SKYFACT,
we do not claim to have derived the unique optimal diffuse model
describing the physics of the GC. No matter what the background
model is, we always found strong evidence for the Coleman20 + NB
model. Moreover, for all background optimized models there is no
additional evidence for a DM-like signal. We found similar results,
i.e. DM evidence on top of the bulge model always below the 40
threshold, for almost all background models. We encountered one
exception, namely the original M2023 GALPROP-based template.
However, this was found to have a much lower Bayesian evidence in
comparison to the SKYFACTRUNS model. Finally, we found that, for
the RUNS model of the original skyFacTimplementation, the evidence
for an additional DM-like contribution is not significant on top of the
Coleman20 bulge and NB model regardless of the cut on Galactic
latitude.

We stress that throughout this work we have adopted Bayesian
statistics when performing model comparison, and our conclusions
have to be interpreted in such a statistical framework.

In summary, the preference for a bulge-like morphology of the
GCE in the various analyses we have done puts on even more
solid grounds the possibility that part of the excess originates from
unresolved point sources, such as MSPs. Future multiwavelength
analyses of the GC will help determine the nature of the sources
emitting across the multi-messenger spectrum from radio (Calore
et al. 2016), X-rays (Berteaud et al. 2021), up to very high energy
gamma rays (Song, Macias & Horiuchi 2019; Macias et al. 2021).

Note: While our article was near completion, a new article came
out (Zhong & Cholis 2024) which found that when the GALPROP-
based background model was used, the Coleman20 bulge had a
similar likelihood to the gNFW?2. No Bayesian model comparison
is performed therein.
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